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Abstract Analysis of field measurements of ocean surface wave activity in the marginal ice zone, from
campaigns in the Arctic and Antarctic and over a range of different ice conditions, shows the wave attenua-
tion rate with respect to distance has a power law dependence on the frequency with order between two
and four. With this backdrop, the attenuation-frequency power law dependencies given by three dispersion
relation models are obtained under the assumptions of weak attenuation, negligible deviation of the wave
number from the open water wave number, and thin ice. It is found that two of the models (both imple-
mented in WAVEWATCH IIIVR ), predict attenuation rates that are far more sensitive to frequency than indi-
cated by the measurements. An alternative method is proposed to derive dispersion relation models, based
on energy loss mechanisms. The method is used to generate example models that predict power law
dependencies that are comparable with the field measurements.

1. Introduction

The marginal ice zone (MIZ) is the region of broken sea ice that forms at the boundary of the open and ice-
covered oceans and is the region in which the ice cover is strongly affected by ocean surface waves and other
open ocean processes. Most noteworthy is wave-induced breakup of large ice floes into smaller floes (Asplin
et al., 2012; Collins et al., 2015; Kohout et al., 2015). Further, waves impact the ice cover by causing floes to col-
lide (Martin & Becker, 1987; Yiew et al., 2017), by increasing melt rates due to turbulence beneath floes (Wad-
hams et al., 1979), and by overwashing them (Massom & Stammerjohn, 2010; Skene et al., 2015).

The ice cover strongly affects the waves, causing them to attenuate with distance traveled, thus limiting breakup
(and other impacts) to at most 100s of kilometers in from the open ocean (Kohout et al., 2014). Field measure-
ments, going back more than forty years, have shown that waves typically attenuate exponentially and that the
exponential attenuation rate is a function of wave period/frequency, with decreasing attenuation as the period
increases (or the frequency decreases) (Meylan et al., 2014; Squire & Moore, 1980; Wadhams et al., 1988).

There are many applications which require an accurate model of wave attenuation in the MIZ. These include far
more than just wave forecasting (which is obviously important), and we cannot model floe growth, floe size dis-
tribution, floe break up, or floe melting without an effective model of attenuation (Horvat & Tziperman, 2015). At
present, we do not know the dominant mechanism that removes wave energy as it propagates in the MIZ, which
is a major shortcoming in models. This lack of knowledge means that these models are speculative and require
validation against field data (Bennetts et al., 2017).

Two model paradigms exist to understand wave attenuation. The first is wave scattering (e.g., Bennetts & Squire,
2012a; Kohout & Meylan, 2008; Montiel et al., 2016; Peter & Meylan, 2009), which conserves energy and in which
attenuation results from an accumulation of scattering events produced by individual floes, where the floes are
conventionally modeled as thin floating elastic plates (e.g., Bennetts & Williams, 2010; Meylan & Squire, 1994).
Scattering models have been shown to agree reasonably well with experimental measurements (Bennetts &
Squire, 2012b; Bennetts & Williams, 2015; Bennetts et al., 2010; Kohout & Meylan, 2008), but only when wave-
lengths are comparable to floe lengths. For waves appreciably longer than floes, scattering is negligible, and
hence scattering models predict no attenuation, which is not supported by field data.
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For waves much longer than floes—the so-called long-wavelength regime—attenuation is generally
assumed to result from dissipation of wave energy, e.g., due to viscosity (Keller, 1998). In this regime, the
modeling paradigm is that of an effective or homogenized ice layer, in which individual floes are not
resolved. This paradigm leads to a dispersion relation linking the wave frequency and the complex wave
number, where the imaginary component of the wave number defines the attenuation rate.

Recent field measurements (e.g., Cheng et al., 2017; Meylan et al., 2014), which are far more comprehensive
than earlier experiments in terms of duration and extent, are predominantly in the long-wavelength regime. The
measurements are used to tune model parameters, particularly the effective ice layer properties (e.g., Cheng
et al., 2017). However, the functional dependence of the attenuation rate on frequency/period is dictated by the
nature of the model and cannot be tuned. Therefore, in general, a model can only be tuned to match the data
at a single frequency/period unless it has the correct functional dependence of attenuation on frequency.

