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Abstract

Central Vietnam is characterized by a complex climatology, which in combination

with the sparse hydrometeorological observation network, creates a challenge in the

quantification of projected hydrological extremes under a changing climate. In the

region, farmers report increasing damages on agriculture caused by extreme floods and

drought conditions. Particularly during the summer-autumn rice season, water is often

insufficient to irrigate the entire rice production areas, and thus significantly affecting

rice productivity. Therefore, scientifically sound information on the expected future

hydrological extremes as well as water-efficient agricultural strategies are urgently

required for sustainable water resources management.

In this thesis a complex hydrometeorological modelling chain is employed to

investigate the impact of climate change on future hydrological extremes in the Vu

Gia - Thu Bon (VGTB) river basin, Central Vietnam. The modelling chain consists

of six Global Circulation Models (GCMs) (CCAM, CCSM, ECHAM3, ECHAM5,

HadCM3Qs, and MRI), six Regional Climate Models (RCMs) (CCAM, MM5, RegCM,

REMO, HadRM3P and MRI), six bias correction (BC) approaches (linear scaling,

local intensity scaling, power law transform (monthly), empirical and gamma quantile

mapping, and power law transform), the fully distributed hydrological Water Flow

and Balance Simulation Model (WaSiM) which was calibrated for the VGTB basin

using two different calibration approaches, and extreme values analysis.

The nonlinear parameter estimation tool PEST, which is based on the Gauss-

Marquardt-Levenberg method, was combined with the distributed hydrological model

WaSiM. Confidence bounds for all estimated parameters of the WaSiM model were

developed based on a covariance analysis. A reasonable quality of fit between modelled

and observed runoffs was achieved showing the reasonable performance of the WaSiM

model in this region.

Both bias corrected and raw RCM data are used as input for the WaSiM to simulate

flows for the VGTB basin. To derive high flow and low flow frequency curves for the

control (baseline) period (1980-1999) and the future periods 2011-2030, 2031-2050, and

2080-2099, the generalized extreme value (GEV) distribution is fitted to the annual
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maxima/minima of the simulated continuous discharge series. Permutation tests are

developed and applied to the observed discharge series (1980-1999) to quantify the

uncertainties related to the relatively small size to estimate the GEV distribution.

Results show that the GEV fits based on sample size of n = 20 can partially be

considered as robust.

Due to limitations in the performance of the BC methods, the delta change

approach was applied to facilitate extreme flow analysis as required for hydrological

decision support. The results exhibit a remarkable variation among the different

climate scenarios. As indicated by the majority of the discharge projections, a ten-

dency towards increased high flows and decreased low flows is concluded. The results

highlight challenges in using current GCM/RCMs in combination with state-of-the-art

BC methods for local impact studies on both high and low flows.

A second central objective of this PhD dissertation was the development and

application of an integrated hydrological-irrigation modelling system to optimize

irrigation strategies for a typical rice irrigation system in Central Vietnam. The

modelling system comprises WaSiM to simulate the inflow to a reservoir and an

irrigation model, which optimizes the rice irrigation technology, i.e. Alternate Wetting

and Drying (AWD) or Continuous Flooding (CF), the rice irrigation area and the

irrigation scheduling under given water constraints.

Irrigation strategies are derived based on different initial water levels in the

reservoir at the beginning of the cropping season as well as different maximum water

releases. The simulation results show that the initial level of water in the reservoir

is crucial: water levels of less than 90% do not provide sufficient water to irrigate

the entire cropping area, whereas a level of 70% restricts the cropping area to 75%

under current design maximum outflow of 0.3 m3/s. AWD is able to reduce the water

irrigation input, ranging from 4% to 10% and reduce the number of irrigation events

compared to CF. The adoption of AWD, which has been not popular in Central

Vietnam therefore, has the potential to save more water and may help to increase

the profit of the farmers. However, the benefits of AWD can only be achieved after

significant investment in the canal system and the reservoir outlet.

The impact of the different computing environments on the solutions of the

integrated model is estimated, since the robustness of the optimization results

(performance variability) is crucial for decision support. Only limited performance

variability due to the computing environment is finally found, giving confidence in the

robustness of the model for decision support.

Prior to the application and the transfer of the model to similar irrigation schemes
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in other regions, the model must be further validated by field experiments under various

conditions.
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Zusammenfassung

Zentralvietnam weist eine komplexe Klimatologie auf, die zusammen mit einem

spärlichen hydrometeorologischen Beobachtungsnetzwerk eine Herausforderung für die

Quantifizierung der projizierten hydrologischen Extreme unter einem sich verändernden

Klima darstellt. Landwirte berichten über agrarwirtschaftliche Schäden, die in dieser

Region zunehmend durch extreme Hochwasser- und Dürreereignisse hervorgerufen

werden. Insbesondere während der Reisanbausaison im Sommer und Herbst wird

der Reisertrag signifikant von unzureichender Bewässerung der Ackerflächen durch

Wasserknappheit beeinflusst. Deshalb sind wissenschaftlich fundierte Erkenntnisse

über zukünftige hydrologische Extremereignisse sowie eine wasserwirtschaftliche

Strategie für ein nachhaltiges Wasserressourcenmanagement dringend erforderlich.

In dieser Arbeit wird eine komplexe hydrometeorologische Modellkette eingesetzt,

um die Auswirkungen des Klimawandels auf zukünftige hydrologische Extremereignisse

im Vu Gia - Thu Bon (VGTB) Flusseinzugsgebiet in Zentralvietnam zu untersuchen.

Die Modellkette besteht aus 6 globalen Zirkulationsmodellen (GCMs) (CCAM, CCSM,

ECHAM3, ECHAM5, HadCM3Qs und MRI), 6 regionalen Klimamodellen (RCMs)

(CCAM, MM5, RegCM, REMO, HadRM3P und MRI), 6 Bias Korrekturverfahren

(BCs) (lineare Skalierung, lokale Intensitätsskalierung, Power Law Transformation

(monatlich), empirisches und Gamma-Quantil-Mapping, und Power Law Transfor-

mation) und einem flächenverteilten hydrologischen Abflussmodell (WaSiM), das für

das VGTB-Einflussgebiet mit 2 verschiedenen Kalibrieransätzen kalibriert und deren

Output zur Extremwertanalyse verwendet wurde.

Parameterschätzung im WaSiM und seine Evaluierung von WaSiM ist ein weit-

erer Aspekt dieser Arbeit. Das nichtlineare Parameterschätz-Tool PEST, das auf

der Gauss-Marquardt-Levenberg-Methode basiert, wurde mit dem hydrologischen

Modell WaSiM kombiniert. Vertrauensgrenzen für alle geschätzten Parameter des

WaSiM-Models wurden mittels der Kovarianzanalyse abgeschätzt. Das hohe Maß an

Übereinstimmung zwischen den modellierten sowie den beobachteten Abflüssen zeigt,

dass die Anwendung des WaSiM Models in der Region zu guten Anwendungsergebnis-

sen geführt hat.
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Für die Abflusssimulation des VGTB-Beckens wurden Rohdaten und Bias-

korrigierte Klimadaten als Eingangsvariablen für WaSiM verwendet. Um Wiederkehrwa-

hrscheinlichkeiten für hohe und niedrige Abflüsse für den Kontroll-zeitraum (Baseline,

1980-1999) und die zukünftigen Perioden 2011-2030, 2031-2050 und 2080-2099 zu

erreichen, wird die verallgemeinerte Extremwertverteilung (GEV) auf die jährlich

simulierten Ablfussmaxima und -minima angepasst. Aufgrund der Tatsache, dass die

vorliegenden Datenreihen relativ kurz und zur Bestimmung der GEV Verteilung für

die Quantifizierung von Unsicherheiten ungeeignet sind, werden Permutationstests

anhand der beobachteten Abfulssraten (1980-1999) durchgeführt. Die Ergebnisse

zeigen, dass die angepassten GEV´s auf Basis einer Stichprobengröße von n = 20 als

bedingt robust angesehen werden können.

Um die in der hydrologischen Entscheidungsunterstützung erforderliche Analyse

von Abflussextremen zu erleichtern, wird aufgrund der Einschränkungen der BC Meth-

oden der Delta-Ansatzes angewendet. Die Ergebnisse weisen eine bemerkenswerte

Variation zwischen den verschiedenen Klimaszenarien auf. Wie auch von der Mehrzahl

der Abflussprojektionen angedeutet wird eine Tendenz zu höheren Hochwasser- und

verminderten Niedrigwasserabflüssen gefolgert. Diese Ergebnisse unterstreichen die

Herausforderungen bei der Nutzung aktueller GCMs und RCMs in Kombination mit

geeigneten BC-Methoden für lokale Wirkungsstudien von Hoch- und Niedrigwasser-

abflüssen.

Ein weiteres zentrales Ziel dieser Dissertation ist die Entwicklung und Anwendung

eines integrierten hydrologischen Systems zur Optimierung von Bewässerungsstrategien

für ein typisches Reisbewässerungssystem in Zentralvietnam. Das Modellierungssys-

tem besteht aus WaSiM, das den Zufluss zu einem Reservoir simuliert, und einem

landwirtschaftlichen Bewässerungsmodell, programmiert mittels des General Algebraic

Modeling System (GAMS). Dadurch kann die Reisbewässerungstechnologie, d.h.

abwechselnde Bewässerung und Austrocknung (Alternate Wetting and Drying, AWD)

oder kontinuierliche Flutung (Continuous Flooding, CF), die Reisbewässerungsfläche

und die Bewässerungsplanung unter den gegebenen Verhältnissen der Wasserverfüg-

barkeit optimiert werden.

Bewässerungsstrategien werden aufgrund unterschiedlicher Anfangswasser-

spiegel des Reservoirs zu Beginn der Erntezeit sowie unterschiedlicher maximaler

Wasserabgaben abgeleitet. Die Simulationsergebnisse zeigen, dass vor allem der

Anfangswasserspiegel im Reservoir entscheidend ist: Wasserstände von weniger als

90% liefern nicht ausreichend Wasser, um die gesamte Anbaufläche zu bewässern.

Bei einem aktuellen maximalen Abfluss von 0.3 m3/s beschränkt ein Wasserstand

von 70% die Anbaufläche auf 75%. Im Vergleich zu CF können die Anzahl der

Bewässerungsereignisse durch AWD reduziert werden. Ebenfalls mindert sich durch
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AWD der Bewässerungseintrag zwischen 4% und 10%. Obwohl die Einführung von

AWD in Zentalvietnam nicht weit verbreitet ist, hat sie Potenzial zur Einsparung

von Wasser und könnte so den Profit der Landwirte steigern. Allerdings können die

Vorteile von AWD erst nach einer umfassenden Investition in das Kanalsystem und

den Reservoirauslass erreicht werden.

Schließlich wird auch der Einfluss der verschiedenen Rechenumgebungen (Win-

dows, Linux, Mac) auf die Ergebnisse des integrierten Modells untersucht, da die

Robustheit der Optimierungsergebnisse (Leistungsvariabilität) ausschlaggebend für

die landwirtschaftliche Entscheidungsunterstützung ist. Es wird gezeigt, dass die

Rechenumgebung nur eine begrenzte Leistungsvariabilität hervorruft, wodurch die

Robustheit des Modells für die Entscheidungsunterstützung bestätigt werden kann.

Vor der Anwendung und der Übertragung des Modells auf ähnliche Bewässerungsan-

lagen in weiteren Regionen muss das Modell durch Feldversuche unter verschiedenen

Bedingungen weiter validiert werden.
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Chapter 1

Introduction

1.1 Motivation

Vietnam is largely exposed to risks from natural disasters. On average, Vietnam is

hit by 7 typhoons/tropical cyclones annually which affect primarily the Northern

and Central coast regions (UNDP, 2007). As a consequence, there has been losses of

life during climatic extreme events during the last decades. Additionally, damages

caused by natural disasters to the country’s economy of which agricultural production

accounts for 21% of the share output is tremendous (Nguyen et al., 2010). The annual

average economic losses (2005-2014) from natural risks in Vietnam range between

1.0% and 1.5% of the country’s Gross Domestic Product (GDP). Of which damages

caused by floods is approximately 2,300 million US$ and accounts for 0.5% of the

country capital stock and have an increasing tendency (UN, 2015).

Meanwhile, Vietnam is ranked amongst the top severely affected countries world-

wide by climate change and is likely to have an increased exposure to extreme events

(IPCC, 2007; MONRE, 2012; IPCC, 2013). By 2100, the average temperature is

expected to increase by approximately 2.2◦C - 3.1◦C; dry season rainfall will likely

decrease whereas seasonal rainfall is likely to increase by approximately 20% by 2070

(MONRE, 2012). According to the Fifth Global Assessment Report, by 2050 about

40% of the global population is expected to be living in river basins that experience

severe water stress, including many areas in Vietnam (UN, 2015). More frequent high

intensity rainfall events in many regions of the world are projected due to a more

dynamic atmosphere caused by global warming (e.g. Fiener et al., 2013). It is expected

that both climate variability and climate change will continuously pose critical threats

to Vietnam’s economy and to agricultural production, which is a particular great

water-dependent sector.

Vu Gia - Thu Bon (VGTB) is the largest river basin in Central Vietnam in

terms of mean annual flow. Climate in the basin is mainly driven by the South Asia

1



Chapter 1. Introduction 2

Monsoon and has an uneven distribution of rainfall, both in time and space. The

number of hydrometeorological stations in the basin is limited with most stations

situated at low elevations. Due to its high coastal exposure, the VGTB basin is

frequently affected by natural disasters which often exacerbate their intensities in

regions of complex topography. On the one hand, the region is affected by risks of

flood events in the wet seasons, often induced by typhoons/tropical cyclones coming

from the East Sea or originating in the Pacific Ocean and accompanied by heavy rains.

Results of trend analysis based on observation data show that there is a significant

increase in winter rainfall during past decades (Souvignet et al., 2014). On the other

hand, the region also faces severe low flow and drought conditions in the dry seasons.

Compared to other regions in Vietnam, the South Central Coast area is at high

risks of water shortages and floods (IMHEN and UNDP, 2015). The latest climate

projections indicate that precipitation extremes related to the monsoon are very

likely to increase in Southeast Asia (Vu et al., 2017). Under the projected changes

of monsoon rainfalls, changes in both high and low flows are expected as a consequence.

Although hydrological extremes under a changing climate are of great relevance

for water management and climate change adaptation (Hoang et al., 2016), only few

insights on how climate change will impact the occurrence and magnitude of future

high/low flows in the VGTB region have been gained so far. Notably, there were

earlier studies focusing on the changes in annual and monthly flows in Vietnam in

general and in the VGTB region in particular, but they are not widely available.

These studies mostly rely on uncorrected climate data derived from one single Global

Circulation Model (GCM) and/or one statistical downscaling method exclusively (e.g.

IMHEN, 2010; IMHEN and UNDP, 2015). In addition, a vast majority of lumped

hydrological models were employed in these studies due to their simplicity and ease of

use, but no fully spatially distributed hydrological model has been available so far for

the VGTB region.

In the VGTB basin, agriculture plays an important role and accounted for an

average of 31% GDP of the region between 2000 and 2010. Major economic activities

and over 50% of the workforce are employed in the agricultural sector (ICEM, 2008).

However, fragmented and smallholder farming systems associated with weak technical

infrastructure and low crop productivity due to the cultivation dependent on nature are

dominant. The prevailing irrigation practice is Continuous Flooding (CF), although

the water-saving irrigation technology of Alternate Wetting and Drying (AWD) has

been introduced and officially integrated into the guidelines for rice irrigation across

Quang Nam province by the Department of Agriculture and Rural Development

(DARD). There is only limited knowledge on the performance of AWD in comparison

to CF in the VGTB basin and across Central Vietnam in general. Most of studies

on the application of AWD is tested in small field trials only and no systematic and
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consolidated efforts are undertaken until now. Very few studies have looked at the

adoption AWD for an entire rice irrigation system. The reasons for reluctance of the

wide adoption of AWD may vary, but can be summarized as:

� Farmers traditionally believe that ponded water is required at all stages of rice

growing to obtain high yields.

� Farmers have little incentive to reduce water use as a water pricing system is not

in place. In fact, farmers only pay a small fee for the water withdrawal service

(i.e. fee for management, protection and maintenance of tertiary canals). This

fee is applied per cropping area (ha) per season instead of per amount of supplied

water.

� AWD may cause potential problems with rodent, particularly when the soil is

dried.

� The higher water requirement for AWD compared to CF at the beginning of

each irrigation event; this may lead to temporary water shortages, if all fields are

prepared at the same time.

� Farmers prefer to store water in the fields (CF practice) instead of drying out

the field for some time under AWD due to unreliable irrigation water.

Agriculture is the most sensitive and vulnerable sector due to climate variability

and climate change amongst others in the VGTB basin. Rice is the most important

staple crop and is predominantly grown in the region, but rice production is unstable.

The abundance of rainwater results in vast inundation posing severe threads in the

maintenance of the level of rice productivity in wet seasons (e.g. flood events in

1999, 2010, 2011, and 2013). In contrast, rice yield is relatively low due to water

stress during the cropping period, particularly for the SA rice season. Exchanging

with local stakeholders revealed water shortage at the end of recent SA rice seasons

becomes more severe and frequent. This consequently may lead to crop failures or

low crop productivity. For example, rice productivity in the dry season 2008 was only

50% of expected productivity due to insufficient irrigation water (S. Nguyen, 2015,

personal communication). Expected changes in frequencies and severity of droughts,

as well as heavy precipitation events are projected, which may cause more adverse

effects on agricultural production in the VGTB basin (Laux et al., 2013). In addition,

increasing water stress due to rapid population growth (1.26% during 2000-2010), the

deterioration of water quality and increasing demand for competitive sectors resulted

from socio-economic development will exacerbate the problem of water shortage for

agricultural irrigation in the VGTB basin.

Hence, an improved understanding of possible changes in extreme high and

low flows caused by climate change for the VGTB basin is of paramount impor-
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tance, especially to improve decision support in water resources management and

water-related risk mitigation. Future changes in high and low flows should be

quantified and made widely available. Based on this information, particular responses

and adaptation measures may be required. More specifically, scientifically sound

decisions on efficient usage of irrigation water are demanded, e.g. the adoption

of water-saving AWD irrigation technology to sustain crop productivity in dry

conditions as well as to eliminate the effect of increasing water scarcity in the VGTB

region. This is in line with the development strategy of socio-economy by 2025 and the

view towards 2030 determined by the local provincial governments in Central Vietnam.

1.2 The Vu Gia - Thu Bon basin

The Vu Gia - Thu Bon river basin is located in Central Vietnam. The basin has a

total area of 10,350 km2 and encompasses the entire Quang Nam province, Da Nang

city and a small part (approximately 500 km2) of the Kon Tum province. The basin

is surrounded by high mountain ranges to the North, the West and the South and

faces the East Sea to the East. The elevation of the VGTB ranges from sea level to

approximately 2600 m above sea level. The area of interest for hydrological simulations

in this study has a size of 3213.5 km2 within the upper part of the Thu Bon river. The

outlet of the study area is located at Nong Son station, where discharge measurements

are available (Figure 1.1).

1.2.1 Climate

The climate in the VGTB basin is characterized by two distinct seasons: a strong

monsoonal rainy season with typhoons occurring from September to December and the

dry season from January to August (Souvignet et al., 2014). Rainfall is unevenly dis-

tributed over the basin and has a strong orographic component ranging from 2000 mm

in the flood plains to over 4000 mm in the mountainous regions. Annual mean rainfall

is about 2500 mm. Heavy rain is typically caused by typhoons, tropical depressions,

and cold airs. Rainfall in the wet season amounts up to 60-80% of the total annual rain-

fall, the remainder during dry season rainfall. The historical 1-day maximum rainfall

is 667mm on 3rd November 1999; it was followed by a historical flood event in Central

Vietnam. Figure 1.2 shows the mean seasonal and annual rainfall measured at selected

gauging stations in the VGTB basin. Annual mean temperature varies between 23◦ and

26◦C and decreases from the coast to the mountains. The maximum temperature can

reach values above 35°C during June and July, whereas the minimum temperature can

fall below 15°C in January. Annual mean potential evatranspiration ranges between

800 mm in the mountains up to 1500 mm in the coastal plain. In the wet season, the

relative humidity is 85-88% in the lowlands and 90-95% in high elevation areas, while
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Figure 1.1: Vu Gia - Thu Bon basin. The shaded area represents the upper Thu Bon
river basin, which is the considered area for hydrological simulations.
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during the dry season this is below 80% and 80-85%, respectively.

