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Enstrophy is an averaged measure of fluid vorticity. This quantity is particularly
important inrotating geophysical flows. We investigate the dynamical evolution of
enstrophy for large-scale quasi-geostrophic flows under random wind forcing. We
obtain upper bounds on the enstrophy, as well as results establishinglitsr Ho
continuity and describing the small-time asymptotics.2@02 American Institute

of Physics[DOI: 10.1063/1.1459755

I. INTRODUCTION

Randomness is ubiquitous in fluid systems. Macroscopic partial differential equation models
for fluid flows contain such randomness as stochastic forcing, uncertain parameters, random
sources, and random boundary conditions.

There has been active recent research on stochastic approaches to geophysital dluvs
numerical simulations of stochastically forced geophysical fl6W&1t is generally understood
that random fluctuations can have delicate impact on geophysical fluid dynamfiést

A class of large-scale geophysical flows under random forcing are modeled by the quasi-
geostrophic equatioh:

A+ I, M)+ By = vAZY—T AY+W, 1)

wherey(x,y,t) is the stream functiong,:=d,¢), =0 is the meridional gradient of the Coriolis
parameterp>0 is the viscous dissipation constant; 0 is the Ekman dissipation constant, and
W(x,y,t) is a space—time Wiener process to be defined below on a probability §padd’).
Moreover,J(f,g) =f,g,—f,g, denotes the Jacobian operator. The generalized time derivative
models the noisy wind forcing.

Introducingw(x,y,t) =Ay(x,y,t), Eq. (1) can be rewritten in the form

w0+ I(,w) + BYy=vAw—Tw+W, (2

where ,y) e D andDCR? denotes a bounded domain with sufficiently smooth boundary. The
boundary conditions are no normal flgq@=0 on dD) and free-sliplw=0 on dD) as in Pedlosky
(Ref. 12, p. 34 or in Dymnikov and Kazantset?

Yy=w=00ndD. 3

An appropriate initial condition(0) is also imposed.
The mean enstrophy for a fluid flow is half the squared mean-square norm of the vétticity,
i.e., we have
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1
Engt)= §~EfDlw(x,y.t)|2d(x,y)-

The enstrophy Ens) is an averaged measure of fluid vorticibft). In this article, we discuss the

time evolution of the enstrophy. We present results which establish upper bounds on the enstrophy,
as well as results on Haer continuity and small-time asymptotics for Efys(These results are
contained in Secs. lll, IV, and V, respectively. The mathematical framework for our discussion is
described in Sec. Il.

IIl. MATHEMATICAL FRAMEWORK

As it stands, the stochastic quasi-geostrophic equaipstill has to be given a mathemati-
cally precise meaning. This can be accomplished using the framework of stochastic partial differ-
ential equations, as described, for example, in Ref. 16. In our situation, we formally réRyriite
the Ito formulation

do=(vAo—rw—Bi—I(,w))dt+dW. (4)

In the following we use the abbreviation$=L?(D), L*=L"(D), HE=HK(D), H*=HX(D),
0<k<o, for the standard Sobolev spaces. Let-) and||-| denote the standard scalar product
and norm inL?, respectively. Moreover, the norms fét§ and L” are denoted by|- |« and
|-Il.., respectively. Due to the Poincairequality (Ref. 17 p. 164 the expressiofA-|| is an
equivalent norm fong. It is well-known that the operatoh= vA:L?—L? with domainD(A)
=H2N H(l) is self-adjoint. Note thaf generates an analytic semigrogfi) on L2.%® The spectrum
of A consists of eigenvaluessO\;>\,=\3=--- with corresponding normalized eigenfunctions
©1, ©2,... . The set ofhese eigenfunctions is completelif. For example, for the square domain
D=(0,1)x(0,1) the eigenvalues are given byy(m?+n?)7? for m,ne N, and the associated
eigenfunctions are suitable multiples of smfx)sin(nmy).