In the present work, we begin by synthesizing analyses of key MIZ wave attenuation field measurements, showing
a power law dependence of the average attenuation rate on frequency with order 2–4. We subsequently derive
the attenuation-frequency power law dependence for three effective medium models (these are models which
approximate the sea ice layer by an effective medium), using a perturbation method based on the observation
that the change in length of long waves in the MIZ is negligible (Cheng et al., 2017, Figure 2). We find that only one
model has order comparable to the field measurements, with the two other models giving far higher orders, i.e.,
they predict attenuation rates which are more sensitive to frequency than the measurements suggest. Moreover,
we show how the attenuation rates predicted by the models can be derived based on energy loss principles, and
we use this method to devise models with orders that fit the experimental measurements.

2. Field Measurements

We consider measurements made in the Arctic (Cheng et al., 2017; Wadhams et al., 1988) and Antarctic
(Doble et al., 2015; Meylan et al., 2014), and in different seasons/ice conditions. The measurements have
been reported previously, but most of the data analysis presented here is new. Measuring wave attenuation

Figure 1. Box and whisker representations of the imaginary wave number component versus wave period, from field meas-
urements, as reported by (a) Meylan et al. (1994), (b) Doble et al. (2015), (c) Wadhams et al. (1988), and (d) Cheng et al. (2017).
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in the MIZ is challenging, requiring a series of measurements at differ-
ent locations. Historical measurements (from the 1970s/1980s)
reported by Wadhams et al. (1988) were not made simultaneously
and this makes them liable to greater errors. We include them never-
theless, since they cover many field campaigns. More recently, tech-
nology has allowed drifting wave buoys making simultaneous
measurements over long time periods which are relayed via satellite.
These give much more accurate measurements and allow us to aver-
age, thus removing some of the problems caused by the evolution of
the wave spectrum.

Interpretation of the wave data is complicated by a property of Fourier
transforms and their inverse. In the context of measuring wave attenua-
tion it means that to have accurate measurements of wave spectra, we
require a long time measurement (so that the Fourier transform decom-
position of the energy into frequencies is correct). However, for us to be
able to interpret the change of wave energy between the two wave
buoys requires an assumption of stationarity, which is likely to be violated
if the measurements continue for too long. Each measurement should be
seen as a sample from a random distribution, and only a process of aver-
aging will give meaningful results. Meylan et al. (2014) showed that the
median attenuation offers reliable results (a clear functional relationship
between the attenuation rate and wave frequency). Further, we use as

many measurements as possible and therefore do not distinguish between ice types, etc. This is because we aim
to show that all the measured data show a roughly consistent power law relationship between attenuation and
frequency (or period).

Two versions of attenuation are used. The first is based on wave energy E, and is written as

Eðx; xÞ5E0ðxÞ e2ax ; (1)

where E0 is the incident energy, a is the attenuation rate and x is the distance traveled, and the second is
based on the wave amplitude A,

Aðx; xÞ5A0ðxÞe2kix ; (2)

where A0 is the incident amplitude and the attenuation rate, ki , is the
imaginary component of the wave number in the MIZ, k5kr1i ki . Note
that, since energy is proportional to amplitude squared, it follows that
a52 ki . As is often the case, the amplitude formulation is more conve-
nient mathematically, while the energy formulation is more easily
interpreted from measurements. We will use the amplitude model
here, meaning the measurements presented differ by a factor of half
from those appearing in previous papers (where the results were
based on energy).

Figure 1 shows box-and-whisker plots of the measured attenuation
rates (ki) versus wave period T. The data reported by Wadhams et al.
(1988) summarized a series of campaigns in the late 1970s and early
1980s (many of which had been published previously), led by mem-
bers of the Scott Polar Research Institute. The measurements are sin-
gle data points, which were fitted to an exponential curve (even if the
data did not support this due to spatial changing ice conditions, e.g.,
Squire & Moore [1980, Figure 4]). As noted above, the measurements
were not made simultaneously and therefore suffer from noise, and,
moreover, they were made in highly variable ice conditions. Neverthe-
less, they represent almost ten years of fieldwork and are therefore
worthy of evaluation. The measurements reported by Doble et al.

