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Dirk Blömkera, Minoo Kamranib , S. Mohammad Hosseinib

Institut für Mathematik, Universität Augsburg, 86135 Augsburg, Germany a

Department of Applied Mathematics, Tarbiat Modares University,
P. O. Box 14115-175, Tehran, Iranb

September 11, 2012

Abstract

The main purpose of this paper is to investigate the spectral Galerkin
method for spatial discretization. We combine it with the method intro-
duced by Kloeden, Jentzen & Winkel in [15] for temporal discretization of
stochastic partial differential equations and study pathwise convergence.
We consider the case of colored noise, instead of the usual space-time
white noise that was used before for the spatial discretization. The rate
of convergence in uniform topology is estimated for the stochastic Burgers
equation. Numerical examples illustrate the estimated convergence rate.

Keywords: stochastic partial differential equations, colored noise, Galerkin approxi-

mation, stochastic Burgers equation.

1 Introduction

In this article the numerical approximation of nonlinear parabolic stochastic
partial differential equations (SPDEs) is considered. Following the ideas of
Blömker & Jentzen [3] for the case of space-time white noise, a numerical method
for simulating nonlinear SPDEs with additive noise for the case of colored noise
is proposed and analyzed. The main novelty in this article is to estimate the
spatial and temporal discretization error in the L∞-topology in the case of
colored noise. This is different from the usual space-time white noise, that was
considered before in [3] for spatial discretization.

We consider as forcing term an infinite dimensional stochastic process ex-
panded in the eigenfunctions of the linear operator A present in the SPDE. We
focus on the case where the Brownian motions are not independent. This is due
to the fact that the spatial covariance operator of the forcing does not commute
with A.

In order to illustrate the main result of this article we consider stochastic
Burgers equation with Dirichlet boundary conditions on a bounded domain. To
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be more precise, let T > 0, (Ω,F ,P) be a probability space, and let the space-
time continuous stochastic process X : [0, T ] × Ω → C([0, 1],R) be the unique
solution of the SPDE

dXt =
[
∂2

∂x2Xt −Xt · ∂∂xXt

]
dt+ dWt, Xt(0) = Xt(1) = 0, X0 = 0, (1)

for t ∈ [0, T ] and x ∈ (0, 1). The noise is given by a cylindrical Wiener process
Wt, t ∈ [0, T ] defined later.

There are numerous publications for colored or correlated noise of the type
presented here, which is white in time and colored in space. For Burgers equation
see [2, 5, 4, 8], for example. Here we refrain from the usual assumption, that
the covariance of W and the Laplacian are jointly diagonal.

The existence and uniqueness of solutions of the stochastic Burgers equation
was studied by Da Prato & Gatarek in [5] for colored noise. Da Prato & Zabzcyk
in [6] and [7] studied (1) for space-time white noise and Gyöngy & Nualart in
[9] studied the equation the whole real line.

Alabert and Gyöngy obtained a spatial discretization of this equation in
L2−topology [1]. Recently, Blömker and Jentzen [3] obtained a bound on spatial
discretization error in uniform topology by the spectral Galerkin method for the
case of space-time white noise.

The spectral Galerkin method has been extensively studied for stochastic
partial differential equations with space-time white noise. See for example [13,
16, 17, 18, 19].

Hausenblas investigated the discretization error of semilinear stochastic evo-
lution equations in Lp-spaces, Banach spaces and quasi linear evolution equa-
tions driven by nuclear or space time white noise in [11, 12]. Gyöngy and
Shardlow in [21, 10] apply finite differences in order to approximate the mild
solution of parabolic SPDEs driven by space-time white noise. Yoo investigates
the mild solution of parabolic SPDEs by finite differences in [22].

Our aim here is to extend the result of [3]. First we discuss the case of
colored noise not diagonal with respect to the eigenfunctions of the Laplacian.
Secondly, using the time discretization that was introduced in [15], we obtain
an error estimate for the full space-time discretization.

The reminder of this paper is organized as follows. Section 2 gives the setting
and the assumptions. In Section 3 we investigate spatial discretization error,
and in Section 4 the temporal error is obtained. Finally, in the last section
numerical examples are presented.

2 Setting and assumptions

Fix T > 0, let (Ω,F ,P) be a probability space and both (V, ‖.‖V ) and (W, ‖.‖W )
be R−Banach spaces. Moreover, let PN : V → V , N ∈ N, be a sequence of
bounded linear operators.
Throughout this article the following assumptions will be used.
Assumption 1. Let S : (0, T ]→ L(W,V ) be a continuous mapping satisfying

sup
0<t≤T

(
tα‖St‖L(W,V )

)
<∞, sup

N∈N
sup

0≤t≤T
(tαNγ‖St − PNSt‖L(W,V )) <∞, (2)

where α ∈ [0, 1) and γ ∈ (0,∞) are given constants.
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Assumption 2. Let F : V → W be a locally Lischitz continuous mapping,
which satisfies

sup
‖v‖V ,‖w‖V ≤r

‖F (v)− F (w)‖W
‖v − w‖V

<∞ (3)

for every r > 0.
Assumption 3. Let O : [0, T ]×Ω→ V be a stochastic process with continuous
sample paths and

sup
N∈N

sup
0≤t≤T

Nγ‖Ot(ω)− PN (Ot(ω))‖V <∞, (4)

for every ω ∈ Ω, where γ ∈ (0,∞) is given in Assumption 1.
Assumption 4. Let XN : [0, T ]×Ω→ V, N ∈ N, be a sequence of stochastic
processes with continuous sample paths such that

sup
M∈N

sup
0≤s≤T

‖XM
s (ω)‖V <∞ (5)

and

XN
t (ω) =

∫ t

0

PNSt−sF (XN
s (ω))ds+ PN (Ot(ω)), (6)

for every t ∈ [0, T ], ω ∈ Ω and every N ∈ N.
Blömker and Jentzen [3] obtained the following Theorem.

Theorem 1. Let Assumptions 1-4 be fulfilled. Then, there exists a unique
stochastic process X : [0, T ] × Ω → V with continuous sample paths, which
fulfills

Xt(ω) =

∫ t

0

St−sF (Xs(ω))ds+Ot(ω), (7)

for every t ∈ [0, T ] and every ω ∈ Ω. Moreover, there exists a F/B([0,∞))-
measurable mapping C : [0,∞)→ Ω such that

sup
0≤t≤T

‖ Xt(ω)−XN
t (ω) ‖V≤ C(ω) ·N−γ , (8)

holds for every N ∈ N and every ω ∈ Ω, where γ ∈ (0,∞) is given in Assumption
1.

