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Abstract On the basis of linear water-wave theory, an explicit expression is presented

for the reflection coefficient R∞ when a plane wave is obliquely incident upon a semi-

infinite porous plate in water of finite depth. The expression, which correctly models

the singularity in velocity at the edge of the plate, does not rely on knowledge of

any of the complex-valued eigenvalues or corresponding vertical eigenfunctions in the

region occupied by the plate. The solution R∞ is the asymptotic limit of the reflection

coefficient R as a → ∞, for a plate of finite length a bounded by a rigid vertical

wall, and forms the basis of a rapidly convergent expansion for R over a wide range of

values of a. The special case of normal incidence is relevant to the design of submerged

wave absorbers in a narrow wave tank. Modifications necessary to account for a finite

submerged porous plate in a fluid extending to infinity in both horizontal directions

are discussed.

Keywords Water waves · porous plate · Wiener–Hopf method · residue calculus

method

1 Introduction

The interaction of waves with porous structures such as rubble-mound breakwaters has

long been of interest to coastal engineers as a method of reducing wave transmission

and a number of theoretical research papers have addressed the problem. A good review

of the literature is provided by [1].

In this paper, we shall use classical linear water-wave theory to consider the scat-

tering of an incident wave-train by a submerged horizontal porous plate in water of
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finite depth. We have in mind the application to a two-dimensional wave flume where

the waves produced by the wavemaker at one end are required to be absorbed at the

other so that reflections do not interfere with the modelling of beam sea scattering by

a long body in an infinite ocean. This is usually achieved by installing a sloping beach

or a region near the end of the flume consisting of a dense mesh of absorbing material.

Our theoretical formulation is based on the work of Wu et al. [1], who considered

the reflection by a vertical wall terminating the submerged finite length porous plate,

which in turn is based on Chwang & Wu [2], who considered the scattering by a

submerged porous circular disk. We adopt their model of the porous plate in which

the boundary condition to be satisfied on the plate is that the normal velocities of

the fluid above and below the plate are continuous and proportional to the jump in

pressure across the plate. The approach of Chwang & Wu [2] and Wu et al. [1], which is

typical of many other papers (see, for example, [3] for the submerged elastic plate), is to

construct eigenfunction expansions in the water region, x < 0, and in the plate region,

0 < x < a and match the potential and horizontal velocities across the interface x = 0.

By using orthogonality relations, they derived two coupled infinite systems of equations

for the unknown expansion coefficients in each region, which they then computed by

truncation of the systems.

Here, we proceed differently for a number of reasons. We begin by considering the

situation where the plate is of infinite extent so that the powerful Wiener–Hopf method

can be used to derive an exact solution. We generalise the solution to include obliquely

incident waves from x < 0 approaching the plate which occupies x > 0, −∞ < y <

∞, z = −d, which in fact expedites the solution. In addition to the obvious advantage

of having an exact solution to the problem, there are other more important reasons

for using the Wiener–Hopf method. One of these is the fact that the method builds

in to the solution the required square-root singularity of the fluid velocity at the edge

of the submerged plate which is overlooked in the formulation of [1]. This omission

leads to slowly convergent expansion coefficients casting doubt on the accuracy of

numerical computations. For example, Porter and Evans [4, p. 156] report that use of

the eigenfunction matching method to determine the scattering by a fixed partially

immersed vertical barrier requires the solution of a 400-by-400 system of equations in

order to achieve two-figure accuracy. This problem can be overcome in the matched

eigenfunction-expansion approach by using the so-called residue calculus method where

the singularity is again built in to the form of the solution, see, for example, [5, pp. 148–

166]. Assuming that the roots of the complex dispersion relation produced by the plate

are all simple, this technique leads to an analytic expression for the reflection coefficient

R∞, which is identical to the one obtained by the Wiener–Hopf method together with

an infinite product factorisation.

However, there is a more fundamental difficulty with all matched eigenfunction-

expansion methods for porous-plate problems, which has been highlighted by McIver

[6]. Because of the complicated boundary condition to be satisfied on the plate, the

complex dispersion equation arising leads to an eigenvalue problem, which is not self-

adjoint, so that standard Sturm–Liouville theory does not apply. McIver shows how

this can be overcome in a simpler related problem but it requires knowledge of which

(and when) the eigenvalues are multiple rather than simple zeroes of the dispersion

relation, which have more complicated eigenfunctions. Even if it is assumed that all

eigenvalues are simple, which is not true in general, it is not easy to track these complex

zeroes, particularly if a large number of them is required.
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These problems are overcome by using the Wiener–Hopf approach, which avoids

needing to know the roots in the plate region. Using a Cauchy integral method, we

show that the expression for the reflection coefficient R∞ can be expressed explicitly

in terms of the known eigenvalues in x < 0 and an easily computed integral, which

does not require any knowledge of the eigenfunctions in x > 0.

Solutions to other water-wave interaction problems involving horizontal plates us-

ing the Wiener–Hopf method or the residue calculus technique can be found in the

literature. These include the submerged fixed rigid plate (commonly referred to as a

dock) [7, 8], [5, pp. 151–156] as a structure leading to a simple boundary condition but

including submergence and the elastic plate at the water surface [9, 10, 11, 12, 13] as a

structure implying a more complicated boundary condition but without submergence.

The problem considered here involves both complications: submergence and a non-

trivial boundary condition. In particular, the porous-plate boundary condition leads

to the difficulties mentioned above, which are not present in the problems involving

docks or elastic plates.

We next consider the finite-plate problem, where the plate is backed by a wall, which

is exactly the problem considered by Wu et al. [1]. While the Wiener–Hopf method

does not work for this problem owing to the semi-infinite extent of the domain, we show

how the classical eigenfunction method can be improved by using the residue calculus

technique, which provides a powerful rapidly convergent solution which again builds

in the necessary singularity. We also show how the method can be easily adapted to

solve for a porous plate of finite length in a fluid of infinite extent in both horizontal

directions.

Numerical computations confirm the validity of our approach and illuminate the

slow convergence of the standard eigenfunction matching method for both the semi-

infinite plate and the finite plate backed by a wall.

The paper is organised as follows: The governing equations are discussed in Sect. 2

and the solution to the semi-infinite plate problem by the Wiener–Hopf method is de-

rived in Sect. 3. In Sect. 4, the finite-plate problem is solved using the residue calculus

technique. Some numerical comparisons of the methods are given in Sect. 5 and conlu-

sions are formulated in Sect. 6. The paper has four appendices containing the splitting

of the Wiener–Hopf function K(s) by the Cauchy integral method (Appendix A), some

technical details related to the simplification of the expression for the reflection coef-

ficient (Appendix B), the splitting of the Wiener–Hopf function K(s) by a standard

infinite-product expansion (Appendix C) as well as a brief discussion of the special

case of a plate with porosity zero, i.e. a dock, (Appendix D).

A preliminary summary of this paper has recently appeared in [14].