Figure 2. Log-log plots of median values of imaginary wave number compo-
nents from Figure 1 versus angular frequency (markers), with best fits of form
ki / xn overlaid (lines): Meylan et al. (1994) (blue); Doble et al. (2015) (red);
Wadhams et al. (1988) (magenta); and (d) Cheng et al. (2017) (green).

Figure 3. Log-log plot of median imaginary wave number versus angular fre-
quency reported by Meylan et al. (1994) (blue bullets) and Cheng et al. (2017)
(green triangles), with best fits to the combined data of the form ki5a1xn (light
grey broken curve) and ki5b1x

21b2x
4 (dark grey solid curve) overlaid. Imagi-

nary wave number data reported by Ardhuin et al. [2016] are also included (*).
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(2015) were conducted in the Antarctic in pancake ice, and this was the first time wave buoys were
deployed with on-board processing and satellite connectivity (such buoys have subsequently become the
standard method to measure waves in the MIZ). The measurements reported by Meylan et al. (2014) were
conducted in the Antarctic in broken ice floes. Figure 1a is almost identical of Meylan et al. (2014, Figure 4),
noting that Kohout et al. (2014) present a different interpretation of the attenuation rate (based on the sig-
nificant wave height). The measurements reported by Cheng et al. (2017) are taken from the recent sea-
state cruise (Thomson et al., 2018). Cheng et al. (2017) performed an extensive analysis of the measure-
ments, accounting for the effect of wind-generated waves and other processes. This allows the analysis of
attenuation of short-period waves (high frequencies) without the roll-over effect dominating (Li et al., 2017).
Further, the nature of the measurements in which the wave buoys were closely monitored gave these par-
ticular measurements unprecedented accuracy. Note that these measurements were made in pancake/frazil
ice conditions so that even the short waves are much longer than the floe sizes.

Figure 2 shows log-log plots of the median attenuation rate versus angular frequency x52p=T . Straight
line fits to each set of measurements are overlaid, and the slope of the lines determine a power law relation-
ship of the form ki � xn. The n-values are given in the legend. While the attenuation magnitude is different
for the four measurements, the power law order n varies from 1.9 to 3.6 only. Note that the attenuation rate
in the pancake ice (Cheng et al., 2017; Doble et al., 2015) have different magnitudes but a similar order. The
difference in the magnitude of the attenuation rates is likely to be due to differences in ice properties, espe-
cially ice thickness. The two lowest values of ki for the Cheng et al. (2017) attenuation do not lie on the
power law line. We do not know if this is real or the result of some error. We do note that the relative error
is largely due to the small amount of energy at long periods.

Figure 3 shows the median values from the two most comprehensive data sets (Cheng et al., 2017; Meylan
et al., 2014). The combined data displays a remarkable consistency, which can be approximated by the
power law fit ki � x3:27, or, more accurately by a two-term fit of the form

ki5b1x
21b2x

4; (3)

which was first proposed by Meylan et al. (2014), and captures the attenuation rates for very long waves in
the Arctic reported by Ardhuin et al. (2015). The two-term fit implies that there are two processes attenuating
waves, one which is dominant for low frequencies (long periods) proportional to the frequency squared, and
one which dominates at higher frequencies (shorter periods) proportional to frequency to the fourth power.

3. Dispersion Relations

In the deep open ocean, the standard dispersion relation for linear water waves (small steepnesses) is
derived based on the assumptions of inviscid and incompressible water undergoing irrotational motions.

Figure 4. Log-log plot of scaled imaginary wave number versus angular frequency for the Keller (1998) model, for
(a) g 5 1 m2 s21 and h 5 0.1 m, and (b) g 5 10 m2 s21 and h 5 1 m, with exact values (red bullets) and leading order
approximation of equation (27) (blue lines).
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Let locations in the water domain be defined by the Cartesian coordinates (x, z), for x 2 R and z< 0. At the
linearized free surface of the ocean, z 5 0, kinematic and dynamic conditions are applied, where the kine-
matic condition enforces that water particles at the ocean surface remain there during wave motion, and
the dynamic condition enforces pressure continuity between the water and atmosphere. The kinematic
condition is expressed as