3 Spatial discretization for the case of colored
noise

Now we will show that Assumptions 1-4 are satisfied for Burgers equation in the
case of colored noise. Therefore from Theorem 1 we can conclude convergence of
the Galerkin method for this equation. Most of the results are already proven in
[3]. We only state the results needed later in the proofs, and the modifications
necessary due to the presence of colored noise.

In the reminder of the paper define V = C0([0, 1]), W = H−1(0, 1). The
mapping ∂ : V →W is given by

(∂v)(ϕ) = (v′)(ϕ) := − < v,ϕ′ >L2
= −

∫ 1

0

v(x)ϕ′(x)dx

for every v ∈ V and ϕ ∈ H1(0, 1), is a bounded linear mapping from V to W .
From Lemma 4.6 and 4.8 in [3] we have the following Lemmas.
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Lemma 2. The mapping S : (0, T ]→ L(H−1(0, 1), C0([0, 1])) given by

(St(w))(x) =

N∑
n=1

(
2 · e−n

2π2t · w(sin(nπ(.))) · sin(nπx)
)

for every x ∈ [0, 1], w ∈ H−1(0, 1) and every t ∈ (0, T ], is well defined and
satisfies Assumption 1.

From Assumption 1 we derive

sup
0<t≤T

(
tα‖St∂‖L(V,V )

)
<∞ , (9)

where α was introduced in Assumption 1.
Remark 1 As we can see from Lemma 4.6 in [3], Assumption 1 is satisfied for
α = 3

4 , and γ ∈ [0, 1
2 ).

Lemma 3. The mapping F : C0([0, 1]) → H−1(0, 1), given for every v ∈
C0([0, 1]) by F (v) = ∂x(v2), satisfies Assumption 2.

In the following we present details on the Q-Wiener process W corresponding
to the colored noise, in order to prove Assumption 3 later. We focus on a
d-dimensional setting, while the result needed later is for d = 1. Let βi :
[0, T ]×Ω→ R, i ∈ Nd, be a family of Brownian motions that are not necessarily
independent. They are correlated as given by

E(βk(t)βl(t)) =< Qek, el > ·t, k = (k1, ..., kd) ∈ Nd, t > 0, l = (l1, ..., ld) ∈ Nd,

where for every k ∈ Nd

ek : [0, 1]d → R, ek(x) = 2
d
2 sin(k1πx1) · . . . · sin(kdπxd), x ∈ [0, 1]d,

are smooth functions. Furthermore, Q is a symmetric non-negative operator,
such that

< Qek, el >=

∫ 1

0

∫ 1

0

ek(x)el(y)q(x− y)dydx, (10)

for k, l ∈ Nd and some positive definite function q.
Moreover, for every k ∈ Nd define the real numbers λk = π2(k2

1+...+k2
d) ∈ R.

Lemma 4. Assume there exists a ρ > 0 such that in dimension d ∈ {1, 2, 3}∑
i∈Nd

∑
j∈Nd

‖i‖ρ−1
2 ‖j‖ρ−1

2 |〈Qei, ej〉| <∞.

Then there exists a stochastic process O : [0, T ]× Ω→ V , which satisfies

sup
0≤t1≤t2≤T

∥∥Ot2(ω)−Ot1(ω)
∥∥
V

(t2 − t1)θ
<∞,

sup
N∈N

sup
0≤t≤T

Nγ‖Ot(ω)− PN (Ot(ω))‖V <∞,
(11)

for every ω ∈ Ω, every θ ∈ (0,min{ 1
2 ,

ρ
2}), every γ ∈ (0, ρ). Furthermore, O

satisfies

P
[

lim
N→∞

sup
0≤t≤T

∥∥∥Ot − ∑
i∈{1,...,N}d

(
− λi

∫ t

0

e−λi(t−s)βisds+ βit

)
ei

∥∥∥
V

= 0
]

= 1,
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sup
N∈N

[(
E
[

sup
0≤t≤T

‖Ot−PNOt‖pV
]) 1

p

Nγ
]

+ sup
0≤t1≤t2≤T

(
E
[
‖Ot2 −Ot1‖

p
V

]) 1
p

(t2 − t1)θ
<∞

for every p ∈ [1,∞), and every γ ∈ (0, ρ).

We need some technical Lemmas first, in order to prove this Lemma.

Lemma 5. For every t1, t2 ∈ [0, T ] with t1 ≤ t2, and every r ∈ (0, 1) we have

E
(∫ t2

0

e−λi(t2−s)dβis −
∫ t1

0

e−λi(t1−s)dβis

)(∫ t2

0

e−λj(t2−s)dβjs −
∫ t1

0

e−λj(t1−s)dβjs

)
≤ 2(λi + λj)

r−1(t2 − t1)r〈Qei, ej〉
(12)

for all i, j ∈ Nd.

Proof. Fix t1, t2 ∈ [0, T ] with t1 ≤ t2, and i, j ∈ Nd. Define ∆t = t2 − t1 and
Λij = λi + λj . We obtain

E
(∫ t2

0

e−λi(t2−s)dβis −
∫ t1

0

e−λi(t1−s)dβis

)
·
(∫ t2

0

e−λj(t2−s)dβjs −
∫ t1

0

e−λj(t1−s)dβjs

)
= E

(∫ t2

t1

e−λi(t2−s)dβis + (e−λi∆t − 1)

∫ t1

0

e−λi(t1−s)dβis

)
×
(∫ t2

t1

e−λj(t2−s)dβjs + (e−λj∆t − 1)

∫ t1

0

e−λj(t1−s)dβjs

)
=

∫ ∆t

0

e−Λijs〈Qei, ej〉ds

+
(
e−Λij∆t − e−λi∆t − e−λj∆t + 1

)
· 〈Qei, ej〉 ·

1− e−Λijt1

Λij

=
(

1− e−Λij∆t + (e−Λij∆t − e−λi∆t − e−λj∆t + 1)(1− e−Λijt1)
)
· 〈Qei, ej〉

Λij

≤
(
1− e−Λij∆t + (1− e−Λij∆t)(1− e−Λijt1)

)
· 〈Qei, ej〉

Λij

≤ 2 · 1− e−Λij∆t

Λij
· 〈Qei, ej〉.