2 Governing equations for the semi-infinite submerged porous plate

On the basis of linear water-wave theory there exists a harmonic velocity potential

whose dependence on y and t is assumed to be proportional to ei(βy−ωt) to allow

for obliquely incident waves of frequency ω/2π, where β is the component of the

wavenumber in the y-direction. Then, the reduced (complex) potential is φ(x, z) and

the full potential is Re [φ(x, z)ei(βy−ωt)]. The problem is now two-dimensional and

the free water surface is chosen to be {(x, z) | z = 0} and the porous plate occupies

Γp = {(x, z) |x > 0, z = −d}. The water domain is {(x, z) ∈ R2 | − h < z < 0}\Γ̄p,

which we denote by Ω for brevity.
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The mathematical description of the time-harmonic problem is as follows (cf. [5,

Chap. 1] for a general introduction). It is assumed that a plane wave, making an angle

θinc with the x-axis, is incident on the submerged plate from x = −∞. Then the

reduced complex potential φ satisfies

−∆φ+ β2φ = 0, in Ω, (1a)

∂zφ = 0, on z = −h, (1b)

∂zφ = αφ, on z = 0, (1c)

∂zφ|z=−d− = ∂zφ|z=−d+ = iµ[φ], on Γp, (1d)

|∇φ| = O(r−1/2) as r =
(
x2 + (z + d)2

)1/2 → 0, (1e)

where α = ω2/g and g is gravitational acceleration. Equation (1d) is derived from the

assumption that the normal velocity of the fluid passing through the porous plate is

proportional to the pressure difference across it. For a fuller discussion of this see [15].

Here µ = σω for sake of brevity, where σ is related to the properties of the porous plate

and Reσ > 0, and [φ] denotes the jump of φ across Γp: [φ] = φ|z=−d− − φ|z=−d+ .

Equation (1e) reflects the infinite speed of the fluid around the sharp edge of the plate

(see [5, p. 40], for a discussion). Finally, radiation conditions are needed appropriate to

the scattering of the incident wave. In what follows, we will write c = h−d for brevity.

Consider in x < 0 the expression e±κnxψn(z) where

ψn(z) =
cos kn(z + h)

cos knh
, n = 0, 1, 2, . . . , (2)

κn = (k2n + β2)1/2 and where the numbers kn, n ≥ 1, are the positive real roots of the

relation

α+ kn tan knh = 0 (3)

and k0 = −ik is the single negative imaginary root of (3). The positive real wavenumber

k is thus related to α by the relation α = k tanh kh. Then, e±κnxψn(z) satisfies (1a),

(1b) and (1c). Thus, a wave of unit potential amplitude, obliquely incident from x =

−∞ on the submerged plate, has the form eiκxψ0(z) where κ ≡ iκ0 = k cos θinc and

β = k sin θinc. We can now complete the conditions on φ by demanding

φ ∼ (eiκx +R∞e−iκx)ψ0(z) as x→ −∞. (4)

For the region x > 0, we assume the effect of the plate is to reduce progressively

the wave amplitude along its length. Thus we prescribe

φ→ 0 as x→∞. (5)

3 The Wiener–Hopf solution

In this section, the problem with the semi-infinite plate as introduced in the previous

section is solved using the Wiener–Hopf method. The general procedure is similar

to that for a submerged dock, which, in particular, follows as a special case (also

cf. Appendix D). The Wiener–Hopf splitting function K(s) is factorised using the

Cauchy integral method, thereby yielding an expression for the reflection coefficient,

which does not involve the roots of the denominator of K(s). Thus, it is not required to
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calculate the roots of a dispersion relation for the plate region. In general, this method

is useful for any problem where the roots of the dispersion relation are difficult to

compute and where only the reflection coefficient is of interest.

We split the potential φ as follows:

φ(x, z) = ψ0(z)eiκx +

{
φ1(x, z), −d < z < 0,

φ2(x, z), −h < z < −d.
(6)

Thus, φ1 and φ2 have to satisfy (1a), (1b), (1c), (1e) and also

∂zφ1 = ∂zφ2, on z = −d, (7a)

φ1 = φ2, on z = −d, x < 0, (7b)

∂zφj = iµ(φ2 − φ1)− α̃eiκx, on Γp, (7c)

φj ∼ R∞e−iκxψ0(z), as x→ −∞, (7d)

φj + eiκxψ0(z)→ 0, as x→ +∞, (7e)

and j = 1, 2, where α̃ = k sinh kc/ cosh kh. We let Φ be the Fourier transform of φ with

respect to x,

Φ(s, z) =

∫ ∞
−∞

φ(x, z)eisx dx, (8)

and Φ− and Φ+ the negative and positive half-range Fourier transforms of φ, respec-

tively,

Φ−(s, z) =

∫ 0

−∞
φ(x, z)eisx dx, Φ+(s, z) =

∫ ∞
0

φ(x, z)eisx dx. (9)

Then, Φ = Φ−+Φ+ and Φ+ is regular in the upper complex planeD+ = {s ∈ C | Im (s+

κ) > 0} while Φ− is regular in the lower complex plane D− = {s ∈ C | Im (κ− s) > 0}.
To ensure convergence of the transforms, we shall assume that κ has a small imaginary

part ε and we will let ε→ 0 finally. Then,

D+ =
{
s ∈ C

∣∣ Im s > −ε
}
, D− =

{
s ∈ C

∣∣ Im s < ε
}

(10)

and we define D = D+ ∩ D− = {s ∈ C | |Im s| < ε}.
The transformed version of (1a) is

∂zzΦ− γ2Φ = 0, s ∈ D, where γ2 = s2 + β2. (11)

Then,

Φ1(s, z) = A(s)(γ cosh γz + α sinh γz) (12)

satisfies (1a) and (1c), where γ = (s2 + β2)1/2, and

Φ2(s, z) = B(s) cosh γ(z + h) (13)

satisfies (1a) and (1b). Transformation of (7a) for x > 0 and (7c) gives

∂zΦ
+
1 (s,−d) = ∂zΦ

+
2 (s,−d) = iµ(Φ+

2 (s,−d)− Φ+
1 (s,−d))− iα̃/(s+ κ). (14)

Equations (7a) for x < 0 and (7b) respectively become

∂zΦ
−
1 (s,−d) = ∂zΦ

−
2 (s,−d) ≡ Q−(s), (15)

Φ−1 (s,−d) = Φ−2 (s,−d). (16)
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Differentiating (12) and (13) with respect to z and putting z = −d, we obtain

∂zΦ1(s,−d) = γA(s)(α cosh γd− γ sinh γd), (17)

∂zΦ2(s,−d) = γB(s) sinh γc, (18)

where c = h− d. Addition of (14) and (15) and comparison with (17) and (18) gives

A(s) =
Q−(s) + iµD+(s)− iα̃/(s+ κ)

γ(α cosh γd− γ sinh γd)
, B(s) =

Q−(s) + iµD+(s)− iα̃/(s+ κ)