@/
@z

� �
z50

5
@n
@t
; (4)

where /ðx; zÞ is the velocity potential and nðxÞ is the surface displacement. The dynamic condition is
pwtr5patm, where

pwtrð/; nÞ52.
@/
@t

� �
z50

1g n

� �
and patm � 0; (5)

where the water pressure is derived from the linearized version of Bernoulli’s equation, with . the water
density, and the zero atmospheric pressure is a standard normalization. Using the ansatzes

/5
x A0

i k
eiðkx2xtÞ2kz and n5A0eiðkx2xtÞ; (6)

and combining the kinematic and dynamic conditions, results in the open water dispersion relation

k � k05
x2

g
; (7)

relating the open water wave number k0 2 R and the angular frequency x. Note that we consider (infi-
nitely) deep water. In the context of wave-ice interactions, it is standard to consider water of finite depth,
leading to an infinite number of discrete solutions of the dispersion relation, where the wave modes sup-
ported by the other solutions are generated at inhomogeneities in the ice cover (e.g., an ice edge) and
decay away from it (Fox & Squire, 1994; Wang & Shen, 2010). For our purpose of determining the dominant
attenuation of long waves, the infinite depth assumption greatly simplifies the analysis, and in the MIZ the
ocean is deep enough for this assumption to be valid.

Greenhill (1887) was the first to propose a modification of the open water dispersion relation for waves in
the ice-covered ocean. He considered continuous (connected) ice cover, modeled as a thin-elastic plate,
where thin implies that all displacements (and stresses and strains) in the ice can be derived from the verti-
cal displacements at the interface with the water surface, n. The dynamic condition is modified to pwtr5pplt,
in which pplt is the plate pressure

ppltðnÞ5
1
6

G ð11mÞ h3 @n
@x4 1q h

@n2

@t2 ; (8)

where the first term models an elastic response, with G the shear modulus and m the Poisson ratio of the
ice, and the second term models an inertial response, with q the ice density and h is the ice thickness. This
results in the dispersion relation

G ð11mÞ h3 k5

6
2 q h x2 k1q g k5g x2; (9)

with wave number k 2 R, i.e., zero attenuation.

Fox and Squire (1992) extended the Greenhill (1887) model to include frictional viscous damping, based on
the a model proposed by Robinson and Palmer (1990) for vibrations of the lids of storage drums of liquid,
and hence referred to as the Robinson-Palmer model. The model was subsequently used by Vaughan et al.
(2009) and Squire et al. (2009) to model wave attenuation of long wave components in the (quasi-continu-
ous) Arctic basin, and by Bennetts and Squire (2012a) to model dissipation at the individual floe scale in the
MIZ. Williams et al. (2013a, 2013b) used the Bennetts and Squire (2012a) model to parameterize wave attenu-
ation in a wave-ice interaction model, designed for operational forecasting.

To our knowledge, Weber (1986) was the first to propose a dispersion relation for an effective MIZ ice cover,
composed of many floes, under the long-wave assumption. He modeled the ice cover as a viscous layer,
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and solved the resulting equations approximately under the auxiliary assumption that ‘‘the upper layer is so
viscous it effectively halts the horizontal motion in the lower fluid layer at the interface.’’ Later, motivated
by laboratory experiments of Newyear and Martin (1997) on wave attenuation through a layer of frazil ice,
Keller (1998) derived a dispersion relation for a viscous ice layer without an auxiliary assumption. He treated
the viscous layer as having finite thickness, i.e., nonthin, significantly complicating the analysis and increas-
ing the number of wave modes supported. This was model was subsequently compared with the laboratory
experiment (Newyear & Martin, 1999).

The Keller (1998) model has become arguably the most important effective ice layer model, with, notably, Wang
and Shen (2010) extending it to include elasticity using a complex-valued viscosity (equivalent to a complex-
valued shear modulus). In doing so they increased the difficulty of analyzing attenuation, in particular due to the
mode-swapping phenomenon (Zhao et al., 2017). The Wang and Shen (2010) model has been integrated into
WAVEWATCH IIIVR , along with a cognate version of the Greenhill (1887) model, using a complex-valued shear
modulus, where it was referred to as the Fox-Squire model as it was a modification of the simpler model with
real-valued shear modulus developed to describe reflection and transmission of ocean waves entering shore
fast sea ice (Fox & Squire, 1994). Hereinafter, the modified Fox and Squire model will be labeled the Viscous-
Greenhill model, acknowledging that it is a viscous version of the original Greenhill model.

