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Enstrophy is an averaged measure of fluid vorticity. This quantity is particularly
important inrotating geophysical flows. We investigate the dynamical evolution of
enstrophy for large-scale quasi-geostrophic flows under random wind forcing. We
obtain upper bounds on the enstrophy, as well as results establishing its Ho¨lder
continuity and describing the small-time asymptotics. ©2002 American Institute
of Physics.@DOI: 10.1063/1.1459755#

I. INTRODUCTION

Randomness is ubiquitous in fluid systems. Macroscopic partial differential equation models
for fluid flows contain such randomness as stochastic forcing, uncertain parameters, random
sources, and random boundary conditions.

There has been active recent research on stochastic approaches to geophysical flows1–5 and
numerical simulations of stochastically forced geophysical flows.6–10 It is generally understood
that random fluctuations can have delicate impact on geophysical fluid dynamics.1,3,6,7,11

A class of large-scale geophysical flows under random forcing are modeled by the quasi-
geostrophic equation:1

Dc t1J~c,Dc!1bcx5nD2c2rDc1Ẇ, ~1!

wherec(x,y,t) is the stream function (cxª]xc), b>0 is the meridional gradient of the Coriolis
parameter,n.0 is the viscous dissipation constant,r .0 is the Ekman dissipation constant, and
W(x,y,t) is a space–time Wiener process to be defined below on a probability space~V,A,P!.
Moreover,J( f ,g)5 f xgy2 f ygx denotes the Jacobian operator. The generalized time derivativeẆ
models the noisy wind forcing.

Introducingv(x,y,t)5Dc(x,y,t), Eq. ~1! can be rewritten in the form

v t1J~c,v!1bcx5nDv2rv1Ẇ, ~2!

where (x,y)PD andD,R2 denotes a bounded domain with sufficiently smooth boundary. The
boundary conditions are no normal flow~c50 on ]D! and free-slip~v50 on ]D! as in Pedlosky
~Ref. 12, p. 34! or in Dymnikov and Kazantsev:13

c5v50 on ]D. ~3!

An appropriate initial conditionv~0! is also imposed.
The mean enstrophy for a fluid flow is half the squared mean-square norm of the vorticity,14,15

i.e., we have

a!Present address: Institut fu¨r Mathematik, RWTH Aachen, D-52056 Aachen, Germany.
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Ens~ t !5
1

2
•EE

D
uv~x,y,t !u2d~x,y!.

The enstrophy Ens(t) is an averaged measure of fluid vorticityv(t). In this article, we discuss the
time evolution of the enstrophy. We present results which establish upper bounds on the enstrophy,
as well as results on Ho¨lder continuity and small-time asymptotics for Ens(t). These results are
contained in Secs. III, IV, and V, respectively. The mathematical framework for our discussion is
described in Sec. II.

II. MATHEMATICAL FRAMEWORK

As it stands, the stochastic quasi-geostrophic equation~2! still has to be given a mathemati-
cally precise meaning. This can be accomplished using the framework of stochastic partial differ-
ential equations, as described, for example, in Ref. 16. In our situation, we formally rewrite~2! in
the Ito formulation

dv5~nDv2rv2bcx2J~c,v!!dt1dW. ~4!

In the following we use the abbreviationsL25L2(D), L`5L`(D), H0
k5H0

k(D), Hk5Hk(D),
0,k,`, for the standard Sobolev spaces. Let^•,•& and i•i denote the standard scalar product
and norm inL2, respectively. Moreover, the norms forH0

k and L` are denoted byi•iHk and
i•i` , respectively. Due to the Poincare´ inequality ~Ref. 17 p. 164!, the expressioniD•i is an
equivalent norm forH0

2. It is well-known that the operatorA5nD:L2→L2 with domainD(A)
5H2ùH0

1 is self-adjoint. Note thatA generates an analytic semigroupS(t) on L2.18 The spectrum
of A consists of eigenvalues 0.l1.l2>l3>¯ with corresponding normalized eigenfunctions
w1 , w2 ,... . The set ofthese eigenfunctions is complete inL2. For example, for the square domain
D5(0,1)3(0,1) the eigenvalues are given by2n(m21n2)p2 for m,nPN, and the associated
eigenfunctions are suitable multiples of sin(mpx)sin(npy).