Figure 1.2: Mean seasonal and annual rainfall at different stations in VGTB basin
(1977-2012).

1.2.2 Hydrology

VGTB is one of the five largest river basins of Vietnam in terms of flow volume

(Souvignet et al., 2014). Thu Bon and Vu Gia are the two main rivers of the VGTB

drainage network. The Vu Gia originates from the mountains in the South-West of

Quang Nam and includes three major tributaries, namely Song Cai, Song Bung and

Song Con. The Vu Gia river mainly flows from the West to the East before tuning

North in the direction of Da Nang then pours into Han estuary. The Thu Bon river

originates from the South-East slopes of Ngoc Linh range at an altitude of over 2500

m a.s.l. It drains from the South to the North and changes the direction to West-East

before joining the East Sea at Cua Dai estuary. The Thu Bon river has a total length

of 198 km measuring from its source to the estuary while this is about 204 km for

the Vu Gia river. Similarly to rainfall, river flows in the VGTB basin are unevenly

distributed (Figure 1.3).

In the VGTB basin, the differences between high flows and low flows are significant.

While the flow in the wet season amounts to nearly 65% the total annual water, the

flow in the dry season is responsible for only 35%. The mean annual discharges during

the period 1976-2012 observed at Nong Son station (Thu Bon river) and Thanh My
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Figure 1.3: Mean monthly flows measured in VGTB basin (1976-2012). The location
of the two stations is referred to Figure 1.1.

station (Vu Gia river) are 282.8 m3/s and 128.6 m3/s, respectively. Maximum mean

monthly flow (often occurs in November) measured at Nong Son accounts for 29% of

the total mean annual flow volume of Thu Bon river, whereas this value is 25% for Vu

Gia river measured at Thanh My. In contrast, minimum monthly flow accounts for 1-

3% of the annual total flow volume and mainly concentrates in April. The largest flow

and smallest flow that have been recorded at Nong Son were 10,600 m3/s in November,

2007 and 14.6 m3/s in August, 1977, respectively. High rainfall intensity and small

buffer areas (mid-stream) as well as large river slopes mainly attribute to the flooding

in the low lying area. Flooding lasts relatively long (2-5 days) due to the strong tidal

influence in the downstream area of the basin. The basin is expected to suffer from

increasing frequency and severity of hydroclimate-related extremes such as typhoons,

floods and droughts (Souvignet et al., 2014; Ho et al., 2011; Sheffield and Wood, 2008).

1.2.3 Land use and land cover

The VGTB basin consists of three distinct landscape types, i.e. the uplands, the mid-

lands, and the lowlands (Fink et al., 2013). A combination of natural and production

forests is dominant in the uplands and accounts for over 48% of the land cover. The

lowlands are mainly characterized by irrigated rice paddies and short-term perennial

crops including sugarcane, cotton, sesame, and tobacco. Annual crops and irrigated

paddy rice are predominantly prevailing in the narrow valleys in the midland and in

alluvial areas along rivers. Total rice land and cash crops land is approximately 15%,

while shrub land is 33%. Open water and residential area is 0.2% and 0.5%, respec-

tively. Figure 1.4 shows the landuse map of the VGTB river basin.
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Figure 1.4: Land use in the VGTB basin.

1.2.4 Soil

Acrisols soil including Ferralic, Humic and Plinthic is the dominant soil group, covering

most of the uplands and midlands in the VGTB basin. The other main soil group is

Fluvisols, mainly found in the midlands and lowlands of the VGTB basin. Silty soil

and alluvial soil present in the low-lying area along rivers, while sandy soil and sand

dune are prevailing along the coast. Figure 1.5 shows the soil map of the VGTB river

basin.

Figure 1.5: Soil types in the VGTB basin.
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1.2.5 Irrigation infrastructure and selection of a typical local

rice irrigation scheme for modeling

In the VGTB basin, a large number of small-scale reservoirs have been built to store

water in response to an increasingly unstable water supply for irrigation. In total,

there are 73 reservoirs with the volume range between 1x106m3 and over 2x106m3.

There are 757 irrigation schemes, of which 518 are weirs and 179 are pumping stations

(ADB, 2011). The reservoirs are capable of providing irrigation water for 17,048 ha,

accounting for about 42.5% of the total demand area. However, the actual irrigated

area reaches less than 50% of its designed capacity due to insufficient irrigation sys-

tems. The shortage of local financial investments is the main cause for the incomplete

irrigation scheme from headworks to field levels. Additionally, most of headworks

and main canals have been deteriorated and silted. The poor operation and inade-

quate maintenance and management lead to deterioration of the systems (ICEM, 2008).

The Que Trung rice irrigation scheme, located in Nong Son district, Quang Nam

province, is selected as a typical irrigation system in the VGTB basin for modelling.

The irrigation system includes a reservoir (Trung Loc) and an associated canal system

for irrigation. Water for irrigation is taken from the reservoir with the designed volume

capacity of 1.85x106m3. The reservoir consists of a concrete dam of 331m in length and

27.4m in height. Water is diverted to the canal scheme for irrigation via one submerged

conduit running beneath the dam and controlled by a valve. The reservoir outlet is

designed to release a maximum of 0.3 m3/s of water in order to irrigate up to 145 ha

of rice during the SA season. The decision of the total irrigated area strongly depends

on the initial level of the reservoir before the dry season and seasonal climate forecast

outlook. On average the reservoir is filled up with approximately 75% of its designed

capacity before the SA season. This fact frequently leads to water shortages towards

the end of the SA season and poses risks on the rice production.

1.3 Research questions

Based on the problems in the VGTB region, derived from literature review and

personal communications with local stakeholders, the following research questions are

derived:

� Are climate information obtained by GCMs and RCMs suitable to derive reliable

and robust hydrometeorological extreme values for the VGTB basin?

� What are the expected impacts of projected future climate change on high and

low flows in the VGTB basin?

� Can we reliably model the interactions between water availability and agricultural
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irrigation?

� How can we provide scientific sound joint hydrological and economical informa-

tion for decision support of agricultural management (irrigated area for cropping,

irrigation technology and irrigation schedules)?

1.4 Research objectives

The objectives of this thesis accordingly are:

� To investigate the performance of the fully distributed hydrological model WaSiM

in the VGTB basin.

� To develop and apply methods that allow optimized irrigation strategies and

schedules in terms of water efficiency under different scenarios of water availability

in the summer-autumn rice season.

� To investigate the performance of different bias correction methods for

GCM/RCM-derived rainfall and temperature.

� To assess the potential impact of projected climate change on high and low flows

in the VGTB basin.

1.5 Innovation of the thesis

The innovation of the thesis is summarized as follows:

� Set up and application of a fully distributed hydrological model in Central Viet-

nam under weak technical infrastructure for the first time. In addition, the

nonlinear parameter estimation tool PEST was combined with the distributed

hydrological model WaSiM for automatic parameter estimation.

� Confidence ellipses for the estimated hydrological model parameters are developed

using a covariance analysis.

� Development of an irrigation optimization model under limited water conditions

to provide scientific sound decision support for agricultural management. In close

interactions with local stakeholders, the model has been developed and applied to

optimize irrigation water for the Que Trung irrigation scheme (Central Vietnam)

to derive improved irrigation strategies.

� The impact of different computing environments on the solution of integrated

hydrological-irrigation optimization model is estimated to investigate the robust-

ness of the model for decision support.
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� Application of a complex hydrometeorological modelling chain to assess the

impact of climate change on hydrological extremes and to develop feasible

solutions for hydrological decision support.

1.6 Structure of the thesis

This thesis is organized in six chapters. Chapter 1 provides general introduction to

the study area. The chapter also includes objectives and research questions. Chapter

2 deals with data availability for the research. Hydrological modelling for the Vu

Gia - Thu Bon basin is discussed in Chapter 3. Chapter 4 describes the integrated

hydrological-irrigation optimization simulations for a rice scheme in the VGTB basin.

Chapter 5 concentrates on impact of climate change on hydrological extremes in the

VGTB basin. The key results as well as general conclusions and recommendations are

summarized in Chapter 6.

The core parts of this thesis are presented in the two publications:

� Quang Thinh Dang, Patrick Laux, Harald Kunstmann (2017). Future high and

low-flow estimations for Central Vietnam: A hydro-meteorological modelling

chain approach. Hydrological Sciences Journal, 62(11):1867-1889.

� Quang Thinh Dang, Rui Pedroso, Patrick Laux, Harald Kunstmann (2018). De-

velopment of an integrated hydrological-irrigation optimization modeling system

for a typical rice irrigation scheme in Central Vietnam. Agricultural Water Man-

agement, 208(2018):193-203.

A further co-authored and peer-reviewed publication related to the Vu Gia - Thu Bon

river basin is:

� Maxime Souvignet, Patrick Laux, Jim Freer, Hannah Cloke, Quang Thinh Dang,

Thuc Tran, Johannes Cullmann, Alexandra Nauditt, Wolfgang-Albert Flugel,

Harald Kunstmann, and Lars Ribbe (2014): Recent climatic trends and linkages

to river discharge in Central Vietnam. Hydrological Processes, 28(4):1587-1601.
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Chapter 2

Data

The Vu Gia - Thu Bon basin has a sparse hydro-meteorological observation network.

Most gauging stations are located in the lowlands, and only few are installed in higher

altitudes where the accessibility is limited. There are only three climate stations (Da

Nang, Tam Ky and Tra Mi) within the VGTB basin, of which only Tra Mi station is

situated in the Thu Bon catchment. Climate variables measured at the observation sta-

tions comprise rainfall, temperature, relative humidity, wind speed, and solar radiation.

There are nine hydrological stations, however, discharges in m3/s are only measured at

Nong Son station and Thanh My station. The observational lengths are not consistent

for all hydro-meteorological stations. Most stations continuously recorded their mea-

surements in 1976, except for Da Nang station (records started in 1931). Table 2.1

lists the hydro-meteorological stations in the VGTB basin.

2.1 Station observations and reanalysis climate

data

Two types of historical climate data are employed. The first one is observed daily rain-

fall from 20 hydro-meteorological stations within the VGTB basin (Table 2.1). The

second one is downscaled WRF-ERA40 reanalysis data covering the entire domain of

the VGTB basin (Laux et al., 2013). The RCM WRF has been driven by ERA40 re-

analysis data of the European Centre for Medium-Range Weather Forecasting (Uppala

et al., 2005). It is obtained through the project Land Use and Climate Change In-

teractions in Central Vietnam (LUCCi). The considered WRF-ERA40 reanalysis data

comprise daily temperature, relative humidity, windspeed and global radiation with

a spatial resolution of 5 km and from 1971 to 2000. This downscaled WRF-ERA40

reanalysis data are used as a model derived pseudo reality and a proxy for observa-

tions due to the sparse observation network in the region as well as missing observation

data for wind, humidity, and radiation. Observed precipitation data and the ERA40

reanalysis data are used for calibration and validation of the hydrological model.

13
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Table 2.1: Hydro-meteorological stations in the VGTB basin. P: Precipitation, T:
Temperature, RH: Relative Humidity, R: Radiation, W: Windspeed, Q: Discharge and
WL: Water level.

ID Station
Location

Variable
Recording
periodLon E. Lat N.

1 Ai Nghia 108.12 15.88 P, WL 1976-2012
2 Cau Lau 108.28 15.85 P, WL 1976-2012
3 Giao Thuy 108.13 15.85 P, WL 1976-2012
4 Hoi An 108.33 15.87 P, WL 1976-2012
5 Tam Ky 108.50 15.55 P, RH, T, W, R 1977-2012
6 Cam Le 108.20 16.00 P 1976-2012
7 Que Son 108.10 15.70 P 1977-2012
8 Nong Son 108.03 15.70 P, WL, Q 1976-2012
9 Hoi Khach 107.82 15.82 P, WL 1976-2012
10 Da Nang 108.18 16.03 P, RH, T, W, R 1931-2012
11 Thanh My 107.83 15.77 P, WL, Q 1976-2012
12 Hiep Duc 108.03 15.57 P, WL 1976-2012
13 Tien Phuoc 108.30 15.48 P 1977-2012
14 Tra Mi 108.25 15.33 P, RH, T, W, R 1977-2012
15 Kham Duc 107.78 15.43 P 1976-2012
16 Hien (Trao) 107.65 15.59 P 1976-2012
17 Thang Binh 108.35 15.74 P 1977-1995
18 Vinh Dien 108.25 15.89 P, WL 1977-1988
19 Ba Na 108.00 16.02 P 1977-1995
20 Son Phuoc 108.05 16.02 P 1978-1994

2.2 River flow data

Daily measured river flow data from 1976 to 2012 at Nong Son hydrological station are

available. This is the only station in the upper Thu Bon river for which long-term daily

flows are observed. The quality of the flow data has been checked for homogeneity and

consistency in an earlier study (Souvignet et al., 2014). Thus, data from this station

are used for calibration and validation of the hydrological model and for extreme value

analysis.

2.3 Climate projections

Global circulation models (GCMs) are considered to be state-of-the-art and most

intensively used data sources to estimate possible future climate changes (Dobler et al.,

2012b). However due to its too coarse resolutions to be directly applicable for climate

change impact studies (e.g. Chiew et al., 2010; Sunyer et al., 2012; Chen et al., 2012;

Khazaei et al., 2012), outputs from GCMs need to be downscaled to finer resolutions to
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bridge the gap between regional and local scale processes (Fowler et al., 2007). These

limitations are particular of importance in regions of complex orography and regions

of highly heterogeneous land cover, where land–atmosphere interactions are difficult to

model (Bordoy and Burlando, 2013). Most commonly used approaches of downscaling

include dynamical downscaling (using regional climate models, RCMs) and statistical

downscaling. Apart from statistical downscaling, which inherently corrects for the

biases between large scale and local scale information, a promising alternative is

the dynamical downscaling method based on RCMs. Dynamical downscaling is

computationally expensive and therefore its output is not generally available for many

regions (Prudhomme et al., 2003; Chen et al., 2012). RCMs can provide regional

climate data at horizontal resolutions of 10km or less, and are capable of describing

climate feedbacks at the regional scales (IPCC, 2013). RCMs are a crucial data source

required in hydrological applications, especially for hydrological decision-making in

response to a changing climate.

Recently, the Representative Concentration Pathways (RCPs) (van Vuuren et al.,

2011) scenarios have replaced Special Report on Emission (SRES) (Nakicenovic

et al., 2000) emission scenarios, widening the range of climate change scenarios.

The dynamic downscaled data under the new RCP scenarios (e.g. the Coordinated

Regional Climate Downscaling Experiment (CORDEX) data) has been available for

many parts of the globe (e.g the European and the African). However, there has

not been regional climate model data available for download for the Southeast Asia

domain (CORDEX-SEA) so far. There is only one GCM-RCM combination available

for the historical period for East Asia (CORDEX-EA), i.e. the HadGEM2-AO

– HadGEM3-RA combination based on RCP4.5 and RCP8.5 (a medium to low

scenario and a high radiative-forcing scenario assuming a stabilization and increase of

radiative forcing by 2100, respectively) (Riahi et al., 2011; Hoang et al., 2016). For

projected future time slices, only 1 GCM in combination with 4 RCMs (RegCM v4,

SNU MM5, SNU WRF v3, YSU-RSM v3) and two scenarios are available, while their

corresponding historical experiments are not available.

Due to insufficient RCP-driven CORDEX data for this region, it is necessary to

rely on data from a consorted downscaling experiment for Vietnam based on the

former SRES scenarios A1B and A2 to quantify the model-inherent uncertainties for

hydrological decision support. Albeit the concept of the SRES and the new RCP

scenarios is different, some scenarios can be expected to lead to similar consequences

for the climate projections. Applying the A1B and A2 scenarios, possible climate

changes due to a radiative forcing in the range between 6 and 8 W/m2 is expected to

be covered (Figure 2.1).

In this PhD dissertation, a number of climate projections for the VGTB basin are



Chapter 2. Data 16

employed for the hydrological impact study. Daily rainfall and temperature data used

in this study are derived from simulations of ensembles of six selected GCMs including

CCAM, CCSM, ECHAM3, ECHAM5, HadCM3Qs (consisting of four different realiza-

tions HadCM3Q0, HadCM3Q10, HadCM3Q11, and HadCM3Q13) and MRI.

Figure 2.1: Radiative forcing until 2100 according to different SRES and RCP sce-
narios (IPCC, 2013)

All these six GCMs are forced with SRES emission scenario A1B while only three

models (CCAM, CCSM, and ECHAM3) are forced with the A2 emission scenario.

These climate variables are subsequently downscaled using six RCMs including CCAM,

RegCM, MM5, REMO, HadRM3P and MRI to derive regional climate projections

and made available for this study by the Vietnamese National University (VNU).

Of all combinations, the RCMs of CCAM and MRI are forced with the same

originated source GCMs of CCAM and MRI, respectively. RegCM and MM5 models

are forced with the CCSM model. The REMO model is forced with ECHAM3 while the

HadRM3P model is forced with ECHAM5, HadCM3Q0, HadCM3Q10, HadCM3Q11

and HadCM3Q13. Altogether, ten GCM/RCM combinations are considered and they

are shown in Table 2.2. The time slice from 1980 to 1999 is used as the baseline period

(control run) whereas the periods: 2011-2030, 2031-2050 and 2080-2099 are considered

as future climate scenarios. More detailed information about the climate projection

data can be found in (Ngo et al., 2014).

The horizontal resolution of all considered RCMs is between 20 km and 36 km and is

coarser than the downscaled WRF-ERA40 reanalysis (e.g. pseudo-reality in this study).
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The Distance-Weighted Average (DWA) remapping method is employed to interpolate

time series for precipitation and temperature from the coarser climate simulations to

the grid of the high-resolution climate simulations derived by WRF (5 km). The DWA

approach looks for the nearest four neighbors and calculates the weights as a function

of the distance. The 5 km-interpolated GCM/RCM data are subsequently used in the

hydrometeorological modeling chain which will be described later in the methodology

section.

Table 2.2: Climate projections for the VGTB basin

No. GCM RCM Resolution
Climate scenario

A1B A2

1 CCAM CCAM 25km, daily
2011-2030 2011-2030
2031-2050 2031-2050
2080-2099 2080-2099

2 CCSM RegCM 36km, daily
2011-2030 2011-2030
2031-2050 2031-2050
2080-2099 2080-2099

3 CCSM MM5 36km, daily
2011-2030 2011-2030
2031-2050 2031-2050

4 ECHAM3 REMO 36km, daily
2011-2030 2011-2030
2031-2050 2031-2050

5 ECHAM5 HadRM3P 25km, daily
2011-2030
2031-2050

6 HadCM3Q0 HadRM3P 25km, daily
2011-2030
2031-2050

7 HadCM3Q10 HadRM3P 25km, daily
2011-2030
2031-2050

8 HadCM3Q11 HadRM3P 25km, daily
2011-2030
2031-2050

9 HadCM3Q13 HadRM3P 25km, daily
2011-2030
2031-2050

10 MRI MRI 20km, daily 2080-2099

2.4 Agricultural data

Information on agricultural data in the Que Trung rice cropping area in the VGTB

basin was collected through field surveys in 2014 & 2015. The data include rice cropping

seasons, annual land area allocated for rice cropping, annual rice yields, rice prices and

local rice irrigation practices. In addition, information on an existing irrigation system

including irrigation water amount for rice cropping and information on a reservoir is

obtained. These data are exclusively gathered during personal interviews with local

agricultural managers in March 2015.
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Chapter 3

Hydrological modelling for the Vu

Gia - Thu Bon basin

3.1 Introduction

Hydrological modelling is the state-of-the art tool for simulating the hydrologic pro-

cesses e.g. transformation of rainfall to runoff. The structure of hydrological models

range from relatively simple to complex and the preliminary differences between them

are the input data requirements and the way of transferring input to output. Great

efforts have been put in the model development, however, so far no model can be

assumed to be universial and most models are not able to describe the full range of

natural dynamics (Cullmann et al., 2011). Only the most crucial components of the

water cycle are usually taken into account in the runoff generation, because of the com-

plexity of the rainfall-runoff process (Wagner, 2008). Hydrological models are usually

classified in three major groups, including empirical (black-box), lumped conceptual

and distributed physically-based models. Nowadays, a great number of models applied

in practice belong to the empirical black-box and lumped conceptual models due to

their simplicity and less parameters required for calibration (Raymond, 2009).