Therefore, for every r ∈ (0, 1) we derive

E
(∫ t2

0

e−λi(t2−s)dβis −
∫ t1

0

e−λi(t1−s)dβis

)
·
(∫ t2

0

e−λj(t2−s)dβjs −
∫ t1

0

e−λj(t1−s)dβjs

)
≤ 2 ·

(
sup
x>0

1

x
(1− e−x)

)r
· Λr−1

ij (∆t)r · |〈Qei, ej〉|

= 2 · Λr−1
ij (∆t)r · |〈Qei, ej〉| .
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Lemma 6. For every t1, t2 ∈ [0, T ], with t1 ≤ t2, N ∈ N, p ∈ [1,∞) and every
α, θ ∈ (0, 1

2 ] we have(
E
[

sup
x∈[0,1]d

|ONt2 (x)−ONt1 (x)|p
]) 1

p

≤ C
∑
i,j∈IN

‖i‖2θ+2α−1
2 ‖j‖2θ+2α−1

2 |〈Qei, ej〉|(t2 − t1)θ

where C = C(d, p, α, θ) is a constant depending only on d, p, α and θ. The
stochastic process ON : [0, T ]× Ω→ C([0, 1]d) is given by

ONt =
∑
i∈IN

∫ t

0

e−λi(t−s)dβis · ei (13)

for every t ∈ [0, T ] and every N ∈ N, where IN = {1, ..., N}d.

Proof. Consider first

(ONt2 (x)−ONt1 (x))− (ONt2 (y)−ONt1 (y))

=
∑
i∈IN

(∫ t2

0

e−λi(t2−s)dβis −
∫ t1

0

e−λi(t1−s)dβis

)
.(ei(x)− ei(y)),

P−a.s. for every x, y ∈ [0, 1]d. Hence, expanding the square of the series as
a double sum and using Lemma 5 we obtain (again with ∆t = t2 − t1 and
Λij = λi + λj)

E|(ONt2 (x)−ONt1 (x))− (ONt2 (y)−ONt1 (y))|2

≤
∑
i,j∈IN

Λ2θ−1
ij (∆t)2θ|〈Qei, ej〉| · |(ei(x)− ei(y))(ej(x)− ej(y))|

≤ C
∑
i,j∈IN

Λ2θ−1
ij (∆t)2θ|〈Qei, ej〉| · (‖i‖22‖x− y‖22)α(‖j‖22‖x− y‖22)α

≤ C(∆t)2θ‖x− y‖4α2
∑
i,j∈IN

(‖i‖22 + ‖j‖22)2θ−1‖i‖2α2 ‖j‖2α2 |〈Qei, ej〉| ,

where we used that ek is bounded and Lipschitz. Therefore,

E|(ONt2 (x)−ONt1 (x))− (ONt2 (y)−ONt1 (y))|2

≤ C(∆t)2θ‖x− y‖4α2
∑
i,j∈IN

‖i‖2θ+2α−1
2 ‖j‖2θ+2α−1

2 |〈Qei, ej〉|.
(14)

Again from Lemma 5 we derive in a similar way for every x ∈ [0, 1]d

E
[
|ONt2 (x)−ONt1 (x)|2

]
≤ C

∑
i,j∈IN

Λ2θ−1
ij (∆t)2θ|〈Qei, ej〉|

≤ C
∑
i,j∈IN

(‖i‖22 + ‖j‖22)2θ−1(∆t)2θ|〈Qei, ej〉|.
(15)
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The Sobolev embedding of the fractional space Wα,p into C0([0, 1]d) given in
Theorem 1 in Section 2.2.4 in [20] yields

E
[∥∥ONt2 −ONt1∥∥pC0([0,1]d)

]
≤ C

∫
(0,1)d

∫
(0,1)d

(
E
[∣∣(ONt2 (x)−ONt1 (x))− (ONt2 (y)−ONt1 (y))

∣∣2]) p2
‖x− y‖d+pα

2

dxdy

+ C

∫
(0,1)d

(
E
[∣∣ONt2 (x)−ONt1 (x)

∣∣2]) p2 dx,
where we have used Gaussianity for the p-th moment. In the following, for
shorthand notation, all spatial integrals are over (0, 1)d.

Therefore, by (14) and (15)

E
[
‖ONt2 −O

N
t1‖

p
C0([0,1]d)

]
≤C

∫ ∫ (
(∆t)2θ‖x− y‖4α2

) p
2

‖x− y‖d+pα
2

dxdy
( ∑
i,j∈IN

(‖i‖2‖j‖2)2θ+2α−1|〈Qei, ej〉|
) p

2

+ C

∫
(∆t)pθ

( ∑
i,j∈IN

‖i‖2θ−1
2 ‖j‖2θ−1

2 |〈Qei, ej〉|
) p

2

dx

≤C
(

1 +

∫ ∫
‖x− y‖αp−d2 dxdy

)
· (∆t)pθ ·

( ∑
i,j∈IN

(‖i‖2‖j‖2)2θ+2α−1|〈Qei, ej〉|
) p

2

.

By the fact that with arbitrary d ∈ N∫ ∫
(‖x− y‖2)−αdxdy ≤ (3d)d

d− α

for every α ∈ (0, d), we derive(
E‖ONt2 −O

N
t1‖

p
C0([0,1]d)

) 1
p ≤ C

( ∑
i,j∈IN

(‖i‖2‖j‖2)2θ+2α−1|〈Qei, ej〉|
) 1

2

(∆t)θ.

Lemma 7. For every N,M ∈ N, N ≥ M , p ∈ [1,∞) and every α ∈ (0, 1
2 ] we

have(
E sup

0≤t≤T
‖ONt −OMt ‖

p
C0([0,1]d)

) 1
p ≤ C

( ∑
i,j∈IN\IM

‖i‖4α−1
2 ‖j‖4α−1

2 |〈Qei, ej〉|
) 1

2

,

where IN = {1, ..., N}d, IM = {1, ...,M}d and C = C(d, p, α, θ) is a constant
only depending on d, p, α, and θ.

Proof. Throughout this proof we assume α ∈ (0, 1
2 ) and p > 1

α . Moreover,
N > M is fixed. Define for every t ∈ [0, T ]

Y N,Mt =
∑

i∈IN\IM

∫ t

0

(t− s)−αe−λi(t−s)dβisei.
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The celebrated factorization method [6] yields

E sup
0≤t≤T

∥∥ONt −OMt ∥∥pC0([0,1]d)

= E sup
0≤t≤T

∥∥∥ sin(πα)

π

∫ t

0

(t− s)α−1St−sY
N,M
s ds

∥∥∥p
C0([0,1]d)

≤ E sup
0≤t≤T

∥∥∥ ∫ t

0

(t− s)α−1St−sY
N,M
s ds

∥∥∥p
C0([0,1]d)

.

