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Oscillatory systems driven by noise: Frequency and phase synchronization
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The phenomenon of effective phase synchronization in stochastic oscillatory systems can be quantified by an
average frequency and a phase diffusion coefficient. A different approach to compute the noise-averaged
frequency is put forward. The method is based on a threshold crossing rate pioneered by Rice. After the
introduction of the Rice frequency for noisy systems we compare this quantifier with those obtained in the
context of other phase concepts, such as the natural and the Hilbert phase, respectively. It is demonstrated that
the average Rice frequency ^v&R typically supersedes the Hilbert frequency ^v&H , i.e. ^v&R >^v&H . We
investigate next the Rice frequency for the harmonic and the damped, bistable Kramers oscillator, both without
and with external periodic driving. Exact and approximative analytic results are corroborated by numerical
simulation results. Our results complement and extend previous findings for the case of noise-driven inertial
systems.
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I. INTRODUCTION

The topic of synchronization covers a plethora of phe-
nomena @1# ranging from the entrainment of a system by an
external drive over mutual synchronization of two bidirec-
tionally coupled systems to coherent modes of many units
with complex coupling patterns @2#. From the conceptual
point of view different degrees of synchronization can be
distinguished: complete synchronization @3#, generalized
synchronization @4#, lag synchronization @5#, phase synchro-
nization @6,7#, and burst ~or train! synchronization @8#. In the
following, we restrict our considerations to phase synchroni-
zation that has attracted recent interest for the following rea-
son: In many practical applications the dynamics of a sys-
tem, though not perfectly periodic, can still be understood as
the manifestation of a stochastically modulated limit cycle
@9,10#. As examples, we mention neuronal activity @11#, the
cardiorespiratory system @12#, population dynamics @13#, or
even digital communications ~where switching back and
forth constitutes a cycle!. In all these dynamics, marker
events can be used to pinpoint the completion of a cycle, k,
and the beginning of a subsequent one k11. It is then pos-
sible to define an instantaneous phase fL(t) by linear inter-
polation, i.e.,

fL~ t !5
t2tk

tk112tk
2p1k 2p ~ tk<t,tk11!, ~1!

where the times tk are fixed by the marker events. Introduc-
ing a Poincaré section is another way of defining a marker
event and was widely used in model studies @1#. Reexpress-
ing the time series x(t) of the system as

x~ t !5a~ t !cos@fL~ t !# , ~2!
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then defines an instantaneous amplitude a(t). The benefit of
such a treatment is to reveal a synchronization of two or
more such signals: whereas the instantaneous amplitudes
and, therefore, the time series might look rather different, the
phase evolution can display quite some similarity. If the av-
erage growth rates of phases match each other ~notwithstand-
ing the fact that phases may diffuse rapidly! the result is
termed frequency locking. Small phase diffusion, in addition
to frequency locking, means that phases are practically
locked during long episodes that occasionally are disrupted
by phase slips caused by sufficiently large fluctuations. This
elucidates the meaning of effective phase synchronization in
stochastic systems.
The mentioned marker events that determine the moments

when the phase passes multiples of 2p can be either spikey
peaks as for the neural activity, pronounced maxima as for
population dynamics or switchings from ‘‘low’’ to ‘‘high’’ in
digital communications. In a unifying approach the phase
evolution can be related to zero crossings since relative
maxima of a smooth function are zeros of the derivative and
the inclusion of an arbitrary threshold only requires a shift of
the coordinate. In this view the average frequency, i.e. the
average phase velocity, turns out to be the average rate of
zero crossings that is captured by a formula put forward by
Rice @14,15#.
This elementary observation yields a proposed way ~i! to

quantify the average frequency of a phase evolution, hence-
forth termed the ‘‘Rice frequency,’’ and ~ii! to track down
frequency locking in stochastic systems. In this investigation,
we will elaborate how the proposed approach contrasts with
other definitions, e.g., the one based on the analytic signal
@16# and the Hilbert transform @6#. For developing the
method and illustrating its purpose, we will employ the
damped harmonic oscillator and the damped bistable Kram-
ers oscillator serving as paradigmatic systems. As we will
show, the Rice frequency matches, in practice, the mean
phase velocity as computed from the linear interpolated
©2002 The American Physical Society10-1



LARS CALLENBACH et al. PHYSICAL REVIEW E 65 051110
phase fL. In theory, it opens a simple way to derive station-
ary or even time dependent average phase velocities from
known probability densities.