Under the assumption of infinite depth, the dispersion relations can be written in the following form

Dðx; kÞ x22g k 11Qðk;xÞð Þ
� �

50; (10)

where D and Q are functions that appear when the dispersion relation is derived. We ignore roots due to
the factor Dðx; kÞ, as they lead to compressional or shear waves that are highly unlikely to be excited by
surface gravity waves from the open ocean (Zhao et al., 2017), and noting that for a thin layer this term
becomes a constant. We therefore write the dispersion equation as

x25g k 11Qðk;xÞð Þ: (11)

In our analysis of the dispersion relations below, we assume that the change in the real part of the wave
number (from the underlying open water wave number, k0) is small, based on measurements reported by
Cheng et al. (2017, Figure 2). Therefore, we require Qðk0;xÞ to be small, and write �5Qðk0;xÞ � 1. We seek
the wave number as a perturbation of the open-water wave number

k5k01�k11Oð�2Þ; (12)

and substituting into dispersion relation (11) gives the first-order perturbation as

� k152k0 Qðk0;xÞ: (13)

Therefore, the attenuation rate is

ki � 2Im k0 Qðk0;xÞf g; (14)

to first order in �.

4. Energy Loss

It is instructive to consider the derivation of the attenuation directly from the energy loss mechanisms. It
seems logical to start with an energy loss mechanism, exploiting the smallness of this loss, and to see if the
subsequent power law dependence matches with measured results. The key to our derivation of energy loss
is an assumption of small attenuation. This means that the potential and displacement can be expanded as

/5/01�/11Oð�2Þ and n5n01� n11Oð�2Þ: (15)

The zeroth-order potential and displacement have the same form as they do in open water (6), which we write as

/05
ig AðxÞ

x
eiðkx2xtÞ1kz and n05AðxÞ eiðkx2xtÞ; (16)

where A(x) is the wave amplitude, which attenuates (slowly) over distance. Note that the surface is at z 5 0
and the fluid occupies the region z< 0.
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Let the rate of energy loss per unit distance, per unit time be denoted R(x, t). In terms of an inner product h�i

2Rðx; tÞ5h
ffiffiffi
E
p
ð/; nÞT ;

ffiffiffi
E
p
ð/; nÞi5h

ffiffiffi
E
p
ð/0; n0ÞT ;

ffiffiffi
E
p
ð/0; n0Þi

1�h
ffiffiffi
E
p
ð/1; n1ÞT ;

ffiffiffi
E
p
ð/0; n0Þi1�h

ffiffiffi
E
p
ð/0; n0ÞT ;

ffiffiffi
E
p
ð/1; n1Þi1Oð�2Þ;

(17)

where T denotes transpose and E is the energy loss operator (which must be self-adjoint and positive so we
can therefore define its square root in the normal fashion). Note that we are using the complex form of the
wave amplitude and potential so that, due to the conjugation in the inner product, we are averaging over
time. Doing this makes energy proportional to the amplitude squared rather than half the amplitude
squared, which is corrected for by introducing a factor of two on the left-hand side of equation (17). Note
also that n is not an independent function of /, so that there is only a single independent function on each
side of the inner product, but we keep both / and n for convenience and this expression for the inner prod-
uct needs to be interpreted in this context. From (17), it follows that the zeroth-order energy loss (i.e., the
dominant attenuation) can be calculated from the undisturbed wave, which will be illustrated by the con-
crete examples considered in sections 5 and 6.