Now we can define an appropriate class of Wiener procedseket B, ke N, denote a
family of independent real-valued standard Brownian motions. Furthermore, choose positive con-
stantsu,, ke N, such that

o 2
Mk
<
kzl N T ? @ 5

for some G< A< 1. Then we consider the Wiener procé¥sdefined by

W(t):= gl e B¢, t=0. (6)

Note that we explicitly allow Wiener processééwhose covariance operator is not of trace class,
i.e., for whichSy_, ué=oe.
For the domairD we basically assume that the eigenfunctignsof A satisfy

exeCo(D), |eu(x,y)|<C,

Vo, y)|<CVI\,

for all (x,y) e D andke N, whereC>0 denotes a constant which depends onlybonDomains

D which satisfy these conditions include rectangular domains, as well as equilateral triangles.
Unfortunately, there are many domains for which they are violated. See, for example, Ref. 19.
However, in this paper it is conjectured that(if) one generally should expect an upper bound
which is logarithmic in\,|. Even though our results remain valid in this situation, we will assume
the above stronger condition.

(@)
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Under the above assumptions, Theorem 5.2.9 in Ref. 20 guarantees that the stochastic con-
volution

WA(t)=j0tS(t—s)dW(s), t>0, 8

has a continuous version with values@g(D), the Banach space of continuous functions satis-
fying zero Dirichlet boundary conditions db. To be more precisa), has a version which is
even Hader continuous with some small exponent, which depends on the asymptotic behavior of
the coefficientswy .

If we define the nonlinear operatér by F(w)=—rw— B¢—I(¢,»), then(4) can be re-
written as the abstract evolution equation together with initial condition

do=(Aw+F(w))dt+dW,
€)

0(0)=wg.

For technical reasons we translate the operAtby a suitable multiple of the identity. Consider a
constantae=0 which will be chosen later on, usually sufficiently large. Definfkig=A— «al, we
get the initial value problem

do=(A,0+F(w)+aw)dt+dW,
w(0)=wq

or in mild (integra) form
w(t)=S,(t)wy+ Jotsa(t—s)(F(w(s))Jraw(s))ds+WAa(t), (20

where the analytic semigroup, is given byS,(t)=e - S(t) for t>0 and the stochastic con-
volution WAa(t) is defined as in8) with the semigroupsS replaced byS,. Finally, letU:=w

~Wa,. ThenU is the weak solution of
U=AU+F(U+V)+aV,
U(0)= wo,

where we use the abbreviatidh=W, . Notice that bothJ andV depend on.

[ll. ENSTROPHY ESTIMATE: UPPER BOUNDS

We begin by establishing upper bounds on the time evolution of the enstrophy) Ens(
=F| w(t)|?/2. Improving thea priori estimate of Ref. 5 Sec. 3, we obtain

d
> FIVOP=ITUOP-(e=»)
U (2= +¢18)+ C- V] (14 C,[V].)
+C, (1 B+ ) IVIZ+CVIE+C, V4, v

where C denotes a generic constant which depends onlyporand whose specific value may
change from line to line. SimilarlyC, denotes a generic constant which depends onlip aand
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e, wheree>0 is some arbitrarily small number. The constaptdenotes the optimal constant in
the Poincare inequalitjU|<c,||VU|| for mean zero functionsl. For e<v the improveda priori
estimate immediately yields the following lemma.

Lemma 1: For anyy>—v-c; °—r+c;- 3 there exist constants depending only grD, 8,
and r which are all denoted by C such that

d
qilVOIP=A®IUM®[*+B(®), t=0, (12)

with

At)=2y+C- (V[ +[VI2),

(13
B()=C-((1+a?)-|V[Z+|V])>0.
Together with Theorem 1.6.1 in Ref. 21 this yields
t
U<l ogl? e+ | Bse0as, =0 14
0

Suppose for simplicity thaby andW are stochastically independent. It is possible to drop this
assumption in this section, but in this case we additionally rigiesh|?> °<c for some small
5>0.

The critical term for taking the expectation (i4) is the squared. *-norm ofV=WAa in the
exponent, which is in general not finite. To complicate matters furthei.theorm in the expo-
nent cannot easily be dealt with, since we do not have a Hilbert space structure.