Therefore, using Hölder inequality and boundedness of ‖St‖L(C0([0,1]d)) yields

E sup
0≤t≤T

∥∥ONt −OMt ∥∥pC0([0,1]d)

≤ sup
0≤t≤T

(∫ t

0

(t− s)
p(α−1)
p−1 ds

)p−1

· E
∫ T

0

∥∥Y N,Ms

∥∥p
C0([0,1]d)

ds

≤ C
∫ T

0

E
∥∥Y N,Ms

∥∥p
C0([0,1]d)

ds.

Hence,(
E sup

0≤t≤T

∥∥ONt −OMt ∥∥pC0([0,1]d)

) 1
p ≤ C sup

0≤t≤T
(E
∥∥Y N,Mt

∥∥p
C0([0,1]d)

)
1
p . (16)

Again using the embedding of Wα,p into C0

E
∥∥Y N,Mt

∥∥p
C0([0,1]d)

≤ C
∫

(0,1)d

∫
(0,1)d

(
E|Y N,Mt (x)− Y N,Mt (y)|2

) p
2

‖x− y‖d+pα
2

dxdy

+ C

∫
(0,1)d

(
E|Y N,Mt (x)|2

) p
2

dx.

(17)

For the first term on the right side of (17) we proceed completely analogous to
Lemma 6, in order to obtain

E|Y N,Mt (x)− Y N,Mt (y)|2

≤ C
∑

i,j∈IN\IM

∫ ∞
0

s−2αe−sds · (λi + λj)
2α−1 · |〈Qei, ej〉| · ‖i‖2α2 ‖j‖2α2 ‖x− y‖4α2 .

Therefore,

E|Y N,Mt (x)− Y N,Mt (y)|2 ≤ C
∑

i,j∈IN\IM

|〈Qei, ej〉|
‖i‖1−4α

2 ‖j‖1−4α
2

‖x− y‖4α2 . (18)

For the second term on the right hand side of (17) we establish

E|Y N,Mt (x)|2 ≤
∑

i,j∈IN\IM

∫ t

0

(t− s)−2αe−(λi+λj)(t−s)ds|〈Qei, ej〉‖ei(x)||ej(x)|

≤ C
∑

i,j∈IN\IM

‖i‖2α−1
2 ‖j‖2α−1

2 |〈Qei, ej〉|.

(19)
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Hence using (18) and (19) we obtain from (17)

sup
0≤t≤T

(E
∥∥Y N,Mt

∥∥p
C0([0,1]d)

)
1
p ≤ C

( ∑
i,j∈IN\IM

‖i‖4α−1
2 ‖j‖4α−1

2 |〈Qei, ej〉|
) 1

2

. (20)

Finally, (16) and (20) yield(
E sup

0≤t≤T
‖ONt (x)−OMt (x)‖p

C0([0,1]d)

) 1
p ≤ C

( ∑
i,j∈IN\IM

‖i‖4α−1
2 ‖j‖4α−1

2 〈Qei, ej〉
) 1

2

.

Now we are ready to present the remaining parts of the proof of Lemma 4.

Proof. (Proof of Lemma 4). From Lemma 7 we obtain(
E
[

sup
0≤t≤T

∥∥ONt −OMt ∥∥pC0([0,1]d)

]) 1
p ≤ C

( ∑
i,j∈Nd\IM

‖i‖4α−1
2 ‖j‖4α−1

2 |〈Qei, ej〉|
) 1

2

≤ CM4α−ρ
( ∑
i,j∈Nd

‖i‖ρ−1
2 ‖j‖ρ−1

2 |〈Qei, ej〉|
) 1

2

for every N,M ∈ N with N ≥ M , p ∈ [1,∞), and α ∈ (0,min{ 1
2 ,

ρ
4}). The

processes ON form a Cauchy sequences in

Vp := Lp((Ω,F ,P), (C0([0, T ]× [0, 1]d))).

Hence, there exists a stochastic process Õ : [0, T ]×Ω→ C0([0, 1]d) with Õ ∈ Vp

and(
E sup

0≤t≤T

∥∥Õt −ONt ∥∥pC0([0,1]d)

) 1
p ≤ CN4α−ρ

( ∑
i,j∈Nd

‖i‖ρ−1
2 ‖j‖ρ−1

2 |〈Qei, ej〉|
) 1

2

for every N ∈ N, p ∈ [1,∞), and α ∈ (0,min{ 1
2 ,

ρ
4}).

Therefore,

sup
N∈N

{
Nγ
(
E sup

0≤t≤T

∥∥Õt −ONt ∥∥pC0([0,1]d)

) 1
p

}
<∞

for every γ ∈ (0, ρ) and every p ∈ [1,∞). This yields (Lemma 1 in [14])

P
[

sup
N∈N

sup
0≤t≤T

{
Nγ
∥∥Õt −ONt ∥∥C0([0,1]d)

}
<∞

]
= 1.

In particular,

P
[

lim
N→∞

sup
0≤t≤T

∥∥Õt −ONt ∥∥C0([0,1]d)
= 0

]
= 1

and

P
[

sup
N∈N

sup
0≤t≤T

{
Nγ
∥∥Õt − PN Õt∥∥C0([0,1]d)

}
<∞

]
= 1.

9



From Lemma 6 we derive(
E
∥∥ONt2−ONt1∥∥pC0([0,1]d)

) 1
p

≤ C
( ∑
i,j∈IN

(‖i‖2‖j‖2)
2θ+2( ρ2−θ)−1 |〈Qei, ej〉|

) 1
2 |t2 − t1|θ

≤ C
( ∑
i,j∈IN

‖i‖ρ−1
2 ‖j‖ρ−1

2 |〈Qei, ej〉|
) 1

2 |t2 − t1|θ

for every t1, t2 ∈ [0, T ], N ∈ N, and θ ∈ (0, ρ2 ). Provided θ ≤ 1
2 this furnishes(

E
∥∥Õt2 − Õt1∥∥pC0([0,1]d)

) 1
p ≤ C

( ∑
i,j∈IN

‖i‖ρ−1
2 ‖j‖ρ−1

2 |〈Qei, ej〉|
) 1

2 |t2 − t1|θ.