II. NOISE-DRIVEN SYSTEMS: DEVELOPING
THE RICE FREQUENCY

To detail our derivation of the Rice frequency in this sec-
tion, we start from the following one-dimensional potential
system @17#:

ẍ1g ẋ1U8~x !5Agj1Fcos~Vt ! ~3!

subjected to Gaussian white noise j of intensity D, i.e.,

^j~ t !&50, ^j~ t !j~s !&52Dd~ t2s !, ~4!

and being driven by the external harmonic force F cos(Vt).
In Fig. 1 we show a sample path for the harmonic oscillator
specified by the potential

U~x !5v0
2 x

2

2 ~5!

and the corresponding Langevin equation

ẍ1g ẋ1v0
2x5Agj1F cos~Vt !. ~6!

In Fig. 1 we used the friction coefficient g51, the natural
frequency v051, and a vanishing amplitude F50 of the
external drive. As can be read off from Fig. 1, the velocity
v5 ẋ basically undergoes a Brownian motion and, therefore,
constitutes a rather jerky continuous, but generally not dif-
ferentiable signal. In particular, near a zero crossing of v
there are many other zero crossings. In contrast to that, the
coordinate x is a much smoother signal since it is determined
by an integral over a continuous function

FIG. 1. Position x and velocity v of the undriven noisy harmonic
oscillator Eq. ~6! with friction coefficient g51, and natural fre-
quency v051. Whereas the position x is smooth the velocity v is
continuous but nowhere differentiable. Counting of zero crossings
is, consequently, only possible for the x coordinate.
05111
x~ t !5x~0 !1E
0

t
v~t !dt , ~7!

and, therefore, differentiable. In particular, near a zero cross-
ing of x there are no other zero crossings. In the following,
we will take advantage of this remarkable smoothness prop-
erty of x that is an intrinsic property of the full oscillatory
system ~3! and disappears when we perform the overdamped
limit.
In 1944, Rice @14# deduced a formula for the average

number of zero crossings of a smooth signal like x in the
oscillator Eq. ~3!. In this rate formula enters the probability
density P(x ,v;t) of x and its time derivative, v5 ẋ , at a
given instant t. The Rice rate for passages through zero with
positive slope ~velocity! is determined by @15#

^ f &~ t !5E
0

`

vP~x50,v;t !dv . ~8!

This time-dependent rate is to be understood as an ensemble
average. If the dynamical system is ergodic and mixing the
asymptotic stationary rate ^ f s& can likewise be achieved by
the temporal average of a single realization. Let N(@0,t#) be
the number of positive-going zeros of the signal x in the time
interval @0,t# . Using ergodicity, the relation

^ f s&5E
0

`

vPs~x50,v !dv5 lim
t→`

N~@0,t# !

t ~9!

is fulfilled for the process characterized by the stationary
density Ps(x ,v). In the following we always consider sta-
tionary quantities. As explained in the Introduction, the zero
crossings can be used as marker events to define an instan-
taneous phase fL(t) by linear interpolation, cf. Eq. ~1!. The
related average phase velocity is the product of the ~station-
ary! Rice rate and 2p and, hence, called the ~stationary! Rice
frequency

^v&R52p ^ f s&52pE
0

`

vPs~x50,v !dv . ~10!

For a dynamics described by a potential U(x) in the ab-
sence of an external driving, i.e., Eq. ~3! with F50, the
stationary density can be calculated explicitly yielding

Ps~x ,v !5C expF2S v2

2 1U~x ! D Y DG , ~11!

where C is the normalization constant. Note that the indepen-
dence of the stationary probability density from the friction
coefficient will also make the Rice frequency independent
from g . From Eq. ~11! and the application of Eq. ~10!, it is
straightforward to derive the exact result
0-2
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^v&R5

A2pD expF2
U~0 !

D G
E

2`

`

expF2
U~x !

D Gdx . ~12!

Without loss of generality we can set U(0)50. In the limit
D→0, we can perform a saddle-point approximation around
the deepest minima xm ~e.g., for symmetric potentials!. In
this way we find the following expression valid for D
!DU5U(0)2U(x i), i.e., the small noise approximation,

^v&R5F(
i

expF2
U~x i!
D G

AU9~x i!
G21

. ~13!

In the limit D→` , we have to consider the asymptotic be-
havior of the potential, limx→6`U(x), to estimate the inte-
gral in Eq. ~12!. For potentials that can be expanded in a
Taylor series about zero and that, therefore, result in a power
series of order 2m , i.e., U(uxu→`);x2m, we can rescale the
integration variable by x5D1/2mx̃ . For sufficiently large D,
the integral is dominated by the power 2m term. In this way
we find the large noise scaling

^v&R;Da with a5
m21
2m . ~14!