For our situation we will improve on some ideas of Ref. 22. Using Fernique’s The@efn

2
16, Theorem 2Bwe get thatP(t|V(r)|2>r2)<1/(1+el 32" implies E(e V(D) <eglorr?
+e?/(e?—1) for anyt,r,r,\>0. Hence, by Jensen’s inequality

t
E(euguvuwidf)g%. f BV g =C,
0

providedP(t]|V(7)|2>1)<1/(1+e'"3?) for any 7<t. The latter inequality follows immediately
from Chebychev’s inequality, provided we have

t-EV(n)l2= (15

1+el+32)\

for any r<t. The following lemma is proven similarly as Ref. 16, Theorem 5.20.
Lemma 2: For any g1 and any sufficiently smal>0 there exists a constant C which
depends only on 4, and D such that for any=0

E[V(nZ=cC-

oo 2 P
Mk 9
> N7
=1 a— N (16)

=:0(a)?

We remark that the assumptidi) on the eigenfunctions is essential for the proof of this
lemma. Notice also that the series(itb) is finite according tg5). Lemma 2 implies thatl5) is
satisfied for ang<C/¢(«a). It is now straightforward to verify that

FeM AMdr< ¢ . gM(t=s)2y
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for any s<t=<C/¢(a) and m=1,2, wherey and A(t) were defined in Lemma 1. Moreover,
Lemma 2 implies foB(t) in (13)

(EB(H)?)Y?<C-((1+a?)- ¢(a) + ¢(a)?)

for anyt>0. We finally obtain from(14) that

t
HUOI=H] oo/ [*p(s)e 0%
0
t
<E||w0|\2-ﬂﬂef5’*(s)ds+f (EB(S)z)1/2(Eezf‘sA(r)dr)1/2dS
0

t
SC'JE||a)O||2~ e+ C-((1+a?) - o(a)+e(a)?)- foezdeT (17

theorem on upper bounds for the enstrophy.

Theorem 1 (upper bound): Suppose thab, and W are stochastically independent and that
E|wol|?<%. Moreover, lety>—v.c;*—r+c;-B. ThenEnse L*([0,T]) for any T>0. More
precisely

Engt)<C-[||wg|? - e*"'+C- ¢(a)
C-((1+ a2)~q>(a)+<p(a)2)' jtezwdr
0

for any t<C/¢(«), with constants C independent gfd, and .

Remark 1: It can be shown that for any choice of&p similar bounds hold for
Esup. . (04U ()|?P, provided bothkl|wl|*°<e and t<C/¢(a).

Moreover, all bounds orkl|U(t)[|*P or Esup..joq|U(7)|[** immediately imply analogous
bounds on Ens¢) or Esup..pqlle(7)|[**. For this one has to employ estimates for
Esup;col|Wa, (7)|I?P which can be obtained for example as in Ref. 23, Corollary 2.3

In order to obtain a bound far—o, we note that fora—o one obviously hasp(a)—0.
However, the rate of convergence is essential. To this end, we distinguish two cases. If we suppose
that=;_,uZ-|\|?<o for someg=>0, then the estimate(a)<Z;_,uZ- |\« is immediate—
and choosingy proportional tot in Theorem 1 furnishes

t
Ens(t)sC-(]E|wo||2-e27‘+t~J e’ dr+1| forall t=0.
0

If, on the other handg_,u2-|\|?==, we additionally assumgZ<Ck * for someue(6,1],
with arbitrarily smallé defined in Lemma 2(For u>1 we can always find some smalbkuch that
the first case appligsUsing the fact that\ |~ Ck for k—« (cf. Ref. 24 we obtain

Kk~ o0 w KO~ m
¢(a)=<C- z ckta Ki<C: fo Ck-i—cvdk

Choosinga*~? proportional tot in Theorem 1, we derive

t
Engt)<C- ]E]||w0||2-e27‘+t2’(““’)‘1-fe277d7+1 forall t=0.

0




J. Math. Phys., Vol. 43, No. 5, May 2002 Enstrophy dynamics of geophysical flows 2621

Notice that 2/fx— 0) —1>1. We have proved the following result.