Hence, for every θ ∈ (0,min{ 1
2 ,

ρ
2})

P
[

sup
0≤t1,t2≤T

∥∥Õt2 − Õt1∥∥C0([0,1]d)

|t2 − t1|θ
<∞

]
= 1.

Therefore,

P
[
∀θ ∈ (0,min{ 1

2 ,
ρ
2}) : sup

0≤t1,t2≤T

∥∥Õt2 − Õt1∥∥C0([0,1]d)

|t2 − t1|θ
<∞

]
= 1.

In conclusion, this shows the existence of a process O : [0, T ]×Ω→ C0([0, 1]d),
which satisfies

sup
0≤t1,t2≤T

∥∥Ot2(ω)−Ot1(ω)
∥∥
C0([0,1]d)

|t2 − t1|θ
<∞,

and
sup
N∈N

sup
0≤t≤T

(
Nγ
∥∥Ot(ω)− PNOt(ω)

∥∥
C0([0,1]d)

)
<∞

for every ω ∈ Ω, θ ∈ (0,min{ 1
2 ,

ρ
2}), and γ ∈ (0, ρ). Moreover, O is indistin-

guishable from Õ, i.e.,

P
[
∀t ∈ [0, T ] : Ot = Õt

]
= 1.

Summarizing our results, we can state the following Lemma:

Lemma 8. Assume ρ > 0, d ∈ {1, 2, 3} and∑
i,j∈Nd

‖i‖ρ−1
2 ‖j‖ρ−1

2 |〈Qei, ej〉| <∞.

Furthermore, suppose that ξ : Ω→ V is F/V-measurable with

sup
N∈N

(
Nρ
∥∥ξ(ω)− PN (ξ(ω)

)∥∥
V

) <∞

10



for every ω ∈ Ω. Then there exists a stochastic process O : [0, T ]×Ω→ V with
continuous sample paths, satisfying

P

[
lim
N→∞

sup
0<t<T

∥∥∥∥Ot − Stξ −∑
i∈IN

(
− λi

∫ t

0

e−λi(t−s)βisds+ βit

)
ei

∥∥∥∥
V

= 0

]
= 1

and
sup
N∈N

sup
0≤t≤T

{
Nγ
∥∥∥Ot(ω)− PN (Ot(ω))

∥∥∥
V

}
<∞

for every ω ∈ Ω and γ ∈ (0, ρ).
In particular O satisfies Assumptions 3 for every γ ∈ (0, ρ).

Note that the process O in the previous Lemma 8 is the solution of the
following linear SPDE

dOt = ∆Otdt+ dWt, Ot|∂(0,1)d = 0, O0 = ξ,

for t ∈ [0, T ], where W is a Q-Wiener process.

Lemma 9. Let V = C0([0, 1]), W = H−1((0, 1)) and S : (0, T ] → L(W,V ),
and F : V →W be given by Lemmas 2, 3. Let O : [0, T ]×Ω→ V be a stochastic
process with continuous sample paths with

sup
N∈N

sup
0≤t≤T

‖PN (Ot(ω))‖V <∞

for every ω ∈ Ω. Then Assumption 4 is fulfilled.

Proof. The proof is exactly the same as the one of Lemma 4.9 in [3].

4 Time discretization

For time discretization of the finite dimensional SDEs (6) we study the method
introduced by Jentzen, Kloeden and Winkel in [15]. Consider the discretization
scheme for the Burgers equation, i.e., F (u) = ∂xu

2 in one dimension. This is for
simplicity of presentation only, as we need to bound various terms depending
on XN and F (XN ).

Through this section assume ρ > 0, is such that∑
i,j∈Nd

‖i‖ρ−1
2 ‖j‖ρ−1

2 |〈Qei, ej〉| <∞. (21)

Moreover assume θ ∈ (0,min{ 1
2 ,

ρ
2}). For the time discretization we define the

mapping Y N,Mm : Ω→ V for m ∈ {1, ...,M} by

Y N,Mm+1 (ω) = S∆t

(
Y N,Mm (ω)+∆t(PNF )(Y N,Mm (ω))

)
+PN

(
O(m+1)∆t(ω)−S∆tOm∆t(ω)

)
.

(22)
The purpose of this section is to consider the discretization error in time

‖XN
m∆t(ω)− Y N,Mm (ω)‖V ,

11



where

XN
m∆t(ω) =

∫ m∆t

0

PNSm∆t−sF (XN
s (ω))ds+ONm∆t(ω),

is the solution of the spatial discretization, which is evaluated at the grid points.
Recall that as we proved in the last section Assumptions 1-4 are satisfied for

the stochastic Burgers equation in one dimension.

Lemma 10. Let XN : [0, T ]× Ω→ V be the unique adapted stochastic process
with continuous sample paths, defined in Assumption 4. Assume that ON :
[0, T ] × Ω → C0([0, 1]d) is the stochastic process defined in (13). Then we
obtain ∥∥∥(XN

t2 (ω)−ONt2 (ω))− (XN
t1 (ω)−ONt1 (ω))

∥∥∥
V
≤ C(ω)(t2 − t1)

1
4

for every ω ∈ Ω and all t1, t2 ∈ [0, T ], with t1 < t2 where C is a finite random
variable C : Ω→ [0,∞) .

Proof. For every 0 ≤ t1 ≤ t2 ≤ T we have∥∥∥XN
t2 (ω)−ONt2 (ω)− (XN

t1 (ω)−ONt1 (ω))
∥∥∥
V

=
∥∥∥ ∫ t2

0

PNSt2−sF (XN
s (ω))ds−

∫ t1

0

PNSt1−sF (XN
s (ω))ds

∥∥∥
V

=
∥∥∥ ∫ t2

t1

PNSt2−sF (XN
s (ω))ds+

∫ t1

0

(St2−s − St1−s)PNF (XN
s (ω))ds

∥∥∥
V

≤
∫ t2

t1

‖PNSt2−s∂‖L(V,V )‖(XN
s (ω))2‖V ds+

∥∥∥∫ t1

0

St1−s(St2−t1 − I)PNF (XN
s (ω))ds

∥∥∥
V
.