Applying Eqs. ~12! and ~13! to the harmonic oscillator ~5!
we immediately find that ^v&R5v0, independent of g and
for all values of D.0. This is also in agreement with Eq.
~14!. It follows because m51 implies that, for large noise,
the Rice frequency ^v&R does not depend on D at all. Note,
however, that in the deterministic limit, i.e., for D50, we
have the standard result

^v&R5HAv0
22g2/4 for g,2v0

0 for g>2v0

~15!

which explicitly does depend on the friction strength g.0.
Therefore, the limit D50 is discontinuous except in the un-
damped situation g50.
The similarity of Eqs. ~12! and ~13! with rates from tran-

sition state theory @18# will be addressed below when we
discuss the bistable potential.

III. ALTERNATIVE PHASE DEFINITIONS

An alternative phase definition stems from the method of
Bogoliubov and Mitropolski @19#. This method starts from
the following decomposition of the dynamics:

ẋ5v , ~16!

v̇52v0
2x1 f ~x ,v ,t ,j , . . . !, ~17!
05111
where the function f comprises all terms of higher than first
order in x ~nonlinearities!, velocity dependent terms ~fric-
tion!, and noise. In their work Bogoliubov and Mitropolski
considered the function f to be a perturbation of order e . For
the subsequent discussion, however, this assumption is by no
means necessary. The definition of an instantaneous phase
proceeds by expressing the position x and the velocity v in
polar coordinates r and fP,

x~ t !5r~ t !cos@fP~ t !# , ~18!

v~ t !52v0r~ t !sin@fP~ t !# , ~19!

which yields by inversion @20#

r~ t !5Ax2~ t !1@v~ t !/v0#
2, ~20!

fP~ t !5arctanF2
v~ t !/v0

x~ t ! G . ~21!

Here, it should be noted that a meaningful clockwise rotation
in the x ,v plane determines angles to be measured in a spe-
cific way depending on the sign of v0. Using Eqs. ~18!, ~19!,
~20!, and ~21! it is straightforward to transform the dynamics
in x and v , Eqs. ~16! and ~17!, into the following dynamics
for r and fP @21,22#:

ṙ52
f „r cos~fP!,2v0r sin~fP!,t ,j…

v0
sin~fP!, ~22!

ḟP5v02
f „r cos~fP!,2v0r sin~fP!,t ,j…

v0r
cos~fP!.

~23!

For instance, for the harmonic oscillator Eq. ~6! with F50
these equations read

ṙ52Fgr sin~fP!1
Ag

v0
jGsin~fP!, ~24!

ḟP5v02Fg sin~fP!1
Ag

v0

j

r G cos~fP!. ~25!

The line x50 corresponds to angles fP5p/21np ,nPN .
As can be read off from Eq. ~23!, the phase velocity always
assumes a specific value for x50 @23#, i.e.,

ḟP~x50 !5v0 . ~26!

This has the following remarkable consequence. We see that
even in the presence of noise passages through zero in the
upper half plane v.0 are only possible from x,0 to x.0,
in the lower half plane only from x.0 to x,0. This insight
becomes even more obvious from a geometrical interpreta-
tion: as the noise exclusively acts on the velocity v , cf. Eq.
0-3
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~17!, it can only affect changes in the vertical direction ~in
x ,v space!. Along the vertical line x50, however, the angu-
lar motion possesses no vertical component while radial mo-
tion is solely in the vertical direction and, therefore, only
affected by the noise. From this, we conclude that both the
linear interpolating and the polar phase increase between two
passages through x50 with positive slope by an amount of
2p . Therefore, the ~stationary! average phase velocity is
identical for the linear interpolating phase fL, cf. Eq. ~1!,
and the natural phase defined by virtue of polar coordinates
fP, i.e.,

^ḟP&ª^v&P5^v&L5^v&R . ~27!

The Hilbert phase fH constitutes yet another phase defi-
nition. It is widely used in applications in the context of the
analytic signal @10,16,24# to construct a phase for a one-
dimensional time series x(t). In this context the Hilbert
transform xH of the signal x is defined by the convolution

xH~ t !5H@x#~ t !5
1
p
PE

2`

` x~t !

t2t
dt , ~28!

where the integral in the last equation has to be evaluated in
the sense of the Cauchy principal value (P). Rewriting the
original signal x(t)5^x&1 x̂(t), where ^x& represents the
constant mean and, consequently, x̂(t) a zero mean signal,
we find that xH(t)5H@x#(t)5H@ x̂#(t). Hence, we can al-
ways subtract the signal mean without changing the result.
The Hilbert transform is subsequently used to define the Hil-
bert phase @20#,

fH~ t !5arctanFxH~ t !
x~ t ! G . ~29!

The convolution kernel in Eq. ~28! has the property of prop-
erly reproducing the phase of a harmonic signal. The
asymptotic Hilbert phase velocity ^v&H is then defined in
connection with Eq. ~29! in a straightforward manner by

^v&H5 lim
t→`

fH~ t !
t . ~30!