Now we can define an appropriate class of Wiener processesW. Let bk , kPN, denote a
family of independent real-valued standard Brownian motions. Furthermore, choose positive con-
stantsmk , kPN, such that

(
k51

` mk
2

ulku12u ,` ~5!

for some 0,u,1. Then we consider the Wiener processW defined by

W~ t !ª(
k51

`

mk•bk~ t !•wk , t>0. ~6!

Note that we explicitly allow Wiener processesW whose covariance operator is not of trace class,
i.e., for which(k51

` mk
25`.

For the domainD we basically assume that the eigenfunctionswk of A satisfy

wkPC0~D̄ !, uwk~x,y!u<C,
~7!

u¹wk~x,y!u<CAulku,

for all (x,y)PD andkPN, whereC.0 denotes a constant which depends only onD. Domains
D which satisfy these conditions include rectangular domains, as well as equilateral triangles.
Unfortunately, there are many domains for which they are violated. See, for example, Ref. 19.
However, in this paper it is conjectured that in~7! one generally should expect an upper bound
which is logarithmic inulku. Even though our results remain valid in this situation, we will assume
the above stronger condition.
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Under the above assumptions, Theorem 5.2.9 in Ref. 20 guarantees that the stochastic con-
volution

WA~ t !5E
0

t

S~ t2s!dW~s!, t.0, ~8!

has a continuous version with values inC0(D), the Banach space of continuous functions satis-
fying zero Dirichlet boundary conditions onD. To be more precise,WA has a version which is
even Hölder continuous with some small exponent, which depends on the asymptotic behavior of
the coefficientsmk .

If we define the nonlinear operatorF by F(v)52rv2bcx2J(c,v), then ~4! can be re-
written as the abstract evolution equation together with initial condition

dv5~Av1F~v!!dt1dW,
~9!

v~0!5v0 .

For technical reasons we translate the operatorA by a suitable multiple of the identity. Consider a
constanta>0 which will be chosen later on, usually sufficiently large. DefiningAaªA2aI , we
get the initial value problem

dv5~Aav1F~v!1av!dt1dW,

v~0!5v0

or in mild ~integral! form

v~ t !5Sa~ t !v01E
0

t

Sa~ t2s!~F~v~s!!1av~s!!ds1WAa
~ t !, ~10!

where the analytic semigroupSa is given bySa(t)5e2ta
•S(t) for t.0 and the stochastic con-

volution WAa
(t) is defined as in~8! with the semigroupS replaced bySa . Finally, let Uªv

2WAa
. ThenU is the weak solution of

] tU5AU1F~U1V!1aV,

U~0!5v0 ,

where we use the abbreviationVªWAa
. Notice that bothU andV depend ona.

III. ENSTROPHY ESTIMATE: UPPER BOUNDS

We begin by establishing upper bounds on the time evolution of the enstrophy Ens(t)
5Eiv(t)i2/2. Improving thea priori estimate of Ref. 5 Sec. 3, we obtain

1

2
•

d

dt
iU~ t !i2<i¹U~ t !i2

•~«2n!

1iU~ t !i2
•~~«2r 1c1b!1C•iVi`•~11C«•iVi`!!

1C«•~r 1b1a2!•iVi`
2 1C•iVi`

3 1C«•iVi`
4 , ~11!

whereC denotes a generic constant which depends only onD, and whose specific value may
change from line to line. Similarly,C« denotes a generic constant which depends only onD and
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«, where«.0 is some arbitrarily small number. The constantc1 denotes the optimal constant in
the Poincare inequalityiUi<c1i¹Ui for mean zero functionsU. For «,n the improveda priori
estimate immediately yields the following lemma.

Lemma 1: For anyg.2n•c1
222r 1c1•b there exist constants depending only ong, D, b,

and r which are all denoted by C such that

d

dt
iU~ t !i2<A~ t !iU~ t !i21B~ t !, t>0, ~12!

with

A~ t !52g1C•~ iVi`1iVi`
2 !,

~13!
B~ t !5C•~~11a2!•iVi`

2 1iVi`
4 !.0.

Together with Theorem I.6.1 in Ref. 21 this yields

iU~ t !i2<iv0i2
•e*0

t A(s)ds1E
0

t

B~s!e*s
t A(t)dtds, t>0. ~14!

Suppose for simplicity thatv0 andW are stochastically independent. It is possible to drop this
assumption in this section, but in this case we additionally needEiv0i21d,` for some small
d.0.

The critical term for taking the expectation in~14! is the squaredL`-norm of V5WAa
in the

exponent, which is in general not finite. To complicate matters further, theL`-norm in the expo-
nent cannot easily be dealt with, since we do not have a Hilbert space structure.