γ sinh γc
,

(19)

where

D+(s) = Φ+
2 (s,−d)− Φ+

1 (s,−d)

= Φ+
2 (s,−d)− Φ+

1 (s,−d) + Φ−2 (s,−d)− Φ−1 (s,−d)

= Φ2(s,−d)− Φ1(s,−d)

= B(s) cosh γc−A(s)(γ cosh γd− α sinh γd), (20)

where we have made use of (16). Substituting (19) into (20), we obtain

D+(s) =
(
Q−(s) + iµD+(s)− iα̃/(s+ κ)

)(
cosh γc

γ sinh γc
− γ cosh γd− α sinh γd

γ(α cosh γd− γ sinh γd)

)
=
(
Q−(s) + iµD+(s)− iα̃/(s+ κ)

)
γ sinh γh− α cosh γh

γ sinh γc(γ sinh γd− α cosh γd)
(21)

or, equivalently,

D+ + (Q−(s)− iα̃/(s+ κ))K(s) = 0, (22)

where

K(s) =
γ sinh γh− α cosh γh

γ sinh γc(γ sinh γd− α cosh γd)− iµ(γ sinh γh− α cosh γh)
(23)

is the Wiener-Hopf splitting function. Now it is shown in Appendix A that we can

write

K(s) = K+(s)K−(s), (24)

where K±(s) is non-zero and regular in D±. Thus, (22) can be written as

D+(s)

K+(s)
− iα̃

s+ κ
K−(−κ) = −Q−(s)K−(s) +

iα̃

s+ κ
(K−(s)−K−(−κ)), (25)

where the left (right)-hand side of (25) is regular in D+ (D−). Now (1e) implies that

Φ′±(s,−d) = O(s−1/2) as s → ∞ in D±. It follows from (12) and (13) that the same

is true of Q−(s) and D+(s). Together with the result K±(s) = O(s−1/2) as s → ∞
in D± proved in Appendix A, it follows from (24) that either side of (25) vanishes for

large |s| so that by Liouville’s theorem each side must be identically zero. Thus, using

(12), (19), (21) we finally obtain, from (25),

Φ1(s, z) = D+(s)
sinh γc(γ cosh γz + α sinh γz)

α cosh γh− γ sinh γh

=
iα̃K−(−κ)K+(s)

s+ κ

(γ cosh γz + α sinh γz) sinh γc

α cosh γh− γ sinh γh
.
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Similarly, using (12), (19), (21),

Φ2(s, z) =
iα̃K−(−κ)K+(s)

s+ κ

(α cosh γd− γ sinh γd) cosh γ(z + h)

α cosh γh− γ sinh γh
(26)

and from the inversion formula,

φj(x, z) =
1

2π

∫
C

e−isxΦj(s, z) ds, j = 1, 2, (27)

where the contour C passes from −∞ to +∞ in D.

For x < 0, we deform C upwards into D+, picking up the contributions from the

poles of the integrand at s = iκn, γ = ikn, n ≥ 0. The reflected wave arises from the

simple pole at s = κ, γ = k, where n = 0.

We find that

φj(x, z) = R∞ψ0(z)e−iκx − 2iα̃K−(−κ)

∞∑
n=1

k2n sin knc cos knh

κn(2knh+ sin 2knh)
K+(iκn)ψn(z)eκnx,

where

R∞ =
k3 sinh2 kcK+(κ)K−(−κ)

κ2(2kh+ sinh 2kh)
. (28)

Notice that the expression is the same for j = 1 and j = 2 as expected since the

potentials and their x-derivatives are continuous across z = −d for x < 0.

This expression for R∞ can be simplified considerably making use of results in

Appendix A and Appendix B. It turns out that

R∞ = − exp(−2iΘ(κ)), (29)

where

Θ(κ) = I(κ)+2 arctan(β/κ)+χ(κ)+

∞∑
n=1

(
arctan(κ/κn)−arctan(κ/c′n)−arctan(κ/d′n)

)
,

(30)

where cn = nπ/c, dn = nπ/d and

κn = (k2n + β2)1/2, c′n = (c2n + β2)1/2, d′n = (d2n + β2)1/2 (31)

and χ is defined in (99) while I is given by (103).

It is of interest to determine R∞ for values of the physical parameters at which the

zeroes of the denominator of K(s) are all simple. This allows us to make a comparison

with the Cauchy integral method, which makes no such assumption. Thus, we assume

that the zeros of the denominator of K(s) are of the form γ = γn = ±iln, or s =

±iλn, n = 0, 1, 2, ..., where the ln are all complex. Care must be taken in the numbering

of the roots, which we also denote as λ±n , n = 1, 2, . . . , as they arise as perturbations

of the roots above (below) the plate in the limit case of an impermeable dock (σ = 0),

also cf. Appendix D. Keeping in mind that, from Appendix A, F (s) = Ko(s)/Kd(s),

where Ko is defined by (95) and Kd is the denominator of K, we may then write

F (s) =
γ2 sinh γc sinh γd

(−iµα)
∏∞
n=0(1 + γ2/l2n)

=
(s2 + β2)2cd

∏∞
n=1((c′2n + s2)/c2n)(d′2n + s2)/d2n)

(−iµα)
∏∞
n=1((λ+n 2 + s2)/l+n 2)((λ−n 2 + s2)/l−n 2)

(32)
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and the infinite product in the denominator converges because of the behaviour of the

ln as n→∞. We need to evaluate

I(κ) =
1

π

∫ ∞
0

logF (κt)

t2 − 1
dt. (33)

We make use of the result

1

π

∫ ∞
0

log(a2 + b2t2)

t2 − 1
dt = arctan(b/a) (34)

[see 16, Sect. 4.295, eq. (8)] and we find from (32), (33) that

I(κ) = 2 arctan(κ/β)

+

∞∑
n=1

(
arctan(κ/d′n)− arctan(κ/λ+n ) + arctan(κ/c′n)− arctan(κ/λ−n )

)
. (35)

Thus, combining (30) and (35), we obtain

Θ(κ) = π + χ(κ) +

∞∑
n=1

(
arctan(κ/κn)− arctan(κ/λ+n )− arctan(κ/λ−n )

)
. (36)

The same expression can also be obtained directly using a standard infinite-product

decomposition to split K(s). The details are given in Appendix C.

4 The finite submerged porous plate

We consider the problem of the submerged porous plate as before but with a rigid

vertical wall at x = a > 0. This problem corresponds to waves being symmetric about

x = a and is precisely the problem considered in [1, 17].

Because of the semi-infiniteness of the domain, the Wiener–Hopf method can no

longer be employed. Instead, under the assumption of simple roots of the dispersion

relations, we show how to use the residue calculus technique to convert the problem

to an infinite system of equations for quickly decaying coefficients. Progress is also

possible if there are non-simple roots but this requires the precise knowledge of these

roots and the eigenfunction expansions are different (see [6] on this point for a related

problem).