Theorem 2 (global upper bound): Assume again thab, and W are stochastically indepen-
dent, thatl]| wg||?<, and lety>—v-c;2—r+c;-B. Then the following holds

(@ If ;Lﬁng*/‘ for somewe(0,1], we can find au e (0,u) such that

— t
Ens(t)sC-(E||wo||2-ezyt+t(2‘“)“’“-f e?”dr+1| forall t=0.
0
(b) If =p_ u2-|\|?<o for somed>0, then
t
Ens(t)sc-(E||w0||2-e27t+t-je277d7-+1 for all t=0.
0

The constants C are independent of t angl but they can depend of) y, u, &, the domain
D, or the coefficients in (1)

Remark 2: If—v-c; >~ r+c,- =0, then necessarilyy>0. In this case we obtain an expo-
nentially growing upper bound fdeEns() with growth rate slightly larger than- v~c1’2—r+c1
- B.

If, on the other hand—v.cl_z—r+c1.,8<0, then we can choose<0. This furnishes a
polynomial upper bound which grows at least linearly in time. The precise growth exponent is
determined by the regularity of the noise

Remark 3: As we already stated in the beginning of this section, one can remove the condition
of stochastic independence ef, and W in the previous theorem, if one additionally assumes
Ellwg||?* << for some smalb.

Our above results hold for a large class of noise processes, in particular also for more irregular
Wiener processed/ whose covariance operator is not of trace class. If, however, one assumes that
the Wiener process is of trace class, i.e., ifQyE& Ele,uﬁ<oo, then the results can be improved
significantly by employing Ito’s formula. One advantage of this approach is that it avoids the
conditions on the eigenfunction 7). Therefore, we will briefly outline the main ideas.

By applying Ito’s formula(Ref. 16, Sec. 4)5to the squared ?-norm of the vorticityw(t), it
can easily be verified that

E||w(t)||2=2ELt(Aw( 7)+F(w(7),0(7))dr+Tr(Q)-t,

where TrQ)==,_ l,uﬁ denotes the trace of the covariance oper&asf W. Using calculations
analogous to the ones leading to theriori estimate in Lemma 1, we formally obtain

aF

ot)|?=2{Aw(7)+F(w(7),0(7)+Tr(Q)
<2y-Flo(®)[*+Tr(Q),
where y> — V-CIZ—H—Cl',B as in Lemma 1. Hence, for a0 we have

e?rt-1

Engt)<Eng0)-e?”'+Tr(Q)- 4y

(18

Especially if one can choose a growth exponest0, this significantly improves the estimates of
Theorem 2, since in this case the right-hand sid€18f approaches- Tr(Q)/(4vy) for t— oo,

IV. ENSTROPHY ESTIMATE: HOLDER CONTINUITY

In this section we establish regularity properties of the enstrophy as a function of time. More
precisely, we will prove that Ens(=E| w(t)||?/2 is Hdder continuous. To this end, we need the
following lemma from Ref. 5
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Lemma 3: Define a nonlinear mappin@C([O,T];H(l,)—>C([O,T];L2) by

(]—‘(w))(t)::fOtS(t—s)F(w(s))ds, for te[0,T],

wherew e C([0,T]; H(l)), and A and F are as it9). ThenF is continuous, and it can be extended
to a continuous mapping from the spacg G T];L?) to C([0,T];L?). Furthermore, the image of
the extended mapping is contained in §[0,T],H3(D)) for 0O<a<3.

In fact, it is shown in Ref. 5 that for arbitrary positive constaats[0,;) and pe (0,3
satisfying 0<p+a< } the estimate

t
‘(—A)afos(t—S)F(w(S))ds

rc+ Bc
<CEP e sup ()]
1-a 0<s<t
8c 4c
+ . 1/47p7a+ tl2—p-a| 2
(1—4p—4a t 1-2p-2a ' Sup (sl
holds. Especially foa=0 we obtain
t
| F(w) (D)= fOS(t—S)F(w(S))ds <(rc+pc)-t- supllo(s)|
O=s=<t
8c 4c
|t —— 1270 supllw(s)|?
= T sup a(s)

for every 0<p<3. Together with Theorem 1 and Remark 1 these bounds immediately furnish the
following result.

