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Molecular Wires Acting as Coherent Quantum Ratchets
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The effect of laser fields on electron transport through a molecular wire weakly coupled to two leads
is investigated. The molecular wire acts as a coherent quantum ratchet if the molecule is composed of
periodically arranged, asymmetric chemical groups. This setup presents a quantum rectifier with a finite
dc response in the absence of a static bias. The nonlinear current is evaluated in closed form within
the Floquet basis of the isolated, driven wire. The current response reveals multiple current reversals
together with a nonlinear dependence on the amplitude and the frequency of the laser field. The current
saturates for long wires at a nonzero value, while it may change sign upon decreasing its length.
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More than two decades after the idea of a molecular
rectifier [1], the experimental and theoretical study of such
systems presently enjoys a vivid activity [2]. Recent ex-
perimental progress has enabled the reproducible measure-
ment [3,4] of weak tunneling currents through molecules
which are coupled by chemisorbed thiol groups to the gold
surface of the leads. A necessary ingredient for future
technological applications will be the possibility to con-
trol a priori the tunneling current through the molecule.
Advances in that very direction have lately been achieved
by the development of a molecular field-effect transistor
[5]. Typical energy scales in molecules are in the opti-
cal and the infrared regime, where basically all of today’s
lasers operate. Hence, lasers represent an inherent possi-
bility to control atoms or molecules and possibly currents
through them.

A particularly intriguing phenomenon in strongly driven
systems is the so-termed ratchet effect [6–9], originally
discovered for overdamped classical Brownian motion in
cyclic asymmetric nonequilibrium systems. Counterintu-
itively to the second law one then observes a directed trans-
port, although all acting forces possess no net bias. This
effect has been established as well within the regime of dis-
sipative, incoherent quantum Brownian motion [10]. With
this work we investigate the possibilities for quantum wires
to act as a coherent quantum ratchet, i.e., we consider the
coherent quantum transport through molecular wires with
a saw-tooth-like level structure of the orbital energies when
subjected to the influence of a strong laser field.

Recent theoretical descriptions of molecular conductiv-
ity are based on a scattering approach [11,12], or assume
that the underlying transport mechanism is an electron
transfer reaction from the donor to the acceptor site and
that the conductivity can be derived from the correspond-
ing reaction rate [13]. It has been demonstrated that both
approaches yield identical results in a large parameter
regime [14]. Within the high-temperature limit, the elec-
tron transport on the wire can be described by inelastic
hopping events [13,15].
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Atoms and molecules in strong oscillating fields have
been widely studied within a Floquet formalism [16,17].
This suggests the following procedure: Making use of the
tools that have been acquired in that area, we develop a for-
malism that combines Floquet theory for a driven molecule
with the many-particle description of transport through a
system that is coupled to ideal leads. This approach is
devised much in the spirit of the Floquet-Markov theory
[18,19] developed for driven dissipative quantum systems.
Technically, we thereby work beyond the usual rotating-
wave approximation as frequently employed, such as, e.g.,
in Ref. [20].

Lead-molecule model.—The total system composed of
the driven wire, the leads, and the molecule-lead couplings
is described by the Hamiltonian

H�t� � Hwire�t� 1 Hleads 1 Hwire-leads . (1)

The wire itself is modeled by N atomic orbitals jn�, n �
1, . . . , N , which are in a tight-binding description coupled
by hopping matrix elements. The Hamiltonian for the elec-
trons on the wire reads

Hwire�t� �
X
n,n0

Hnn0 �t�cy
n cn0 , (2)

where the fermionic operators cn, cy
n annihilate, respec-

tively create, an electron in the atomic orbital jn�. The
influence of the laser field is given by a periodic time
dependence of the on-site energies yielding a single par-
ticle Hamiltonian of the structure Hnn0�t� � Hnn0�t 1 T �,
where T � 2p�V is determined by the angular frequency
V of the laser field.