For our situation we will improve on some ideas of Ref. 22. Using Fernique’s Theorem~Ref.

16, Theorem 2.6! we get thatP(tiV(t)i`
2 .r 2)<1/(11e1132lr 2

) implies E(eltiV(t)i`
2
)<e16lr 2

1e2/(e221) for any t,t,r ,l.0. Hence, by Jensen’s inequality

E~el*0
t iV(t)i`

2 dt!<
1

t
•E

0

t

E~eltiV(t)i`
2
!dt<Cl ,

providedP(tiV(t)i`
2 .1)<1/(11e1132l) for anyt<t. The latter inequality follows immediately

from Chebychev’s inequality, provided we have

t•EiV~t!i`
2 <

1

11e1132l ~15!

for any t<t. The following lemma is proven similarly as Ref. 16, Theorem 5.20.
Lemma 2: For any p>1 and any sufficiently smallu.0 there exists a constant C which

depends only on p,u, and D such that for anyt>0

~16!

We remark that the assumption~7! on the eigenfunctions is essential for the proof of this
lemma. Notice also that the series in~16! is finite according to~5!. Lemma 2 implies that~15! is
satisfied for anyt<C/w(a). It is now straightforward to verify that

Eem*s
t A(t)dt<C•em(t2s)2g
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for any s<t<C/w(a) and m51,2, whereg and A(t) were defined in Lemma 1. Moreover,
Lemma 2 implies forB(t) in ~13!

~EB~ t !2!1/2<C•~~11a2!•w~a!1w~a!2!

for any t.0. We finally obtain from~14! that

EiU~ t !i2<ES iv0i2
•e*0

t A(s)ds1E
0

t

B~s!e*s
t A(t)dtdsD

<Eiv0i2
•Ee*0

t A(s)ds1E
0

t

~EB~s!2!1/2~Ee2*s
t A(t)dt!1/2ds

<C•Eiv0i2
•e2gt1C•~~11a2!•w~a!1w~a!2!•E

0

t

e2gtdt ~17!

for any t<C/w(a). Using Eivi2<2EiUi212EiVi2, this immediately implies the following
theorem on upper bounds for the enstrophy.

Theorem 1 „upper bound…: Suppose thatv0 and W are stochastically independent and that
Eiv0i2,`. Moreover, letg.2n•c1

222r 1c1•b. Then EnsPL`(@0,T#) for any T.0. More
precisely,

Ens~ t !<C•Eiv0i2
•e2gt1C•w~a!

1C•~~11a2!•w~a!1w~a!2!•E
0

t

e2gtdt

for any t<C/w(a), with constants C independent of t, a, and v0 .
Remark 1: It can be shown that for any choice of p>1 similar bounds hold for

EsuptP[0,t] iU(t)i2p, provided bothEiv0i2p,` and t<C/w(a).
Moreover, all bounds onEiU(t)i2p or EsuptP[0,t] iU(t)i2p immediately imply analogous

bounds on Ens(t) or EsuptP[0,t] iv(t)i2p. For this one has to employ estimates for
EsuptP[0,t] iWAa

(t)i2p which can be obtained for example as in Ref. 23, Corollary 2.3.
In order to obtain a bound fort→`, we note that fora→` one obviously hasw~a!→0.

However, the rate of convergence is essential. To this end, we distinguish two cases. If we suppose
that (k51

` mk
2
•ulkuu,` for someu.0, then the estimatew(a)<(k51

` mk
2
•ulkuu/a is immediate—

and choosinga proportional tot in Theorem 1 furnishes

Ens~ t !<C•S Eiv0i2
•e2gt1t•E

0

t

e2gtdt11D for all t>0.

If, on the other hand,(k51
` mk

2
•ulkuu5`, we additionally assumemk

2<Ck2m for somemP~u,1#,
with arbitrarily smallu defined in Lemma 2.~For m.1 we can always find some smallu such that
the first case applies.! Using the fact thatulku;Ck for k→` ~cf. Ref. 24! we obtain

w~a!<C•(
k51

`
k2m

ck1a
•ku<C•E

0

` ku2m

ck1a
dk

5C•au2m
•E

0

` tu2m

ct11
dt.

Choosingam2u proportional tot in Theorem 1, we derive

Ens~ t !<C•S Eiv0i2
•e2gt1t2/(m2u)21

•E
0

t

e2gtdt11D for all t>0.
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Notice that 2/(m2u)21.1. We have proved the following result.
Theorem 2 „global upper bound…: Assume again thatv0 and W are stochastically indepen-

dent, thatEiv0i2,`, and letg.2n•c1
222r 1c1•b. Then the following holds.