The Wiener–Hopf method and the residue calculus technique are closely related.

However, the Wiener–Hopf method works for problems in a halfplane as well as a

strip, which is not the case for the residue calculus method. To show the equivalence

for strip problems is not easy, although Mittra and Lee [18, pp. 150–153] showed that

the methods are precisely equivalent in a related simpler problem.

The resulting expression for the reflection coefficient for the finite plate is actu-

ally a multiplicative correction of the semi-infinite-plate reflection coefficient R∞. The

correction term is given in terms of a rapidly convergent series expansion. It is note-

worthy that the residue calculus technique also yields an exact expression for R∞ as is

shown below. Furthermore, it is discussed at the end of this section, how to modify the

equations to account for a finite porous plate in a fluid extending to infinity in both

positive and negative x-direction.
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4.1 Governing equations and eigenfunction expansions

The plate is again denoted by Γp = {(x, z) | 0 < x < a, z = −d} and the domain

occupied by water is now Ω = {(x, z) | − ∞ < x < a, −h < z < 0}\Γp. Using the

same notation as in the previous sections, the system of equations to be satisfied by

the time-harmonic water velocity potential is given by system (1) together with the

radiation condition (4), where R∞ is replaced by the finite-plate reflection coefficient

R, and the homogeneous Neumann condition at the vertical wall

∂xφ = 0 at x = a. (37)

For the finite plate, we split the potential into φ− (for x < 0) and φ+ (for 0 < x <

a). From the discussion in Sect. 2, it is easy to see that

φ−(x, z) = ψ0(z)eiκx +

∞∑
m=0

amψm(z)eκmz , (38)

where ψn is defined in (2), satisfies the required conditions for x < 0.

From (1d), we see that the potential φ+ is discontinuous at z = −d but its z-

derivative is continuous. Suitable vertical eigenfunctions Ψm(z) satisfying (1b) and

(1c) are given by

Ψm(z) =

{
Ψm(z) = pm(lm cos lmz + α sin lmz), −d < z < 0,

Ψm(z) = qm cos lm(z + h), −h < z < −d,
(39)

where the separation constants lm must be the same above and below the plate because

of (1d). In order to satisfy the first equality in (1d),

Ψ ′m(−d) = Ψ ′m(−d), (40)

i.e.

pm(lm sin lmd+ α cos lmd) + qm sin lmc = 0 (41)

must be satisfied. This determines qm in terms of pm. From the second equality in

(1d), we get

pm(l2m sin lmd+ αlm cos lmd) + iµpm(lm cos lmd− α sin lmd) = iµqm cos lmc. (42)

Using (41), this can be reformulated as

lm
iµ

+
lm sin lmh+ α cos lmh

(lm sin lmd+ α cos lmd) sin lmc
= 0. (43)

This is the dispersion relation for the submerged plate. Its roots in the fourth quadrant

of the complex plane lm, m = 0, 1, . . . , are numbered with increasing real part. As

before, we write λm = (l2m + β2)1/2. Note that (43) is equivalent to Kd(±iλm) = 0,

m = 0, 1, . . .

We still need one more condition to specify pm. We normalise Ψm(z) such that∫ 0

−h
Ψm(z)Ψn(z) dz = δmn, (44)
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i.e.

1 =

∫ 0

−h
Ψ2
m(z) dz = q2m

∫ −d
−h

cos2 lm(z + h) dz + p2m

∫ 0

−d
(lm cos lmz + α sin lmz)

2 dz

=
q2m
2

(
c+

sin 2lmc

2lm

)
+
p2m
2

(
(l2m − α2) sin 2lmd

2lm
+ d(l2m + α2)− 2α sin2 lmd

)
,

which, together with (41), determines pm.

Now, φ+ can be expanded in eigenfunctions as

φ+(x, z) =

∞∑
m=0

bmΨm(z)
coshλm(a− x)

coshλma
. (45)

Note that this expansion ensures that φ+ satisfies (1a), (1b), (1c) and (37).

The vertical eigenfunctions Ψm satisfy (44). However, since µ is complex, they do

not form an orthonormal set in the classical sense as the corresponding operator is not

self-adjoint (see [6] for a detailed discussion in a related context). Moreover, we have

no proof that the set is complete.

4.2 Eigenfunction matching

Using the expansions (38) and (45), matching the potential and its derivative across

x = 0 respectively gives

ψ0(z) +

∞∑
m=0

amψm(z) =

∞∑
m=0

bmΨm(z), −h < z < 0, (46)

−κ0ψ0(z) +

∞∑
m=0

κmamψm(z) = −
∞∑
m=0

λmbmΨm(z) tanhλma, −h < z < 0. (47)

In general, it is possible to multiply either by ψn or by Ψn and integrate over (−h, 0)

to obtain an infinite system of equations. But for the finite plate, progress with the

residue calculus technique is only possible if we use Ψn. We get

C0n +

∞∑
m=0

amCmn = bn, (48a)

−κ0C0n +

∞∑
m=0

κmamCmn = −λnbn tanhλna, (48b)

n = 0, 1, . . . , where

Cmn =

∫ 0

−h
ψm(z)Ψn(z) dz. (49)

The integral of the product of the left-hand and right-hand vertical eigenfunctions

can be calculated explicitly. From

ψ′′m(z)Ψn(z)− ψm(z)Ψ ′′n (z) = −(k2m − l2n)ψm(z)Ψn(z), (50)
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integration from −h to 0, integration by parts and use of the boundary conditions

satisfied by ψm and Ψn gives

Cmn =

∫ 0

−h
ψm(z)Ψn(z) dz =

−1

k2m − l2n

∫ 0

−h
ψ′′m(z)Ψn(z)− ψm(z)Ψ ′′n (z) dz

=
ψ′m(−d)(Ψn(−d)− Ψn(−d))

k2m − l2n

=
ψ′m(−d)Ψ ′n(−d)

iµ(k2m − l2n)
. (51)

Stopping the analysis here and solving system (48) numerically by truncation is

the standard eigenfunction matching method used by [2, 1, 17]. The convergence is

rather slow, cf. Sect. 5, and further analytical progress is possible: system (48) is also

the basis for the residue calculus presented in the next subsection.