We now consider the energy balance when the wave travels from x to x1Dx, assuming a small attenuation
rate, and expressing the energy E(x) (per unit of surface area) as

E5. g
A2

2
:

The energy flux over Dx during a time step Dt is

EðxÞ cg Dt2Eðx1DxÞ cg Dt5R Dx Dt; (18)

where cg is the group velocity. Rearranging and taking the limit Dx ! 0 leads to the ordinary differential
equation

dE
dx

52
R
cg
: (19)

The energy attenuation rate, a, is therefore

a5
R

E cg
; (20)

and hence

ki5
R

2 E cg
5

R
. g A2 cg

: (21)

In what follows, each model considered contains a free parameter, and the attenuation (or energy loss) is pro-
portional to this parameter. For simplicity, we use the same symbol g in each model for this term, but it should
be noted that this parameter has different dimensions in different models.

5. Models

5.1. Keller Model
For Keller’s (1998) viscous-layer model Q5QKel, where

QKel5
q

. g k
SðkhÞSðvhÞfN42g2k2116v2g4k6g28ivg2k3N2f12CðkhÞCðvhÞg

SðvhÞfgkSðkhÞ2N2CðkhÞg24ivg2k3SðkhÞCðvhÞ ; (22)

with

SðzÞ5sinh z; CðzÞ5cosh z; v25k22
i .x
q g

; N5x12 i k2g; (23)

q the density of the viscous layer, and g the energy loss or viscosity parameter. In this case the viscosity
parameter has the dimension of the kinematic viscosity of a fluid.
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Let the thickness of the viscous ice layer, h, be small, such that k h� 1 and the Reynolds number
x h2 g21 � 1, which implies that jv hj � 1. In these limits, QKel reduces to

QKelðk;xÞ5
q
.

h2 x2 ðx214 i k2 x gÞ2k2 h2 g2

k2 h2 g22g h ðx214i k2 x gÞ ; (24)

similarly to Keller’s (1998) equation (29), and Wang and Shen’s (2010) equation (57). It follows that

QKelðk0;xÞ5
q
.

4 i x7 g24 h2 g
h x2 g212h2 x4 g2214 i x5 g23 h g

; (25)

from which the imaginary component of the wave number is deduced to be

ki � 2Im k0QKelðk0;xÞf g5 q
.

4 x9 g25 h2 g ðh x2 g212h2 x4 g22Þ
ðh x2 g212h2 x4 g22Þ2116 x10 g26 h2 g2

: (26)

For values of the viscosity parameter, g, small such that g x3 g22 � 1, the attenuation coefficient can be
expressed as a series in x, with

ki �
4 q h g
. g4 x72

4 q h2 g
. g5 x91Oðx11Þ; (27)

where k0 h� 1 has been used. Therefore, at leading order in frequency, Keller’s (1998) attenuation coeffi-
cient is order 7, which is far more sensitive to frequency than field measurements of attenuation.

As an aside, note that the thin-limit dispersion relation given by equation (25) is equivalent to applying the
standard kinematic condition (4) (as in Keller, 1998), along with the dynamic condition pwtr5pKel, where

pKelðnÞ5
h
g

@4n
@t4 1g2 @

2n
@x2 24 g

@5 n
@t3@x2

� �
2
@2n
@t2 1h g

@2n
@x2 14 g

@3 n
@t@x2

� �21

: (28)

Figure 4 shows log-log plots of the scaled attenuation rate versus frequency, for two different viscosity-
thickness parameter combinations. Exact values of the imaginary component of the wave number (calcu-
lated numerically from the full dispersion relation) are shown, along with the leading order approximation
(27). The approximation is accurate, even for the larger values of thickness and viscosity and high frequen-
cies, thus indicating that the order 7 dependence of the attenuation rate is a general property of the Keller
(1998) model for relevant parameters.

The leading-order attenuation rate in equation (27) can be derived using the energy loss method from sec-
tion 4. For the Keller (1998) model, the energy loss is the product of the average velocity gradient squared,
the layer thickness and the viscosity parameter. Since we have a thin layer we can approximate to first order
the velocity gradient in the layer by the gradient at z 5 0, and therefore

ffiffiffi
E
p

5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 q h g

p @

@x
@

@z

				
z50

0

0 0

0
B@

1
CA: (29)

The rate of energy loss is given by

R52 q h g

				 @2/
@x @z

� �
z50

				
2

5
4 q h g

2
A2 g2 k4; (30)

which gives the leading-order attenuation rate

ki5
R

2 E cg
5

R
. g A2 cg

5
4 q h gxg2 k4

. g2
5

4 q h g
. g4

x7; (31)

as in equation (27).