The orbitals at the left and the right end of the molecule,
that we shall refer to as donor and acceptor states, jD� �
j1� and jA� � jN�, respectively, are coupled to ideal leads
(cf. Fig. 1) by the tunneling Hamiltonian

Hwire-leads �
X
q

�VqLc
y
qLcD 1 VqRc

y
qRcA� 1 H.c. , (3)

where cqL �cqR� annihilates an electron in state Lq �Rq�
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FIG. 1. Level structure of the wire ratchet with N � 8 atomic
sites, i.e., Ng � 2 asymmetric molecular groups. The bridge
levels are EB above the donor and acceptor levels and are shifted
by 6ES�2.

on the left (right) lead. In the following we will assume
a wide-band limit GL�R � �2p�h̄�

P
q jVqL�R j

2d�e 2

eqL�R�, i.e., an energy-independent coupling strength.
The leads themselves are modeled by grand-canonical

ensembles of electrons with the Hamiltonian Hleads �P
q�eqLc

y
qLcqL 1 eqRc

y
qRcqR� and electrochemical poten-

tials mL�R. Then the only nontrivial expectation values of
lead operators are �cy

qLcqL� � f�eqL 2 mL�, where eqL is
the single particle energy of the state qL and correspond-
ingly for the right lead. Here, f�e� � �1 1 ee�kBT �21 is
the Fermi function.

Perturbation theory.—While the dynamics of the leads
and the wire, including the external driving, will be treated
exactly, we take the wire-lead Hamiltonian as a perturba-
tion into account. From the Liouville–von Neumann equa-
tion ih̄ �� �t� � �H�t�, � �t�� for the total density operator
� �t� one obtains by standard techniques the approximate
equation of motion

�� �t� � 2
i
h̄

�Hwire�t� 1 Hleads, ��t�� 2
1
h̄2

Z `

0
dt

3 �Hwire leads , � eHwire leads�t 2 t, t�,� �t�� � . (4)

The tilde denotes operators in the interaction picture with
respect to the molecule and the lead Hamiltonian without
the molecule-lead coupling, eX�t, t0� � U

y
0 �t, t0�XU0�t, t0�,

U0 is the propagator without the coupling. The net (in-
coming minus outgoing) electrical current through the left
contact is given by the time-derivative of the electron num-
ber in the left lead multiplied by the electron charge 2e.
From Eq. (4) follows in the wide-band limit the expression

IL�t� � e tr� �� �t�NL�

� 2e
GL

p h̄
Re

Z `

0
dt

Z
de ei�e1mL�t� h̄

3 f�e� ��c1 , c̃
y
1 �t 2 t, t��1� 1 eGL�cy

1 c1� (5)

and mutatis mutandis for the net current through the right
contact. Equation (5) expresses the current by the expec-
tation values ��cn, c̃n�t 2 t, t��1� and �cy

n cn�. We empha-
228305-2
size that these quantities depend on the dynamics of the
isolated wire and are thus influenced by the driving.

Floquet decomposition.—Let us now focus on the
driven molecule decoupled from the leads. Since its Ham-
iltonian is periodic in time, Hnn0�t� � Hnn0�t 1 T �, T �
2p�V, we can solve the time-dependent Schrödinger
equation within a Floquet approach, i.e., we make use of
the fact that there exists a complete set of solutions of the
form jCa�t�� � e2ieat�h̄jFa�t�� with the quasienergies
ea . The so-called Floquet modes jFa�t�� obey the time
periodicity of the driving field and can thus be decomposed
in a Fourier series: jFa�t�� �

P`
k�2` e2ikVtjFa,k �. They

fulfill the quasienergy equation [16,21,22]√X
n,n0

jn�Hnn0�t� �n0j 2 ih̄
d
dt

!
jFa�t�� � eajFa�t�� .