(a) If mk
2<Ck2m for somemP~0,1#, we can find am̃P(0,m) such that

Ens~ t !<C•S Eiv0i2
•e2gt1t (22m̃)/m̃

•E
0

t

e2gtdt11D for all t>0.

(b) If (k51
` mk

2
•ulkuu,` for someu.0, then

Ens~ t !<C•S Eiv0i2
•e2gt1t•E

0

t

e2gtdt11D for all t>0.

The constants C are independent of t andv0 , but they can depend onu, g, m, m̃, the domain
D, or the coefficients in (1).

Remark 2: If2n•c1
222r 1c1•b>0, then necessarilyg.0. In this case we obtain an expo-

nentially growing upper bound forEns(t) with growth rate slightly larger than2n•c1
222r 1c1

•b.
If, on the other hand, 2n•c1

222r 1c1•b,0, then we can chooseg,0. This furnishes a
polynomial upper bound which grows at least linearly in time. The precise growth exponent is
determined by the regularity of the noise.

Remark 3: As we already stated in the beginning of this section, one can remove the condition
of stochastic independence ofv0 and W in the previous theorem, if one additionally assumes
Eiv0i21d,` for some smalld.

Our above results hold for a large class of noise processes, in particular also for more irregular
Wiener processesW whose covariance operator is not of trace class. If, however, one assumes that
the Wiener process is of trace class, i.e., if Tr(Q)5(k51

` mk
2,`, then the results can be improved

significantly by employing Ito’s formula. One advantage of this approach is that it avoids the
conditions on the eigenfunction in~7!. Therefore, we will briefly outline the main ideas.

By applying Ito’s formula~Ref. 16, Sec. 4.5! to the squaredL2-norm of the vorticityv(t), it
can easily be verified that

Eiv~ t !i252EE
0

t

^Av~t!1F~v~t!!,v~t!&dt1Tr~Q!•t,

where Tr(Q)5(k51
` mk

2 denotes the trace of the covariance operatorQ of W. Using calculations
analogous to the ones leading to thea priori estimate in Lemma 1, we formally obtain

] tEiv~ t !i252E^Av~t!1F~v~t!!,v~t!&1Tr~Q!

<2g•Eiv~ t !i21Tr~Q!,

whereg.2n•c1
222r 1c1•b as in Lemma 1. Hence, for anyt>0 we have

Ens~ t !<Ens~0!•e2g•t1Tr~Q!•
e2g•t21

4g
. ~18!

Especially if one can choose a growth exponentg,0, this significantly improves the estimates of
Theorem 2, since in this case the right-hand side of~18! approaches2Tr(Q)/(4g) for t→`.

IV. ENSTROPHY ESTIMATE: HÖLDER CONTINUITY

In this section we establish regularity properties of the enstrophy as a function of time. More
precisely, we will prove that Ens(t)5Eiv(t)i2/2 is Hölder continuous. To this end, we need the
following lemma from Ref. 5

2621J. Math. Phys., Vol. 43, No. 5, May 2002 Enstrophy dynamics of geophysical flows



Lemma 3: Define a nonlinear mappingF:C(@0,T#;H0
1)→C(@0,T#;L2) by

~F~v!!~ t !ªE
0

t

S~ t2s!F~v~s!!ds, for tP@0,T#,

wherevPC(@0,T#;H0
1), and A and F are as in~9!. ThenF is continuous, and it can be extended

to a continuous mapping from the space C(@0,T#;L2) to C(@0,T#;L2). Furthermore, the image of
the extended mappingF is contained in C(@0,T#,Ha(D)) for 0<a, 1

2.