4.3 Residue calculus

Multiplying (48a) by λn, substituting Cmn from (51) and making use of k2m − l2n =

κ2m − λ2n, (48a) and (48b) become

λn
ψ′0(−d)Ψ ′n(−d)

(κ20 − λ2n)
+ λn

∞∑
m=0

am
ψ′m(−d)Ψ ′n(−d)

(κ2m − λ2n)
= iµλnbn, (52)

−κ0
ψ′0(−d)Ψ ′n(−d)

(κ20 − λ2n)
+

∞∑
m=0

κmam
ψ′m(−d)Ψ ′n(−d)

(κ2m − λ2n)
= −iµλnbn

e2λna − 1

e2λna + 1
. (53)

Multiplying the former equation by (e2λna− 1) and the latter by (e2λna + 1), addition

eventually leads to

−
(

1

κ0 + λn
+

e−2λna

κ0 − λn

)
+

∞∑
m=0

Am

(
1

κm − λn
+

e−2λna

κm + λn

)
= 0, m = 0, 1, . . . ,

(54)

where

Am =
amψ

′
m(−d)

ψ′0(−d)
. (55)

Neglecting the summands involving the exponentials is equivalent to letting a→∞
and gives the infinite system for the semi-infinite plate. This is

∞∑
m=0

A∞m
κm − λn

=
1

κ0 + λn
, m = 0, 1, . . . , (56)

so R = A0 and R∞ = A∞0 from (38). We solve (56) as in [19] by considering

Im = lim
N→∞

1

2πi

∫
CN

f(z)

z − λm
dz, m = 0, 1, . . . , (57)

where CN is a sequence of circles of radius (N − 1/4)π centred at the origin, say. Also,

f(z) has simple poles at z = −κ0, z = κn, n = 0, 1, . . . , and simple zeros at z = λn,
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n = 0, 1, . . . , by assumption and f(z) = O(z−1/2) as |z| → ∞ on CN as N →∞. Then,

Im = 0 and, by Cauchy’s residue theorem, it follows that

∞∑
n=0

Res (f ; z = κn)

κn − λm
+

Res (f ; z = −κ0)

−κ0 − λm
= 0, m = 0, 1, . . . , (58)

so that from (56),

A∞n = Res (f ; z = κn), 1 = Res (f ; z = −κ0), R∞ = Res (f ; z = κ0). (59)

Let

f(z) = Cg(z), g(z) =
1

z + κ0

∞∏
n=0

1− z/λn
1− z/κn

eχ(z), (60)

where

χ(z) =
z

π
(h log h− c log c− d log d), (61)

so that the infinite product converges, or that |λ−1n −κ−1n | = O(n−2) as n→∞. Then,

from (59),

R∞ = C
−κ0
2κ0

∏∞
n=0(1− κ0/λn)∏∞
n=1(1− κ0/κn)

eχ(κ0) = C
−(λ0 − κ0)

2λ0

∞∏
n=1

(1− κ0/λn)

(1− κ0/κn)
eχ(κ0), (62)

1 = C

∞∏
n=0

1 + κ0/λn
1 + κ0/κn

eχ(−κ0) = C
λ0 + κ0

2λ0

∞∏
n=1

1 + κ0/λn
1 + κ0/κn

e−χ(κ0). (63)

Solving the latter equation for C and substituting into the former gives

R∞ =
κ0 − λ0
κ0 + λ0

∞∏
n=1

(
1 + iκ/λn
1− iκ/λn

)(
1− iκ/κn
1 + iκ/κn

)
e−2iχ(κ) (64)

since κ0 = −iκ so

R∞ =
κ− iλ0
κ+ iλ0

e−2i(θ+χ(κ)), where θ =

∞∑
n=1

(
arctan(κ/κn)− arctan(κ/λn)

)
, (65)

which is the same expression as was obtained by the Wiener–Hopf method using the

standard infinite-product decomposition, as in Appendix C. If β = 0,

R∞ =
k − il0
k + il0

e−2i(θ+χ(k)), where θ =

∞∑
n=1

(
arctan(k/kn)− arctan(k/ln)

)
. (66)

In the finite plate case, given by (54), we let

Jm = lim
N→∞

1

2πi

∫
CN

f(z)

(
1

z − λm
+

e−2λma

z + λm

)
dz, m = 0, 1, . . . , (67)

and we write

f(z) = C

(
1 +

∞∑
n=0

Bn
z − λn

)
g(z), g(z) =

1

z + κ0

∞∏
n=0

1− z/λn
1− z/κn

eχ(z) (68)
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as before. Provided that f(z) = O(z−1/2) for |z| → ∞ on CN as N →∞, Jm = 0 so

∞∑
n=0

Res (f ; z = κn)

(
1

κn − λm
+

e−2λma

κn + λm

)
+Res (f ; z = −κ0)

(
1

−κ0 − λm
+

e−2λma

−κ0 + λm

)
+ f(λm) + e−2λmaf(−λm) = 0, m = 0, 1, . . . (69)

Note that λm is not automatically a zero of f in this case. In fact, comparing (54) with

(69), we require

f(λm) + e−2λmaf(−λm) = 0, m = 0, 1, . . . , (70)

as well as

Res (f ; z = κn) = An, Res (f ; z = −κ0) = 1 (71)

as before. Now

f(−λm) = C

(
1−

∞∑
n=0

Bn
λm + λn

)
1

−λm + κ0

∞∏
n=0

1 + λm/λn
1 + λm/κn

e−χ(λm) (72)

whilst

f(λm) = − CBm
λm(λm + κ0)

∏∞
n=0

′(1− λm/λn)∏∞
n=0(1− λm/κn)

eχ(λm), (73)

where the prime means that the term n = m is missing. So (70) becomes

Bm +

∞∑
n=0

KmnBn = Cm, m = 0, 1, . . . , (74)

where

Cm = λm(λm + κ0)e−2λmag(−λm)e−χ(λm)

∏∞
n=0(1− λm/κn)∏∞
n=0

′(1− λm/λn)

= 2λm
(κ0 + λm)

(κ0 − λm)

(κm − λm)

(κm + λm)
e−2(λma+χ(λm))

∞∏
n=0

′ (1− λm/κn)

(1 + λm/κn)

(1 + λm/λn)

(1− λm/λn)
,

(75)

Kmn =
Cm

λm + λn
. (76)

The l2 infinite system (74) has a unique solution Bn satisfying
∑∞
n=0|Bn|

2 <∞ if

∞∑
n=0

|Cn|2 <∞,
∞∑
m=0

∞∑
n=0

|Kmn|2 < 1 (77)

[see 19, p. 53]. Because of the exponential term in Cm and Kmn, it an be shown

that these conditions are satisfied for λ0a sufficiently large, i.e. for sufficiently long

wavelength or plate. Note that conditions (77) do not yield a useful numerical check

whether the requirements are fulfilled. Nevertheless, the truncated version of the sec-

ond condition gives a sufficient criterion for a given parameter set to be inadmissible.

The solution can be written in terms of a convergent Neumann series and a simple

iterative solution begins with Bn ∼ Cn etc. Alternatively, (74) can be solved easily by

truncation.
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Returning to (71), we have

Res (f ; z = −κ0) = 1 = C

(
1−

∞∑
n=0

Bn
κ0 + λn

) ∞∏
n=0

1 + κ0/λn
1 + κ0/κn

eχ(−κ0), (78)

which determines C. Also, from (71),

A0 = R = Res (f ; z = κ0) = −C(λ0 − κ0)

2λ0

(
1−

∞∑
n=0

Bn
λn − κ0

) ∞∏
n=1

1− κ0/λn
1− κ0/κn

eχ(κ0).

