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ABSTRACT

Concrete carbonation is a chemical degradation mechanism compromising the
service life of reinforced concrete structures. Using a homogenization approach to up-
scale the associated reaction–diffusion system given in a porous medium, whose mi-
crostructure undergoes an evolution in time, an effective macroscopic limit model is
obtained. To lower the complexity of numerical simulations further, an efficient adap-
tive finite element scheme for the limit problem is presented. The approach is generally
applicable to reaction–diffusion problems in porous media.

INTRODUCTION

Concrete carbonation takes place in the pores of concrete, which are partially
saturated with water that clings to the pore walls, and involves reaction, diffusion,
precipitation and dissolution. Atmospheric carbon dioxide (CO2) enters the concrete
through the air-filled pores and dissolves in the pore water. There, it reacts with dis-
solved constituents of the cement paste, most importantly with calcium hydroxide
(Ca(OH)2). This causes a lowering of the pH, facilitating the corrosion of the steel
reinforcements and, consequently, leads to a severe reduction of the service life of the
structure. The dominant carbonation reaction is usually assumed as

CO2(aq) + Ca(OH)2(aq)−→CaCO3(aq) + H2O. (1)

The produced calcium carbonate (CaCO3) precipitates quickly to the solid matrix.
Detailed surveys on the carbonation problem were carried out, for instance, by Bier
(1988); Bunte (1994); Chaussadent (1999); Kropp (1995) and, from a more mathemat-
ical point of view, by Muntean (2006).

Many researchers have tried to find simple formulas for the advancement of
the carbonation in a concrete sample (cf. Sisomphon, 2004; Muntean et al., 2005, for



discussions of these). There are also some works with respect to modelling carbonation
with reaction–diffusion systems, most notably Meier et al. (2007b); Muntean (2006);
Peter et al. (2008); Saetta et al. (1993); Steffens et al. (2002). In the homogenization
context, it is also worth noting the article Samson et al. (1999), where ion diffusion in
concrete is modelled using spatial averaging, and Meier et al. (2007a), where a two-
scale model for a simple carbonation scenario is proposed.

An important feature of concrete carbonation is that the carbonation reaction
causes a change of the microstructure of the porous concrete in at least two ways. First,
the reactant Ca(OH)2 takes up considerably less volume than the product CaCO3. This
results in a permanent reduction of the pore-air volume. Second, water is produced in
the carbonation reaction, which induces a (usually) temporary reduction of the pore-air
volume and an increase of the volume of the reaction medium. While it seems that the
latter effect is of considerable importance only in accelerated carbonation tests (as op-
posed to carbonation under natural atmospheric conditions), cf. Muntean et al. (2005),
the first effect is always important because it permanently slows down the diffusion
of CO2(g) to the reaction zone and, in turn, reduces the speed of the overall carbon-
ation process, also cf. Meier et al. (2007b). A detailed discussion of these effects and
their impact on the progress of carbonation can be found in Muntean et al. (2005).
The purpose of this contribution is to combine the modelling results of Peter & Böhm
(2009) and the structure of the algorithm ASTFEM developed for the heat equation
by Kreuzer et al. (2012) to present an efficient multiscale numerical model of concrete
carbonation taking into account the change of the microstructure.

THE MODEL

It was derived by Peter & Böhm (2009) that a homogenized (macroscopic)
model for concrete carbonation is as follows,

∂tj
a = −|Zw|CmCHRuvw, x ∈ Ω, (2a)

∂t ((ja|Za|+ |Zw|)u)−∇ · (jaDaP a∇u) = −|Zw|muRuvw, x ∈ Ω, (2b)

|Zw|∂tvw = −|Zw|CHmvRuvw, x ∈ Ω, (2c)
−jaDaP a∇u · ν = Cext(u− uext), x ∈ ∂Ω, (2d)

u( · , 0) = u0, v
w( · , 0) = vw0 , j

a( · , 0) = 1, x ∈ Ω, (2e)

t ∈ S, where u = u(x, t) is a combined concentration of CO2 in pore air and pore
water, vw = vw(x, t) is the concentration of Ca(OH)2 in pore water and ja = ja(x, t) is
the pore-volume factor describing the reduction of pore-air volume by the carbonation
process. The parameters of the model are: |Za| – initial pore-air volume, |Zw| – initial
pore-water volume, Cm – volume-reduction factor, Da – diffusivity of CO2 in air, P a –
initial tortuosity of pore air,CH – Henry constant,R – reaction constant,mi, j ∈ {u, v}
– molar weights, uext – external CO2 concentration, Cext – Robin constant, u0, vw0 –
initial concentrations.