Again, as a consequence of stationarity and ergodicity we
also find

^v&H5^ḟH&s5K vHx2vxH

x21~xH!2
L

s

, ~31!

where the subscript s is a reminder of the stationary statistics.
To exemplify the relation between the Rice frequency

^v&R and the Hilbert frequency ^v&H , we consider the
damped harmonic oscillator Eq. ~6! agitated by noise alone.
In Fig. 2 we show a numerically evaluated sample path and
the corresponding Hilbert phase modulo 2p using the pa-
rameters g51, D51, v051, F50. An important point to
05111
observe here is that at t'2.6 and t'9 the Hilbert phase fH

does not increase by 2p after two successive passages
through zero with positive slope. This illustrates a remark-
able difference between the Hilbert phase and the previously
discussed phase definitions. This observation is a conse-
quence of the nonlocal character of the Hilbert transform,
i.e., the fact that the whole temporal history of x(t) enters in
the convolution ~28!. In particular, short and very small am-
plitude crossings to positive x are not properly taken into
account by the Hilbert phase since they only result in a small
reduction of fH. This leads us to conjecture that quite gen-
erally

^v&H<^v&R ~32!

holds. In fact, for the case of the harmonic oscillator that
generates a stationary Gaussian process we even can prove
this conjecture by deriving explicit expressions for ^v&R and
^v&H . As usual, let S(v) denote the spectrum of the station-
ary Gaussian process x. Then the Rice frequency can be re-
cast in the form of @15#

^v&R5F E
0

`

v2 S~v ! dv

E
0

`

S~v ! dv
G 1/2

. ~33!

In the Appendix, we show that the Hilbert frequency of the
same process x is given by a similar expression @25# ~cf. also
@24#!, namely,

^v&H5F E
0

`

v S~v ! dv

E
0

`

S~v ! dv
G . ~34!

FIG. 2. Hilbert phase fH(t) modulo 2p ~thick solid! and cor-
responding signal x(t) ~thin solid! for the undriven harmonic oscil-
lator Eq. ~6! with friction strength g51, noise intensity D51, natu-
ral frequency v051, and driving amplitude F50. Note that
although there are two successive zero crossings of x with positive
slope near t'2.6 and t'9 the Hilbert phase does not increase by
2p .
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Interpreting the quantity S(v)/*0
`S(v̂)dv̂ as a probability

density P(v), vP(0,`), we can use the property that the
related variance is positive, i.e.,

F E
0

`

vP~v !dvG 2<E
0

`

v2P~v !dv . ~35!

Taking the square root on both sides of the last inequality
immediately proves Eq. ~32!.
Using the spectrum of the undriven noisy harmonic oscil-

lator

S~v !5
4gD

~v0
22v2!21g2v2 ~36!

and employing Eqs. ~33! and ~34!, it is easy to see that both
^v&R and ^v&H do not vary with D. We have already shown
above that ^v&R5v0. In contrast to this, ^v&H is a mono-
tonically decreasing function of g that approaches v0 from
below in the limit g→01.

IV. RICE FREQUENCY FOR THE PERIODICALLY
DRIVEN NOISY HARMONIC OSCILLATOR

The probability density of the periodically driven noisy
harmonic oscillator can be determined analytically by taking
advantage of the linearity of the problem. Introducing the
mean values of the coordinate and the velocity, ^x(t)& and
^v(t)&, the variables

x̃5x2^x&, ṽ5v2^v& ~37!

obey the differential equation of the undriven noisy harmonic
oscillator. In the asymptotic limit t→` the mean values con-
verge to the well known deterministic solution

^x~ t !&5
F

A~v0
22V2!21g2V2 cos~Vt2d !, ~38!

^v~ t !&52V
F

A~v0
22V2!21g2V2 sin~Vt2d !, ~39!

d5arctanF gV

v0
22V2G ~40!

with the common phase lag d . Therefore, after deterministic
transients have settled the cyclostationary probability density
of the driven oscillator reads

Pcs~x ,v;t !5Ps„x2^x~ t !&,v2^v~ t !&… ~41!

with the Gaussian density
05111
Ps~x ,v !5
v0

2pD expF2S v2

2 1
v0
2x2

2 D Y DG . ~42!

Using Eq. ~10! the cyclostationary probability density ~41!
yields an oscillating expression for the Rice frequency
^v&R(t). The time dependence of this stochastic average can
be removed by an initial phase average, i.e., a subsequent
average over one external driving period 2p/V ,

^v&R5E
0

2p/V
^v&R ~ t !

Vdt
2p

~43!

5E
0

2p/V E
0

`

v Pcs~0,v;t !dvVdt . ~44!