From (9) and using the fact that St is the semigroup generated by Laplacian
operator, ∆, we conclude

‖XN
t2 (ω)−ONt2 (ω)− (XN

t1 (ω)−ONt1 (ω))‖V

≤ C1(ω)

∫ t2

t1

(t2 − s)−
3
4 ds+

∫ t1

0

‖PNSt1−s∆
1
4 ‖L(W,V )‖(St2−t1 − I)∆−

1
4 ‖L(W,V )‖F (XN

s (ω))‖W ds

≤ 4C1(ω)(t2 − t1)
1
4 +

∫ t1

0

(t1 − s)−
1
4 ds(t2 − t1)

1
4 ‖F (XN

s (ω))‖W

≤ 4C1(ω)(t2 − t1)
1
4 + C2(ω)(t2 − t1)

1
4T

3
4

≤ C(ω)(t2 − t1)
1
4 .

where C1(ω) = supM∈N sup0≤s≤T ‖XM
s (ω)‖2V , C2(ω) = supM∈N sup0≤s≤T ‖F (XM

s (ω))‖W
are finite due to Assumptions 4 and 2, and therefore C is an almost surely finite
random variable C : Ω→ [0,∞) .

Before we begin with the first part of the error, we define

R(ω) := sup
N∈N

sup
0≤s≤T

‖F (XN
s (ω))‖W + sup

N∈N
sup

0≤s≤T
‖XN

s (ω)‖V

+ sup
0≤t1,t2≤T

‖Ot2(ω)−Ot1(ω)‖V |t2 − t1|−θ

+ sup
N∈N

sup
0≤t1,t2≤T

‖XN
t2 (ω)−ONt2 (ω)− (XN

t1 (ω)−ONt1 (ω))‖V |t2 − t1|−
1
4 ,

12



where from Assumption 4, Lemma 4 and Lemma 10, R : Ω → R is a finite
random variable.

The main result of this section is stated below.

Theorem 11. For m ∈ {0, 1, ...,M} and every M,N ∈ N, there exists a finite
random variable C : Ω→ [0,∞) such that

‖XN
m∆t(ω)− Y N,Mm (ω)‖V ≤ C(ω)(∆t)min( 1

4 ,θ),

where XN : [0, T ] × Ω → V is the unique adapted stochastic process with
continuous sample paths, defined in Assumption 4, and Y N,Mm : Ω → V , for
m ∈ {0, 1, ...,M}, and N,M ∈ N, is given in (22).

Proof. For the proof it is sufficient to prove the result for sufficiently small
|t2 − t1|. Due to (6) we have

XN
m∆t(ω) =

∫ m∆t

0

PNSm∆t−sF (XN
s (ω))ds+ONm∆t(ω)

=

m−1∑
k=0

∫ (k+1)∆t

k∆t

PNSm∆t−sF (XN
s (ω))ds+ONm∆t(ω),

(23)

for every m ∈ {0, 1, ...,M}, and every M ∈ N.
The mapping Y Nm : Ω→ V, m = 1, 2, ...,M is defined by

Y Nm (ω) =

m−1∑
k=0

∫ (k+1)∆t

k∆t

PNSm∆t−k∆tF (XN
k∆t(ω))ds+ONm∆t(ω). (24)

Our aim is to bound ‖XN
m∆t(ω)− Y N,Mm (ω)‖V . Therefore, we first estimate the

difference of the true solution to Y Nm

‖XN
m∆t(ω)− Y Nm (ω)‖V (25)

for every m ∈ {0, 1, ...,M} and then the difference between Y Nm and the full
discretization in time

‖Y Nm (ω)− Y N,Mm (ω)‖V . (26)

For the first error in (25) we have

XN
m∆t(ω)− Y Nm (ω)

=

m−2∑
k=0

∫ (k+1)∆t

k∆t

PNSm∆t−sF (XN
s (ω))ds

−
m−2∑
k=0

∫ (k+1)∆t

k∆t

PNSm∆t−k∆tF (XN
k∆t(ω))ds

+

∫ m∆t

(m−1)∆t

PNSm∆t−sF (XN
s (ω))ds−

∫ m∆t

(m−1)∆t

PNS∆tF (XN
k∆t(ω))ds.

(27)
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Let us now bound the last two integrals in (27). For the first one, we derive∥∥∥∫ m∆t

(m−1)∆t

PNSm∆t−sF (XN
s (ω))ds

∥∥∥
V

=
∥∥∥∫ m∆t

(m−1)∆t

PNSm∆t−s∂(XN
s (ω))2ds

∥∥∥
V

≤
∫ m∆t

(m−1)∆t

‖PNSm∆t−s∂‖L(V,V ) · ‖XN
s (ω)‖2V ds

≤ sup
0≤s≤t

‖XN
s (ω)‖2V

∫ m∆t

(m−1)∆t

(m∆t− s)− 3
4 ds

≤ R2(ω)(∆t)
1
4 .

For the second one we get∥∥∥∫ m∆t

(m−1)∆t

PNS∆tF (XN
k∆t(ω))ds

∥∥∥
V

=
∥∥∥∫ m∆t

(m−1)∆t

PNS∆t∂(XN
k∆t(ω))2ds

∥∥∥
V

≤
∫ m∆t

(m−1)∆t

‖PNS∆t∂‖L(V,V ) · ‖XN
k∆t(ω)‖2V ds

≤ sup
0≤s≤t

‖XN
s (ω)‖2V

∫ m∆t

(m−1)∆t

(∆t)−
3
4 ds

≤ R2(ω)(∆t)
1
4 .

Therefore, we can conclude

‖XN
m∆t(ω)− Y Nm (ω)‖V

≤
∥∥∥m−2∑
k=0

∫ (k+1)∆t

k∆t

PNSm∆t−s(F (XN
s (ω))− F (XN

k∆t(ω)))ds
∥∥∥
V

+
∥∥∥m−2∑
k=0

∫ (k+1)∆t

k∆t

(PNSm∆t−s − PNS(m∆t−k∆t))F (XN
k∆t(ω))ds

∥∥∥
V

+R2(ω)(∆t)
1
4 .

Thus inserting the nonlinearity with the Ornstein-Uhlenbeck process in the first
term yields for every m ∈ {0, 1, ...,M},∥∥∥XN

m∆t(ω)− Y Nm (ω)
∥∥∥
V

≤
∥∥∥m−2∑
k=0

∫ (k+1)∆t

k∆t

PNSm∆t−s

(
F (XN

s (ω))− F
(
XN
k∆t(ω) +ONs (ω)−ONk∆t(ω)

))
ds
∥∥∥
V

+
∥∥∥m−2∑
k=0

∫ (k+1)∆t

k∆t

PNSm∆t−s

(
F (XN

k∆t(ω) +ONs (ω)−ONk∆t(ω))− F (XN
k∆t(ω))

)
ds
∥∥∥
V

+
∥∥∥m−2∑
k=0

∫ (k+1)∆t

k∆t

(
PNSm∆t−s − PNSm∆t−k∆t

)
F (XN

k∆t(ω))ds
∥∥∥
V

+R2(ω)(∆t)
1
4 .