In fact, it is shown in Ref. 5 that for arbitrary positive constantsaP@0,1
4) and rP(0,1

4)
satisfying 0,r1a, 1

4 the estimate

I ~2A!aE
0

t

S~ t2s!F~v~s!!dsI
<

rc1bc

12a
•t12a

• sup
0<s<t

iv~s!i

1S 8c

124r24a
•t1/42r2a1

4c

122r22a
•t1/22r2aD • sup

0<s<t
iv~s!i2

holds. Especially fora50 we obtain

iF~v!~ t !i5 I E
0

t

S~ t2s!F~v~s!!dsI<~rc1bc!•t• sup
0<s<t

iv~s!i

1S 8c

124r
•t1/42r1

4c

122r
•t1/22rD • sup

0<s<t
iv~s!i2,

for every 0,r,1
4. Together with Theorem 1 and Remark 1 these bounds immediately furnish the

following result.
Lemma 4: Suppose thatv0 and W are stochastically independent and that for some p>1 we

haveEiv0i2p,`. Moreover, let T.0 be arbitrary, and let aP@0,1
4) and rP(0,1

4) be such that
0,r1a, 1

4. Then there exists a constant C such that

Ei~2A!aF~v!~ t !ip<C•tp•(1/42r2a) for all t P@0,T#.

The following theorem states our main result on the regularity of the enstrophy. It will be
proved in the remainder of this section.

Theorem 3 „Hölder continuity …: Suppose thatv0 and W are stochastically independent and
that Eiv0i4,`. Then the enstrophyEns(•) defined byEns(t)5Eiv(t)i2/2 is Hölder continuous
with arbitrary exponent less than14 on every compact interval in(0,̀ ).

Remark 4: Note that in general we cannot expect the solutionv to be Hölder continuous with
arbitrary exponent less than14, since WA is in general less regular. As one can see from (10) with
a50, one cannot expectv to be more regular than WA .

To prove the above theorem establishing the Ho¨lder continuity of the enstrophy, we first define

G~v!~ t !ªS~ t !v01F~v!~ t !. ~19!

According to~10! for a50, we therefore havev(t)5G(v)(t)1WA(t). Consider a fixed interval
J5@«,T#,(0,̀ ). For tPJ andh with t1hPJ the identity~10! then implies

2622 J. Math. Phys., Vol. 43, No. 5, May 2002 Blömker, Duan, and Wanner



Eiv~ t1h!i22Eiv~ t !i25EiG~v!~ t1h!1WA~ t1h!i22EiG~v!~ t !1WA~ t !i2

5EiG~v!~ t1h!i22EiG~v!~ t !i212E^G~v!~ t1h!,WA~ t1h!&

22E^G~v!~ t !,WA~ t !&1EiWA~ t1h!i22EiWA~ t !i2

5 .. D112D21D3.

For simplicity we assumeh.0 in the following. The caseh,0 can be treated analogously.
We begin by estimatingD3 . Due to Ref. 25 one hasEiWA(•)i2PC`(0,̀ ). Hence,uD3u

<C•h for some constantC.0.
In order to estimateD2 , we define the shift-operatort t by t tv5v(t1•) for t.0. Then the

definitions ofG andF in ~19! and Lemma 3, respectively, furnish

G~v!~ t1h!5S~h!G~v!~ t !1F~t tv!~h!. ~20!

Since$v(s)%sP[0,t] is stochastically independent of$W(s)%sP[ t,t1h] we get

E^G~v!~ t1h!,WA~ t1h!&5EK S~h!G~v!~ t !,E
0

t

S~ t1h2s!dW~s!L 1E^F~t tv!~h!,WA~ t1h!&

5E^S~h!G~v!~ t !,S~h!WA~ t !&1E^F~t tv!~h!,WA~ t1h!&

and together with the self-adjointness ofS(h) we finally arrive at

D25E^~S~2h!2I !G~v!~ t !,WA~ t !&1E^F~t tv!~h!,WA~ t1h!&. ~21!

The boundedness ofEiWA(t)i2 on J and Lemma 4 now yield

uE^F~t tv!~h!,WA~ t1h!&u<~EiF~t tv!~h!i2!1/2
•~EiWA~ t1h!i2!1/2<C•h1/42r.

As for the first term in~21!, notice that

i~S~h!2I !vi<E
0

h

i~2A!S~s!vids<C•ha
•i~2A!avi ~22!

for any vPD((2A)a), with a constantC which depends onaP@0,1). Thus,

uE^~S~2h!2I !G~v!~ t !,WA~ t !&u

<C•h1/42r
•~Ei~2A!1/42rF~v!~ t !i21Ei~2A!1/42rS~ t !v0i2!1/2

for anyrP(0,1
4). Together withi(2A)1/42rS(t)v0i<C•«r21/4

•iv0i and Lemma 4 we eventu-
ally obtain

uD2u<C•h1/42r. ~23!

Finally we turn our attention toD1 . Its definition and~20! imply

As in the discussion leading to~23!, we obtain for anyãP@0,1
4)
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uE^~S~h!2I !G~v!~ t !,DG&u<C•h2ã
•E~ i~2A! ãG~v!~ t !i•i~2A! ãDGi ! <C•h2ã. ~24!