(6)

To make use of the knowledge about the driven molecule
that we obtain from Floquet theory, we define the Floquet
representation of the fermionic creation and annihilation
operators by the time-dependent transformation

ca�t� �
X
n

�Fa�t� j n�cn , (7)

cn �
X
a

�n jFa�t��ca �t� . (8)

The back transformation (8) follows from the mutual or-
thogonality and the completeness of the Floquet states at
equal times. It is now straightforward to prove that c̃a�t 2
t, t� � ca�t� exp�ieat�h̄�. This yields a spectral decom-
position of Eq. (5), which makes it possible to evaluate
the time and energy integrations therein. Averaging IL�t�
over the driving period [23] leads to our first main result,
namely the average current

Ī � 2
eGL

h̄

X
ak

"
�Fa,k jD� �D jFa,k�f�ea 1 kh̄V 2 mL�

2
X
bk 0

�Fa,k 01k jD� �D jFb,k 0�Rab,k

#
, (9)

where Rab�t� � �cy
a�t�cb�t�� �

P
k e2ikVtRab,k. Here

we have used the fact that the Rab�t� are expectation val-
ues of a dissipative, periodically driven system. There-
fore, they share in the long-time limit the time periodicity
of the driving field and can be represented by a Fourier
series.

The remaining task in computing the stationary current
is to find the Fourier coefficients Rab,k at asymptotic times.
For that purpose, we derive from Eq. (4) a master equation
for the Rab�t�. Since all coefficients of this master equa-
tion as well as its asymptotic solution are T periodic, we
can split it into its Fourier components which have to sat-
isfy Eq. (4) separately. Finally, we obtain for the Rab,k

the inhomogeneous set of equations
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i
h̄

�ea 2 eb 1 kh̄V�Rab,k �
GL

2

X
k0

( X
b 0k 00

�Fb,k 001k 0 jD� �D jFb 0,k 001k�Rab 0,k 0

1
X
a 0k 00

�Fa 0,k 001k 0 jD� �D jFa,k 001k�Ra 0b,k 0

2 f�ea 1 k0h̄V 2 mL� �Fb,k 02k jD� �D jFa,k 0�

2 f�eb 1 k0h̄V 2 mL� �Fb,k 0 jD� �D jFa,k 01k�

)
1 �GL, mL, jD� �Dj� ! �GR, mR , jA� �Aj� . (10)
For the typical parameter values used below, a large num-
ber of sidebands contributes significantly to the Fourier
decomposition of the Floquet modes jFa�t��. Numerical
convergence for the solution of the master equation (10),
however, is already obtained by using a few sidebands for
the decomposition of Rab�t�. This keeps the numerical
effort relatively small and justifies the use of the Floquet
representation (8). Yet we are able to treat the problem be-
yond the usual rotating-wave-approximation [20], which
in certain parameter regimes turns out to be crucial.

Ratchet wire.—We consider a molecular wire that con-
sists of a donor and an acceptor site and Ng asymmetric
molecular groups (cf. Fig. 1). Each of the N � 3Ng 1 2
orbitals is coupled to its nearest neighbors by a hopping
matrix elements D. The laser field renders each level os-
cillating in time with a position dependent amplitude. Then
the time-dependent wire Hamiltonian reads

Hnn0�t� � �En 2 A cos�Vt�xn�dnn0

2 D�dn,n011 1 dn11,n0� , (11)

where xn � �N 1 1 2 2n��2 is the scaled position of site
n, the energy A equals electron charge multiplied by laser
field strength and distance between two neighboring sites,
and D is the hopping matrix element. The energies of the
donor and the acceptor orbitals are assumed to be at the
level of the chemical potentials of the attached leads and
since no voltage is applied, E1 � EN � mL � mR . The
bridge levels En lie at EB and EB 6 ES�2, respectively, as
sketched in Fig. 1. We remark that for the sake of simplic-
ity intra-atomic dipole excitations are neglected within our
model Hamiltonian (11).

In our numerical studies, we use the hopping matrix ele-
ment D as the energy unit; in a realistic molecule, D is
of the order 0.1 eV. Thus, our chosen wire-lead hopping
rate G � 0.1D�h̄ yields eG � 2.56 3 1025 A and V �
3D�h̄ corresponds to a laser frequency in the infrared.
Note that for a typical distance of 5 Å between two neigh-
boring sites, a driving amplitude A � D is equivalent to
an electrical field strength of 2 3 106 V�cm.