(28)
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For the first term in (28) by using Lemma 10 together with ‖PNSt−s∂u‖V ≤
C(t− s)− 3

4 ‖u‖V we conclude

∥∥∥m−2∑
k=0

∫ (k+1)∆t

k∆t

PNSm∆t−s

(
F (XN

s (ω))− F
(
XN
k∆t(ω) +ONs (ω)−ONk∆t(ω)

))
ds
∥∥∥
V

≤
m−2∑
k=0

∫ (k+1)∆t

k∆t

(m∆t− s)− 3
4

∥∥∥XN
s (ω)− (XN

k∆t(ω) +ONs (ω)−ONk∆t(ω))
∥∥∥
V

·
∥∥∥XN

s (ω) + (XN
k∆t(ω) +ONs (ω)−ONk∆t(ω))

∥∥∥
V
ds

≤ R(ω)

m−2∑
k=0

∫ (k+1)∆t

k∆t

(m∆t− s)− 3
4 (s− k∆t)

1
4 (2R(ω) +R(ω)(s− k∆t)θ)ds

≤ 2C(R(ω), T )(∆t)
1
4 ,

(29)

where the constant depends on R and T .
For the second term in (28) we derive

∥∥∥m−2∑
k=0

∫ (k+1)∆t

k∆t

PNSm∆t−s

(
F
(
XN
k∆t(ω) +ONs (ω)−ONk∆t(ω)

)
− F (XN

k∆t(ω))
)
ds
∥∥∥
V

≤ 2

m−2∑
k=0

∫ (k+1)∆t

k∆t

∥∥∥PNSm∆t−s∂
(
XN
k∆t(ω) · (ONs (ω)−ONk∆t(ω))

)∥∥∥
V
ds

+

m−2∑
k=0

∫ (k+1)∆t

k∆t

∥∥∥PNSm∆t−s∂
(

(ONs (ω)−ONk∆t(ω))2
)∥∥∥

V
ds

≤ 2

m−2∑
k=0

∫ (k+1)∆t

k∆t

‖PNSm∆t−s∂‖L(V,V )‖XN
k∆t(ω)‖V ‖(ONs (ω)−ONk∆t(ω))‖V ds

+

m−2∑
k=0

∫ (k+1)∆t

k∆t

‖PNSm∆t−s∂‖L(V,V ) · ‖(ONs (ω)−ONk∆t(ω))2‖V ds

≤ 2R2(ω)

m−2∑
k=0

∫ (k+1)∆t

k∆t

(m∆t− (k + 1)∆t)−
3
4 .(s− k∆t)θds

+R2(ω)

m−2∑
k=0

∫ (k+1)∆t

k∆t

(m∆t− (k + 1)∆t)−
3
4 (s− k∆t)2θds

≤ C(R(ω), θ)(∆t)θ ,

where the constant depends on R and θ.
Finally, for the third term in (28) again by using this fact that St is the
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semigroup generated by Laplacian, we have∥∥∥m−2∑
k=0

∫ (k+1)∆t

k∆t

(PNSm∆t−s − PNSm∆t−k∆t)F (XN
k∆t(ω))ds

∥∥∥
V

≤
m−2∑
k=0

∫ (k+1)∆t

k∆t

∥∥∥PNSm∆t−k∆t(Sk∆t−s − I)F (XN
k∆t(ω))

∥∥∥
V
ds

≤
m−2∑
k=0

∫ (k+1)∆t

k∆t

(m∆t− k∆t)−1(k∆t− s)‖F (XN
k∆t(ω))‖W ds

≤ C(R(ω), T )∆t,

(30)

where we used ‖PN∆St‖L(W,V ) ≤ Ct−1, together with ‖∆−1(St−I)‖L(W,V ) ≤ t.
Hence from (29) and (30) we derive

‖XN
m∆t(ω)− Y Nm (ω)‖V ≤ C(R(ω), R2(ω), θ, T )(∆t)min{ 1

4 ,θ}. (31)

Let us now turn to the second error term in (26). Note that Y N,Mm : Ω → V
satisfies

Y N,Mm (ω) =

m−1∑
k=0

∫ (k+1)∆t

k∆t

PNSm∆t−k∆tF (Y N,Mk (ω))ds+ PNOm∆t(ω). (32)

Thus by using ‖PNSt∂‖L(V,V ) ≤ Ct−
3
4 , we can estimate

‖Y Nm − Y N,Mm ‖V =
∥∥∥m−1∑
k=0

∫ (k+1)∆t

k∆t

PNSm∆t−k∆t(F (XN
k∆t)− F (Y N,Mk ))

∥∥∥
V

≤
m−1∑
k=0

∫ (k+1)∆t

k∆t

(m∆t− k∆t)−
3
4 ‖(XN

k∆t − Y
N,M
k )2 + 2XN

k∆t(X
N
k∆t − Y

N,M
k )‖V ds

≤
m−1∑
k=0

∆t(m∆t− k∆t)−
3
4

(
‖XN

k∆t − Y
N,M
k ‖2V + 2R(ω)‖XN

k∆t − Y
N,M
k ‖V

)
.

(33)

Combining (31) with (33), we have

‖XN
m∆t(ω)− Y N,Mm (ω)‖V ≤ C

(
R(ω), θ, T

)
(∆t)min{ 1

4 ,θ}

+

m−1∑
k=0

‖XN
k∆t(ω)− Y N,Mk (ω)‖2V + 2R(ω)

m−1∑
k=0

‖XN
k∆t(ω)− Y N,Mk (ω)‖V .

(34)

If we assume that for some δ > 0 fixed later

sup
0≤k≤M

‖XN
k∆t(ω)− Y N,Mk (ω)‖V ≤ δ, (35)

then

‖XN
m∆t(ω)− Y N,Mm (ω)‖V ≤ C

(
R(ω), θ, T

)
(∆t)min{ 1

4 ,θ}

+ (δ + 2R(ω))

m−1∑
k=0

‖XN
k∆t(ω)− Y N,Mk (ω)‖V .

(36)
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Then by the discrete Gronwall Lemma we can conclude

‖XN
m∆t(ω)− Y N,Mm (ω)‖V ≤ e(m−1)(δ+2R(ω))C

(
R(ω), θ, T

)
(∆t)min{ 1

4 ,θ}.