In the Vu Gia - Thu Bon basin, Central Vietnam, the majority of hydrological

models applied are lumped or semi-distributed hydrological models such as the Mike11

from Danish Hydraulics Institute (DHI) and the HEC-HMS from US Army Corps of

Engineers. So far, no fully spatially distributed hydrological model is available for the

region. The hydrological model applied in this thesis is the WaSiM model developed

by (Schulla, 2012). The following sections present details about the used model, data

requirements, model set up, and model calibration.

19
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3.2 Methodology

3.2.1 Hydrological model WaSiM: Introduction

WaSiM (Water Balance Simulation Model) is a fully distributed hydrological water

balance model. The model simulates the surface and sub-surface processes in the

hydrologic cycle (Schulla, 2012). The model mainly applies process-based algorithms

for various components, while conceptual approaches are employed where physical

parameters are difficult to obtain (Kunstmann et al., 2006). The model is spatially dif-

ferentiated and supports both continuous and event-based rainfall-runoff simulations.

WaSiM was developed at the ETH Zürich by (Schulla, 1997), and the model has been

widely used in catchments in European countries (e.g. Klok et al., 2001; Verbunt et al.,

2003; Jasper et al., 2004; Cullmann et al., 2006; Kunstmann et al., 2006; Warscher,

2014; Smiatek and Kunstmann, 2016). The model has also been applied in semi-arid

regions (e.g. Jung, 2006; Ahrends et al., 2008; Wagner, 2008; Kasei, 2009). However,

its applicability in the tropical climate basins such as the Vu Gia-Thu Bon, Central

Vietnam has not been documented yet.

Being a modular structured model, the utility of the WaSiM model features

(modules) depends on specific conditions of the study area, the availability of input

data and desired outputs. Unnecessary modules can be deactivated to reduce the

computational expenses (e.g. glacier and snow module can be deselected in this study

due to the tropical climate area). The main model components are described below

(Schulla, 2012; Wagner, 2008).

Potential and actual evapotranspiration WaSiM provides a number of approaches

for calculating the potential evapotranspiration such as Penman-Monteith, methods

after Hamon, Wending and Haude. In this study, the potential evapotranspiration

is estimated using the Penman-Monteith approach (Penman, 1978). This method,

besides meteorological variables, requires additional data such as a crop resistance,

which depends on the pressure head in the root zone, the percentage of the soil

covered by the crop (LAI), effective height of the vegetation and the soil water content

threshold below that the reduction of transpiration starts. To determine the real

evapotranspiration, potential evaporation is reduced first by the amount of water

equal to interception storage. A further reduction is conducted depending on the

actual suction of the soil considering plant and soil physiological properties.

Interception Interception represents the part of precipitation intercepted by the

canopy, which is formed by the vegetation above the ground surface. A simple bucket

approach is applied to account for the interception storage of vegetation layers and

the ground level. The maximum interception storage capacity is a function of the

degree of vegetation coverage (a function of LAI) and maximum height of water at
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the leaf surfaces. The potential evaporation rate is assumed for the extraction rate of

water out of the interception storage by evaporation. No evaporation will occur at the

soil component if the water amount in the storage is sufficient and the storage content

is reduced by the potential evaporation. If the storage content is smaller than the

potential rate, the remaining rate will be taken from the soil.

Infiltration and generation of surface runoff When the soil is saturated or when

the precipitation intensity exceeds infiltration capacities, excess precipitation feeds

directly surface runoff. The amount of water infiltrated into the soil serves as an upper

boundary condition for the water fluxes in the unsaturated soil. It is calculated from

a combination of the infiltration equation by Green and Ampt and the saturation

time estimation by Peschke (Jasper et al., 2004; Kleinn et al., 2005; Kunstmann et al.,

2006). The WaSiM model uses the Richards equation, i.e. infiltration is considered in

the calculation of the Richards equation for the unsaturated zone.

Flow and interflow in the unsaturated zone The vertical fluxes of water within

the unsaturated soil zone are calculated with a finite difference scheme for the discrete

Richards equation.

∂Θ

∂ t
=

∂q
∂ z

=

(
−k (Θ) · ∂Ψ(Θ)

∂ z

)
(3.1)

where Θ is the water content [m3/m3], t is the time [s], k is the hydraulic conductivity

[m/s], Ψ is the hydraulic head as sum of suction ψ and geodetic altitude h [m], q is the

specific flux [m/s], z is the vertical coordinate [m], and β is the local slope angle.

The parameterization of the dependence of the hydraulic head and hydraulic conduc-

tivity on soil moisture content is done by applying method after (Van Genuchten,

1980).

ks,z = ks · kz
rec (3.2)

ks,z is the saturated hydraulic conductivity within depth z [m/s], ks is the saturated

hydraulic conductivity at the soil surface [m/s], krec is the recession constant [-], and z
is the depth [m].

Interflow is generated for soil layer m according to

qi f l = ks (θm) ·∆z ·dr · tanβ (3.3)

qi f l is the interflow [m3/s], ks is the saturated hydraulic conductivity [m/s], θm is the

water content in the specific layer m [-], ∆z is the layer thickness [m], dr is the scaling

parameter used to consider river density [-], β is the local slope angle. Groundwater

recharge in WaSiM is defined as the remaining vertically percolating water.

The linear storage approaches are employed for the concentration of grid-based runoff
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to catchment runoff, which requires the calibration of the respective recession constants

for direct flow and interflow, Kd and Ki. The runoff component Qt at time t is a result

of the runoff component Qt0 at the previous time t0 and the corresponding recession

constants K.

Qt = Qt0 · e
−∆t
K (3.4)

with ∆t = t− t0

Baseflow in the saturated zone Baseflow is calculated as exfiltration from the

groundwater into the river surface water. Exfiltration is calculated using the hydraulic

gradient and the colmation at the river bed. The baseflow can only be generated when

the difference between groundwater table and river bed is positive. Infiltration of sur-

face water into groundwater occurs if the difference between groundwater table and

river bed is negative. In the WaSiM model version using Richards’ equation, an inte-

grated two-dimensional groundwater model is dynamically coupled to the unsaturated

zone to calculate the fluxes between unsaturated zone and groundwater. If the model

is run without the groundwater module, baseflow is calculated in a conceptual way

(WaSiM version using Topmodel approach).

QB = Q0 · ks · e[(hgr−hgeo,0)/kB] (3.5)

QB is the base flow [m/s], Q0 is the scaling factor for base flow [-], ks is the saturated

hydraulic conductivity [m/s], hgr is the ground water table [m a.s.l], hgeo,0 is the geodetic

altitude of the soil surface [m a.s.l] and kB is the recession constant for base flow [m].

3.2.2 Hydrological model WaSiM: Set up for the upper Vu

Gia - Thu Bon basin

Preprocessed climate data

The required meteorological input data for the hydrological WaSiM model include

precipitation, temperature, relative humidity, solar radiation and wind speed. Prior

to inputing into the model, these data need to be interpolated onto the predefined

regular model grid resolution (500m). The methods available for interpolation within

WaSiM model are described below, following (Schulla, 2012):

� Inverse Distance Weighting (IDW): This is a widely used and easy to implement

interpolation method (Wagner et al., 2012). The method uses all stations within

a specified search radius for the interpolation. Weights are calculated and as-

signed to the stations in inverse proportion to the square of the distances from

the locations requiring an estimate to the stations. The method is suitable for

variables which are not (strongly) dependent on elevation, or modelling the flat
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area.

� Bilinear interpolation: This method is effective (less time consuming) when

using equidistant data e.g. gridded data derived from meteorological model.

In this PhD dissertation, the IDW method is applied for interpolating station

precipitation and the bilinear interpolation method is applied for temperature, global

radiation, wind and relative humidity for the model calibration and validation periods.

For the baseline and future hydrological model simulations the bilinear method

is applied for the interpolation of all climate variables derived from GCM/RCM

combinations. The interpolated data is 500m grid resolution.

Radiation and temperature are usually topographically dependent. Therefore ad-

justments are required to compensate for the shadowing effects in the mountainous

areas. Sensible heat flux and air temperature depend on incoming shortwave radiation

which is influenced by shading effects. An adjustment of radiation and temperature is

implemented using an approach after (Oke, 1987). This method requires calculating

a correction factor which depends on sunshine duration, empirical factor considering

diffuse shortwave radiation, zenith and azimuth angles. This is done within the WaSiM

model.

Land use data

Land use data used in this study are resampled to the 500m grid cell from the original

90m gridded land use data obtained from LUCCi project using the nearest-neighbor

method. The land use statistic is originally available in 19 categories and to be

aggregated into six main classes. Default parameters such as leaf-area index, rooting

depth, and stomatal diffusion for these various classes are obtained from (Schulla and

Jasper, 2000; Schulla, 2012). Figure 3.1 shows the landuse map for the upper Thu

Bon basin.

Soil data

Soil texture data were derived from the Harmonized World Soil Database (HWSD),

a raster soil database with the original grid cell resolution of 1km (FAO, 2012). The

HWSD contains spatial soil mapping units (SMU) consisting of dominant and associ-

ated soils. A SMU includes one or more soils, often three or four soil types (Nelson

et al., 2015). Initially, based on the coordinates of study domain, the matching soil

mapping unit is obtained. This soil data was subsequently processed onto to 500m reg-

ular grid using the ArcGIS and Tanalys preprocessing analysis tools. The parameter

required for the model e.g. the van Genuchten parameters were derived from Hodnett

and Tomasella (2002). Other parameters including porosity, saturated soil moisture

content, and wilting point of soil moisture content were obtained from Schulla (2012).

Figure 3.2 shows the dominant soil mapping unit codes for the study area.
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Figure 3.1: Landuse in the upper VGTB basin (the Thu Bon basin).
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Figure 3.2: Soil type in the upper VGTB basin (4260: Clay, 4284: Silt loam).
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Standard set up

In this study, a 24-hour model time step is selected due to the availability of daily

observed data and daily reanalysis data. The horizontal resolution for the model set

up is 500m grid cell. The vertical fluxes of water within the unsaturated soil zone are

calculated with a finite difference scheme for the discrete Richards equation. Surface

runoff, interflow, and base flow are determined at each model grid cell. The base-

flow is aggregated over the catchment using a conceptual approach because reliable

information on aquifers in the study area is not available. Total discharge is formed

at the outlet gauge from superimposing three runoff components. Channel routing is

applied to the total discharge based on hydraulic calculations of the flow velocities (the

kinematic wave approach). Apart from meteorological data the model requires gridded

information on topography, soil characteristics and land use. The settings and methods

applied for the most important modules are shown in (Table 3.1).

Table 3.1: Module settings for the hydrological WaSiM model

Considered Module Approach
Spatial interpolation of data Inverse distance weighting and bilinear
Evapotranspiration Penman-Monteith
Interception Bucket approach
Unsaturated Zone Infiltration Green-Ampt / Peschke

Richards equation
Groundwater Conceptual approach
Routing Single linear storage / Kinematic wave

3.2.3 Performance criteria for the hydrological model

In order to evaluate the performance of the hydrological model WaSiM, several

statistical measures are used. These criteria include the coefficient of determination

(R2), Nash-Sutcliffe efficiency (NSE), the root mean square error (RMSE) and the

RMSE related to the data range, i.e. by applying a max-min normalization (NRMSE),

and the percent bias (PBIAS).

The coefficient of determination denotes the strengths of the linear relationship

between simulated and observed flows. R2 ranges between 0 and 1.

R2 [−] =

 ∑
n
i=1
(
Yi,obs− Ȳi,obs

)
(Yi,sim− Ȳi,sim)√

∑
n
i=1
(
Yi,obs− Ȳi,obs

)
∑

n
i=1 (Yi,sim− Ȳi,sim)

2

(3.6)

where Yiobs is the ith day observed flow, Yisim is the ith day simulated flow and n is

the total number of days in the flow time series.
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The NSE value indicates how well the observed data versus simulated results fit the

1:1 line (Nash and Sutcliffe, 1970). NSE values range from -∞ to 1, with values less

than or very close to zero indicating a poor model performance and values equal to

one indicating a perfect performance. It is in particular suitable for measuring the

performance of high flows (Dobler et al., 2012a). NSE is expressed as follows:

NSE [−] = 1− ∑
n
i=1
(
Yi,obs−Yi,sim

)2

∑
n
i=1
(
Yi,obs− Ȳi,obs

)2 (3.7)

RMSE is a non-biased performance criterion measuring the differences between simu-

lated values and observed values. It punishes ”outlines” by the square. A smaller value

indicates better model performance (Chai and Draxler, 2014).

RMSE [−] =
√

∑
n
i=1(Yi,sim−Yi,obs)2

n
(3.8)

Apart from the RMSE, the NRMSE is related to the range of the observed data.

NRMSE [−] = RMSE
Ymax−Ymin

(3.9)

Percent bias (PBIAS) is a measure for the total volume differences between simulated

and observed flows. It is used to evaluate the long-term performance of the model

simulations (Breuer et al., 2009). A positive value indicates model underestimation

whereas a negative value indicates model overestimation (Gupta et al., 1999). A PBIAS

of 0 represents a perfect fit.

PBIAS [%] =
∑

n
i=1
(
Yi,obs−Yi,sim

)
∑

n
i=1Yi,obs

·100 (3.10)

3.2.4 Parameter estimation tool PEST: Introduction

PEST Parameter estimation (Doherty, 2002) is a tool for automated model parameter

estimation. This is a classical search method, widely used, and can be adapted to

existing models (e.g. Kunstmann et al., 2006; Cullmann et al., 2011). For nonlinear

parameter estimation, PEST uses the Gauss-Marquardt-Levenberg algorithm. This

is an iterative estimation process that expects fewer model runs than any other

estimation method (Doherty, 2002). However, the drawback of the method is that

the algorithm might converge to a local minimum (Cullmann et al., 2011). PEST

requires user specified parameter ranges and initial values to optimize the given



27 3.2. Methodology

model. At the start of each iteration, the relationship between model parameters and

model simulated values is linearized by the approximate expansion using the Taylor’s

theorem. Thus the calculation of the derivatives of all observations with respect to all

parameters must be done. The iterative estimation process is briefly summarized as

follows, following Doherty (2002), and Kunstmann et al. (2006).

Suppose that the function M which maps n-dimensional parameter space into the

m-dimensional observation space is the representative of the relationship between pa-

rameters and model simulated outputs. It is required that this function is continuously

differentiable with respect to all model parameters for which estimates are searched

for. The corresponding set of discharges qo derived from hydrological model using the

set of parameters comprising the vector po is then:

qo
[
m3/s

]
= M(po) (3.11)

The model output q corresponding to parameter vector p that is slightly different from

vector po, can be approximated to (Taylor’s theorem).

q
[
m3/s

]
= qo + J · (p− po) (3.12)

In which J is the Jacobian matrix (m rows, n columns) of M. Ji j is the derivative of

the ith observation with respect to the jth parameter. The ultimate goal of the model

calibration is to derive a set of parameter for which the model generated outputs are

as close as possible to observed runoff. PEST does this by minimizing the objective

function which is given by:

ΦDischarge
[
m3/s

]
=

m

∑
i=1

(wiri)
2 (3.13)

where ri is the difference between the simulated discharge and observed discharge, wi

is the weight attached to the i’s observation.

Equation 3.13 can be rewritten as,

ΦDischarge
[
m3/s

]
= (qobs−qo− J · (p− po))

t ·W · (qobs−qo− J · (p− po)) (3.14)

superscript “t” denotes the transposed matrix, qobs indicates the observed discharges

and qo the simulated discharges. W is a square matrix (m x m) whose entries wi j are

the squares of weights that account for the discrepancies contributed to the objective

function of the observations. Observation with higher reliability should contribute

larger weight to the objective function. A new estimate for the parameter p can be

obtained by

p [−] = po +u (3.15)
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where u is the parameter upgrade vector

u [−] = (Jt ·W · J)−1 · Jt ·W · (qobs−qo) (3.16)

superscript “-1” denotes the inverse matrix.

Let the gradient of the objective function Φ in parameter space be denoted by the

vector g, which is defined as

g [−] = ∂Φ

∂ pi
(3.17)

and which can be expressed as

g [−] =−2Jt ·W · (q−qo) (3.18)

Equation 3.16 rewritten by Marquardt (1963) and Levenberg (1944) then becomes

u [−] = (Jt ·W · J+αI)−1 · Jt ·W · (qobs−qo) (3.19)

where α is the Marquardt parameter and I is the (n x n) identity matrix. When α

is high, the direction of u approaches that of negative of the gradient vector g, when

α equals zero equation (3.17) becomes equation (3.14). For the initial optimization

iterations, it is beneficial to assume a relatively high value of α . Then α is decreasing

as the estimation process progresses and the optimum value of objective function is

approached. To circumvent the round-off errors caused by the possibly great difference

in magnitude of elements of Jacobian matrix (J), the scaling matrix S is introduced.

Sii [−] = (Jt ·W · J)−0.5
ii (3.20)

At the first optimization, PEST will use the initial Marquardt lambda (denoted as

λ = αStS), provided by the user to get the objective function. A new λ is obtained

by lowering the previous λ by a user-supplied factor. Then PEST tries the new λ

to get a new objective function. If the corresponding objective function is lower, the

λ is lowered yet again. If the objective function was raised by reducing λ below the

initial λ , then λ is raised above its initial value. A new λ is formed by increasing the

initial λ by the same user-supplied factor. If objective function was lowered, the λ is

raised again. This procedure repeats until the minimum objective function is reached.

A detailed information on how the PEST determines objective function is available in

the PEST’s manual (Doherty, 2002).

The sensitivity of each parameter with respect to all observations can be calculated

(based on the Jacobian matrix) as follows.

si [−] =
(Jt ·W · J)0.5

ii
m

(3.21)
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where m is the number of observations and i is the number of the parameter.

3.2.5 PEST: Coupling and communication to WaSiM

In general, PEST requires three input files for optimization of the WaSiM model’s

parameters. All these files are prepared in ASCII format. For a detailed description

of these files it is referred to Doherty (2002):

� A template file consists of parameters needed to be optimized. This file is similar

to the control file (contain parameters) of the WaSiM model but the values of

parameters are replaced by variables (often as a sequence of characters) instead

of fixed values.

� An instruction file. This file provides instructions to PEST on how to read the

WaSiM model output files. The instruction file contains information on positions

of simulated flows in WaSiM’s output files. For every WaSiM model’s output

file containing model-generated information which is required a comparison with

observations, an instruction file is provided accordingly.

� The PEST control file. This file provides information on parameters such as

names and numbers of parameters cited in the template file, initial values of

parameters, lower and upper bounds of parameter limits, incremental interval,

and flow observation data. In addition, names and numbers of template files

and instruction files are required for the PEST control file. Each pair of PEST

template file - WaSiM input file (control file) and PEST instruction file - WaSiM

output file has to be put in a line under ”model input/output”section of the PEST

control file. The model command line which supplies the command including path

names for PEST to run the WaSiM model is also included. Figure 3.3 illustrates

the coupling and communication between WaSiM and PEST.
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Figure 3.3: The flowchart for coupling between WaSiM and PEST

3.2.6 Calibration Procedure

The calibration of a hydrological model is a prerequisite for successfully applying

to a specific catchment, especially for the weak infrastructure region where prior

applications of the given model has not been done (Kunstmann et al., 2006; Cullmann

et al., 2006). The main goal of the model calibration is to determine suitable parameter

sets that result in satisfactory model performance under the specified conditions.

In this PhD thesis, the WaSiM model is calibrated and validated by continuous

runoff simulations. A split sampling technique is used for the model calibration and

validation. The period between 1976 and 1981 is used for model calibration, while

two independent periods of 1982-1988 and 1995-2000 are used for model validation.

One reason for the selection of these time periods was that the flow regime of the Thu

Bon river was quite natural and was not disturbed by hydropower dams during these

periods. Model simulated discharges are compared against discharges observed at Nong

Son station. The model is calibrated using station precipitation and reanalysis data

for temperature, relative humidity, wind speed and solar radiation (Laux et al., 2013).

The geophysical parameters are extracted from the DEM, landuse, and soil maps.

Other empirical parameters have to be calibrated. In total, six parameters have to be

calibrated. The main calibration parameters for the VGTB basin are listed in Table 3.2.