5.2. Viscous-Greenhill Model
The Viscous-Greenhill model uses the dynamic condition pwtr5pVG, where

pVGðnÞ5
ðG2i x qgÞ ð11mÞ h3

6
@4n
@x4

1q h
@2n
@t2

: (32)
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This gives dispersion relation (11) with Q5QVG, where

QVG5
ðG2i x q gÞ ð11mÞ h3 k426 q h x2

6 . g
: (33)

Therefore

QVGðk0;xÞ5
ðG2ixqgÞð11mÞh3x8=g426 q h x2

6 . g
; (34)

and the imaginary component of the wave number is

ki � 2Imfk0 QVGðk0;xÞg5
q g ð11mÞ h3

6 . g6
x11: (35)

This means that the attenuation rate predicted by the Viscous-Greenhill model is order 11, which is four
orders of frequency more sensitive to frequency than the Keller (1998) model.

Figure 5 shows semi-log plots of the real component of the wave number scaled by the open water wave
number (top plots), and log-log plots of the scaled attenuation rate (bottom) for the same two viscosity-
thickness parameter combinations as in Figure 4, and for two values of the shear modulus. For the smaller
values of viscosity and thickness (left-hand plots), the leading-order approximation (35) is accurate for the
frequency range considered, and the real component of the wave number does not deviate from the open
water wave number, i.e., kr=k0 � 1. For the larger values of viscosity and thickness (right), the approximation
is less accurate, especially for the larger shear modulus, G 5 1 GPa, and higher frequencies. The loss of accu-
racy of the approximation coincides with deviation of the real component of the wave number from the
open water wave number, which means that it occurs in regimes not observed in the field measurements.

In terms of energy loss, for the Viscous-Greenhill model

ffiffiffi
E
p

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q g ð11mÞ h3

6

r 0 0

0
@

@t
@2

@x2

0
@

1
A; (36)

so that the rate energy loss is

R5
q g ð11mÞ h3

12
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3 n

@t @x2

				
2

5
q g ð11mÞ h3 A2 x2 k4

12
: (37)

Therefore, the leading-order attenuation rate is

ki5
R

2 E cg
5

R
. g A2 cg

5
q g ð11mÞ h3 x3 k4

6. g2 5
q g ð11mÞ h3

6. g6 x11; (38)

as in equation (35).

5.3. Robinson–Palmer Model
The Robinson and Palmer (1990) model uses the dynamic condition pwtr5pRP, where

pRPðnÞ5
G ð11mÞ h3

6
@4n
@x4

1q h
@2n
@t2

1g
@n
@t
; (39)

in which g denotes a constant viscous damping force per unit area, per unit velocity. The resulting disper-
sion relation is such that Q5QRP, where

QRP5
G ð11mÞ h3 k426 q h x226i x g

6 . g
: (40)

Therefore

QRPðk0;xÞ5
Gð11mÞh3x8=g426 q h x226 i x g

6 . g
; (41)

and the imaginary component of the wave number is

Journal of Geophysical Research: Oceans 10.1002/2018JC013776

MEYLAN ET AL. 3330



ki � 2Imfk0QRPðk0;xÞg5
g

. g2
x3: (42)

This means that the attenuation rate predicted by the Robinson and Palmer (1990) model is order 3, which
is comparable to the field measurements shown in section 2, although, in relation to the two-term approxi-
mation (3), over predicts sensitivity for low frequencies, and under predicts for high frequencies.

Figure 6 is similar to Figure 5 but for the Robinson and Palmer (1990) model. It provides cognate findings,
with approximation (42) accurate for small viscosity and thickness, and less accurate for large viscosity and
thickness, especially for large values of shear modulus and high frequencies, but that the loss of accuracy
coincides with deviations in the real wave number component from the open water wave number, and is
therefore outside the regime relevant for this investigation.