(79)

Eliminating C from (79) using (78), we obtain

R = R∞
(

1−
∞∑
n=0

Bn
λn − κ0

)/(
1−

∞∑
n=0

Bn
λn + κ0

)
, (80)

where we have used (64).

Equation (80) provides an accurate expression for R showing the correction from

the infinite-plate result, which, since Bn = O(e−λna), describes an infinite sequence

of exponentially small contributions travelling back and forth between the ends x = 0

and x = a.

We return to (75) and (68) and estimate Cm for large m. We write

Cm =
(λm + κ0)(1− λm/κm)

(κ0 − λm)(1 + λm/κm)
2λme−2(λma+χ(λm))Pm (81)

where

Pm =

∞∏
n=0

′ (1− λm/κn)(1 + λm/λn)

(1 + λm/κn)(1− λm/λn)
=

∞∏
n=0

′(1 + anm), (82)

where anm = O(n−2) as n → ∞ provided that λ−1n − κ−1n = O(n−2). If so, then Pm
is convergent and we can rearrange to give

Pm =

∞∏
n=0

′ (1− κn/λm)(1 + λn/λm)

(1 + κn/λm)(1− λn/λm)
→ 1 as m→∞. (83)

It follows from (81) and (83) that, provided λ−1n − κ−1n = O(n−2),

Cm = O
(
λme−2(λma+χ(λm))

m2

)
(84)

and the conditions (77) easily follow [see 19, p. 58–9]. A good approximation to R

comes from the first term B0 in (80). Now,

B0 ∼ C0 = 2λ0e−2(λ0a+χ(λ0))P0, P0 =

∞∏
n=1

(
κn − λ0
κn + λ0

)(
λn + λ0
λn − λ0

)
= e−2ϑ, (85)

where

ϑ =

∞∑
n=1

(
arctanh(λ0/κn)− arctanh(λ0/λn)

)
. (86)

So

R ∼ R∞
(

1− B0

λ0 − κ0

)/(
1− B0

λ0 + κ0

)
, B0 = 2λ0e−2(λ0a+χ(λ0)+ϑ). (87)
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4.4 Fluid extending to infinity in both directions

In the same way, it is possible to solve the problem with a homogeneous Dirichlet con-

dition at x = a, i.e. (37) replaced by φ = 0 on x = a. It is well known that combinations

of the reflection coefficients for the symmetric case (homogeneous Neumann condition)

and the antisymmetric case (homogeneous Dirichlet condition) give the reflection and

transmission coefficients of the corresponding finite structure having twice the length.

Denoting the reflection coefficient of the symmetric problem (given by (80)) by Rs

and that of the antisymmetric problem by Ra, we have the reflection and transmission

coefficient

R = 1
2 (Rs +Ra), T = 1

2 (Rs −Ra) (88)

for a submerged plate occupying (0, 2a) × {−d} in water of infinite extent in both

horizontal directions. We briefly outline how the analysis above changes for the anti-

symmetric case.

In order to accommodate the homogeneous Dirichlet condition at x = a, the po-

tential φ+ (cf. (45)) is expanded as

φ+,a(x, z) =

∞∑
m=0

bamΨm(z)
sinhλm(a− x)

sinhλma
, (89)

where we have added a superscript a to designate the antisymmetric case. This implies

that the term tanhλna in (48b) needs to be replaced by cothλna. Equation (54)

becomes

−
(

1

κ0 + λn
− e−2λna

κ0 − λn

)
+

∞∑
m=0

Aa
m

(
1

κm − λn
− e−2λna

κm + λn

)
= 0, m = 0, 1, . . . ,

(90)

where

Aa
m =

aamψ
′
m(−d)

ψ′0(−d)
. (91)

It is found that

Ra = R∞
(

1−
∞∑
n=0

Ba
n

λn − κ0

)/(
1−

∞∑
n=0

Ba
n

λn + κ0

)
, (92)

where Ba
n is the solution of

Ba
m −

∞∑
n=0

KmnB
a
n = −Cm, m = 0, 1, . . . (93)

5 Numerical comparisons

We present numerical results for some typical parameter sets. Further results can be

found in [14].

We begin by comparing R∞ calculated using the expression from the Wiener–Hopf

method to the results from simple eigenfunction matching and then compare results for

R from the residue calculus technique with eigenfunction matching for a finite plate. It

turns out that results of the different methods agree overall but that the convergence
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W–H 0.0134− 0.0539i
EM with 50 roots 0.0130− 0.0540i
EM with 100 roots 0.0132− 0.0540i
EM with 150 roots 0.0132− 0.0540i
EM with 200 roots 0.0133− 0.0540i

Table 1 Reflection coefficient R∞ for kh = 1.2, σ = 1/3, c/h = 0.7 and θinc = 0.

W–H 0.2192− 0.1755i
EM with 50 roots 0.2183− 0.1766i
EM with 100 roots 0.2188− 0.1761i
EM with 150 roots 0.2189− 0.1759i
EM with 200 roots 0.2190− 0.1758i

Table 2 Reflection coefficient R∞ for kh = 0.8, σ = 1/30, c/h = 0.9 and θinc = 0.

of the eigenfunction matching method is quite slow. Unfortunately, it is impossible

to quantitatively compare our results to those of [1] and [17] because only plots of

simulation results (rather than numerical values) are given by the authors and slight

differences or the slowness of the convergence would not be resolved. We also present

some plots of |R∞| as a function of kh for several porosities and submergences as

such data does not seem to have been given elsewhere and we refer to [1] and [17] for

analogous results for the finite plate.

We first compare R∞ calculated using the expression from the Wiener–Hopf ap-

proach using the Cauchy integral method (W–H), i.e. (29) with (30), to the result from

simple eigenfunction matching (EM), i.e. (56). The roots of (43) are tedious to calculate

and they are found by using their asymptotics to obtain an initial guess, which feeds

into a numerical solver based on [20]. Expression (103) is used for the computation of

I(κ).

We give two generic examples for the convergence of the methods. As a first pa-

rameter set, we consider a shorter wave and a plate with a higher porosity submerged

at about one third of the water depth. For kh = 1.2, σ = 1/3, c/h = 0.7, θinc = 0, the

results are given in table 1. The second parameter set refers to a longer wave and a less

porous plate closer to the water surface. For kh = 0.8, σ = 1/30, c/h = 0.9, θinc = 0,

the computed reflection coefficients are found in table 2.

It can be seen that the results using EM agree with those from the W–H approach

but the convergence of EM is slow. The behaviour of |R∞| for different parameters is

shown in figures 1 and 2.

The fourth decimal place accuracy can be obtained by the semi-infinite-plate residue

calculus in the examples above by truncating the series (36) at only n = 9 and n = 8,

resp. This agreement validates the applicability of the residue calculus method (RC).