In order to verify (35) we need

e(m−1)(δ+2R)C
(
R(ω), θ, T

)
(∆t)min{ 1

4 ,θ} ≤ δ,

which is true for any δ > 0 provided ∆t is sufficiently small. This finishes the
proof of the time discretization.

From Theorem 1 for the spatial discretization error we verified in Section 3

‖Xm∆t(ω)−XN
m∆t(ω)‖V ≤ C(ω) ·N−γ , (37)

and from Theorem 11 for the temporal discretization error we just established

‖XN
m∆t(ω)− Y N,Mm (ω)‖V ≤ C

(
R(ω), θ, T

)
(∆t)min{ 1

4 ,θ}.

Therefore we have proved the following Theorem for the stochastic Burgers
equation.

Theorem 12. Assume ρ > 0 such that∑
i,j∈N

‖i‖ρ−1
2 ‖j‖ρ−1

2 |〈Qei, ej〉| <∞.

Let X : [0, T ] × Ω → V be the solution of SPDE (7) and Y N,Mm : Ω → V ,
m ∈ {0, 1, ...,M},M,N ∈ N the numerical solution given by (22). Fix θ ∈
(0,min{ 1

2 ,
ρ
2}) and γ ∈ [0, 1

2 ).
Then there exists a finite random variable C : Ω→ [0,∞) such that

‖Xm∆t(ω)− Y N,Mm (ω)‖V ≤ C(ω)
(
N−γ + (∆t)min{ 1

4 ,θ}
)

(38)

for all m ∈ {0, 1, ...,M} and every M,N ∈ N.

5 Numerical results

In this section we consider the numerical solution of stochastic Burgers equation
by the method given in (22).

Consider the stochastic evolution equation (7) with S : (0, T ] → L(W,V ),
F : V → W given by Lemma 2, Lemma 3 for T = 1, d = 1, and some initial
condition fixed to be (ξ(ω))(x) = 6

5 sin(x), for all x ∈ [0, π].
We assume that O : [0, T ]×Ω→ V is given by Lemma 4 where the Brownian

motion βi : [0, T ]× Ω→ R, i ∈ Nd, are dependent by the relation

E(βkβl) =< Qek, el >, k, l ∈ N, (39)

where the covariance operator Q is explicitly given as a convolution operator

< Qek, el >=

∫ π

0

∫ π

0

ek(x)el(y)q(x− y)dydx, (40)
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with kernel

q(x− y) = max{0, h− |x− y|
h2

} (41)

where we define the orthonormal basis

ek(x) =
√

2
π sin(kx), for k ∈ N. (42)

The possibly small quantity h > 0 measures the correlation length of the noise.
In this case the covariance matrix, i.e., < Qek, el >k,l, is not diagonal. But for
small h > 0 it is close to diagonal. In Figure 1, the covariance matrix is plotted
for k, l ∈ {1, 2, · · · , 100} for h = 0.1, 0.01. Then by some numerical calculations
we can show that the condition on Q from (21) is satisfied for any ρ ∈ (0, 1

2 ).
The stochastic evolution equation (7) reduces to

dXt =
[ ∂2

∂x2
Xt −Xt ·

∂

∂x
Xt

]
dt+ dWt, X0(x) =

6

5
sin(x) (43)

with Xt(0) = Xt(π) = 0 for t ∈ [0, 1] and x ∈ [0, π].
The finite dimensional SDE (6) reduces to

dXN
t =

[ ∂2

∂x2
XN
t − PN (XN

t ·
∂

∂x
XN
t )
]
dt+ PNdWt, XN

0 (x) =
6

5
sin(x), (44)

with XN
t (0) = XN

t (π) = 0 for t ∈ [0, 1] and x ∈ [0, π], and all N ∈ N.
In Figure 2, O : [0, T ]× Ω→ C0([0, π]), the solution of the linear SPDE

dOt = ∆Otdt+ dWt, Ot|∂(0,π) = 0, O0 =
6

5
sin(x),

for T = 1 is plotted.
Theorem 12 yields the existence of a unique solution X : [0, π] × Ω →

C0([0, π]) of the SPDE (43) such that

sup
0≤x≤π

|Xm∆t(ω, x)− Y N,Mm (ω, x)| ≤ C(ω)
(
N−γ + (∆t)min{ 1

4 ,θ}
)

(45)

for m = 1, ...,M, M = 1
∆t , such that γ ∈ (0, 1

2 ), θ ∈ (0, 1
4 ).

By using ∆t = T
N2 , the solutions XN

t (ω, x) of the finite dimensional SODEs
(44) converge uniformly in t ∈ [0, 1] and x ∈ [0, π] to the solution Xt(ω, x) of
the stochastic Burgers equation (43) with the rate 1

2 , as N goes to infinity for
all ω ∈ Ω. In Figure 3 the pathwise approximation error

sup
0≤x≤π

sup
0≤m≤M

|Xm∆t(ω, x)− Y N,Mm (ω, x)| (46)

is plotted against N , for N ∈ {16, 32, · · · , 256}. As a replacement for the
unknown solution, we use a numerical approximation for N sufficiently large.

Figure 3 confirms that, as we expected from Theorem 12, the order of con-
vergence is 1

2 . Obviously, these are only two examples, but all of a few hundred
calculated examples behave similarly. Even their mean seem to behave with the
same order of the error. Nevertheless, we did not prove this here and also did
not calculate the mean with sufficiently good standard deviation.

Finally, as an example in Figure 4, Xt(ω) , x ∈ [0, π], is plotted for t ∈
{0, 3

200 , 0.2, 1}, for h = 0.01, 0.1.
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(a) (b)

Figure 1: Covariance Matrix < Qek, el >k,l for k, l ∈ {1, 2, · · · , 100}, for (a)
h = 0.1 and (b) h = 0.01.

(a) (b)

Figure 2: Ot(ω, x), x ∈ [0, π], t ∈ [0, 1] and one random ω ∈ Ω, for (a) h = 0.1
and (b) h = 0.01.

(a) (b)

Figure 3: Pathwise approximation error (46) against N for N ∈ {16, 32, ..., 256}
for two random ω ∈ Ω, with h = 0.1. These are only two examples, but all
other calculated trajectories behave similarly.
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(a) (b)

Figure 4: Stochastic Burgers equation Xt(ω, x), x ∈ [0, π], t ∈ {0, 3/200, 0.2, 1},
given by (43) for (a) h = 0.1 and (b) h = 0.01, for one random ω ∈ Ω.
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