For the Robinson–Palmer model

ffiffiffi
E
p

5
ffiffiffi
g
p 0 0

0
@

@t

0
@

1
A; (43)

so that the rate of energy loss is

R5
g
2

				 @ n
@t

				
2

5
g A2 x2

2
: (44)

Therefore, the attenuation rate is

Figure 5. (a,b) Semi-log plot of scaled real wave number and (c,d) log-log plot of scaled imaginary wave number versus
angular frequency for the Viscous-Greenhill model, for (a,c) g 5 1 m2 s21 and h 5 0.1 m, and (b,d) g 5 10 m2 s21 and
h 5 1 m, with exact values (orange triangle right, G 5 100 Pa; silver triangle left, G 5 1 GPa) and leading order approxima-
tion of equation (35) (blue lines).
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ki5
R

2 E cg
5

R
. g A2 cg

5
g

. g2
x3; (45)

as in equation (42).

6. Other Model Paradigms

There are many possible energy loss mechanisms and dispersion relations, which could be proposed to
explain the observed attenuation power laws. We consider a few potential candidates, giving rise to power
laws of order two and three.

6.1. Model With Order 2 Power Law
The first is one in which the energy loss is due to the product of the fluid pressure and velocity, so the
energy loss is

g
2

				 @n@t
@/
@t

� �
z50

				:
This energy loss is due to a phase shift between the fluid and surface ice motion. In this case, the energy
loss operator is given by

E5g

@/
@t

� �
z50

0

0 1

0
B@

1
CA
?

0
@

@t
0 0

0
@

1
A; (46)

where the star denotes the adjoint operator. Therefore, the rate of energy loss is

Figure 6. As in Figure 5 but for the Robinson and Palmer (1990) model.
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R5
g A2 g x

2
; (47)

and the attenuation rate is

ki5
R

2 E cg
5

R
. g A2 cg

5
g

. g
x2: (48)

The equivalent dispersion equation has the dynamic condition pwtr5pmod22, where

pmod22ðnÞ52i g
@/
@t

� �
z50

: (49)

Note that the idea of imaginary pressure is simply to represent the phase shift and this expression can only
be thought of in the context of the frequency domain. This results in the dispersion relation

x25g k 11
i gx2

. g k

� �
; (50)

which gives an attenuation rate, ki, that agrees with equation (48).

6.2. Model With Order 3 Power Law
We propose a different model to that of Robinson and Palmer (1990) that provides order three dependence,
and with additional dependence on thickness. We assume that the energy loss is due to the square of the
horizontal velocity times the thickness, i.e.,

h

				 @/@x

� �
z50

				
2

:

We believe that this model is likely to be more widely applicable than the Robinson–Palmer model, as it
provides dependence of the attenuation rate on ice thickness (Doble et al., 2015). The horizontal ice velocity
squared represents the energy transferred to the ice by the fluid and we propose here that energy loss may
be proportional to this. In this case the energy loss operator is given by

ffiffiffi
E
p

5
ffiffiffiffiffiffi
h g

p @/
@x

� �
z50

0

0 1

0
B@

1
CA: (51)

Therefore, the rate of energy loss is

R5
h g A2

2
3

g2 k2

x2
; (52)

and the attenuation rate is

ki5
R

2 E cg
5

R
. g A2 cg

5
h g
. g2

x3: (53)

The equivalent dispersion equation uses the dynamic equation pwtr5pmod23, where

pmod23ðnÞ5h g
@/
@z

� �
z50

: (54)

This results in the dispersion equation

x25g k 11
i h gx
. g

� �
; (55)

which gives a ki that agrees with equation (53).

7. Conclusions

We have made two observations. The first is that the field measurements show a clear power law relation-
ship between attenuation and frequency with a coefficient of between two and four. The second is that dis-
persion equation models for wave attenuation, under the assumptions of deep water and small
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attenuation, also give rise to power law relations. Based on these two observations, we proposed the key
idea that the dispersion relation models have associated energy loss models, which can be used to deter-
mine the power law relationship or to engineer a desired relationship. We believe that the two observations
and the energy loss model will be of significant use in understanding wave attenuation in the MIZ. We con-
clude that measurements of wave attenuation should be fitted to power laws, that only models which have
reasonable power law behavior should be used, and that the energy loss mechanism should be found to
match the experimentally observed power laws.
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