We use the residue calculus method for the finite plate (i.e. (80) with (74)) to find

R for a/h = 8 and the other data as in the first example above as well as for a/h = 10

and the other data as in the second example above. The results are compared to the

RC 0th-term approximation (given by (87) and (86)) and the eigenfunction matching

method, i.e. (54), for different truncations in tables 3 and 4.

The RC has converged to fourth decimal place accuracy using n = 7 in the first

example (here, λ0a = 2.4812 − 9.5639i) and n = 3 in the second example (here,

λ0a = 1.8417 − 23.3324i). For the RC 0th-term approximation this is true for only

n = 5 and n = 3, resp.
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Fig. 1 Reflection coefficient |R∞| versus kh for σ = 0.01 (left) and σ = 1 (right), θinc = 0
and different c/h.
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Fig. 2 Reflection coefficient |R∞| versus kh for c/h = 0.8 (left) and c/h = 0.4 (right), θinc = 0
and different σ.

It can be seen that the convergence of the EM is even slower for the finite plate

and the RC 0th-term approximation can already yield more accurate results than the

EM with 200 roots. In the first example, it even seems to be the case that the EM

does not converge to the correct solution but to something close to it (at least when

considering only the first few hundred roots), an observation we have made for several

parameter sets and which is in agreement with the findings of Porter and Evans [4] for

a fixed partially immersed vertical barrier.

The RC proves to be a powerful method for solving such finite-plate problems and,

in particular, the 0th-term approximation to the RC method is shown to provide a

good approximation to R for a range of parameter sets. However, care should be taken

not to apply it in cases for which the conditions (77) are not satisfied, where the full

RC method can appear to converge but differs widely from the zeroth approximation,

and where both results differ from the EM results.

6 Conclusions

The problem of linear water-wave reflection by a submerged porous plate has been

solved for both the semi-infinite plate and the finite plate backed by a solid wall. The
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RC 0.0201− 0.0494i
RC 0th-term approx. 0.0200− 0.0496i
EM with 50 roots 0.0206− 0.0504i
EM with 100 roots 0.0208− 0.0503i
EM with 150 roots 0.0208− 0.0503i
EM with 200 roots 0.0209− 0.0503i

Table 3 Reflection coefficient R for kh = 1.2, σ = 1/3, c/h = 0.7, θinc = 0 and a/h = 8.

RC 0.2114− 0.1764i
RC 0th-term approx. 0.2092− 0.1687i
EM with 50 roots 0.2100− 0.1773i
EM with 100 roots 0.2105− 0.1767i
EM with 150 roots 0.2107− 0.1765i
EM with 200 roots 0.2108− 0.1764i

Table 4 Reflection coefficient R for kh = 0.8, σ = 1/30, c/h = 0.9, θinc = 0 and a/h = 10.

extension to reflection and transmission by a finite plate in a fluid extending to infinity

in front and behind the plate have been discussed.

Using the Wiener–Hopf method together with the Cauchy integral method, an

easily computable analytic expression for the reflection coefficient R∞ for the semi-

infinite plate problem has been derived. This expression does not involve any of the

roots of the complicated dispersion relation in the plate region, stemming from the

boundary condition across the porous plate, but an easily computable integral with

finite integration limits.

For the finite plate backed by a wall, the residue calculus technique has been used

to find both a quickly convergent expression for the reflection coefficient R as well

as a simple but accurate approximation. The residue calculus technique also gave the

same result for the semi-infinite plate as the Wiener–Hopf method together with an

infinite-product expansion. All of these approaches require knowledge of the location of

the roots of the dispersion relation in the plate region. It turned out that the reflection

coefficient R of the finite plate can be written as the product of the semi-infinite plate

reflection coefficient R∞ and a correction factor.

The finite-plate problem with a solid wall corresponds to waves being symmetric

about the position of the wall. The solution of the related antisymmetric problem,

where the homogeneous Neumann condition at the wall is replaced by a homogeneous

Dirichlet condition, has been discussed. Both solutions can be combined to give a

solution to the problem of a finite submerged porous plate in a fluid extending to

infinity in front and behind the plate.

Contrary to simple eigenfunction-matching approaches, all methods considered here

specifically account for the singularity of the fluid velocity around the tip of the sub-

merged plate. Numerical computations have shown that all expressions provide pow-

erful methods for solving such problems. In particular, the n = 0 approximation to

the residue calculus result has been shown to provide a good approximation to R for

a range of parameter sets, typically similar or even better than the slowly convergent

eigenfunction matching method using 200 roots of the dispersion relation.

The methods employed here are not specific to the submerged porous plate and it

is likely that the solution approach will work analogously for related problems such as

the submerged elastic plate, both semi-infinite and finite, yielding accurate and easily

computable expressions for the associated reflection coefficients.
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One minor drawback of the residue calculus solution for the finite plate is the fact

that it is only applicable if the plate is long enough compared to the wavelength and

that the precise convergence condition does not yield an exhaustive numerical check.

The formulation of an exact, easily testable condition in the future would be very

useful.

Appendix A Factorisation of K(s) using the Cauchy integral method

We wish to write K(s) in equation (23) in the form

K(s) = K+(s)K−(s), (94)

where K±(s) is regular and non-zero in D±.
We write K(s) = G(s)F (s), where G(s) = Kn(s)/Ko(s) and F (s) = Ko(s)/Kd(s), where

Kn(s), Kd(s) are the numerator and denominator respectively of K(s), and

Ko(s) = γ2 sinh γc sinh γd. (95)

Considering G(s) first, we have

Kn(s) = γ sinh γh− α cosh γh = α

(
γ2

k2
− 1

) ∞∏
n=1

(
1 +

γ2

k2n

)
(96)

and

Ko(s) = γ sinh γc.γ sinh γd = γ4cd

∞∏
n=1

(
1 +

γ2

c2n

)(
1 +

γ2

d2n

)
. (97)

Noting that h− d− c = 0, it follows that

G±(s) =
e∓iχ(s)α1/2k−1(s± κ)

(cd)1/2(s± iβ)2

∞∏
n=1

(κn ∓ is)/kn

(c′n ∓ is)(d′n ∓ is)/cndn
(98)

(see (31) for the definition of c′n, d′n and so on), where the fact that kn ∼ nπ/h+O(n−1) as
n→∞ ensures the convergence of the infinite product, and the term exp(±iχ(s)) is chosen to
ensure that G±(s) has algebraic behaviour as s→∞ in D±. How this is done is described in
[5, pp. 149/150]. The details are messy and only the results are given here. It is found that if

χ(s) = sπ−1(h log h− c log c− d log d), (99)

then G±(s) = O(s−1/2) as s→∞ in D±. Note that G+(s) = −G−(−s).
Turning to F (s), we know little about the nature of the roots of the denominator of F (s)

other than the fact that they are all complex. In order to avoid evaluating these zeroes, we
proceed as follows. We note that F (s) be an even meromorphic function of s which is non-zero
in D and which tends to unity as |s| → ∞ in D. Then from Cauchy’s theorem, we have

logF±(s) = ±
1

2πi

∫
C±

logF (t)

t− s
dt, (100)

where C+(C−) is an infinite contour from Re s = −∞ to Re s = +∞ lying in D and passing
below (above) the point s ∈ D. It follows that F±(s) is regular in D± and F±(s) → 1 as
s→∞ in D±.