Using again Lemma 4 we further derive

uE^F~t tv!~h!,DG&u<C•~EiF~t tv!~h!i2!1/2
•~EiiDGi2!1/2<C•h1/42r. ~25!

Combining~24! for fixed ã near 1
4 with ~25! furnishesuD1u<C•h1/42r, and we finally obtain

uEns~ t1h!2Ens~ t !u<C•h1/42r

for arbitraryrP(0,1
4). This completes the proof of Theorem 3.

V. ENSTROPHY ESTIMATE: ASYMPTOTICS

In Sec. III we established upper bounds on the growth of the enstrophy Ens(t)
5Eiv(t)i2/2. Unfortunately, these bounds fail to accurately describe the dynamics of Ens(t) as
t→0. For example, the bound derived in Theorem 1 will generally not even converge to Ens(0) as
t→0. Therefore, this section is devoted to investigating the small-time asymptotics of the enstro-
phy. Similar to Ref. 25 and 26 this will be accomplished by relating Ens(t) to the stochastic
convolution.

In order to bound the growth ofEiWA(t)i2, we assume that the coefficientsmk in ~6! are
bounded bymk

2<cm•k2d for somedP(0,1) and some positive constantcm.0. In this situation
we obtain similar to Ref. 25, Theorem 5.4, the estimate

EiWA~ t !i2<C0•td ~26!

for arbitrarytP@0,T#, whereC0 denotes a positive constant which depends onT. Using the mild
integral form~10! we further get

iv~ t !2v02WA~ t !i<i~S~ t !2I !v0i1iF~v!~ t !i .

If we now assume thatEiv0i4,`, then an application of Lemma 4 furnishes

Eiv~ t !2v02WA~ t !i2<2Ei~S~ t !2I !v0i212EiF~v!~ t !i2

<2Ei~S~ t !2I !v0i21C•t1/222r

<C•t2g
•Ei~2A!gv0i21C•t1/222r ~27!

for fixed rP~0,1
4! andgP@0,1!. Thus, the additional assumptionEi(2A)gv0i2,` for some small

gP@0,1! implies

Eiv~ t !2v02WA~ t !i2<C•t2g.

Hence,

~Eiv~ t !i2!1/2<~Eiv0i2!1/21~EiWA~ t !i2!1/21~Eiv~ t !2v02WA~ t !i2!1/2

5~Eiv0i2!1/21O~ tg1td/2!.

Similarly one obtains

~Eiv~ t !i2!1/2>~Eiv0i2!1/22~EiWA~ t !i2!1/22~Eiv~ t !2v02WA~ t !i2!1/2

5~Eiv0i2!1/21O~ tg1td/2!,

and together these estimates show thatEiv(t)i25Eiv0i21O(tg1td/2). If, on the other hand, we
havev050, then~27! implies
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Eiv~ t !2WA~ t !i2<t1/222r,

which analogously results inEiv(t)i25EiWA(t)i21O(t
1
42r1d/2). Using the definition of Ens,

this furnishes the following result on the small-time asymptotics of the enstrophy.
Theorem 4„asymptotics…: Assume thatEi(2A)gv0i2,` for some small constantg.0 and

that Eiv0i4,`. Furthermore, suppose that (26) holds for some smalld.0. Then

Ens~ t !5 1
2 •Eiv0i21O~ tg1td/2!.

If in addition we havev050 and letrP(0,1
4) be arbitrary, then

Ens~ t !5 1
2 •EiWA~ t !i21O~ t ~112d!/4 2r!.

Notice that in the casev050 the second term on the right-hand side is of higher order than
EiWA(t)i2/2 only under additional assumptions. For this we needd,1

222r, as well as a suitable
lower bound on the growth of the first termEiWA(t)i2/2 for small values oft. The latter can be
achieved by imposing a lower bound on the growth of the coefficientsmk . For details we refer the
reader to Refs. 25 and 27.

VI. SUMMARY

The enstrophy Ens(t)5Eiv(t)i2/2 is an averaged measure of fluid vorticityv(t). We have
investigated the enstrophy evolution of large-scale quasi-geostrophic flows under random wind
forcing. Thereby we have obtained results on upper bounds~Theorems 1 and 2!, Hölder continuity
~Theorem 3!, as well as small-time asymptotics~Theorem 4! for the enstrophy.
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