In this PhD thesis, also an covariance analysis is conducted to obtained confidence

bounds for estimated parameters. The covariance matrix is given by (following Press
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Table 3.2: Main calibration parameters for WaSiM model

Parameter Unit
Recession constant for direct runoff (kd) [h]
Recession constant for interflow (ki) [h]
Drainage density (dr) [m−1]
Recession constant for saturated-
hydraulic conductivity with depth (krec)

[-]

Scaling factor for base flow (Q0) [-]
Recession constant for base flow (kB) [m]

et al. (1992) and Kunstmann et al. (2006)):

[Cov]≡ [α]−1 (3.22)

with matrix [α], equal to one-half times the Hessian matrix

αkl ≡
1
2

∂ 2χ2

∂ pk pl
≈

N

∑
i=1

[
∂y(xi, p)

∂ pk
· ∂y(xi, p)

∂ pl

]
(3.23)

Cov is the two-dimensional projection of the n x n parameter covariance matrix; p is

the two-dimensional vector of parameters; k = 1,2....M; N is the data points (xi,yi).

The uncertainty of the estimated parameters is quantified by the standard deviations

which yielded from the square roots of the diagonals of the parameter covariance

matrix. The uncertainty range is described by the standard deviations only in case the

correlation between the estimated parameters is negligible. In case two parameters are

correlated, the axes of the hyper-ellipsoid are rotated with respect to the parameter

axes (Kunstmann et al., 2006).

Two-dimensional ellipses are most frequently used for describing the shape of con-

fidence region. The confidence ellipses are defined as

∆χ
2(p) = (p− pbest f it) · [Cov]−1 · (p− pbest f it)

T (3.24)

∆χ2: tabulated function depending on confidence level and number of degrees of

freedom (number of parameters of interest) while (p− pbest f it) is the change in

parameters whose second component is the optimized parameter. Confidence ellipses

for any combination of two parameters are obtained by applying Equation 3.24 to the

covariance matrix and the estimated parameters pbest f it .

The calibrated model parameters are obtained by two approaches: the trial-and-error

procedure (manual approach) and the automatic parameter estimation tool PEST (Do-

herty, 2002). For the manual calibration, a combination of visual assessment and the
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NSE is used to achieve optimal parameters by successively adjusting the most cru-

cial model parameters until modelled and observed discharges correspond well. Con-

versely, PEST tries to minimize an objective function that is represented by weighted

sum of squared difference between model-generated discharges and observed discharges

(Gauss-Marquardt Levenberg-approach). Boundaries for the parameters search are

provided to force the Gauss-Marquardt-Levenberg algorithm into the correct parame-

ter range. The results shown in this PhD thesis are based on the PEST approach.

3.3 Results and discussion

3.3.1 Model calibration

As mentioned in section 3.2.1, this is the first time that WaSiM is adapted and applied

for the VGTB basin. Accordingly, the calibration of the model is a crucial prerequisite

before an implementation for the hydrological impact analysis. This section presents

the results of the model calibration.

Values for estimated model parameters and the estimated uncertainty range (standard

deviation σ) of all estimated parameters derived from Equation 3.22 and Equation 3.23

are shown in Table 3.3.

Table 3.3: Main calibration parameters for WaSiM model including uncertainty ranges
(standard deviation σ) and parameter sensitivity (s) according to covariance analysis.

Standard
Parameter Unit Limits Initial Optimized deviation Sensitivity

value value σ s
kd [h] 10 - 100 15 30.6 1.6 8.8E+00
ki [h] 100 - 600 200 250 69.5 1.9E-01
dr [m−1] 5.0 -30 20 12 2.8 5.4E+00
krec [-] 0.1 - 1.0 0.5 0.8 - -
Q0 [-] 1.0 - 20 11 11.5 5.3 6.2E+01
kB [m] 0.01 - 0.99 0.9 0.96 0.2 2.4E+00

It can be seen that the uncertainty is relatively small for most of the estimated

parameters except for the recession constant of interflow which is about one order

of magnitude larger. Estimated values for all parameters are within the physical

reasonable ranges.

Figure 3.4 shows the confidence regions for the estimated recession constants for direct

runoff and interflow as obtained by the covariance analysis. The isolines show the

probabilities of 68.3% (red), 95.4% (blue) and 99.7% (green) that the true parameter
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values fall within the corresponding confidence region. In this case, the correlation

between the two calibrated parameters is negligible and kd shows smaller confidence

bounds than ki. Figure 3.5 shows confidence regions for drainage density (dr) and

recession constant of direct runoff. As shown in the figure, it is rather an ellipse than

a circle, parameters are a bit correlated.

Figure 3.4: Confidence ellipses for estimated parameter kd (recession constant for
direct runoff) and ki (recession constant for interflow). The isolines indicate the confi-
dence regions 68.3% (red), 95.4% (blue) and 99.7% (green).

Apart form confidence ellipses, parameter sensitivities are also of a particular concern

for the model performance as they quantify the influence on the performance. Values

of parameter sensitivity in case of optimal parameters are calculated by Equation 3.21

and shown in Table 3.3. Of all estimated parameters, the sensitivity of the recession

constant for interflow (ki) has a lower value than that of other parameters indicating

that the estimated value of this parameter is less reliable. This is consistent with

the confidence ellipses which show larger confidence bounds for ki than those of other

parameters.

The results of the calibration of WaSiM model are provided in Table 3.4. It can

be seen that NSE and R2 are comparable for the two calibration approaches and

are in a satisfying range. Values of RMSE and NRMSE are also in the same order

of magnitude for both calibration approaches (manual calibration and PEST approach).
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Figure 3.5: Confidence ellipses for estimated parameter dr (drainage density) and ki
(recession constant for interflow). The isolines indicate the confidence regions 68.3%
(red), 95.4% (blue) and 99.7% (green).

Table 3.4: Values of performance criteria for calibration of the hydrological model
WaSiM.

Calibration (1976 - 1981)
Criteria NSE R2 PBIAS (%) RMSE NRMSE
Manual 0.84 0.84 -0.6 194 0.031
PEST 0.83 0.85 -0.2 197 0.032

Figure 3.6 shows the modelled and observed daily time series of Nong Son station for

the model calibration (1976-1981).

A visual inspection indicates that the simulated flows match the observations reason-

ably well despite a slight underestimation of some flood peaks (Figure 3.6). The slight

underestimation of the flow peaks can be observed for both calibration strategies.

According to the performance criteria in Table 3.4, no remarkable differences between

the two calibration strategies can be observed. Differences between modelled and

observed flows are probably due to a small number of precipitation stations within the

study area of interest. Additionally, the interpolation method applied in this complex

orography conditions may lead to considerable errors in precipitation input to the

model, thereby contributing further to this small mismatch.
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Figure 3.6: Runoff performance of the WaSiM at Nong Son station for the calibration
period (1976-1981). Results are obtained using PEST.

3.3.2 Model validation

The quality of the model performance for the two independent validation periods (1982-

1988 and 1995-2000) is shown in Table 3.5. It can be seen that values of NSE, R2 are

all positive and greater than 0.8 for both the manual (trial and error) and PEST ap-

proaches. The absolute values of PBIAS range between -5.6% and +1.7 %. Compared

to the calibration period, the values of NSE and R2 are in the same order of magnitude,

but PBIAS is in general slightly larger.

Table 3.5: Values of performance criteria for the two validation periods 1982 - 1988
and 1995-2000 of the hydrological model WaSiM.

Criteria NSE R2 PBIAS(%) RMSE NRMSE
Validation 1982 - 1988

Manual 0.83 0.84 1.7 194 0.029
PEST 0.82 0.83 -1.3 191 0.028

Validation 1995 - 2000
Manual 0.85 0.86 -5.6 317 0.036
PEST 0.86 0.86 -5.3 308 0.035

Figure 3.7 and Figure 3.8 show the simulated and observed hydrographs at Nong

Son station for model validation (1982-1988) and (1995-2000). As shown, a slight

underestimation of flows is observed. However, the general quality of fits are reasonable
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and convincing for both validation periods.

Figure 3.7: Runoff performance of the WaSiM at Nong Son station for the validation
period (1982-1988). Results are obtained using PEST.

Figure 3.8: Runoff performance of the WaSiM at Nong Son station for the validation
period (1995-2000). Results are obtained using PEST.

In addition to the temporal distribution, the WaSiM model also provides information

on the full water balance in a spatially distributed manner such as actual evapotran-
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spiration and total runoff as annual mean or sums. Figure 3.9 shows the spatial distri-

bution of actual evapotranspiration and total runoff in the basin as an example. It can

be seen that there is a high spatial variability of actual evapotranspiration and total

runoff over the basin. This spatial distribution efficiently provides the physical basis

required to support decision making processes in economically and ecologically sound

water management in the VGTB basin.

Figure 3.9: Daily mean actual evapotranspiration (left) and daily mean total dis-
charge (right) in the Thu Bon basin (1982-1988).

3.3.3 Discussion

The NSE and R2 values for the model calibration and validation obtained from the two

approaches are in the same range and not lower than 0.82. NRMSE values are also at

the same order of magnitude of about 0.03 for both calibration and validation periods.

Negative values of PBIAS show underestimation of river flows at Nong Son station for

both calibration and validation, however, the values are within acceptable ranges. The

underestimation is also shown in the flow duration curve for the long-term simulation

1976-2000 (Figure 3.10), where simulated low flows show sightly lower values than

observed values. Interpolation method applied in this complex orography conditions

together with a small number of rainfall stations may result in this mismatch. The

affect of different interpolation methods on precipitation input to hydrological models

is also confirmed in a study by Wagner et al. (2012). Considering the complexity of the

catchment and uncertainties introduced by meteorological input data, the calibrated

WaSiM model shows a good agreement between the simulated and observed discharges.

The calibrated WaSiM is found to be able to reproduce hydrographs for the VGTB

basin, both for high and low flow situations. Similar performances of WaSiM are

reported in literature for different study regions (Jasper et al., 2004; Kunstmann et al.,
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2006; Ahrends et al., 2008; Cullmann et al., 2011). This indicates that the WaSiM

model can be applied to tropical catchments. The results also show that PEST is a

suitable tool for parameterizing the WaSiM model. This complements the findings of

Kunstmann et al. (2006) and Cullmann et al. (2011). It is noted that the WaSiM

model was calibrated using (local) station precipitation and reanalysis climate data.

Under the assumption that the calibrated parameters of the WaSiM model will remain

unchanged under future conditions, these parameters can be applied for hydrological

simulations addressing future time slices.

Figure 3.10: Flow duration curve at Nong Son station in the period (1976-2000).



Chapter 4

Integrated hydrological-irrigation

optimization model

4.1 Introduction

In the Vu Gia - Thu Bon basin, agriculture is the primary economic sector in terms

of labour. Over 50% of the population are employees working in agriculture. Total

rice cultivation area for the entire Quang Nam province is about 87,396 ha for two

rice crops winter-spring and summer-autumn. Irrigation in the VGTB basin relies on

the availability of water in reservoirs prior to cropping seasons. In close consultation

with stakeholders in the region, it is revealed that there is an increasing occurrence

frequency of water shortages for irrigation during dry seasons. Particularly, water is

often insufficient to irrigate the entire rice cropping areas during the summer-autumn

rice season. In this PhD thesis, an irrigation optimization model is developed based

on GAMS and combined with the hydrological model WaSiM to optimize the efficient-

water irrigation technology and irrigation scheduling for a rice irrigation scheme in the

VGTB basin.

4.2 Methodology

4.2.1 GAMS: Introduction

The General Algebraic Modelling System (GAMS) is a high-level language for solving

mathematical and optimization problems (Rosenthal, 2016). This programming lan-

guage is widely used in research studies on water resources and agriculture (Bharati

et al., 2008). Although GAMS is designed for large mathematical optimization prob-

lems, it is not the optimizer itself but is combined with one optimization solver for

optimization modeling (Ahrends et al., 2008). The optimization solvers include linear,

non-linear, mixed integer, relaxed mathematical programs, mixed complementarity and

extended mathematical programs. In this PhD thesis, the CPLEX - a solver that uses

39
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branch and cut algorithms for solution search and is frequently used for mixed integer

programming (MIP) is employed (GAMS, 2016). CPLEX contains a primal simplex

algorithm, a dual simplex algorithm, a network optimizer, an interior point barrier

algorithm, a mixed integer algorithm and a quadratic capability (Pedroso, 2013). The

GAMS model defines the structures including model objects, data, variables, bounds

and constraints of variables, objective function and equations. For more detailed in-

formation about GAMS, the reader is referred to https://www.gams.com.

4.2.2 Integration of the hydrological model WaSiM and the

irrigation optimization model

A vast number of integrated hydrological and irrigation models have been developed

for different spatial scales (e.g. Al-Juaidi et al., 2014; Ahrends et al., 2008; Bharati

et al., 2008; Quinn et al., 2004; Rosegrant et al., 2000). The formulation of these

integrated models can be done by either a compartment modelling approach or

a holistic approach. Under the compartment modelling approach there is a loose

connection between hydrologic and irrigation components and they are connected via

outputs. Under the holistic approach, both the hydrologic and irrigation components

are embedded in one single unit; this often requires a model interface (Cai et al.,

2003).

Figure 4.1: The connection between WaSiM and GAMS
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In this PhD thesis, a simple one way coupled model system is used allowing the

simulation of the connections between the hydrologic and irrigation for the water

management via outputs. This modelling system consists of the hydrological model

WaSiM and an irrigation optimization model written in GAMS. The hydrological

model WaSiM simulates the hydrological response of the VGTB basin, which serves

as input for the optimization model of agricultural management strategies in the

Que Trung rice irrigation scheme. Figure 4.1 illustrates the connection between the

hydrological model WaSiM and the irrigation optimization model GAMS.

The irrigation optimization model uses daily discharges at the Que Trung sub-

catchment as reservoir inflow and reference evapotranspiration (ET0) simulated by the

WaSiM model (section 3.1) as input data. The crop evapotranspiration (ETc) is calcu-

lated by the following equation.

ETc = Kc ·ET0 (4.1)

where Kc is the crop coefficient for rice. Kc is dependent on rice development stage

and is derived from (FAO, 1998). ET0 is reference evapotranspiration simulated by the

WaSiM model.

In this PhD thesis, two different rice irrigation technologies, i.e. Alternate Wetting

and Drying (AWD) or Continuous Flooding (CF) are optimized in the irrigation op-

timization model. Details about these two irrigation technologies are described in the

next section.

4.2.3 Alternate Wetting and Drying and Continuous Flooding

technologies

Alternate Wetting and Drying is an eco-efficiency rice irrigation technology which is

capable of saving irrigation water input by reducing the number of irrigation events

required. In the AWD, the rice field is not kept continuously submerged during the

rice growing stage. It is allowed to dry out intermittently for a certain number of

days before being re-flooded (Lampayan et al., 2015a). In a specific form of AWD,

the ”safe” AWD, the water can be dropped to 15 cm below the soil surface before the

next irrigation without yield reductions. The threshold of 15 cm will not cause any

yield decline since the roots of the rice plants are still able to take up water from the

perched ground water and the almost saturated soil above the water table. The period

of non-flooded soil can vary from few days to more than 10 days in the absence of

precipitation depending on soil type and weather/climate conditions (Bouman et al.,

2007; Rejesus et al., 2011; Lampayan et al., 2015a).

In this PhD thesis, the ”safe” AWD approach is applied for rice cropping. During
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early growth stage, the water level is always maintained around 2-5 cm above soil

surface for about two weeks to suppress weeds and control pests (Bouman et al.,

2007; Lampayan et al., 2015a). After the early growth stage, the AWD irrigation is

applied again until one week before the flowing period starts. From one week before

to one week after the flowering period the field is again continuously flooded about 5

cm above the soil surface to avoid spikelet sterility and yield loss (Lampayan et al.,

2015b). After this period the AWD is re-applied until maturity. In contrast to the

AWD, Continuous Flooding (CF) technology water level is constantly kept above the

soil surface during the growing season. It is usually kept at a certain level (5 cm above

the soil surface) during the growing period from a few days after transplanting until

few days before maturity. Figure 4.2 illustrates the AWD and CF technologies used.

Figure 4.2: AWD and CF irrigation technologies

The application of the AWD practice in major rice cropping regions has been

analyzed in several studies. The majority of these studies show that AWD can save

irrigation water compared to CF without significant yield losses, as e.g. demonstrated

for Bangladesh (Rahman and Bulbul, 2014), Southern China (Liang et al., 2016), and

the Philippines (e.g. Rejesus et al., 2011; Zhang et al., 2012). Apart from similar

yields obtained by AWD (compared to CF), a reduction in rice yield is revealed in

(e.g. Tabbal et al., 2002; Belder et al., 2004) and, while an increase is found in (Li and

Li, 2010).

In Vietnam, the AWD technology was introduced as a response to decreasing water

availability for rice production and increasing greenhouse gas emissions. For instance,

Lampayan et al. (2015a) conducted a research on adoption of AWD management

for irrigated lowland rice in the Philippines, Bangladesh and Vietnam. The results

showed that AWD can reduce necessary water input for irrigation up to 38% without
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a yield reduction, if implemented correctly. Most of performance analyses of AWD are

derived in small-scale field experiments.

The number of studies considering the adoption of water-saving technology for

a complete rice irrigation system is limited for Southeast Asia. Hong et al. (2015)

developed a water balance model to simulate water level changes in the rice field which

accounts for interactions between the rice field and the irrigation system, and evaluated

the effectiveness of different irrigation technologies for the Soc Trang province, Southern

Vietnam. Results showed that AWD is the most effective irrigation technology in

terms of water requirements and the number of irrigation events. The number of

irrigation events (pumping times) are found to range between 11 and 32 among different

considered irrigation technologies.

4.2.4 Development of the irrigation optimization model

The Que Trung rice irrigation system is shown in Figure 4.3. This irrigation scheme

is selected during the field survey in 2015. This is a representative irrigation scheme

for the VGTB basin.

Figure 4.3: The VGTB basin (top). The red boundary dipicts the area used for
hydrological modelling (WaSiM). The Que Trung rice irrigation system is shown in a
small black squared box, the reservoir and canal system is shown below (bottom).
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The irrigation optimization model developed for this irrigation system is written in

GAMS. The model includes an irrigation network, a reservoir, irrigation technologies

and schedules, and an objective function. The model maximizes the return of rice

production for the whole irrigation scheme. There are three different irrigation areas

(area 1, area 2 and area 3) accounting for 144 ha and each area can operate up to four

irrigation blocks, tertiary level (Figure 4.4). Each block has a size of 12 ha. This leads

to 12 tertiary irrigation units. Irrigation can be staggered on 15 different days and

farmers can choose between AWD or CF. The allocation of land for irrigation (number

of blocks), the irrigation technology, and the irrigation scheduling associated to each

block are important decision variables to be optimized. Albeit the model design is

closely related to the real situation in the Que Trung irrigation system, at the same

time it is flexible enough to be applicable to similar irrigation schemes in the region.

Figure 4.4: Schematic diagram of agricultural plot, consisting of 3 irrigated rice
growing areas, each divided into 4 blocks. Water is taken from the Trung Loc reservoir
for irrigation

The SA rice cultivation period covers a fixed period of 110 days starting from land

preparation until maturity. The irrigation optimization model provides each block 200

mm water for land preparation. The model optimizes the date of the first irrigation for

each block within the three irrigation areas during the land preparation stage (first 15

days). The following irrigation events depend on the crop evapotranspiration and the
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percolation rate exclusively. Possible modeled irrigation options include AWD and CF.

The choice of irrigation technology determines the irrigation water input for each block.

Objective function The objective function is to maximize the monetary profit under

different scenarios. Economic variables include crop yield and rice price. Maximum

profit will be obtained by maximizing cultivation area under different water availability

scenarios. Based on previous studies (e.g. Rejesus et al., 2011; Rahman and Bulbul,

2014; Liang et al., 2016), it is assumed that rice yield is identical under AWD and CF.

ΦReturn = Z =
8

∑
i j=1

4

∑
b=1

15

∑
s=1

2

∑
tech=1

[price · yield ·areatech ·C(i, j,b,s,tech)] (4.2)

where Z is the irrigated rice profit (VND), yield is the irrigated rice yield (kg/ha),

price is the rice price (VND/kg). Rice price and rice yield are assumed to be 6000

VND (0.3 US$) and 5,000- kg/ha, respectively. Area (area) is the irrigated demand

site (block), i, j is the primary {P} and secondary canal {S} respectively, b is the

irrigated area of each site, b = 1,2,3,4, s is the order of irrigation event, and tech is

the irrigation technology (AWD or CF) applied to each block. C is the binary variable

indicating the chosen irrigation technology in the respective block and irrigation area.