The resulting analytical and numerically achieved values of
the Rice frequency as a function of the noise intensity D are
shown in Fig. 3 for fixed v051,F51,V53 and various val-
ues of g . For small noise intensities D the Rice frequency
^v&R is identical to the external driving frequency V ,
whereas for large noise intensities the external drive becomes
inessential and the Rice frequency approaches ^v&R5v0.
Further insight into the analytic expression ~44! is gained

from performing the following scale transformations:

t̃5Vt2d and x̃5
x

A2D/V
, ~45!

from which we immediately find the rescaled velocity

ṽ5
dx̃

d t̃
5

A2D/V
1/V

dx
dt 5A2D v . ~46!

FIG. 3. Rice frequencies for the driven harmonic oscillator Eq.
~6! with natural frequency v051, driving amplitude F51, and
driving frequency V53 for different values of the friction strength
g . The numerically achieved values ~symbols with error bars!
nicely match the analytical curves determined using Eq. ~44!.
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Inserting these dimensionless quantities into Eq. ~44! yields

^v&R5v0I~ Ã ,ṽ0!, ~47!

I~ Ã ,ṽ0!5
1
pE2d

2p2d E
0

`

ṽexp@2~ ṽ1Ã sin t̃ !2

2~ṽ0 Ã cos t̃ !2#d ṽ d t̃ , ~48!

where we have defined further dimensionless quantities

Ã5
V

A2D

F

A~v0
22V2!21~gV !2

, ~49!

ṽ05
v0

V
. ~50!

Due to the 2p periodicity of the trigonometric functions, the
integral ~48! does not change when shifting the interval for
the integration with respect to t̃ back to @0,2p# . Hence, I is
only a function of Ã and ṽ0. An expansion for small Ã yields

^v&R5v0F11
12ṽ0

2

2 Ã21O~ Ã4!G , ~51!

which implies for large D

^v&R2v0;
1
D . ~52!

The opposite extreme, Ã→` or D→0, can be extracted
from a saddle point approximation around ṽ5Ã and t̃
53p/2. Following this procedure, the integral ~48! gives the
constant 1/ṽ0. This directly implies ^v&R5V .
The crossover between these two extremes occurs when

the first correction term in Eq. ~51! is no longer negligible,
i.e., for

u12ṽ0
2u

2 Ã2'1. ~53!

When solved for the crossover noise intensity Dco , this
yields

Dco'
F2uV22v0

2u

4@~v0
22V2!21~gV !2#

, ~54!

which, for the parameters used in Fig. 3, correctly gives val-
ues between 1022 and 1021.
In Fig. 3 the parameters F ,V , and v0 and, hence, ṽ0 are

identical for all curves. Solving Ã(g1 ,D1)5Ã(g2 ,D2) with
respect to D2 shows that the curves become shifted horizon-
05111
tally as in the log-linear plot in Fig. 3. Another way to ex-
plain this shift is by noting that dDco /dg,0.

V. THE ROLE OF COLORED NOISE

As noted already above, see also in Fig. 1, the Rice
frequency—strictly speaking —cannot be defined for sto-
chastic realizations that are directly driven by Gaussian white
noise ~i.e., the ‘‘derivative’’ of the Wiener process!. From Eq.
~3! this holds true for the velocity degree of freedom v̇5 ẍ .
This is so, because the stochastic trajectories of degrees of
freedom being subjected to white Gaussian noise forces are
continuous but are of unbounded variation and nowhere dif-
ferentiable @26#. This fact implies that such stochastic real-
izations cross a given threshold within a fixed time interval
infinitely often if only the numerical resolution is increased
ad infinitum. This drawback, which is rooted in the math-
ematical peculiarities of idealized Gaussian white noise, can
be overcome if we consider instead a noise source possessing
a finite correlation time, i.e., colored noise, see Ref. @27#. To
this end, we consider here an oscillatory noisy harmonic dy-
namics driven by Gaussian exponentially correlated noise
z(t), i.e.,

ẋ5v , ~55!

v̇52gv2v0
2x1Agz~ t !, ~56!

ż52
z
t

1
1
t

j , ~57!

with z(t) obeying ^z(t)&50 and

^z~ t !z~s !&5
D
t
expS 2

ut2su
t D . ~58!

Following the reasoning in Sec. II, we find for the Rice fre-
quency of x(t) as before

^v&x5E
0

`

dvE
2`

`

dzv Ps~0,v ,z ! ~59!

5
v0

A11gt
. ~60!

Likewise, upon noting that within a time interval Dt ,
2Dt(2g ẋ2v0

2x1Agz),v,0, or 2Dt(2v0
2x1Agz)

1O(Dt)2,v,0, respectively, the Rice frequency of the
zero crossings with positive slope of the process v(t) is
given by

^v&v5E
2`

`

dxE
x

`

dz~Agz2v0
2x !Ps~x ,0,z !, ~61!

which is evaluated to read
0-6
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^v&v5Av0
21

g

t
. ~62!