Lemma 4: Suppose thaty and W are stochastically independent and that for somé e
havel| wy||?P<w. Moreover, let T>0 be arbitrary, and let a=[0,}) andp e (0,2) be such that
0<p-+a<j Then there exists a constant C such that

E|(—A)2F w)(t)|P<C-tP- X4=r=2) forall t<[0T].

The following theorem states our main result on the regularity of the enstrophy. It will be
proved in the remainder of this section.

Theorem 3 (Holder continuity ): Suppose thad, and W are stochastically independent and
that || wo||*< 0. Then the enstrophins(-) defined byEnst) = E||w(t)]?/2 is Holder continuous
with arbitrary exponent less thahon every compact interval i(0,).

Remark 4: Note that in general we cannot expect the solutitm be Hdder continuous with
arbitrary exponent less thafy since W, is in general less regular. As one can see from (10) with
a=0, one cannot expeet to be more regular than W.

To prove the above theorem establishing théddocontinuity of the enstrophy, we first define

G(w) (1) =S() wo+ FHw)(1). 19

According to(10) for =0, we therefore have(t) = G(w)(t) + Wa(t). Consider a fixed interval
J=[e,T]C(0,). ForteJ andh with t+he J the identity(10) then implies
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Elloo(t+h)[2=Elle(t)[?=E|G(w) (t+h) + Wa(t+h)||>= E|G(w) (1) + Wa(1)]|?
=E|G(w)(t+h)[>~E|G(w)(t)[[>+ 2E(G(w)(t+h),Wa(t+h))
— 2E(G( @) (1), Wa(1)) + E|Wa(t+h) 2= E|Wa(t)]?
=:D;+2D,+Ds.

For simplicity we assum&>0 in the following. The cas@<<0 can be treated analogously.
We begin by estimatind;. Due to Ref. 25 one hak|W,(-)[|?c C*(0,%). Hence,|D|
=<C-h for some constant€>0.
In order to estimat®,, we define the shift-operata; by o= w(t+-) for t>0. Then the
definitions ofG and F in (19) and Lemma 3, respectively, furnish

G(w)(t+h)=S(h)G(w)(t) + F(rw)(h). (20)
Since{w(S)}sc oy is stochastically independent OIV(S)}sc (i 1+n We get
F(G(w)(t+h),Wp(t+ h)>=JE< S(h)G(w)(1), J:S(t-l— h— s)dW(s)> + E(F(rw)(h),Wx(t+h))

=E(S(h)G(w)(1),S(h)W(t)) + E(F(riw) (h),Wa(t+h))
and together with the self-adjointness&(h) we finally arrive at

D,=E((S(2h) = 1) G(@) (1), Wa(1)) + E(F(7rw)(h),Wa(t+h)). (21)
The boundedness @ W,(t)||? on J and Lemma 4 now yield
| E(F(70) (h), Wa(t+h))| < (Bl F(70) () [ Y2 (B Wa(t+h)[H V< C-h e,

As for the first term in(21), notice that
h
lsy—tol= - msisyolias=c - Ayl @

for anyv e D((—A)?), with a constanC which depends oa[0,1). Thus,
[E((S(2h) = 1) G(@)(1),WA(1))]
<C-h" P (B|(=A)™ P FH o) (D2 +El(—A) 7P S(t) o) V2

for any p e (0,3). Together with|(—A)Y* PS(t) we||<C-&” V4. ||wy|| and Lemma 4 we eventu-
ally obtain

|D,|<C-h¥4~r, (23
Finally we turn our attention t®, . Its definition and(20) imply
D, =E|G(w)(t+m)|*—E|G(w) (1)
=E(G(w)(t+h)—G(w)(1),G(w)(t+h)+G(w)(1))

::Dg

=E((S(h)—DG(w)(2),D g+ E(F(7,0)(h),D ).