Typical simulations results of the algorithm discussed in what follows are



Figure 1. Concentration of CO2 (top) and Ca(OH)2 (bottom) after one year (left)
and 16 years (right) of carbonation for an L-shaped cross-section.

shown in Figures 1 and 2 (the physical parameters are stated below). It can be clearly
seen that the carbonation reaction is confined to a narrow zone, which progresses
into the material. This moving reaction zone is a typical feature of fast-reaction–slow-
diffusion scenarios and it is evident that adaptive numerical methods capable of local
refinement and coarsening are required for the efficient simulation of such processes.

Since the process of concrete carbonation usually involves narrow reaction
zones moving slowly through the material, we are motivated to use an adaptive al-
gorithm; see also Schmidt et al. (2005) where adaptive simulations based on a sim-
ple reaction–diffusion model are presented. More precisely, the need for adaptivity
is evoked by the fact that the sharp reaction front exhibits steep gradients of the in-
volved concentrations while, in other parts of the material, the concentrations vary only
slightly or not at all. In order to resolve numerically such reaction fronts, a high mesh
resolution is needed in the area of fronts. This can be easily provided by employing a
uniformly fine mesh. A drawback of uniform meshes are large computing times with
high memory consumption. However, a uniformly fine mesh is not needed since slowly
varying concentrations can easily be approximated on a relatively coarse mesh. Using
meshes that are locally fine close to reaction fronts and relatively coarse in other areas
drastically reduces computational costs while still providing nearly the same accuracy
compared to uniform grids. On top of this, the time step size is adapted to the temporal
behavior of the true solution.

An important quantity for engineering purposes is the carbonation depth,
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Figure 2. Carbonation depth at the left side of the sample for the presented model
accounting for an evolution of the microstructure (dotted line) compared to ex-
perimental data (symbols) and with constant microstructure, i.e. assuming ja ≡ 1,
(solid line).

i.e. the depth the carbonation reaction zone has penetrated into the concrete sample
after a given amount of time. Typically, it is defined as the level set vw/vw0 = 0.1 (fol-
lowing Steffens et al., 2002). In Figure 2, the predicted carbonation depth is plotted
in comparison to experimental data of Wierig (1984) (long-term exposure out of doors
under roof). It can be seen that good approximation of experimental data is achieved.
Furthermore, Figure 2 also compares the results with a simulation, where the evolution
of the microstructure is neglected, i.e. the pore-volume factor ja is constantly set to
unity, which is the case in most carbonation models in the literature. It can be clearly
seen that this neglect results in an overestimation of the carbonation depth toward the
end of the time interval and, thus, it is important to account for the evolution of the mi-
crostructure. Moreover, as isolines of concentration are used to generate model output,
a highly accurate capturing of the concentration profiles is particularly important.

DESCRIPTION OF THE ADAPTIVE METHOD

The discretization starts with a semi-discretization in space. Instead of solving
the resulting three coupled nonlinear ordinary differential equations simultaneously
by, e.g., an implicit Euler method in combination with Newton’s method, we use a
semi-implicit discretization in time as follows. A linearization of the coupled system
of ordinary differential equations in each time step makes it possible to solve for vw

and ja explicitly using u from the previous time step and substitute the result into the
remaining linear equation for u at the new time, thus leading to a decoupled discretiza-
tion. It turns out that the additional approximation in the decoupled discretization is
reflected in the results only very mildly while increasing the performance of the algo-
rithm drastically.

For the space–time adaptation strategy, we use the following heuristic approach.
The adaptation of the spatial mesh based on ASTFEM (Adaptive Space Time Finite
Element Method, cf. Kreuzer et al., 2012) is with respect to the CO2-concentration as



this is the only quantity satisfying a partial differential equation. On the other hand,
it is obvious that the strongest need for spatial adaptation comes from the large gra-
dients in Ca(OH)2-concentration (and of the pore-volume factor). While these facts
seem to be incompatible at first, it turns out that a very elegant circumvention of this
problem can be accomplished by distributing non-uniformly the (local-in-time) toler-
ances driving the adaptive method. This results in meshes, which are very well suited
for the Ca(OH)2-concentration as well. It is important to note that such an alternative
weighting of the tolerances is in-line with rigorous error control (for the associated
linear system) while typical other approaches (e.g. error indicators based on Ca(OH)2-
gradients) are not.

NUMERICAL RESULTS

In this section, we present some computational results of applying the method
described above to solve the carbonation problem implemented using the finite element
toolbox ALBERTA, cf. Schmidt & Siebert (2005). We anticipate that the presented
results clearly indicate that we tremendously profit from applying adaptive methods in
the simulation of concrete carbonation.