The revenue is only obtained from the irrigated area (expressed by block in this

study). Thus, the total profit is the sum of revenue from areas receiving irrigated

water. The optimal value is obtained when limits set by the user is reached. One of

the limits is the relative optimality criterion (OptCR) defined as below (following The

Solvers Manuals, GAMS, 2016).

(| BP−BF |)
(1.0e−10+ | BF |)

< OptCR (4.3)

where BP is the best possible integer solution, BF is the objective function value of

the current best integer solution. In this study, OptCr is set to 0. Another stopping

criterion is the time limit. The solver will stop after a user-defined execution time (set

to 100,000 second in the model), then the current solution is passed to the irrigation

model.

Land constraints The binary variable C determines which block is in the optional

solution, using either the AWD or the CF irrigation technology. There cannot be more

than one starting time s and technology tech per irrigation single block b and area i, j.
The maximum land to be irrigated must be smaller than or equals to the total available

land.
15

∑
s=1

2

∑
tech=1

C(i, j,b,s,tech) 6 1 (4.4)
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with i,j ∈ {S}

Reservoir balance The reservoir level in t +1 is equal to the level in t plus the water

inflow (accounting rainfall) and the reservoir discharge for irrigation.

R(t+1) = R(t)+qin,t−Q(t) (4.5)

where qin,t is the inflow coming to the reservoir at time t. R(t=1) = r

Primary canals The discharge Q(t) (water requirement for irrigation) at time t
cannot exceed the reservoir released discharge q:

Q(t) 6 q,∀t (4.6)

Secondary canals The mass balance at the secondary canals in the irrigation areas

is

Q(i j,t) =
4

∑
b=1

15

∑
s=1

2

∑
tech=1

SQ(i j,b,s,tech,t) (4.7)

with i, j ∈ {S}, t. SQt is the inflow to the block at time t (mm).

Paddy field water balance The paddy water balance for selected blocks and tech-

nologies is

WD(i j,b,s,tech,t) =WD(i j,b,s,tech,t-1)− [ET c(t,s)+Perc(t,s)−Prec(t,s)] ·Ci, j,b,s,tech (4.8)

with i, j ∈ {S} , b, s, tech, t. WDt is the irrigation water depth at time t (mm); ET ct,s

is the crop evapotranspiration (mm/day); Perc is the percolation (mm/day); Prec is

the daily rainfall (mm). Since the precipitation amount is very small during the dry

summer autumn season in this region and no precipitation information in the vicinity

of the irrigation scheme is available, precipitation here is assumed to be zero during

the cropping period.

The WaSiM output of the year 2012 is employed as input data for the irrigation

optimization model. The optimal irrigation is defined as the decision set, which max-

imizes the objective function in terms of irrigation technology, irrigation area and

irrigation schedule under given water constraints, i.e. the reservoir outflows and the

initial reservoir water levels.
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4.3 Results and discussion

The irrigation optimization model is simulated with different scenarios of initial

reservoir levels and various maximum water releases. The model is running on

different computing environments including Windows, Mac and Linux and results

presented here are mainly shown for the Windows personal computer. Altogether,

four different scenarios are defined to demonstrate the interactions between irrigation

needs under the AWD and CF technologies.

The initial reservoir water levels are assumed to be 100%, 90%, 80%, and 70% of

the full reservoir storage (1.85x106m3), which is defined as the water amount usable for

irrigating SA rice cropping season. These assumptions are based on the results of focal

group discussions with agricultural officials in this region in a field survey carried out

in 2015. Maximum water rate released from the reservoir are set to range between 0.3

m3/s and 1.0 m3/s, with an increment of 0.1 m3/s. This allows the model to investigate

whether the design outlet is sufficient to apply the AWD irrigation technology for

the entire cropping area and whether the initial reservoir levels play a role in the

optimization results.

4.3.1 Optimized irrigation area and technology

The results for optimized irrigation area and its associated irrigation technology, i.e.

AWD or CF for the Que Trung rice irrigation scheme under different scenarios of

reservoir water levels are shown from Figure 4.5 to Figure 4.8. Each figure presents

the optimized irrigated area (block) and the number of blocks irrigated by either AWD

or CF under prescribed maximum water releases. The figure also shows the total irri-

gation water amount for one block (12ha) under different water releases. As shown in

these figures, the irrigated area varies amongst scenarios and ranges from 8 to 12 blocks.

In scenario 1, under every case of reservoir releases, the entire rice cropping area

of the QueTrung irrigation scheme (12 blocks) is irrigated. However, the difference

in optimal fraction of the two irrigation technologies is found. The largest number

of blocks, in which AWD is applied is 11, whereas the lowest number of blocks, in

which CF is applied is 1. The number of blocks applying AWD and CF are equal (6

blocks each) at the water release of 0.7 m3/s. The lowest number of AWD of 4 and

the largest number of CF of 8 are found when water release equals 0.3 m3/s and 0.4

m3/s (Figure 4.5). For further increases of the reservoir release the number of blocks

applying AWD are increasing and CF decreasing. Similar trends are also found for

other scenarios.
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Figure 4.5: Optimized rice irrigation strategies under scenario 1 (initial reservoir
storage of 100% at the beginning of the SA cropping season).

Under scenario 2 (Figure 4.6), maximum CF (applied to 12 blocks) and minimum

AWD (no blocks), i.e. CF is applied for all blocks and no blocks of AWD are chosen, are

found at the water release of 0.3 m3/s while minimum CF (no blocks) and maximum

AWD (12 blocks) are found at the water release of 1.0 m3/s. In this scenario the

number of AWD and CF are equal (6 blocks each) at water release of 0.5 m3/s.

Figure 4.6: Optimized rice irrigation strategies under scenario 2 (initial reservoir
storage of 90% at the beginning of the SA cropping season).

In scenario 3 (Figure 4.7), maximum AWD (applied to 11 blocks) and minimum

CF (no blocks) are found when water release is larger than 0.6 m3/s. Interestingly,

the model identifies the maximum (minimum) number of blocks applying CF (AWD)

for the smallest reservoir release of 0.3 m3/s, the design water release of the TrungLoc

reservoir. This also holds true for all other scenarios. This indicates that the current
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reservoir outflow rate may not be optimal to facilitate the adoption of AWD in the

Que Trung irrigation scheme, at least not for the entire irrigation scheme. Out of all

simulated scenarios, the entire rice cropping area is irrigated under scenarios 1 and 2,

under all considered water releases. While 11 blocks are irrigated in scenario 3, only 9

or 10 blocks are irrigated under scenario 4 (Figure 4.8) due to the smallest initial water

level assumed in this scenario.

Figure 4.7: Optimized rice irrigation strategies under scenario 3 (initial reservoir
storage of 80% at the beginning of the SA cropping season).

Figure 4.8: Optimized rice irrigation strategies under scenario 4 (initial reservoir
storage of 70% at the beginning of the SA cropping season).

In terms of irrigation water requirement, there is a discrepancy of total irrigated

water under different water releases in the four considered scenarios. It can be clearly

seen from figure 4.5 that the total irrigated water is smallest (1.751 Mm3) when the
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release equals to 1.0 m3/s, while it is largest (1.905 Mm3) when the release is 0.7 m3/s.

It is found that comparatively more water can be saved when more AWD is applied.

For instance under water release of 1.0 m3/s approximately 7% of water can be saved

(11 blocks applied AWD) compared to 5% under water release of 0.3 m3/s (4 blocks

applied AWD). In scenario 2, the smallest and largest water consumption is also under

releases of 1.0 m3/s and 0.7 m3/s, respectively. The total irrigation water under release

of 1.0 m3/s in this scenario is smaller than that of scenario 1. However, the difference

is insignificant. This could be attributed to the different in number of blocks applied

AWD in these two scenarios (12 for scenario 2 and 11 for scenario 1). Total irrigation

water is always smallest when water release is 1.0 m3/s under three scenarios 1, 2 and 3.

Under this water release, AWD is the predominant irrigation practice for all scenarios,

leading to the lowest water demands for irrigation. It is noted that under scenario 4

shown in Figure 4.8, the total irrigation water is smallest when the release is 0.3 m3/s,

but in this case only 9 blocks are irrigated. This is also the smallest irrigated area

associated the least initial water level in the reservoir amongst all scenarios.

4.3.2 Optimized irrigation schedule

Results of detailed irrigation schedule for 12 blocks under 4 scenarios are shown from

Figure 4.9 to Figure 4.12. As shown, the optimization model provides the timetable

(day) for staggered irrigation for every block and its associated irrigation technology

(tech) under different water releases. The irrigation scheduling differs among the water

release rates from 0.3 m3/s to 1.0 m3/s.

In scenario 1 (Figure 4.9), for example, with an outflow rate of 0.3 m3/s, block 3 of

area 2 starts the first irrigation on the first day using CF. After that, block 2 of area

3 is irrigated on day 2 while block 1 of area 1 is irrigated on day 4 and CF practice is

also applied for these two blocks. Finally, block 2 of area 2 starts its first irrigation

latest, on day 15 and irrigated with AWD.

When water release is 0.4 m3/s, block 1 of area 1 starts its first irrigation on day 1,

while block 2 of area 3 starts the first irrigation on day 15. CF technology is applied

for both these blocks. Under water release of 1.0 m3/s, two blocks (block 3, area 1

and block 1, area 2) start their first irrigation on day 5 and applied the same practice

AWD and three blocks (blocks 1 and 2 of area 1 and block 2 of area 3) are irrigated

on the day 11 applying AWD.

In this scenario, it is found that all blocks are irrigated on different days when water

releases are equal to or less than 0.5 m3/s. This finding is similar for other scenarios

indicating maximum water release of more than 0.5 m3/s are required to irrigate

more than one block at the same time given different initial water levels in the reservoir.
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Figure 4.9: Optimized irrigation schedule for first irrigation and irrigation technology
under initial reservoir storage of 100% at the beginning of the SA cropping season)

In scenario 2 (Figure 4.10) and scenario 3 (Figure 4.11), block 1 of area 1 starts its

first irrigation on day 7 under water release of 0.3 m3/s, while this block starts its first

irrigation on day 3 under water release of 0.4 m3/s. The CF technology is applied for

this block.

Figure 4.10: Optimized irrigation schedule for first irrigation and irrigation technol-
ogy under initial reservoir storage of 90% at the beginning of the SA cropping season)
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Figure 4.11: Optimized irrigation schedule for first irrigation and irrigation technol-
ogy under initial reservoir storage of 80% at the beginning of the SA cropping season)

Figure 4.12 shows detailed irrigation schedule for blocks under scenario 4. Block

2 of area 2 starts its first irrigation on the day 1, block 4 of area 2 is on the day

2 and block 3 of area 1 is irrigated on the day 13 under water release of 0.3 m3/s

and CF technology is applied for all these blocks. In this scenario, it is found that

under water releases of 0.9 m3/s and 1.0 m3/s, all irrigated blocks (10) are irrigated

at the 4 last consecutive days of 15-day and the AWD technology is employed for all

these blocks. This is probably because the initial water and inflow to the reservoir is

insufficient to apply AWD practice before day 12. Likewise, as shown in Figure 4.5

to Figure 4.8, number of irrigated blocks decreases with decreasing initial reservoir level.

In terms of irrigation water input, table 4.1 exhibits the mean irrigation water

required for one block by applying either AWD or CF under different scenarios. There

is a slight difference in irrigation water input between AWD and CF. The range of

total irrigation water for one block is between 0.145 M.m3 to 0.147 M.m3 for AWD

and 0.151 M.m3 to 0.159 M.m3 for CF. On average, the irrigation water allocated for

one block by AWD and CF is approximately 0.145 M.m3 and 0.154 M.m3 respectively.

In general it is concluded here that AWD is more water-efficient than CF with water

saving ranges from 4% to 10% depending on scenarios. On average, AWD saves about

6% of irrigation water input compared to CF.

Regarding irrigation events, AWD requires considerably less irrigation events than

that of CF in all considered scenarios. The average number of irrigation events required

by ADW and CF for one block during entire cropping season is 12 and 21, respectively
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Figure 4.12: Optimized irrigation schedule for first irrigation and irrigation technol-
ogy under initial reservoir storage of 70% at the beginning of the SA cropping season)

(Table 4.2). This is because the field surface under AWD is left to be dried longer than

under CF, which leads to lower frequency of irrigation by AWD.

Table 4.2: Mean number of irrigation (events) for one block under different irrigation
technologies.

Water
release
m3/s

Scenario 1 Scenario 2 Scenario 3 Scenario 4
No. of irrigations No. of irrigations No. of irrigations No. of irrigations
AWD CF AWD CF AWD CF AWD CF

0.3 13 21 - 22 12 22 13 22
0.4 12 21 12 23 12 22 13 21
0.5 12 21 13 21 12 21 12 20
0.6 13 21 12 22 12 - 12 21
0.7 12 21 13 21 13 - 12 -
0.8 12 22 12 20 12 - 12 21
0.9 12 20 12 24 12 - 12 -
1.0 12 23 12 - 12 - 12 -

4.3.3 Optimization procedure

Figure 4.13 exemplarily shows the plot of objective function values of the Mixed In-

teger Programming (MIP) optimization problem against the number of iterations for

scenario 1, with water release of 1.0 m3/s. These values are obtained from equation 4.2.

It can be seen that the values of the objective function (solid line) increase with in-

creasing number of iterations. The stepwise increases in the function values indicate
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the iterations when a new solution is found. After a solution is found, the solver checks

whether this solution is better than the currently best known integer solution. The

dashed-line indicates the optimality gap (in %) between the possible best and current

best known solutions. This line decreases as the gap becomes smaller. The gap obtains

a smaller value after a solution is found and it becomes zero when the current best

known solution is equal to the best possible solution.

Figure 4.13: Optimized rice irrigation strategies under scenario 1 (100% of initial
reservoir storage at the beginning of the SA cropping season). The results are obtained
using the PC computer architecture.

4.3.4 Robustness of optimization results on different com-

puter architectures

This study employs the latest GAMS version (24.7.3) with the latest Cplex solver

(12.6.3.0) running on 64 bit mode on three different platforms to test the robustness of

optimization results obtained from different computing environments. These platforms

include a PC with Windows OS (i7 with 8 cores, x 2.6 GHz), a Mac (i7 with 2 cores,

2.8 GHz) and a Linux Cluster using a ivy CPU unit (Intel Xenon with 12 cores, 2.8

GHz). Two cores (threads) are used on each system in order to establish comparability.

Figure 4.14 presents the optimal results for scenario 1 performed on the three

different platforms as an example. It can be seen that there is a slight difference in

the total number of irrigated blocks. All 12 blocks are irrigated under the Windows

PC and the Mac under all considered water releases, while 11 blocks are irrigated

under the Linux Cluster for most water releases. It is also found that there are slight
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differences in the maximum number of blocks applied AWD and CF. The largest

number of blocks irrigated by AWD is 11 on the Windows PC and the Mac, it is

only 10 on the Linux Cluster while the largest numbers of CF are 12, 9 and 8 for

Mac, Linux Cluster and Windows PC, respectively. Overall, the tendencies of the

optimization results between AWD and CF are similar for the different computer

architectures, i.e. increased AWD and decreased CF with increased reservoir releases.

Figure 4.14: Optimization results for scenario 1 performed on different computer
architectures (Windows PC, Linux Cluster and Mac).

The only exception occurs for the selected reservoir release of 0.7 m3/s, where

there is a significant difference between the Windows PC on the one hand, and the

Mac and Linux Cluster on the other hand (Figure 4.15). Despite of the same total

number of irrigated blocks (12) on three computer architectures, there are 6 blocks for

AWD and 6 for CF on the Windows PC, while the numbers are 10 AWD and 2 CF on

both, the Linux Cluster and the Mac.

Such a performance variability for MIP problems using the same model and the

same solver are well-known in computer engineering (e.g., Koch et al., 2011), but only

rarely considered and discussed in applications (Klotz and Newman, 2013). Potential

reasons comprise the imperfect tie-breaking when solving a MIP, i.e. the selections of

the best solution, which may be made arbitrarily based on the order, in which the best

solutions are considered or influenced by rounding errors. This shortcoming, in combi-

nation with e.g. different compiler options, depends on the platform (Koch et al., 2011).
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Figure 4.15: Optimization results for scenario 1 and a water release of 0.7 m3/s,
performed on three different computer architectures (Windows PC, Linux Cluster and
Mac).

4.3.5 Discussion

Under different hypothesized initial water levels in the Trung Loc reservoir during

the summer-autumn cropping season in 2012, the model results show that increas-

ing the initial reservoir level would allow more irrigated area (more blocks), and

increasing outflow rate leads to a shift of the irrigation technology towards AWD

practice. The model results predominantly suggest the choice of AWD rather than

CF. The findings, obtained for Central Vietnam, are consistent with other studies in

Southeast Asia, in which AWD is found to be a technology, which can save more irriga-

tion water compared to CF (e.g., Lampayan et al., 2015a,b; Rahman and Bulbul, 2014).

It is found that, when the discharge release from the reservoir is redesigned towards

larger flow rates than the current one (0.3 m3/s), the application of AWD potentially

allows to irrigate more blocks in the Que Trung irrigation scheme. The irrigation

optimization model indicates that reservoir outflows of >0.5 m3/s are required to

facilitate the adoption of AWD. The water use for irrigation is lower when more AWD

is applied. This finally helps to save water for irrigation and to crop larger areas. The

entire rice cropping area (12 blocks) can be irrigated only if the initial water levels of

the reservoir are 100% and 90% of its capacity, thus the reservoir size is well designed

for the size of this irrigation scheme.

Results also show that only 75% of the cropping area can be irrigated if the
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initial water level in the reservoir is 70% and the maximum water release is 0.3 m3/s.

This finding is in agreement with statements from the local agricultural authorities

(Nguyen, S., 2015, personal communication), it is assumed that the model reasonably

represents the irrigation scheme. In addition, the model amount of irrigation water

by CF for 1ha summer-autumn rice is comparable with the actual irrigation water

running by local practices for Que Trung irrigation system, which ranges from 10,000

to 12,000 m3/ha/crop. The total irrigation water requirement for 1ha of rice per

summer-autumn cropping season by both the CF and AWD technologies is also in

line with findings from a study of Nguyen and Ngo (2010), conducted for some areas

in Quang Nam province, Central Vietnam. Results of this PhD thesis also reveal that

total irrigation water for one block (12 ha) by AWD is less than that of CF, indicating

that the AWD technology is more water-efficient (assuming the same rice yields based

on CF and AWD). AWD saves about 6% of irrigation water input compared to CF,

on average. By saving more irrigation water amount, the AWD practice could be

a promising irrigation option in Central Vietnam, that can eliminate the increasing

irrigation water stress as a small reduction of water use for rice can free up large

volumes of this vital resource for increasing rice production and other uses (Lampayan

et al., 2015a).

Since there is no other actual irrigation data available for the Que Trung irrigation

scheme to validate the modelling results, in the following the model results in this

PhD thesis are compared with similar studies across Southeast Asia. The modeled

water saving by AWD compared to CF is less than the one obtained from a field

study of Lampayan et al. (2015a) for Bangladesh and the Philippines. In this study

the differences in total water input for rice irrigation between AWD and CF range

between 13% and 38%. It is noted that such discrepancies are possible due to dif-

ference in soil properties, climate conditions, cultivation practices and cropping seasons.

In terms of number of irrigation events, the average number of irrigation events by

AWD is 12 and by CF is 21, respectively. This suggests that AWD reduces the number

of irrigation events approximately 43% as compared to CF. Thus, costs induced by

irrigation operation can be reduced if AWD is applied properly in the region. Field

studies and also modelling results have reported similar results when applying AWD

and CF for rice growing areas in the region, such as Liang et al. (2016) for Southern

China, Lampayan et al. (2015a) for Bangladesh, the Philippines and Vietnam, and

Rahman and Bulbul (2014) for Bangladesh. The model results of irrigation events are

also in line with findings from Hong et al. (2015) conducted for the Soc Trang province

in Southern Vietnam.