As in the discussion leading @3), we obtain for anya e[0,3)
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[E((S(h) = D) G(w)(1),Dg)|=C-h*E- E(|(— A*G(w) (1)]- [ (~A)*Dgl) <C-h%. (24
Using again Lemma 4 we further derive

F(mo) (D)5 (E[Dg|?) P2<C-h . (29

I FA(rw)(h),Dg)|<C-(E

Combining(24) for fixeda near; with (25) furnishes|D1|$C-hl’4‘P, and we finally obtain
|Engt+h)—Engt)|<C-h¥4"*

for arbitraryp e (0,3). This completes the proof of Theorem 3.

V. ENSTROPHY ESTIMATE: ASYMPTOTICS

In Sec. Ill we established upper bounds on the growth of the enstrophyt)Ens(
=F| w(t)[?/2. Unfortunately, these bounds fail to accurately describe the dynamics of) Erss(
t—0. For example, the bound derived in Theorem 1 will generally not even converge to Ens(0) as
t—0. Therefore, this section is devoted to investigating the small-time asymptotics of the enstro-
phy. Similar to Ref. 25 and 26 this will be accomplished by relating Eingf the stochastic
convolution.

In order to bound the growth dfj|W,(t)|?, we assume that the coefficienis in (6) are
bounded by,uﬁscM-k“s for someée (0,1) and some positive constazyf>0. In this situation
we obtain similar to Ref. 25, Theorem 5.4, the estimate

E[Wa(D)[?<Cp-t° (26)

for arbitraryt e[0,T], whereC, denotes a positive constant which dependd otUsing the mild
integral form(10) we further get

lox(t) = wo—Wa()|<[[(S(t) =D wo| + [ F @) (D]
If we now assume thai]| wg||*<oc, then an application of Lemma 4 furnishes
Elo(t) = o= Wa(D)[?< 2E[ (S(t) = 1) ol >+ 2E]| Flw) (1)
<2E[(S(t) =) wg|>+C-tH2 27
<C-t?.E|(—A)w?+C-t¥22 (27)

for fixed pe (0,3 andye[0,1). Thus, the additional assumptidii(— A) ?w||?< for some small
ve[0,1) implies

Bl o(t) = wg— Wa(t)[[*><C-t?7.
Hence,
(Bl o(O)]1)M2< (]| ol 2) Y2+ (EIWAD]I?) Y2+ (B (t) — 0o — Wa(h) )2
= (Elal|®) "+ O(t7+17).
Similarly one obtains
(Bl o()[2) Y%= (E] w2 Y= (E|WA(D) %) Y= (B o (t) — 0o— WA [[5) M2
= (Elag*) 2+ O(t"+1),

and together these estimates show fjai(t)[|>=E| wo| >+ O(t”+t%?). If, on the other hand, we
have wy=0, then(27) implies
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Ello(t) = Wa(b)]P=tH2"2,
1
which analogously results il o(t)]| 2= E|W,(t)||2+ O3~ P 5/2). Using the definition of Ens,
this furnishes the following result on the small-time asymptotics of the enstrophy.
Theorem 4(asymptoticy: Assume thakl]|(— A) Ywy||><o for some small constant>0 and

that F]| we||*<oc. Furthermore, suppose that (26) holds for some srmziD. Then

Engt)=%-E

w2+ O(t7+1?).
If in addition we havew,=0 and letp e (0,7) be arbitrary, then
Engt)= 3 E[Wa(D)| 2+ Ot 291 7).

Notice that in the case,=0 the second term on the right-hand side is of higher order than
[E][W,(1)]|?/2 only under additional assumptions. For this we néeg—2p, as well as a suitable
lower bound on the growth of the first terfiffW,(t)[%/2 for small values of. The latter can be
achieved by imposing a lower bound on the growth of the coefficigptsFor details we refer the
reader to Refs. 25 and 27.

VI. SUMMARY

The enstrophy Eng[=E||o(t)||?/2 is an averaged measure of fluid vorticitft). We have
investigated the enstrophy evolution of large-scale quasi-geostrophic flows under random wind
forcing. Thereby we have obtained results on upper bo(fldsorems 1 and)2Holder continuity
(Theorem 3, as well as small-time asymptoti¢Eheorem 4 for the enstrophy.
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