The result in Eq. ~60! shows that for small noise color t the
Rice frequency for ^v&x assumes a correction ^v&x;v0(1
2t/2g), as t→01. In clear contrast, the finite Rice fre-
quency for the velocity process v(t) ~56! diverges in the
limit of vanishing noise color proportional to t21/2.

VI. RICE FREQUENCY OF THE BISTABLE
KRAMERS OSCILLATOR

The bistable Kramers oscillator, i.e., Eq. ~3! with the
double well potential,

U~x !5
x4

4 2
x2

2 , ~63!

is often used as a paradigm for nonlinear systems. With ref-
erence to Eq. ~3! the corresponding Langevin equation is
given by

ẍ1g ẋ1x32x5Agj1F cos~Vt !, ~64!

which, in the absence of the external signal, F50, generates
the stationary probability distribution

Ps~x ,v !5C expH 2S v2

2 1
x4

4 2
x2

2 D Y DJ ~65!

with the normalization constant C. Using this stationary
probability density and Eq. ~10!, we can determine the Rice
frequency analytically. In Fig. 4 we depict this analytic result
together with numerical simulation data including error bars.
The simulation points perfectly match the analytically deter-

FIG. 4. Rice frequencies for the undriven bistable oscillator Eq.
~64! with friction strength g51. Numerical values with error bars
match the analytically determined values ~dotted line! using Eq.
~10! with Eq. ~65!. As expected, for large values of D the Rice
frequency scales like D1/4. The solid line presents the leading weak
noise approximation in Eq. ~70!.
05111
mined curve. As expected for the asymptotically dominant
quartic term, i.e., m52 @cf. Sec.II, especially. Eq. ~14!#, the
Rice frequency scales as ^v&R;D1/4 for large values of D .
Comparing the Rice frequency formula, Eq. ~10!, with the

forward jumping rate kTST
1 from the transition state theory

@18#,

kTST
1 5Ẑ0

21E dx dv u~v !d~x !v exp@2H~x ,v !/D# ,
~66!

where

Ẑ05E
x,0

dx dv exp@2H~x ,v !/D# , ~67!

and H(x ,v)5(1/2)v21(1/4)x42(1/2)x2 represents the cor-
responding Hamiltonian, one can see that the difference be-
tween both solely rests upon normalizing prefactors.
Whereas the rate kTST

1 is determined by the division of the
integral Eq. ~66! by the ‘‘semipartition’’ function Ẑ0, the rate
^v&R/2p is established by dividing the same integral Eq.
~66! by the complete partition function Z0

Z05E dx dv exp@2H~x ,v !/D# . ~68!

Particularly for symmetric ~unbiased! potentials, i.e.,
V(2x)5V(x), this amounts to the relation Z052Ẑ0, hence,

^v&R5p kTST
1 . ~69!

At weak noise, Eb /D@1, this relation simplifies to

^v&R'
v0

2 exp@2Eb /D# , ~70!

wherein Eb denotes the barrier height and v0 the angular
frequency inside the well (v05A2). Indeed, in the small-to-
moderate regime of weak noise this estimate nicely predicts
the exact Rice frequency, cf. Fig. 4.
The periodically driven bistable Kramers oscillator was

the first model considered to explain the phenomenon of sto-
chastic resonance ~SR! @28# and it still serves as one of the
major paradigms of SR @29,30#. In its overdamped form it
was used to support experimental data ~ from the Schmitt
trigger! displaying the effect of stochastic frequency locking
@9# observed for sufficiently large, albeit subthreshold signal
amplitudes, i.e., for Fmin,F,2/A27. From a numerical
simulation of the overdamped Kramers oscillator it was also
found that noise-induced frequency locking for large signal
amplitudes was accompanied by noise-induced phase coher-
ence, the latter implies a pronounced minimum of the effec-
tive phase diffusion coefficient @31#

D̃eff5
d
dt @^„f~ t !…2&2^f~ t !&2# ~71!
0-7
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occurring for optimal noise intensity. Based on a discrete
model @32#, analytic expressions for the frequency and phase
diffusion coefficient were derived that correctly reflect the
conditions for noise-induced phase synchronization @33# for
both periodic and aperiodic input signals.
To link the mentioned results to the Rice frequency intro-

duced above we next investigate the behavior of the Kramers
oscillator with nonvanishing inertia. We show numerical
simulations for Eq. ~64! with the parameters V50.01,g
50.5 and diverse values of F in Fig. 5. For larger values of
F, a region around D'0.05 appears where the Rice fre-
quency is locked to the external driving frequency V . Since
for larger values of the external driving F smaller values of
the noise parameter D are needed to obtain the same rate for
switching events, the entry into the locking region shifts to
smaller values of D for increasing F.
In Fig. 6 we present numerical simulations for fixed