Besides the suggested optimal irrigation technology, this coupled hydrological and

irrigation optimization model further provides information about the optimal area
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for cropping as well as irrigation schedules associated to each block. The staggered

irrigation scheduling modeled by the irrigation optimization model suggests the

irrigation time for blocks irrigated by either AWD or CF to maximize the benefit

of limited water availability. This could be of crucial importance for agricultural

managers to better plan their cropping preparations.

Moreover, the optimization results for performance variability from different

computer architectures are analyzed. This has been done since a performance

variability for MIP problems using the same model and the same solver are well-known

in computer engineering (Koch et al., 2011), which may lead to non-robust solutions

and difficulties for decision support. The test simulations showed similar tendencies

and varied only slightly on the 3 computing environments. This consolidates the

confidence in the robustness of the model for decision support.

It is noted that only the hydrological model has been validated, a quantitative

validation of the irrigation model was not possible. However, the modelling results

in terms of water requirement for irrigation, number and interval of irrigation

events, and irrigated area are compared with studies and data as well as practical in-

formation from Central Vietnam, in particular and studies done for the Southeast Asia.

Although hydrological extremes under a changing climate are of great relevance

for water management and climate change adaptation (Hoang et al., 2016), only few

insights on how climate change will impact the future high and low flows in the VGTB

region have been obtained so far. Notably, there were earlier studies focusing on the

changes in annual and monthly flows in Vietnam in general and in the VGTB region

in particular, but they are not widely available. The impact of climate change on high

and low flows in the VGTB basin is analysed in the next chapter.
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Chapter 5

Impact of climate change on high

and low flows

5.1 Introduction

Vietnam is ranked amongst countries suffering the most from severe climate change

impacts, and is likely to have an increased exposure to extreme events (IPCC, 2007,

2013). Possible changes in hydrological extremes are consequently expected under

projected changes of monsoon rainfalls. Therefore, insights about future high flows

and low flows due to climate change for the VGTB basin are of paramount importance,

especially for water resources management and water-related risk mitigation. Based

on projected information about future high and low flows, decisions on climate change

response activities and adaptation measures can be made.

Although a relatively large number of studies exist on the impact of climate change

on river flows, the changes on high flows and low flows in Southeast Asia are not

widely documented in the literature. Most studies are conducted for Europe and

other regions for which a large amount of climate projections are available (e.g. Kay

et al., 2006; van Pelt et al., 2009; Hurkmans et al., 2010; Dobler et al., 2012a; Gu

et al., 2015). Readily available information of climate data facilitates the application

of multi-model ensembles, which is often used in hydrological impact studies.

In Central Vietnam, only a small number of studies on the impact of climate

change on river flows have been carried out. Souvignet et al. (2014) investigated

the linkages between discharge changes and trends in rainfall and temperature in

the VGTB basin. They found that the maximum discharge responds significantly

to precipitation changes which result in a prolonged wet season and an increase in

extreme rainfall events. Most research studies in the region rely on climate data

derived from one emission scenario (e.g. Vu et al., 2017) and/or one single GCM

and one statistical downscaling method exclusively due to limitations of regional cli-
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mate projections from different global and regional climate models for Central Vietnam.

The dynamic downscaled data under the new RCP scenarios has been available

recently. For instance, CORDEX simulations are being conducted for various parts

of the globe, and few are readily available nowadays such as for the European and

the African domain. For the CORDEX East Asia domain (CORDEX-EA), there is

only 1 GCM-RCM combination available for the historical period, i.e. the HadGEM2-

AO – HadGEM3-RA combination. For projected (future) time slices, only 1 GCM in

combination with 4 RCMs (RegCM v4, SNU MM5, SNU WRF v3, YSU-RSM v3) and

two scenarios are available. There is no regional climate data available for download

for the Southeast Asia domain (CORDEX-SEA).

5.2 Methodology

Modelling chain approach is often used in hydrological impact analysis. Many

impact studies have relied on the robustness of full modelling chains. Most studies

are conducted for European countries (e.g. Dobler et al., 2012a; Hurkmans et al.,

2010; van Pelt et al., 2009; Kay et al., 2006) while little is known about changes

on hydrological extremes in Southeast Asia in particular. These studies are often

still based on a single or limited number of GCMs/RCMs due to computational

constraints. Results obtained from studies based on a single global and/or regional

climate model that could not adequately represent the range of future flood frequencies

and magnitudes, therefore, should be interpreted with care (e.g. Gu et al., 2015; Del-

gado et al., 2014; Rasmussen et al., 2012; Minville et al., 2008; Prudhomme et al., 2003).

In this PhD thesis a modelling chain is employed to study the possible impact

of climate change on future extreme high and low flows in the VGTB river basin.

The modelling chain consists of climate emission scenarios, a multi-model ensemble of

GCM/RCMs, various bias correction (BC) approaches, a fully distributed hydrological

model and flow frequency analyses. The modelling chain applied for the analysis of

future high and low flows in the VGTB basin is presented in Figure 5.1.

GCM/RCMs were described in chapter 2 while the fully distributed hydrological

WaSiM was presented in chapter 3, the followings sections focus on the descriptions of

bias correction and flow frequency analysis.

5.2.1 Bias correction methods

It is well known that outputs from RCMs are usually systematically biased compared

to observation stations (Kleinn et al., 2005). Reasons for this mismatch are diverse

but mainly include the imperfect conceptualization, incorrect initialization, climate
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Figure 5.1: Flow chat of the applied hydrometeorological modeling chain

variability, discretization and spatial averaging within grid cells (Teutschbein and

Seibert, 2012). Therefore, further post-processing methods correcting for the biases of

RCMs data are recommended in the literature for hydrological applications (Driessen

et al., 2010; Dobler et al., 2012b; Vormoor et al., 2015). A correction is mainly

required for variables that inhibit a high spatial and temporal variability such as

precipitation (e.g., Di Luca et al., 2012; Tselioudis et al., 2012), since variability

of rainfall is a central driver of many processes in nature (Fiener and Auerswald, 2009).

There is a number of different methodologies in the literature to correct for biases

in RCMs outputs. The complexities of the methods are different, but most of the

methods employ a transfer function between modeled RCM and observed data. The

BC methods can range from simple linear methods (e.g. Hay et al., 2000; Lenderink

et al., 2007; Leander and Buishand, 2007) or non-linear power transformation (Sha-

balova et al., 2003; Lenderink et al., 2007) and statistical distribution-based algorithms

(e.g., Themeßl et al., 2011; Piani et al., 2010) towards more complex transfer functions

using Copulas (Laux et al., 2011; Vogl et al., 2012; Mao et al., 2015). Table 5.1

provides an overview of the applied bias correction methods.

Of all bias correction methods considered, the power law transform e.g. (Sha-

balova et al., 2003) adjusts both the variance and the mean of precipitation time series

(Teutschbein and Seibert, 2012), while the linear scaling (e.g. Lenderink et al., 2007)
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only corrects for biases in the monthly mean.

Table 5.1: Applied bias correction methods for precipitation (P) and temperature (T)

Name Abbreviation Variable
Power law transform (monthly) PLT monthly P
Local intensity scaling (monthly) LOCI monthly P
Empirical Quantile Mapping eQM P, T
Linear Scaling LS P, T
Gamma distribution Quantile Mapping gamQM P
Power law transform PLT P

The local intensity scaling (e.g. Schmidli et al., 2006) accounts for the monthly mean

as well as both wet-day frequencies and wet-day intensities separately. For the LOCI

method, a specific RCM precipitation threshold is determined first, then a linear

scaling factor is estimated based on the long-term monthly mean wet-day intensi-

ties (Teutschbein and Seibert, 2012). The Quantile Mapping method corrects most

of the statistical characteristics, such as the mean value, the standard deviation and

the percentiles by matching the distribution function of raw RCM outputs to that of

the observations. This is done by creating a transfer function to shift the probability

distributions of precipitation and/or temperature (Sennikovs et al., 2009; Teutschbein

et al., 2012). In this PhD thesis, both the Quantile Mapping based on the Gamma dis-

tribution and on the empirical distribution (e.g. Fang et al., 2015) are employed. The

Gamma distribution is often assumed to be suitable for precipitation (e.g. Teutschbein

and Seibert, 2012; Fang et al., 2015), whereas the empirical Quantile Mapping can

be used for both precipitation and temperature (Fang et al., 2015). A comprehensive

review of these bias correction methods is given in Teutschbein and Seibert (2012) or

Fang et al. (2015).

5.2.2 Performance measures of extreme discharge based on

applied BC methods

A performance indicator is introduced in this PhD thesis to assess the overall perfor-

mance of both the GCM/RCM model combinations and the six BC methods, for both

the high river flows and the low river flows. The performance is evaluated based on

the simulated extreme high and low flow distributions for the baseline (1980-1999),

obtained by the hydrological model WaSiM. The indicators are obtained by calculating

the Percent Error (PE), i.e. the absolute change between the observed and BC sim-

ulated discharge values, divided by the observed discharge, between: i) the medians,

ii) the interquartile ranges, and iii) the 0.95 and 0.05 percentiles of observed and bias

corrected data. For each criterion an indicator is derived, i.e. ‘+’ for PE < 20% indi-

cating good performance, ‘*’ for 20% < PE < 40%, indicating fair performance, and ‘-’

for PE > 40%, indicating poor performance. The final indicator is chosen based on the
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majority of indicator occurrence. In case of equal occurrence, the ‘*’ indicator symbol

is selected.

5.2.3 Delta change method

Apart from the applied methods for bias correction of regional climate model inputs

for WaSiM, i.e. precipitation and temperature, the delta change method (Prudhomme

et al., 2003; Minville et al., 2008; Dobler et al., 2012b; Teutschbein and Seibert, 2012) is

employed to adjust the modeled discharges. Particularly, the delta change is applied to

values for the high and low flows of Nong Son station, separately for the three different

time slices. First, the ratio ∆x between the projected high/low flow for the future time

slices x f ut and the corresponding baseline values xbse is calculated:

∆xi j =
x f ut,i j

xbse,i j
, (5.1)

where i is the return period (in years), and j is the specific GCM/RCM model combi-

nation. Second, the adjusted high or low flow for the future time slices Q
f ut
ad j is obtained

by multiplying the observed discharges Qobs with the discharge ratio ∆x:

Q f ut
ad j,i j = Qi,obs ·∆xi j. (5.2)

The adjusted high and low flows are calculated for return periods from 1 to 50 years.

Note that the underlying data is 20 years only, thus the uncertainties of the results

may increase with increasing return periods. The main limitation of the delta change

method is that only the first-order statistics (changes in the mean between future and

baseline scenarios) are considered, while other statistical properties remain unchanged

(Fowler et al., 2007; Sunyer et al., 2012; Kidmose et al., 2013; Camici et al., 2013).

5.2.4 Extreme frequency analysis

The calibrated WaSiM model is applied to reproduce river flows at Nong Son station

under future climate conditions using different climate scenarios. The annual maxima

values for different GCM/RCM combinations and time slices are selected for high flow

frequency analysis. The N-day minima approach is employed for low flow frequency

analysis. The minimum values are averaged over different durations to produce annual

minimum (n-day) series (WMO, 2008). In this PhD thesis, the minimum 1-day, 7-

day and 15-day moving average series derived from daily data are considered. The

Generalized Extreme Value (GEV) probability distribution is applied for the high and

low flows frequency analysis. The GEV allows the combination of the description of

three extreme distributions, i.e. Gumbel (type I), Fréchet (type II), and Weibull (type
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III), into one single form (Towler et al., 2010). The cumulative distribution function

of the GEV is defined by the following equation:

F(x;θ) = exp

{
−
[

1+β ·(x−λ

σ

)]−1
β

}
(5.3)

where θ = [λ ,σ ,β ], λ is the location parameter which describes the position of the

distribution indicating where it is centered, σ is the scale parameter which indicates

the spread of the distribution, and β is the shape parameter defining the type of

the distribution. If β = 0, the GEV corresponds to the type I, if β > 0, the GEV

is equivalent to the type II, and if β < 0, the GEV is equivalent to the type III. In

this study, the GEV distribution based on the Maximum Likelihood Estimator (MLE)

was fitted to simulated annual maximum and annual minimum discharges to estimate

high and low flows with return periods going beyond the length of the available data.

For the MLE, the unknown parameters θ is estimated by numerically maximizing the

likelihood function which is of the following form (Towler et al., 2010):

llh(θ) =
N

∑
i=1

log f (xi;θ) , (5.4)

where f (x;θ ) is the derivative of F(x;θ ) with respect to x. N is the sample size.

Equation 5.4 can be expanded as

llh(θ) =−N · logσ −
(

1+
1
β

)
·

N

∑
i=1

log
[

1+β ·
(

xi−λ

σ

)]
−

N

∑
i=1

[
1+β ·

(
xi−λ

σ

)]−1
β

(5.5)

where [1+ β · (xi−λ

σ
)] ≥ 0. For computational convenience, -llh(θ ) is usually mini-

mized instead of directly maximizing llh(θ ). For more details on the MLE, the reader

is referred to Towler et al. (2010) and Myung (2003).

The sample size may impact the fit of the GEV distributions, i.e. the maximum

likelihood estimator might be unstable for sample sizes of n < 50 (e.g., Hosking and

Wallis, 1997; Coles and Dixon, 1999; Martins and Stedinger, 2000). To quantify the

uncertainties related to a reduced sample size n (20-year period in this PhD thesis), a

permutation test i.e. bootstrapping test was developed and applied to check whether

the parameters (shape, location, and scale parameter) from the fitted distribution based

on a sample size of n = 20 come from the same distribution based on a larger sample size

of 50 (the sample size that indicates as a sample size to obtain robust estimations). The

bootstrap sampling with replacement i.e. one or more data points may be absent and

one or more may be repeated more than once in any resampled data set (Hall et al.,
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2004), was applied based on the observed discharge series (1980-1999) at Nong Son

station to artificially increase the sample size for the maximum likelihood estimation.

5.3 Results and discussion

5.3.1 Performance of different bias correction methods

Baseline period

In this section, the hydrological WaSiM model is forced with different bias-corrected

GCM/RCM outputs to reproduce daily discharges at Nong Son station for the baseline

(1980-1999). These discharges are then compared with simulated discharges without

bias correction as well as the observed discharges. Results of the observed and simu-

lated long-term mean monthly discharges (1980-1999) at Nong Son station based on

the different BC methods for the MRI-MRI combination are shown in Figure 5.2 as

an example. It can be seen that the raw GCM/RCM and most of the BC methods

lead to a significantly (41% on average) underestimated discharge during the rainy sea-

son (September to December). Of all the considered BC methods, the PLT monthly

performs fair for the rainy season, however, it leads to a considerable overestimation

during the period from June to August. This overestimation mainly occurs when the

discharge based on the raw GCM/RCM data is considerably higher than the observed

discharge. It is thus not able to reproduce the seasonality of the discharge hydrograph.

The same holds true for all other GCM/RCM combinations.

Figure 5.2: Observed and modeled long-term mean monthly discharge (1980-1999)
at Nong Son station based on 6 different BC methods, for the MRI-MRI combination
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Figure 5.3 shows the spread of the high flows and low flows simulated with the

WaSiM hydrological model, forced with HadCM3Q10-HadRM3P combination as an

example. For the high flows derived from the raw climate data, one can observe a

large underestimation leading to a reduced variance compared to the observed flows.

Similar findings can be found for all other model combinations. While CCAM-CCAM

shows the smallest range of the high flows, HadCM3Q11-HadRM3P presents the largest

range amongst all GCM/RCM combinations (Figure 5.4). Considering the low flows,

the majority of GCM/RCM combinations leads to underestimations, except for the

CCAM-CCAM, CCSM-RegCM, ECHAM3-REMO and MRI-MRI. Generally, tenden-

cies of underestimations using the raw GCM/RCM combinations are observed for both

high and low flows.

Figure 5.3: High flows (top) and low flows (bottom) for the baseline period (1980-
1999) simulated with WaSiM, forced with HadCM3Q10-HadRM3P using different bias
corrected methods (1- Obs, 2- no BC, 3- PLT monthly, 4- LOCI monthly, 5- eQM, 6-
LS, 7- gamQM, 8- PLT).
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Figure 5.4: High flows for the baseline period (1980-1999) simulated with WaSiM,
forced with CCAM-CCAM (top) and HadCM3Q11-HadRM3P (bottom) using different
bias corrected methods (1- Obs, 2- no BC, 3- PLT monthly, 4- LOCI monthly, 5- eQM,
6- LS, 7- gamQM, 8- PLT).

When forcing the WaSiM model with the bias-corrected GCM/RCM data, the

impact of the different BC methods on the resulting flow distributions varies largely.

Table 5.2 shows the median and the interquartile range, which is the differences between

75 percentile and 25 percentile, of simulated high flows for the different BC methods and

different GCM/RCM combinations. It can be seen from the table that the interquartile

range varies between 19 m3/s (CCAM-CCAM & PLT) and 5371 m3/s (CCSM-MM5

& PLT monthly) while the median values range between 341 m3/s (CCAM-CCAM &

LOCI monthly) and 6498 m3/s (ECHAM5-HadRM3P & PLT monthly).
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Table 5.2: Median and interquartile range (iqr) of simulated high flows (m3/s) at
Nong Son station using raw (uncorrected) and BC data. The applied BC methods are:
1- PLT monthly, 2- LOCI monthly, 3- eQM, 4- LS, 5- gamQM, 6- PLT.

GCM/RCM combination Raw
BC method

1 2 3 4 5 6

CCAM-CCAM
median 327 4062 341 383 984 486 361
iqr 109 3437 304 77 433 177 19

CCSM-MM5
median 2395 5786 1830 1674 1579 1419 1733
iqr 1513 5371 911 968 597 600 775

CCSM-RegCM
median 1895 3604 1539 1500 1931 1021 1337
iqr 1021 4706 796 546 667 350 369

ECHAM3-REMO
median 2574 5250 1731 1998 2080 1509 1938
iqr 1493 5018 918 942 719 519 660

ECHAM5-HadRM3P
median 2848 6498 863 1628 1029 812 1571
iqr 2637 3419 367 1861 479 439 1387

HadCM3Q0-HadRM3P
median 2657 4431 1018 1648 988 767 1660
iqr 2723 2390 324 1774 466 401 1509

HadCM3Q10-HadRM3P
median 2468 4115 758 1258 748 566 1186
iqr 848 3419 313 1308 393 315 1086

HadCM3Q11-HadRM3P
median 2951 4574 652 1406 626 506 1382
iqr 3131 4516 508 1998 365 284 1773

HadCM3Q13-HadRM3P
median 2550 5898 752 1351 634 503 1303
iqr 3070 3512 350 1577 368 282 1557

MRI-MRI
median 2785 5391 1070 1646 1759 1097 1647
iqr 778 4076 533 1175 633 391 605

Although the annual high flows generated from most bias correction methods

are smaller than observed discharges as well as smaller than discharges simulated

by uncorrected GCM/RCM outputs, the high flows derived from PLT monthly are

larger than discharges simulated by uncorrected GCM/RCM outputs in most model

combinations. Considering annual low flows, a similar impact of the BC methods on

the resulting low flow distributions is found. In most model combinations, the low

flows derived from PLT monthly are larger than discharges simulated by uncorrected

GCM/RCM outputs, whereas the low flows derived from other BC methods are

smaller. While the interquartile ranges from 2 m3/s to 14.5 m3/s, the median is

between 11 m3/s to 58 m3/s. Results for all GCM/RCM combinations and BC

methods for low flows are shown in Table 5.3.

Table 5.4 and Table 5.5 show the overall performance of both the GCM/RCM

model combinations and the 6 BC methods, for the high river flows and the low river

flows. It can be seen that, for most model combinations and the BC methods the ”-”

sign is dominant for both high and low flows. It is an indication that none of the BC

methods applied to RCM outputs can lead to reasonable high and low flows for the
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control period.

Table 5.3: Median and interquartile range (iqr) of simulated low flows (m3/s) at Nong
Son station using raw (uncorrected) and BC data. The applied BC methods are: 1-
PLT monthly, 2- LOCI monthly, 3- eQM, 4- LS, 5- gamQM, 6- PLT.