If s = ±iν, where ν ≥ ε, C± may be shifted onto the real axis and we find that

F±(±iν) = exp

(
1

π

∫ ∞
0

logF (νt)

t2 + 1
dt

)
. (101)

If s is real we can still deform the contour onto the real axis provided we indent above or
below the point s. We find that

F±(s) = (F (s))
1
2 exp(∓iI(s)), (102)
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where

I(s) =
1

π

∫ ∞
0

log(F (st))

t2 − 1
dt =

1

π

∫ 1

0

log(F (s/t)/F (st))

1− t2
dt (103)

after splitting the integration up and writing 1/t for t in the infinite integral. Note that the
integrand is well-behaved at t = 1. Finally we note that F+(s) = F−(−s).

In summary then, we have
K±(s) = G±(s)F±(s), (104)

where G±(s) is given by (98), and F±(s) by (101), (102) and (103), K±(s) = O(s−1/2) as
s→∞ in D±, and K+(s) = −K−(−s).

Appendix B Simplification of R

In order to obtain (29) from (28), we make use of the fact that K+(s) = −K−(−s) and
K+(s) = F+(s)G+(s), where F+ and G+ are given by (102) and (98), respectively. Use of the
identities

2kh+ sinh 2kh

4 sinh kh
=
∞∏
n=1

(
1 +

k2

k2n

)
=
∞∏
n=1

(κ2n + κ2

k2n

)
, (105)

sinh kc

kc
=

∞∏
n=1

(
1 +

k2

c2n

)
=

∞∏
n=1

( c′2n + κ2

c2n

)
, (106)

sinh kd

kd
=
∞∏
n=1

(
1 +

k2

d2n

)
=
∞∏
n=1

(d′2n + κ2

d2n

)
, (107)

and noting that F (κ) = − sinh kd cosh kh/ sinh kc and (κ+ iβ)2 = k2 exp(2i arctanβ/κ) leads
to (29).

Appendix C Factorisation of K(s) using an infinite-product expansion

The Wiener–Hopf splitting function K(s) can also be factorised using a standard infinite-
product expansion, which leads to the same representations of R∞ as in (36) and as that
obtained by the semi-infinite-plate residue calculus (65).

We have

γh sinh γh− αh cosh γh = αh

(
γ2

k2
− 1

) ∞∏
n=1

(
1 +

γ2

k2n

)
. (108)

So in an obvious notation,

(γh sinh γh− αh cosh γh)± = (αh)1/2k−1(s± κ)
∞∏
n=1

[(
1 +

β2

k2n

)1/2

∓
is

kn

]
e±ish/nπ . (109)

The denominator Kd(s) of K(s) has zeros γ = iln, which are complex (possibly double) but
are known, see equation (43). Then,

Kd(s) = iµα

∞∏
n=0

(
1 +

γ2

l2n

)
(110)

and

Kd
±(s) = (iµα)1/2

∞∏
n=0

[(
1 +

β2

l2n

)1/2

∓
is

ln

]
e±is(c+d)/nπ . (111)

It follows that K−(−s) = K+(s) so from (28),

R∞ =
k3 sinh2 kcK+(κ)2

κ2(2kh+ sinh 2kh)
, (112)
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where

K+(κ) =
α1/2k−12κ

(iµα)1/2

∏∞
n=1

[(
1 + β2

k2n

)1/2
− iκ
kn

]
∏∞
n=0

[(
1 + β2

l2n

)1/2
− iκ
ln

] e−iχ(κ), (113)

where χ(s) is chosen as

χ(s) =
s

π
(h log h− c log c− d log d) (114)

in order to ensure the convergence of the infinite product. Making use of the relations (105)
and

∞∏
n=0

(
1 +

k2

l2n

)
=
−k
iµ

sinh2 kc

sinh kh
, (115)

we find that

K+(κ)2 =
k−24κ2

iµ

∏∞
n=1

[(
1 + β2−κ2

k2n

)
− 2

(
1 + β2

k2n

)1/2
iκ
kn

]
∏∞
n=0

[(
1 + β2−κ2

l2n

)
− 2

(
1 + β2

l2n

)1/2
iκ
ln

] e−2iχ(κ)

=
k−24κ2

iµ

2kh+sinh 2kh
4 sinh kh

∏∞
n=1

[(
κ2
n−κ

2

κ2
n+κ2

)
− 2 iκκn

κ2
n+κ2

]
−k
iµ

sinh2 kc
sinh kh

∏∞
n=0

[(
λ2
n−κ2
λ2
n+κ2

)
− 2 iκλn

λ2
n+κ2

] e−2iχ(κ)

= −
κ2(2kh+ sinh 2kh)

k3 sinh2 kc

∏∞
n=1

[
κn−iκ
κn+iκ

]
∏∞
n=0

[
λn−iκ
λn+iκ

] e−2iχ(κ) (116)

so

R∞ = −e−2iχ(κ)
∞∏
n=0

λn + iκ

λn − iκ
·
∞∏
n=1

κn − iκ

κn + iκ
. (117)

Hence, we recover the representation obtained by the residue calculus technique (65) as well
as that given in (36).

Appendix D The special case of a dock (σ = 0)

The special case σ = 0 has a particularly simple form for |R|, first derived by [7]. Now,

K(s) =
γ sinh γh− α cosh γh

γ sinh γc(γ sinh γd− α cosh γd)
(118)

and the zeros of the denominator are all either real of pure imaginary. In an abuse of notation,
let γ sinh γd − α cosh γd have zeros ±iln, n = 0, 1, . . . , with l0 = −il and λ = (l2 − β2)1/2.
Then,

(γ sinh γd− α cosh γd)± = (αd)1/2l−1(s± λ)

∞∏
n=1

[(
1 +

β2

l2n

)1/2

∓
is

ln

]
e±isd/nπ (119)

and

(γc sinh γc)± = c(s± iβ)

∞∏
n=1

[(
1 +

β2

p2n

)1/2

∓
is

pn

]
e±isc/nπ , (120)

where pn = nπ/c, see [5, p. 144–146] for details.
We find eventually that

|K+(κ)| =
4c−1κ2l2

(κ+ λ)2k4

∞∏
n=1

1 + k2/k2n
(1 + k2/p2n)(1 + k2/l2n)

. (121)
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We make use of

∞∏
n=1

(
1 +

k2

l2n

)
=

l2 sinh kc

(λ2 − κ2) sinh kh
,

∞∏
n=1

(
1 +

k2

p2n

)
=

sinh kc

kc
(122)

and find, eventually, that

|R| =
∣∣∣∣λ− κλ+ κ

∣∣∣∣ . (123)

This provides a check on the results for small non-zero σ.
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