F50.384, V50.01 and different values of the damping co-
efficient g . Note that the value of F is slightly smaller than
the critical value Fc52/A27'0.3849 . . . . For smaller val-
ues of g wider coupling regions appear, since it is easier for
the particle to follow the external driving for smaller damp-
ing. To check whether frequency synchronization is accom-
panied by effective phase synchronization, we have also
computed the effective average phase diffusion coefficient,
this time defined by the following asymptotic expression:

Deff5 lim
t→`

1
t Š@f~ t !2^f~ t !&#2‹ . ~72!

The connection to the instantaneous diffusion coefficient de-
fined in Eq. ~71! is established by applying the limit t→`

FIG. 5. Numerically determined Rice frequencies of the periodi-
cally driven bistable Kramers oscillator Eq. ~64! computed with the
friction coefficient g50.5 and the angular driving frequency V
50.01 and plotted as a function of the noise intensity D. Different
curves correspond to various amplitudes of the harmonic drive F.
For larger values of F wider regions appear where the Rice fre-
quency is locked to the external driving frequency V .
05111
Deff5 lim
t→`

1
t E0

t
D̃eff~ t̃ ! d t̃ . ~73!

In Fig. 7 we show numerical simulations of the effective
phase diffusion coefficient Deff as function of D for the linear
interpolating phase fL. The phase diffusion coefficient dis-
plays a local minimum that gets more pronounced if the
damping coefficient g is decreased. Indeed, phase synchro-
nization reveals itself through this local minimum of the av-
erage phase diffusion coefficient Deff in the very region of
the noise intensity D where we also observe frequency syn-
chronization, cf. Fig. 5.

FIG. 6. Numerically determined Rice frequency as a function of
the noise intensity D for the periodically driven Kramers oscillator
Eq. ~64! with the angular driving frequency V50.01 and driving
amplitude F50.384 for different values of the friction coefficient
g . For smaller values of g wider regions of frequency locking ap-
pear.

FIG. 7. Effective phase diffusion coefficient vs noise intensity
for the periodically driven bistable Kramers oscillator Eq. ~64! with
angular driving frequency V50.01, driving amplitude F50.384,
which is close-to-threshold driving, and for different values of g .
For smaller values of the friction coefficient g phase diffusion is
diminished.
0-8
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The qualitative behavior of the diffusion coefficient
agrees also with a recently found result related to diffusion of
Brownian particles in biased periodic potentials @34#. A nec-
essary condition for the occurrence of a minimum was an
anharmonic potential in which the motion takes place. In this
biased anharmonic potential the motion over one period con-
sists of a sequence of two events. Every escape over a barrier
~Arrhenius-like activation! is followed by a time scale in-
duced by the bias and describing the relaxation to the next
minimum. The second step is weakly dependent on the noise
intensity and the relaxation time may be even larger then the
escape time as a result of the anharmonicity. For such poten-
tials the diffusion coefficient exhibits a minimum for optimal
noise, similar to the one presented in Figs. 7 and 8.
The average duration of locking episodes ^T lock& can be

computed by equating the second moment of the phase dif-
ference ~between the driving signal and the oscillator! to p2

@36#. A rough estimate, valid for the regions where frequency
synchronization occurs, i.e. where the dynamics of the phase
difference is dominated by diffusion, thus reads ^T lock&
5p2/Deff or, when expressed by the number of driving pe-
riods @37#

^n lock&5
Vp

2Deff
. ~74!

In this way we estimate from Figs. 7 and 8 ^n lock&
;150 . . . 15 000 for V50.01 and relevant Deff varying be-
tween 1024

•••1026.

VII. SUMMARY

Positive-going threshold crossings are suitable marker
events to define an instantaneous phase by linear interpola-
tion in the case of smooth zero mean signals. The smooth-
ness of the signal ~coordinate! and, hence, the applicability
of the method, relies on a dynamics with non-negligible in-
ertia ~nonoverdamped dynamics!. In combination with the