In order to be able to compare the simulation results to experimental data, we
restrict our considerations to a particular type of concrete and specific exposure condi-
tions. We assume a piece of concrete based on Ordinary Portland Cement to be exposed
to natural atmospheric conditions and compare the simulations with experimental data.
To fix ideas, we use the experimental data of Wierig (1984) for PZ1 concrete with a
water-to-cement ratio of 0.6 exposed “out of doors under roof”.

The values of the model parameters refer to an L-shaped cross-section of an
Ordinary Portland Cement concrete sample with a side length of 5 cm under natural
exposure conditions. Our simulations cover a period of 16 years and begin shortly after
the curing time. The parameter values are taken from Papadakis et al. (1989); Steffens
et al. (2002) and they resemble those used in Peter & Böhm (2009). After curing,
we assume no CO2 inside the concrete sample and that 0.693 g/cm3 of Ca(OH)2 is
available to the carbonation reaction. We assume an ambient CO2(g)-concentration
resembling natural atmospheric conditions, uext = 0.54 · 10−6 g/cm3 and we take the
empirical value Cext = 103/d. We do not calculate the initial macroscopic diffusion
tensor but use the empirical value DaP a = 2.2 · 10−3 cm2/d instead. For the reaction
rate, we use the empirical value R = 500 mol · cm3/(g2d), the molar weights are
mu = 44 g/mol and mv = 74 g/mol and the Henry constant is CH = 0.81. The
volume fractions are |Za| = 0.18 and |Zw| = 0.1 and we use |Za|Cm = 40.36, which
corresponds to a reduction of pore-air volume by 21% (cf. Peter & Böhm, 2009, for a
detailed discussion of the parameter associated with the change in pore-air volume).

Figure 3 shows the concentration of CO2 after one year, four years, and 16
years in the top row. The middle row depicts the concentration of Ca(OH)2 at the same
times and the bottom row shows the pore-volume factor, which ranges from 0.79 (cor-



Figure 3. Solution to the carbonation problem. CO2 (top) and Ca(OH)2 (middle)
concentrations as well as pore-volume factor (bottom) after 1 year (left), 4 years
(middle), and 16 years (right). In the top and the middle row, black indicates value
0 and white indicates value 1. In the bottom row, black indicates 0.79 and white
indicates 1.



Figure 4. Meshes corresponding to the decoupled discretization with decreasingly
distributed tolerances. (The meshes correspond to the concentration profiles of
Figure 3).

responding to the desired reduction of the pore-air volume by 21%) to 1. Whereas all
concentrations are plotted in a normalized way, i.e. u/uext and vw/vw0 , we use dimen-
sional quantities with respect to space and time. The long edges of the “L-shape” are
five centimeters, the short edges are 2.5 centimeters. Note that the white line in the top
left plot indicates the position of the cut used for the carbonation depth in Figure 2.

We observe, that the steep gradient in the CO2-concentration after one year is
greatly smoothened after 16 years. Opposed to that, the concentration of Ca(OH)2 ex-
hibits steep gradients throughout the time interval. This implies that the bulk of the
carbonation reaction is concentrated on a narrow zone which advances into the con-
crete with time. This coincides with other simulation results, cf. Meier et al. (2007b);
Papadakis et al. (1989); Peter & Böhm (2009).

The solutions obtained by employing the decreasing distribution of the toler-
ance are resolved well for all times; the corresponding meshes are depicted in Figure 4.
In particular, we observe that the most interesting zone, i.e. the reaction zone, is re-
solved very well.

We emphasize again that whereas the reaction zone is characterized by steep
gradients of the Ca(OH)2-concentration, the gradients of the CO2 concentrations in this
zone are quite moderate. Since the employed adaptive procedure adapts the mesh with
respect to the CO2-concentration, we cannot expect a sufficient resolution of the reac-
tion zone using equidistributed tolerances. Nevertheless, this deficiency is eradicated
using the decreasing distribution of tolerances.

A detailed account on the algorithm and more extensive results will be pre-
sented in a forthcoming publication.
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on the limitations of the use of accelerated concrete-carbonation tests for service-
life predictions. Berichte aus der Technomathematik 05-04. ZeTeM, University of
Bremen.

PAPADAKIS, V. G., VAYENAS, C. G. & FARDIS, M. N. 1989 A reaction engineering
approach to the problem of concrete carbonation. AIChE J. 35 (10), 1639–1650.

PETER, M. A. & BÖHM, M. 2009 Multi-scale modelling of chemical degradation
mechanisms in porous media with evolving microstructure. SIAM Multisc. Mod. Sim.
7 (4), 1643–1668.

PETER, M. A., MUNTEAN, A., MEIER, S. A. & BÖHM, M. 2008 Competition of sev-
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