GCM/RCM combination Raw
BC method

1 2 3 4 5 6

CCAM-CCAM
median 46.2 42.1 10.9 57.9 15.1 15.8 17.5
iqr 23.6 11.2 2.7 7 2.9 3.5 2.9

CCSM-MM5
median 15.8 23.8 14.6 18.2 17.1 17.6 16.8
iqr 5.4 6.6 3 5 4.4 4.3 4.3

CCSM-RegCM
median 42.5 36 14.8 45.7 18.1 19.9 19.2
iqr 7 14.5 3.1 7.5 4.3 4.5 4.9

ECHAM3-REMO
median 47.8 38.5 16.2 23 17.9 19 18.1
iqr 19.7 10.5 4.6 5.9 4.3 4.5 4.4

ECHAM5-HadRM3P
median 24.6 29.3 12.3 16.2 15.6 16.1 14.9
iqr 6.7 11.1 2.4 3.7 3.4 3.6 2.9

HadCM3Q0-HadRM3P
median 16.9 32.7 12.3 15.7 15.4 15.8 14.4
iqr 6.5 9.9 2.3 3.5 3.2 3.5 2.8

HadCM3Q10-HadRM3P
median 16 25.1 11.3 14.7 14.5 14.8 13.7
iqr 4.4 8.7 2.3 2.9 2.8 2.9 2.8

HadCM3Q11-HadRM3P
median 12.8 18.2 10.9 12.9 13.7 13.8 12.2
iqr 3.2 7.1 2.2 2.4 2.5 2.6 2.6

HadCM3Q13-HadRM3P
median 13.4 26.6 10.6 13.1 13.8 14 12.5
iqr 4.1 10.2 2 2.5 2.6 2.7 2.7

MRI-MRI
median 53.3 39.9 13.6 44.7 17.5 18.7 17.6
iqr 23.7 12.2 2.9 7.1 4.3 4.4 4.3
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Table 5.4: Performance of different models and bias correction methods for the
high flow (baseline period). The applied BC methods are: 1- PLT monthly, 2-
LOCI monthly, 3- eQM, 4- LS, 5- gamQM, 6- PLT. ‘+’ indicates good, ‘*’ fair, and ‘-‘
poor performance.

GCM/RCM
combination

BC method
1 2 3 4 5 6

CCAM-CCAM * - - - - -
CCSM-MM5 * - - - - -
CCSM-RegCM - - - - - -
ECHAM3-REMO - - - - - -
ECHAM5-HadRM3P * - * - - -
HadCM3Q0-HadRM3P * - * - - -
HadCM3Q10-HadRM3P + - - - - -
HadCM3Q11-HadRM3P - - * - - *
HadCM3Q13-HadRM3P * - - - - -
MRI-MRI * - - - - -

Table 5.5: Performance of different models and bias correction methods for low flow
(baseline period). The applied BC methods are: 1- PLT monthly, 2- LOCI monthly, 3-
eQM, 4- LS, 5- gamQM, 6- PLT. ‘+’ indicates good, ‘*’ fair, and ‘-‘ poor performance.

GCM/RCM
combination

BC method
1 2 3 4 5 6

CCAM-CCAM * - * - - -
CCSM-MM5 * - - - - -
CCSM-RegCM * - * - - -
ECHAM3-REMO * - * - - -
ECHAM5-HadRM3P * - - - - -
HadCM3Q0-HadRM3P * - - - - -
HadCM3Q10-HadRM3P * - - - - -
HadCM3Q11-HadRM3P * - - - - -
HadCM3Q13-HadRM3P * - - - - -
MRI-MRI * - - - - -

Future period

In this section, the WaSiM model is forced with different bias-corrected GCM/RCM

outputs to reproduce series of daily flows at Nong Son station for future periods 2011-

2030, 2031-2050 and 2080-2099 under the two emission scenarios A1B and A2. Sub-

sequently, annual maxima and minima flows are calculated accordingly. The expected

changes in the mean of high and low flows are calculated for future periods by compar-

ing them with that of the baseline period (1980-1999). Figure 5.5 shows the expected

range of changes in the mean of high flow for the A1B scenario from 6 different BC
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methods.

Figure 5.5: Range of the mean simulated high flows at Nong Son station using
different GCM/RCM combinations and 6 different bias correction methods, represented
by the boxes. The absolute changes of the mean values between future and baseline
(future minus baseline) are shown for the A1B scenario.

In general, large differences between the different combinations can be observed.

For each time slice, the projected changes of the mean of high flows are positive

for the majority of the GCM/RCM combinations. In other words, the high flows

tend to increase in general. CCSM-MM5 provides one exception, showing a negative

signal, while ECHAM3-REMO exhibits a positive change in all time slices. For the

period 2031-2050, four models (CCAM-CCAM, CCSM-RegCM, ECHAM3-REMO and

ECHAM5-HadRM3P) project an increase of the mean of the high flows whereas three

models (CCSM-MM5, HadCM3Q0-HadRM3P and HadCM3Q11-HadRM3P) show a

negative change. Meanwhile HadCM3Q10-HadRM3P and HadCM3Q13-HadRM3P

indicate an inconsistent tendency.

For the time slice 2080-2099, CCAM-CCAM, HadCM3Q0-HadRM3P, HadCM3Q10-

HadRM3P, and MRI-MRI shows a positive increase while CCSM-RegCM,
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HadCM3Q11-HadRM3P, and HadCM3Q13-HadRM3P present a decreasing sig-

nal. For all model combinations, the largest spread in the change of median values for

all time slices is between -450 m3/s (CCSM-RegCM, 2080-2099, A1B) and +300 m3/s

(MRI-MRI, 2080-2099, A1B). For the A2 scenario, a similar finding can be observed.

While CCAM-CCAM and ECHAM3-REMO show a positive change for both time

slices 2011-2030 and 2031-2050, the CCSM-MM5 shows a negative change (Figure 5.6).

The largest spread in the change of median values for all time slices is between -440

m3/s (CCSM-RegCM, 2080-2099, A2) and +400 m3/s (ECHAM3-REMO, 2031-2050,

A2).

Figure 5.6: Range of the mean simulated high flows at Nong Son station using
different GCM/RCM combinations and 6 different bias correction methods, represented
by the boxes. The absolute changes of the mean values between future and baseline
(future minus baseline) are shown for the A2 scenario.

Similarly, there is a large variation in the low flows between model combinations

for the two scenarios. For scenario A1B, most models exhibit a negative projected

change, except for the CCAM-CCAM, which points towards positive changes for all

time slices (Figure 5.7). The same holds true for scenario A2 (Figure 5.8). Among

all combinations, the CCSM-RegCM shows the largest negative change of the median

value (about -5 m3/s in 2080-2099, A2) while CCAM-CCAM shows the largest positive

value (about +1.5 m3/s in 2080-2099, A2).
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Figure 5.7: Range of the mean simulated low flows at Nong Son station using different
GCM/RCM combinations and 6 different bias correction methods, represented by the
boxes. The absolute changes of the mean values between future and baseline (future
minus baseline) are shown for the A1B scenario.
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Figure 5.8: Range of the mean simulated low flows at Nong Son station using different
GCM/RCM combinations and 6 different bias correction methods, represented by the
boxes. The absolute changes of the mean values between future and baseline (future
minus baseline) are shown for the A2 scenario.

5.3.2 Extreme value analysis: expected future high flow

The results of the high flow analysis are shown in Table 5.6 and Table 5.7 for the A1B

scenario and the A2 scenario, respectively.

The high flow analysis is performed based on the observations at Nong Son station

due to the limited skills of the applied BC methods in reproducing the extreme high

flows for the baseline period. The observations are adjusted by the delta change

approach instead (section 3.1.9), i.e. climate change induced discharge signals,

simulated by WaSiM and forced by the raw GCM/RCM data are transferred to the

observations according to equation 5.2.

Adjusted discharges for different return periods ranging from 2 to 50 years are based

on yearly maxima. It can be seen that there is a high discrepancy among GCM/RCM
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model ensemble members on whether the adjusted peak discharges will increase or

decrease for the different time slices. Some models always show a positive signal in high

flows for all time slices and scenarios (e.g. ECHAM3-REMO, HadCM3Q10-HadRM3P,

HadCM3Q13-HadRM3P and MRI-MRI). The A2 scenario yields stronger positive

changes of the high flows than the A1B scenario for ECHAM3-REMO (from +6% to

+56%, depending on return periods and time slices).

Table 5.6: Adjusted high flows (m3/s) for different return periods, A1B scenario,
obtained from different GCM/RCM outputs (values of negative changes in italic).

Scenario/ A1B
Return period (year) 2 5 10 20 50

2011-2030

CCAM-CCAM 3450 3475 3519 3615 3995
CCSM-MM5 3654 3678 3719 3809 4167
CCSM-RegCM 5545 7178 7726 7809 7896
ECHAM3-REMO 6306 7410 8288 9186 10393

2031-2050

CCAM-CCAM 5440 7646 9896 13145 19698
CCSM-MM5 4242 4267 4311 4407 4782
CCSM-RegCM 5903 5921 5952 6012 6269
ECHAM3-REMO 7657 9293 10510 11674 13116
ECHAM5-HadRM3P 6149 8005 9566 11245 13640
HadCM3Q0-HadRM3P 4808 4846 4912 5057 5651
HadCM3Q10-HadRM3P 4675 8194 12430 18716 31821
HadCM3Q11-HadRM3P 5782 6284 6350 6368 6427
HadCM3Q13-HadRM3P 4901 8636 13421 20927 37672

2080-2099

CCAM-CCAM 6032 6060 6100 6205 6605
CCSM-RegCM 3121 4413 5295 6188 7443
ECHAM5-HadRM3P 4710 5649 6462 7352 8642
HadCM3Q0-HadRM3P 6907 8734 8773 8856 9139
HadCM3Q10-HadRM3P 7413 8718 9439 9966 10438
HadCM3Q11-HadRM3P 4655 7632 11238 16626 27997
HadCM3Q13-HadRM3P 6532 7618 8205 8629 9008
MRI-MRI 7117 11337 16178 23043 36585
Observed flow 4947 6667 7574 8302 9076
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Table 5.7: Adjusted high flows (m3/s) for different return periods, A2 scenario, ob-
tained from different GCM/RCM outputs (values of negative changes in italic).

Scenario/ A2
Return period (year) 2 5 10 20 50

2011-2030

CCAM-CCAM 4744 6411 7977 10148 14362
CCSM-MM5 5458 7137 7209 7273 7475
CCSM-RegCM 6869 8094 8128 8201 8454
ECHAM3-REMO 7243 9272 11077 13116 16194

2031-2050

CCAM-CCAM 5240 6613 7300 7873 8535
CCSM-MM5 4371 4466 4538 4703 5264
CCSM-RegCM 6191 8296 9251 9900 10416
ECHAM3-REMO 8144 10244 12171 14414 17840

2080-2099

CCAM-CCAM 6868 8874 9635 10014 10117
CCSM-RegCM 3465 4384 4789 5060 5278
Observed flow 4947 6667 7574 8302 9076

On the other hand CCAM-CCAM, CCSM-MM5, CCSM-RegCM, ECHAM5-

HadRM3P, HadCM3Q0-HadRM3P and HadCM3Q11-HadRM3P show different

signals in the change of the high flows for different time slices. For example CCAM-

CCAM projects a positive signal for the A1B scenario in 2031-2050 and for the

A2 scenario in 2080-2099, while it shows a negative signal for the A1B scenario in

2011-2030 and 2080-2099. CCSM-MM5 shows a negative signal of high flows in

2011-2030 and 2031-2050 for the A1B scenario and for the A2 scenario in 2031-2050,

but it shows a positive signal for high flows with the frequency less than 10-year

return period and a negative signal with higher return periods for the A2 scenario in

2011-2030. ECHAM5-HadRM3P shows a positive signal in 2031-2050, but a negative

signal in 2080-2099 for the A1B scenario. In contrast, HadCM3Q0-HadRM3P shows a

negative change for high flows in 2031-2050, but it exhibits positive signal for A1B in

2080-2099. HadCM3Q10-HadRM3P shows a positive signal for A1B in 2080-2099 but

it shows a negative change for high flow with frequency less than 5-year return period

and a very high positive change in the high flows with frequency larger than 20-year

return period are simulated in the period 2031-2050 for A1B scenario.

In the period 2031-2050, very high changes in the high flows are simulated for
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the A1B scenario. The HadCM3Q13-HadRM3P shows the largest positive change

(+315%) among others followed by HadCM3Q10-HadRM3P (+250%) and CCAM-

CCAM (+117%) for 50-year return period. Largest extremely high flow with return

period of 50 year is about four times higher than that of the observation in baseline

period. Interestingly, other realizations of the HadCM3-HadRM3, e.g. the Q11 and

Q13 runs even show negative changes for high flow at some return periods. There is

no individual model showing a continuous decrease of peak flows for all time slices.

Figure 5.9 exemplarily show results for the high flows, in combination with return

periods for period 2031-2050, A1B scenario. It can be clearly seen in the figure that

five curves (HadCM3Q10-HadRM3P, HadCM3Q13-HadRM3P, ECHAM3-REMO,

CCAM-CCAM and ECHAM5-HAdRM3P) are higher than that of observation whereas

other four curves (HadCM3Q0-HadRM3P, HadCM3Q11-HadRM3P, CCSM-MM5 and

CCSM-RegCM) are lower.

Figure 5.9: Maximum high flow for return periods ranging from 1 to 50 years, for
different GCM/RCM combinations and the time slice 2031-2050 (A1B scenario).

Of all considered GCM/RCM combinations, a return period of 50 years results
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in the largest spread in the adjusted high flows, ranging between -56 % and +315

%, compared to observed flows. Although individual GCM/RCM combinations show

contrasting directional changes, on average, the number as well as the magnitude of

the positive signals is larger than that of the negative ones.

The statistical bootstrap test is applied to analyze the robustness of the results as a

consequence of the reduced sample (n = 20). It is found that for all three parameters of

the GEV, the Ho hypothesis, i.e. the values of the GEV parameters from n = 20 from

same distribution with the values from n = 50 has to be accepted at α = 0.01, giving

a strong indication that the GEV fits (based on a 20-year period) are robust. This is

critical, in particular for the shape parameter β , since a negative β value and β = 0

would indicate a Type III or a Type I extreme value distribution, respectively, whereas

β > 0 indicates a Type II distribution. Based on the statistical tests, the chances to

erroneously apply a Type II distribution instead of a Type III distribution are very low.

Figure 5.10 illustrates the probability distribution function (PDF) of scale param-

eter σ , location parameter λ and shape parameter β for n = 20 and n = 50. The

vertical line at each figure illustrates the empirical corresponding value (σ , λ and β ,

respectively) from the observations (n = 20). It can be seen that this value is close to

the mean value of the bootstrap PDF of both, the n = 20 and the n = 50 sample size.

This finding holds true for three parameters.

Apart from the statistical bootstrap test, the impact of the sample size on the

mean values and the standard deviations of the three GEV parameters is analyzed

(Figure 5.11). It can be seen that the mean values are relatively robust for sample

sizes of n = 20. The standard deviations of the location parameters are always larger

than those of the scale parameters, the values decreases with increased sample sizes.

The impact of the sample size of the maximum likelihood estimator on the derived

flow situation is also quantified. Figure 5.12 illustrates how the estimation of the GEV

parameters based on different sample sizes propagate into the estimated high flows

calculated for the observations (1980-1999). As shown in the figure, small sample sizes

of n = 10 and n = 20 lead to non-robust estimations while sample sizes higher than n =

50 are converging (e.g. Hosking and Wallis, 1997; Coles and Dixon, 1999; Martins and

Stedinger, 2000). The exact value of the relative differences related to a sample size of

n = 50 for several selected return periods can be obtained from Table 5.8. Compared

to a sample size of n = 50, the highest deviation is found for n = 20, resulting in a

relative difference of 2.6% for a return period of 100 years. Overall, the estimated error

of the limited sample size is expected to be small. In the same way, similar errors are

assumed for the future time slices of 20 years (2020s, 2040s, and 2090s).
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Figure 5.10: Probability Density Functions of fitted scale parameter σ (top), location
parameter λ (middle) and shape parameter β (bottom), obtained from 1000 bootstrap
samples from the observed high flow population for the period 1980-1999, based on a
sample size of n = 20 (black line) and n = 50 (blue line).
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Figure 5.11: Fitted parameter of the GEV distribution based on the sample size
(top: scale, middle: shape, bottom: location), ranging from 11-50. The horizontal line
indicates the mean of the 1000 permutations, whereas the vertical whiskers represent
the standard errors (+/- 1 standard deviation).
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Figure 5.12: Impact of the sample size on the simulated high flows for different return
periods.

Table 5.8: Relative difference [%] of small sample sizes on estimated high flows for
different return periods. A sample size of n = 50 is taken as a reference.

Number of
sample

Return period (years)
2 5 10 25 50 100

10 0.44 0.79 1.05 1.4 1.67 1.95
20 0.79 0.49 1.13 1.8 2.23 2.63
30 0.69 0.6 0.5 0.42 0.4 0.42
40 0.65 0.58 0.28 0.15 0.28 0.31

5.3.3 Extreme value analysis: expected future low flow

This section subsequently presents results of low flow analysis with different durations

(1-, 7-, and 15-day moving average) rather than the annual minimum value since

the information on mid long-term low flows is relatively important for the VGTB region.

The low flow analysis is performed based on the observations at Nong Son station

due to the limited skills of the applied BC methods in reproducing the extreme low flows

for the baseline period. The observations are adjusted by the delta change approach,

i.e. climate change induced discharge signals, simulated by WaSiM and forced by

the raw GCM/RCM data are transferred to the observations according to equation 5.2.
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Table 5.9 to Table 5.11 shows results for the low flow frequency analysis for both

the A1B and the A2 scenario under different time slices 2011-2030, 2031-2050 and

2080-2099. The results are obtained in the same way as high flow but now for 1-,

7- and 15-d annual minimum flow. As shown, there is a large variation in 1-day,

7-day and 15-day minimum flows between the different models. However, under both

scenarios, for most considered models and for all time slices, low flows of different

durations show a negative change compared to observed low flow frequency. Notably,

realizations of HadCM3-HadRM3, CCSM-RegCM and MRI always show a negative

signal for all time slices under both scenarios.

There is only the CCAM-CCAM model that shows positive signals for the A2

scenario in 2080-2099 for 1-day, 7-day and 15-day minimum flows and it shows

contrasting directional changes for other time slices. ECHAM3-REMO often shows a

positive signal for low flows with a return period larger than 10 years for both scenarios

A1B and A2. Overall, the changes of low flows range between -68% and +39% across

all considered scenarios and the negative changes are dominant. The 15-day low

flow shows the largest negative signal (-68%), followed by 7-day low flow (-67%)

and 1-day low flow (-65%). This implies less water availability in dry conditions,

in which mid long-term duration (the 15-day) low flow is likely more severe in the future.
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Table 5.9: Adjusted low flows (m3/s) for different return periods, A1B scenario,
obtained from different GCM/RCM outputs (values of negative changes in italic).

Scenario/ Moving average A1B
Return period (years) 2 5 10 20 50

2011-2030
CCAM-CCAM 1-day 25.7 24.0 23.9 23.6 22.9

7-day 28.8 24.1 23.3 23.2 22.9
15-day 31.6 26.2 24.8 24.4 24.3

CCSM-MM5 1-day 28.1 24.6 22.5 20.4 17.6
7-day 31.3 26.7 24.0 21.5 18.1
15-day 34.8 29.6 26.5 23.6 19.9

CCSM-RegCM 1-day 25.9 22.1 20.2 18.6 16.8
7-day 28.5 23.9 21.6 19.9 18.0
15-day 31.1 26.0 23.5 21.5 19.4

ECHAM3-REMO 1-day 23.7 23.5 23.2 22.8 21.3
7-day 26.2 26.0 25.7 25.0 23.1
15-day 28.5 24.4 24.1 23.4 22.1

2031-2050
CCAM-CCAM 1-day 31.7 25.6 22.6 20.0 16.7

7-day 35.8 28.1 24.2 20.7 16.3
15-day 39.7 30.9 26.1 22.0 16.7

CCSM-MM5 1-day 27.4 23.5 22.1 21.1 20.2
7-day 30.5 25.6 23.7 22.5 21.2
15-day 33.7 28.0 25.8 24.2 22.6

CCSM-RegCM 1-day 24.5 22.3 21.6 21.2 20.9
7-day 27.0 24.1 23.1 22.4 21.8
15-day 29.4 26.2 25.1 24.4 23.6

ECHAM3-REMO 1-day 29.9 29.7 29.4 28.7 26.5
7-day 33.2 32.9 32.4 31.5 28.8
15-day 34.8 30.3 29.8 29.0 27.2

ECHAM5-HadRM3P 1-day 32.3 24.8 21.4 18.9 16.1
7-day 36.1 27.1 23.2 20.2 17.0
15-day 39.8 29.8 25.4 22.0 18.4

HadCM3Q0-HadRM3P 1-day 21.4 20.5 20.4 20.3 19.9
7-day 23.9 21.0 20.9 20.9 20.6
15-day 26.2 22.7 21.9 21.6 21.5

HadCM3Q10-HadRM3P 1-day 24.0 20.7 19.8 19.5 19.4
7-day 26.6 22.5 21.4 20.8 20.7
15-day 29.3 24.8 23.3 22.5 22.1

HadCM3Q11-HadRM3P 1-day 23.2 18.8 17.3 16.4 15.6
7-day 25.8 20.5 18.7 17.5 16.5
15-day 28.2 22.3 20.3 19.0 17.8

HadCM3Q13-HadRM3P 1-day 26.3 22.3 20.6 19.3 18.0
7-day 29.3 24.4 22.2 20.6 19.0
15-day 32.4 26.9 24.3 22.3 20.3
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Table 5.10: Adjusted low flows (m3/s) for different return periods, A1B scenario,
obtained from different GCM/RCM outputs (values of negative changes in italic).