Figure 2 shows the stationary time-averaged current Ī .
In the limit of a very weak laser field, we find Ī ~ ESA2

(not shown). This behavior is expected from symmetry
considerations: The asymptotic current must be indepen-
dent of any initial phase of the driving field and therefore
is an even function of the field amplitude A. This indicates
that the ratchet effect can be obtained only from a treat-
ment beyond linear response. For strong laser fields, we
find that Ī is almost independent of the wire length. If the
driving is intermediately strong, Ī depends in a short wire
sensitively on the driving amplitude A and the number of
asymmetric molecular groups Ng: even the sign of the cur-
rent may change with Ng, i.e., we find a current reversal as
a function of the wire length. For long wires that comprise
five or more wire units, the average current becomes again
length independent, as can be seen from Fig. 3. This iden-
tifies the observed current reversal as a finite size effect.
The fact that Ī converges to a finite value if the number
of wire units is enlarged, demonstrates that the dissipation
caused by the coupling to the leads is sufficient to establish
the ratchet effect in the limit of long wires. In this sense,
no on-wire dissipation is required.

Figure 4 depicts the average current vs the driving fre-
quency V, exhibiting resonance peaks as a striking feature.
Comparison with the quasienergy spectrum reveals that
each peak corresponds to a nonlinear resonance between
the donor/acceptor and a bridge orbital. While the broader

A [∆ ]

− I
[1

0 −
3
eΓ

]

FIG. 2. Time-averaged current through a molecular wire that
consists of Ng bridge units as a function of the driving strength
A. The bridge parameters are EB � 10D, ES � D, the driving
frequency is V � 3D�h̄, the coupling to the leads is chosen
as GL � GR � 0.1D�h̄, and the temperature is kBT � 0.25D.
The arrows indicate the driving amplitudes used in Fig. 3.
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FIG. 3. Time-averaged current as a function of the number of
bridge units Ng for the laser amplitudes indicated in Fig. 2. All
other parameters are as in Fig. 2. The connecting lines serve as
a guide to the eye.

peaks at h̄V � EB � 10D match the 1:1 resonance (i.e.,
the driving frequency equals the energy difference), one
can identify the sharp peaks for h̄V & 7D as multiphoton
transitions. Owing to the broken spatial symmetry of the
wire, one expects an asymmetric current-voltage charac-
teristic. This is indeed the case as depicted in the inset of
Fig. 4.

With this work we put forward an approach for the
computation of the current through a molecular wire in
the presence of laser fields of arbitrary strength. Our
method is based upon the Floquet solutions of the iso-
lated driven wire. The technique is seemingly also very
efficient for larger wire systems. With this formalism at

Ω [∆ / −h]

− I
[1

0 −
3
eΓ

]

V [∆ /e ]

− I
[1

0 −
3
eΓ

]

FIG. 4. Time-averaged current as a function of the driving fre-
quency V for A � D and Ng � 1. All other parameters are as
in Fig. 2. The inset displays the dependence of the average cur-
rent on an externally applied static voltage V , which we assume
here to drop solely along the molecule. The driving frequency
is V � 3D�h̄ (cf. arrow in main panel).
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hand, we have established the possibility of using mo-
lecular wires as coherent quantum ratchets. As a finite
size effect, the wire may exhibit a characteristic current
reversal as a function of (decreasing) length; upon in-
creasing the wire length the average current rapidly con-
verges to a finite value. The strong dependence on the
driving parameters in turn admits a tailored quantum con-
trol of current with respect to both its sign and its mag-
nitude. In particular, this driven molecular wire with
the distinctive multiple current reversal feature encom-
passes new prospects to pump and shuttle electrons on
the nanoscale in an a priori manner. Our physical esti-
mates show that a realization of a molecular wire ratchet
indeed is within experimental reach.
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