FIG. 8. Effective phase diffusion coefficient vs noise intensity
for the periodically driven bistable Kramers oscillator Eq. ~64! with
friction coefficient g50.5, angular driving frequency V50.01,
plotted for the undriven case F50 and for driving with an ampli-
tude F50.2.
05111
linear interpolated phase, the Rice formula can be used to
define an asymptotic average phase velocity, namely, the
Rice frequency. This frequency is identical to the one ob-
tained in the context of the natural polar phase. The fre-
quency based on the Hilbert phase never exceeds the Rice
frequency. This has been proven analytically by the deriva-
tion of explicit expressions for the undriven noisy harmonic
oscillator ~stationary Gaussian process!.
When turning on the noise, the Rice frequency of the

periodically driven harmonic oscillator shows a crossover
from the frequency of the external drive V ~no noise! to the
natural frequency v0 of the oscillator ~large noise!. Scaling
of the Rice frequency as a function of the noise intensity in
the large noise limit can be derived from a suitable expansion
and the crossover region can be estimated quantitatively.
The Rice frequency of the bistable undriven Kramers os-

cillator ~with inertia! is essentially identical with the forward
hopping rate within transition state theory @18#. Noise-
induced frequency locking regions between the Kramers os-
cillator and an external periodic driving can be detected em-
ploying the Rice frequency. Numerical data are similar to
simulations results obtained earlier for the overdamped equa-
tion and the Hilbert phase @35#. In the frequency locking
region, stochastic phase synchronization, characterized by a
drastically diminished effective phase diffusion coefficient, is
observed as well. These findings are in agreement with pre-
vious analytical results @32,33#.
The Rice frequency as well as the Hilbert frequency can

both be used to characterize complex physical, biophysical,
and physiological noisy processes. They also carry the po-
tential to serve as indicators–and possibly even as useful
diagnostic predictors–for such complex processes as cardio-
respiratory diseases, epileptic seizures, earthquake, and traf-
fic dynamics, to mention but a few.

APPENDIX: HILBERT FREQUENCY OF THE HARMONIC
OSCILLATOR

Here, we determine the Hilbert frequency of the undriven
harmonic oscillator Eq. ~6! using the stationary probability
distribution of (x ,xH) and their temporal derivatives (v ,vH).
The variables (x ,v) in Eq. ~6! describe Gaussian processes
and the same is true for their corresponding Hilbert trans-
forms. The correlation matrix of (x ,v ,xH,vH) is given by

S ^1& 0 0 ^v&

0 ^v2& 2^v& 0
0 2^v& ^1& 0

^v& 0 0 ^v2&

D , ~A1!

where we have used the abbreviations

^1&5
1
2pE0

`

S~v !dv , ~A2!
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^v&5
1
2pE0

`

vS~v !dv , ~A3!

^v2&5
1
2pE0

`

v2 S~v !dv , ~A4!

with the spectral density of the damped harmonic oscillator

S~v !5
4gD

@~v0
22v2!21~gv !2#

. ~A5!

The covariance matrix Eq. ~A1! determines the probability
density P(x ,v ,xH,vH) and the average of the velocity of the
Hilbert phase Eq. ~29! is determined by

^ḟH&5E dx dv dxH dvH vHx2vxH

x21~xH!2
P~x ,v ,xH,vH!.

~A6!

This integral can be evaluated using first the transformations,

v5r1sin~a1!, ~A7!

vH5r1cos~a1!, ~A8!

x5r2cos~a2!, ~A9!

xH5r2sin~a2!, ~A10!

and, after applying a trigonometric theorem, the subsequent
transformations a5a11a2 , b5a12a2. Since the inte-
grand does not depend on b the related integration can be
readily done yielding

^ḟH&5E
0

`

dr1E
0

`

dr2E
0

2p

da
r1
2cos~a !

2p@^1&^v2&2^v&2#

3expF2
^1&r1

21^v2&r2
222r1r2^v&cos~a !

2@^1&^v2&2^v&2#
G .
~A11!

Further evaluation proceeds by using the Bessel function of
first kind and first order J1 together with its series expan-
sions, i.e.,
051110
E
0

2p

cos~a !exp@c cos~a !# da52pi J1 ~2ic !

~A12!

52pi (
m50

`
~21 !m

m!~m11 !! S 2ic
2 D 2m11

~A13!

52p (
m50

` 1
m!~m11 !! S c2 D

2m11

~A14!

leading to

^ḟH&5E
0

`

dr1E
0

`

dr2
r1
2

@^1&^v2&2^v&2#

3expF2
^1&2r1

21^v2&2r2
2

2@^1&^v2&2^v&2#
G

3 (
m50

` 1
m!~m11 !! S r1r2^v&

2@^1&^v2&2^v&2#
D 2m11

.

~A15!

Upon changing summation and integration and performing
the integration we arrive at

^ḟH&5 (
m50

`
^v&@^1&^v2&2^v&2#

^1&2^v2&
S ^v&2

^1&^v2&
D m

~A16!

5
^v&~^1&^v2&2^v&2!

^1&2^v2&

1

12
^v&2

^1&^v2& ~A17!

5
^v&

^1&
, ~A18!

which is exactly the desired expression ~34!.
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