Scenario/ Moving average A1B
Return period (years) 2 5 10 20 50

2080-2099

CCAM-CCAM 1-day 26.9 22.9 22.8 22.6 22.1
7-day 30.2 24.6 23.1 22.4 22.2
15-day 33.0 27.0 25.4 24.7 24.5

CCSM-RegCM 1-day 9.7 8.5 7.9 7.4 6.9
7-day 10.6 9.1 8.4 7.8 7.1
15-day 11.4 9.8 8.9 8.2 7.5

ECHAM5-HadRM3P 1-day 26.4 21.6 20 19.1 18.3
7-day 29.4 23.6 21.7 20.6 19.6
15-day 32.3 25.9 23.8 22.5 21.5

HadCM3Q0-HadRM3P 1-day 21.6 19.6 19.6 19.5 19.3
7-day 24.1 21.1 20.3 20.1 20.0
15-day 26.6 23.0 22.0 21.4 21.0

HadCM3Q10-HadRM3P 1-day 18.1 15.4 15.4 15.3 15.0
7-day 20.1 16.6 16.4 16.3 16.0
15-day 22.0 18.2 17.3 17.2 17.1

HadCM3Q11-HadRM3P 1-day 22.8 18.5 17.2 16.4 15.6
7-day 25.4 20.1 18.4 17.3 16.3
15-day 27.7 22.0 20.1 18.8 17.7

HadCM3Q13-HadRM3P 1-day 23.7 19.2 17.3 15.8 14.3
7-day 26.4 20.9 18.6 16.8 15.0
15-day 29.2 23.0 20.2 18.1 16.1

MRI-MRI 1-day 24.6 20.8 20.3 20.2 20.0
7-day 27.4 22.6 21.5 21.3 21.1
15-day 30.4 24.7 23.1 22.4 22.0

Observed flow 1-day 28.9 24.2 22.5 21.3 20.1
7-day 32.3 26.4 24.2 22.6 21.1
15-day 35.6 29.0 26.3 24.4 22.5
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Table 5.11: Adjusted low flows (m3/s) for different return periods, A2 scenario,
obtained from different GCM/RCM outputs (values of negative changes in italic).

Scenario/ Moving A2
Return period (years) average 2 5 10 20 50

2011-2030

CCAM-CCAM 1-day 27.2 22.4 21.2 21.1 20.8
7-day 30.6 24.5 22.6 21.5 20.7
15-day 33.4 26.5 24.3 23.0 22.1

CCSM-MM5 1-day 29.1 24.4 22.2 20.5 18.5
7-day 31.3 26.7 24.0 21.5 18.1
15-day 35.7 29.1 26.0 23.5 20.9

CCSM-RegCM 1-day 26.9 22.1 20.3 19.1 17.8
7-day 28.5 23.9 21.6 19.9 18.0
15-day 32.3 25.8 23.3 21.5 19.7

ECHAM3-REMO 1-day 29.6 29.3 29.0 28.2 25.8
7-day 26.2 26.0 25.7 25.0 23.1
15-day 29.5 29.2 28.7 27.6 24.9

2031-2050

CCAM-CCAM 1-day 26.5 22.9 22.5 22.3 22.0
7-day 29.9 25.0 23.6 22.9 22.6
15-day 32.8 27.4 25.7 24.9 24.6

CCSM-MM5 1-day 27.3 23.6 22.2 21.2 20.2
7-day 30.5 25.7 23.8 22.5 21.1
15-day 33.7 28.2 25.9 24.3 22.6

CCSM-RegCM 1-day 27.3 22.4 19.9 17.8 15.4
7-day 30.1 24.1 21.0 18.6 15.8
15-day 32.5 25.8 22.5 19.8 17.0

ECHAM3-REMO 1-day 26.2 25.9 25.5 24.6 21.9
7-day 28.1 27.9 27.4 26.2 23.6
15-day 30.7 29.8 29.2 28.1 25.5

2080-2099

CCAM-CCAM 1-day 29.7 24.5 23.3 23.1 22.9
7-day 33.5 26.9 25.0 23.9 23.3
15-day 37.2 29.7 27.4 26.1 25.3

CCSM-RegCM 1-day 9.9 8.6 8.0 7.4 6.8
7-day 10.8 9.3 8.5 7.8 7.1
15-day 11.7 9.9 9.0 8.3 7.5

Observed flow 1-day 28.9 24.2 22.5 21.3 20.1
7-day 32.3 26.4 24.2 22.6 21.1
15-day 35.6 29.0 26.3 24.4 22.5
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Figure 5.13 shows 7-day low flows for different GCM/RCM combinations and the

time slice 2080-2099 under the A1B scenario. The figure is constructed in the same

way as for high flows, but with a 7-day moving-average low flow. The baseline’s

non-exceedance curve is higher than most of those from GCM/RCM combinations,

indicating decreased low flows for all return periods. This holds true for the other

time slices and scenarios.

Figure 5.13: 7-day low flow for return periods ranging from 1 to 50 years, for different
GCM/RCM combinations and the time slice 2080-2099 (A1B scenario).

Similar to the high flows, the bootstrap tests are done for the low flows, the fitted

GEV distribution based on a limited sample size of n = 20 is found to be robust.

The Ho hypothesis where values of the GEV parameters from n = 20 from the same

distribution with the values from n = 50 has to be accepted at α = 0.01 (Figure 5.14).

The vertical line illustrates the empirical corresponding values from the observations

(n = 20). This value is relatively close to the mean value of the bootstrap PDF of

both, the n = 20 and the n = 50 sample size.

Similar to the high flows, the mean values for sample sizes of n = 20 is found to be

robust, while the standard errors decrease with increasing sample size (Figure 5.15).
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Figure 5.14: Probability Density Functions (PDF) of fitted scale parameter σ (top),
location parameter λ (middle) and shape parameter β (bottom), obtained from 1000
bootstrap samples from the observed low flow population for the period 1980-1999,
based on a sample size of n = 20 (black line) and n = 50 (blue line).
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Figure 5.15: Fitted parameter of the GEV distribution based on the sample size
(top: scale, middle: shape, bottom: location), ranging from 11-50. The horizontal line
indicates the mean of the 1000 permutations, whereas the vertical whiskers represent
the standard errors (+/- 1 standard deviation).
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However, the impact of the small sample sizes, given as relative differences compared

to a n = 50 sample size, on the estimated low flows is much higher (Figure 5.16).

Figure 5.16: Impact of the sample size on the simulated low flows for different return
periods.

Table 5.12 presents estimates of the relative errors for all resamples, 1000 Bootstrap

resamples and for several different sample sizes.

Table 5.12: Relative difference [%] of small sample sizes on estimated low flows for
different return periods. A sample size of n = 50 is taken as a reference.

Number of
samples

Return period (years)
2 5 10 25 50 100

10 3.5 1.8 2.5 7 16.5 48.6
20 1.1 5.5 12.4 27.9 52.7 127.9
30 0.4 2.8 5.6 11.9 22.1 53.4
40 0.1 0.4 0.5 0.7 0.9 1.4

Of all considered sample sizes, the relative errors for n = 40 are smallest for all

return periods. Compared to a sample size of n = 50, the highest deviation is found

for n = 20, resulting in a relative difference of 128% for a return period of 100 years.

This implies the interpretation of the derived low flows for the future is not robust,

since the results are affected by high uncertainties.
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5.3.4 Discussion

All considered GCM/RCMs model combinations underestimate the high flows and

the majority of model combinations underestimate the low flows when using the raw

RCM outputs. This is in line with e.g. Fowler et al. (2007); van Pelt et al. (2009);

Fang et al. (2015). The possible reason for this underestimation may be attributed to

the underestimation of extreme precipitation in the GCMs due to improper physical

parameterizations (Delgado et al., 2014). The difficulty of GCMs in simulating

monsoon characteristics and the associated precipitation frequencies and amounts for

complex climatic regions across Asia is mentioned in various studies (e.g. Yang et al.,

2008; Gain et al., 2011; Hoang et al., 2016). Another possible reason, but rather of

minor importance, may originate from the underestimation of the discharges simu-

lated with WaSiM, as mentioned earlier in the model calibration section (section 4.1.1).

Most of the considered bias correction methods applied to precipitation and

temperature as input for WaSiM merely adjust extreme events. When forcing WaSiM

with bias-corrected GCM/RCMs, discharges remain underestimated, particularly if

LS, eQM, LOCI monthly, PLT, and gamQM are used. This finding is consistent

with the results of Fang et al. (2015), who stated that the LS and LOCI method

underestimate extreme precipitation, and are therefore less suitable for hydrological

impact assessment. In contrast to all other BC methods, simulations derived from

the PLT monthly method overestimate the projected discharges considerably. Similar

deficiencies can also be found in previous studies (e.g. van Pelt et al., 2009; te Linde

et al., 2010). Potentially, BC methods can also remove much of the spread in the

driving variables, which could disrupt signals of climate change. There is no guarantee

that the corrected statistics of the driving variables will remain unchanged for the

future, especially if the physical processes are expected to change (Cloke et al., 2013).

Thus, the application of BC methods may even add more uncertainties to climate

change impact studies than using the raw climate projections (Teutschbein and

Seibert, 2012).

These limitations require improved BC methods, especially for extreme hydro-

logical flows. More sophisticated GCM/RCM output BC methods that also target

extreme values, such as Copula-based approaches, are proposed (e.g. Laux et al.,

2011; Mao et al., 2015). However, these BC methods are not applied here due to

high computation demands. Considering the urgent need of information on expected

future hydrological extremes for hydrological decision support, the delta change

approach was used. It possibly provides another feasible option to adjust the observed

extreme flows directly by the climate change signal, rather than correcting the WaSiM

input data is suggested. Based on results adjusted by the delta change method, the

projected hydrological extreme flows better transfer the GCM/RCM spread to the

extreme high and low flows than any of the six considered BC methods. This spread,
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i.e. differences in the magnitude of the projected extreme high and low flows, can be

primarily associated to the selection (and the parameterization) of the GCM/RCM

combinations as well as the emission scenarios (e.g. Xu et al., 2011; Jung et al., 2011),

providing possible realizations of the expected future.

In this study, the extreme value analyses are based on relatively short time series

of 20 years for the baseline as well as the scenario periods, similarly to other studies

(e.g. Gain et al., 2011; Taye et al., 2011; Kidmose et al., 2013). Since larger periods

are suggested to derive future high and low flows (e.g., Martins and Stedinger, 2000),

further uncertainties can be expected due to potential non-robust estimates of the

GEV distributions using the maximum likelihood method. By following a statistical

bootstrap sampling strategy, these uncertainties can be roughly estimated (Coles and

Dixon, 1999). It is found that the GEV parameter uncertainties have a stronger im-

pact on the derived low flows, while only small impacts are identified for the high flows.

Considering the modeling chain applied in climate impact studies, GCMs are found

to exhibit the largest uncertainties (e.g. Minville et al., 2008; Dobler et al., 2012b;

Aich et al., 2014). But, considering a relatively large GCM/RCM ensemble, as done

in this study, still remains the best option to quantify the potential spread of future

hydrological extremes using impact models.1

1This chapter was published as Dang et al. (2017)
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Chapter 6

Summary, conclusions and

perspective

6.1 Overall summary

The first central objective of this study was to investigate the performance of a fully

spatially distributed hydrological model for a weak infrastructure basin in Central

Vietnam. The hydrological model WaSiM was set up and adapted to the upper part

of the VGTB basin. The model was calibrated (1976-1981) and validated (1982-1988

and 1995-2000) using station rainfall and climatic reanalysis data. Both, the manual

approach and the automate parameter estimation tool PEST (Doherty, 2002) were

applied for the model calibration. A quantification of hydrological model parameter

uncertainty was done for the region using a covariance analysis approach.

Second, an irrigation optimization model was developed and integrated with

WaSiM to identify the optimal water-efficient irrigation technology, irrigation area and

irrigation scheduling under limited water availabilities for a typical irrigation scheme

which was elaborated jointly with focal groups of local stakeholders in the VGTB

basin. The irrigation optimization model was designed to account for water shortages,

often occurring during the summer-autumn season in this region. Irrigation strategies

are derived based on different initial reservoir water levels at the beginning of the rice

cropping season as well as different maximum water releases.

Third, the impact of climate change on extreme high and low river flows has been

investigated using a complex modelling chain. The modelling chain consisted of six

GCMs and six RCMs making up to ten combinations, six BC approaches, the fully

distributed hydrological model WaSiM running in a continuous mode, the delta change

method to adjust observed discharge, and the extreme frequency analysis to derive high

and low flows for the future based on GEV distribution. In addition, a bootstrapping

test was applied using observed discharges to quantify the uncertainties from the limited
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availability data for fitting the GEV distribution. The possible effects on high and low

flows were analysized and discussed.

6.2 Conclusions

The PhD thesis presented the first climate change impact assessment on hydrological

extremes and is amongst the first modelling studies considering different irrigation

technologies in the VGTB basin, Central Vietnam, under limited data availability. It

has been analyzed how climate change could potentially impact on high and low flows

and to identify a suitable irrigation management for the VGTB basin under limited

water availability and thereby contributing to the hydrological and agricultural decision

support in the region.

6.2.1 Hydrological modelling for the VuGia-ThuBon basin

The calibrated hydrological model WaSiM showed a good performance in the re-

production of the historical river flows of the VGTB basin, and was thus found

suitable to study the hydrological dynamics in the tropical monsoon climate of Central

Vietnam. Compared to lumped and semi-distributed hydrological models in operation,

it provides another alternative to address additional, more physically-based research

questions in the future.

The nonlinear parameter estimation tool PEST is a robust tool for automatic pa-

rameter estimation applied for the Vu Gia - Thu Bon basin, central Vietnam. Both

model calibration approaches (manual approach and PEST tool) show a good agree-

ment between modeled and observed discharges. The analysis of the confidence ellipses

revealed small uncertainties for most of the estimated model parameters obtained using

PEST tool.

6.2.2 Integrated hydrological-irrigation optimization model

An integrated hydrological and irrigation optimization model was developed to

identify optimal agricultural management strategies in a typical rice irrigation scheme

in Central Vietnam. Under different hypothesized initial water levels in the reservoir

during the summer-autumn cropping season in 2012, the results predominantly suggest

the usage of AWD rather than CF. The irrigation water input by AWD is less than

that by CF, indicating that the AWD technology is more water-efficient. In addition,

the model provides staggered irrigation schedules for AWD and CF for a typical rice

irrigation system.
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The AWD practice could be a promising irrigation option that can eliminate the

increasing irrigation water stress in the Central Vietnam. The results also suggest that

the AWD technology reduce the number of irrigation events significantly compared to

CF. Thus costs induced in irrigation can be reduced if AWD is applied properly in the

region.

The integrated hydrological-irrigation optimization model is found to be robust on

different computing environments. The results demonstrate that this coupled mod-

eling system may provide a useful tool for water and agricultural managers in the

region to support crucial decisions such as suitable irrigation technologies, the irriga-

tion scheduling as well as the irrigation area under given water constraints. Despite

the aforementioned limitations, this study is intended to lay a foundation for further

studies aiming at the improvement of existing or the design of new irrigation systems

in the region. In the long run, the model can potentially be transferred to similar

irrigation schemes in the region. However, actual experiments need to be set up in the

region to validate the model results under different environmental conditions.

6.2.3 Impact of climate change on high and low flows

Due to limitations of the considered BC methods (applied to precipitation and

temperature as input correction for WaSiM) for the assessment of the extreme flows,

this PhD thesis concludes on the usage of the delta change approach (applied directly

to the WaSiM output) to facilitate hydrological decision support.

In the VGTB basin, substantial changes in hydrological extremes concerning both

high and low flows in the VGTB basin have been found. On the one hand, the future

high flows are likely to increase, while low flows show a systematical reduction for

all considered durations: 1-, 7- and 15-days moving average, indicating that low flow

problems become more severe in the future and are probably more important than the

increase in flood risk.

Conclusions about future changes of low flow and high flows are affected with high

uncertainties, resulting from the different compartments of the modelling chain. In

general, this limits the applicability in decision making in water management. Special

care has to be taken if design numbers for flood protection and irrigation systems are

derived, which are based on long return periods.

Large spreads of the magnitude (even with different signs) in the projected future

flows are found. This highlights a challenge in quantifying future hydrological extreme

changes. Therefore, the emphasize should be on the need for combined climate

and hydrological ensemble simulations rather than single realizations in hydrological
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impact analysis and caution should be taken when implementing any actions against

climate change. The issue of impact of climate change on high and low flows should

be considered and integrated into policy and development plan rather than merely

focusing on evaluation the magnitude of effect of climate change on the high and low

flows.

The applied SRES scenarios cover a RCP-equivalent range of 6-8 W/m2, and still

provide the only source of climate projections for hydrological decision support in the

Vu Gia - Thu Bon basin due to the limited climate simulations based on different RCP

scenarios.

6.3 Perspective

This PhD thesis made clear that climate change impact assessment on hydrological

extremes remains a complex issue associated with uncertainties in climate change

projections, model parameterization and structures, bias correction methods and

extreme value analysis. Even though more recent climate simulations based on

different RCP scenarios would be favorable, the applied SRES scenarios still provide

the only source of climate projections for hydrological decision support in this region.

The available data employed in this dissertation study cover a RCP-equivalent range

of 6-8 W/m2 only. Special care has to be taken if design numbers for flood protection

and irrigation systems are derived, which are based on long return periods. Thus,

encouraging more research on this topic is important in order to increase awareness

and to help improve further investigations and predictions. Future research should

take into consideration the following:

Hydrological changes of a basin are not solely dependent upon climate inputs but

simultaneously driven by multiple factors such as land use/land cover (Laux et al.,

2017), urbanization and irrigation works. Projected simulations were conducted with

current land use and land cover conditions. This could lead to inaccuracies. Thus,

possible changes in future land use and land cover, hydropower dam constructions

and water transfer project from Thu Bon river to Vu Gia river resulted from a rapid

development of the basin’s socio-economy should be included in future studies so as to

yield more comprehensive insights on hydrological regimes and water resources in the

VGTB river basin.

The validation of the hydrological model was restricted to observed discharges

only. Therefore, the validation should be extended to other variables e.g. estimated

evapotranspiration, if observations become available. Moreover, the distributed

hydrological model WaSiM should be applied for further regions having similar

conditions to investigate the model performance.
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Application of a wider range of RCP scenarios (if applicable i.e. more CORDEX

data are available for East Asia domain) instead of SRES emission scenarios to account

for improvements of GCMs’ technical development as well as the emission scenarios.

Additional monetary (e.g. labor and reservoir operation costs) and environmental

factors (different global warming potentials of the cropping technologies) are not

included in the optimization model, thus a more detailed cost-benefit analysis is still

missing and should be included in future studies.

The integrated hydrological and irrigation optimization model was developed and

tested for one cropping cycle (2012) only. Applicability with long-term climate projec-

tions or seasonal climate forecasts will be more beneficial for decision making, i.e. for

designing new irrigation schemes and for seasonal reservoir management. For this pur-

pose, however, further modelling as well as actual field experiments in Central Vietnam

is necessary to validate the strength and the benefit of the model system.
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