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1 | VOLATILITY AND GENERALIZED AUTOREGRESSIVE CONDITIONALLY
HETEROSCEDASTIC MODELS

The chief cause of the inadequacy of mixed autoregressive moving average (ARMA) models when it comes to financial
time series is closely related to several features of this sort of time series.

For instance, many of them seem to meander in the sense that they show no particular tendency to increase or decrease
(see pp. 123 and 124 in the work of Enders'); others exhibit a clear trend (see p. 121 in the aforementioned work!). Most
importantly, distorting and aberrant observations can occur and have a major influence on financial time series modeling
and forecasting (sce p. 20 in the work of Franses®). Morcover, these observations tend to appear in clusters and, in some
cases, they can be interpreted as resulting, for instance, from the impact of certain news on a stock market (see p. 24 in
the aforementioned work?).

Figure 1 comprises the time series plot of the Standard & Poor's 500 index (S&P 500) on trading days (P;), from January 2,
2012 to January 31, 2017. The data was downloaded from Thomson Reuters Datastream and the associated time series
plot suggests a typical financial time series with an upward trend. In addition, the time series plot of the associated daily
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FIGURE1 S&P 500 index from January 2, 2012 to January 31, 2017 (left); daily log returns of the S&P 500 index from January 3, 2012 to
January 31, 2017 (right)

log returns log(P;/P;—1) in Figure 1 reveals high volatility and leads us to a belief that the associated (short-run) variance
is not constant over time, a phenomenon econometricians call heteroscedasticity.

While conventional time series operates under the assumption of constant variance, the autoregressive conditionally
heteroscedastic (ARCH) model introduced by Engle® allows the conditional variance h; of today's value Y; to depend on
past realizations of the time series, leaving the unconditional variance constant (see the work of Bollerslev*).

The simplest example of the ARCH model, ie, the ARCH(1), reads as follows:

Y, = eh)’”, (1)
hi=ag+a1Y2,, (2)

where {g; : t € Z} is a Gaussian white noise (GWN) with zero mean and unit variance, ie, GWN(0, 1); ¢, is independent
of h, for all £; and ap > 0 and a; > 0. Furthermore, Y;|y,_; ~ N(0, k), that is, Y; based upon the past information set
available at time ¢ — 1, ie, y,_;, is a normally distributed random variable with zero mean and variance equal to h;.

The ARCH model has been proven useful in modeling several economic phenomena such as the inflation rate, as
mentioned by Bollerslev.* However, the ARCH(g) model relies on the conditional variance h; written in terms of a moving
average of g previous shocks, ie, Yf_ 1soees Ytz_ = hence, it is bound to have some limitations and natural extensions.

The extension of the ARCH model bears, as Bollerslev* pointed out, much resemblance to the extension of the standard
autoregressive (AR) process to the general ARMA process.

This author adds that it seems of practical interest to consider that the conditional variance h; depends not only on
those MA terms (Ytz_l, ey Yf_ q) but also on AR terms, the lagged conditional variances (h;_1, ... , h,_p). This leads to the
generalized ARCH (GARCH) processes introduced by Bollerslev.*

Definition 1. A stochastic process {Y; : t € Z} is said to be a GARCH(p, q) process if it satisfies

Y=’ (3)
q »

hy = ao + zai Y2+ Zﬂiht—is (4)
i=1 i=1

where {&; : t € Z} ~ GWN(0, 1); & is independent of h;, forall t € Z; ay > 0; 2; > 0,i =1, ... ,q(q > 0); and §; > 0,
i=1,...,p(p > 0).In addition, Y;|y,_; ~ N(O, k).

Bollerslev* stated in Theorem 1 that the GARCH( p, q) process is weakly stationary if and only if 0 < ZL ai+zf:1 pi <1,
and in this case E(Y,) = 0, E(Y}) = ﬁ and E(Y,Y,_,) = 0, forall t € Z and n € N. One is dealing with a
stochastic process with zero mean and coll_llsistinl_gl, of uncorrelated r.v.

The ARCH and GWN processes are particular cases of the GARCH processes, ie, when p = 0, one is dealing with an
ARCH(q) process, whereas p = ¢ = Oleads to {Y; : t € Z} ~ GWN(0, ap). The simplest but frequently useful GARCH

process is the GARCH(1,1).*
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For a comprehensive review on ARCH/GARCH modeling and on GARCH models and their financial applications, the
reader is referred to the work of Giraitis et al* and Francq and Zakoian,® respectively.

The remainder of this paper is organized as follows. In Section 2, we define the structural mean/variance breaks of an
assumed GARCH(1, 1) model; we briefly describe 4 known joint monitoring schemes for detecting those structural breaks
in the process mean and variance; and we provide an instructive example of the use of these joint control schemes in
finance. In Section 3, we discuss misleading signals (MS) and unambiguous signals (UNS) and estimate the probabilities
of their occurrence via Monte Carlo simulation; tables and plots of these probabilities are supplied to devise their behavior
when the 4 joint schemes are used to monitor breaks in the process mean and variance of 2 different GARCH(1, 1) models.
A few final thoughts are given in Section 4.

2 | MONITORING STRUCTURAL DEVIATIONS IN FINANCE

While dealing with financial data, Schipper and Schmid”® emphasize the distinction between the target process {Y; : ¢t €
N} and the observed process {X; : t € N} and suggest that the former corresponds to the assumed (or in-control) model
and can be obtained, namely, by fitting a suitable model to a starting (or historical) block of data; the latter is associated
with the time series itself.

From now on, one considers a GARCH(1, 1) target process

Y, =po+ & h[1/2 ©)
h = ag + a1 (Yio1 — po)* + Br b, (6)

a

- 5 (see the work of Schipper and Schmid”).

with mean y, and variance 6§ = —

As aptly noted by the aforementioned work,” the impact of rumor and other events on the target GARCH process can
be frequently described by a short-lived shift (see p. 183 in the work of Montgomery?) in the process mean or by a sustained
change in the process variance. Thus, it is reasonable to relate the observed and target processes as follows:

)/h t<f
Xi=qmo+ 60, —p)+dop, t=71 @)
Ho + 60 (Y — po), t>,

where t(t € N), 6(6§ € R),and (6 € R*) denote the time epoch of the structural change, the relative size of the short-lived
shift in location because of the additive outlier, and the magnitude of the sustained shift in scale, respectively.
Since the mean and variance of X; are given by’

EX)) = o + 8060 X Iz)(8) ®)
VX)) = [1=(1 =0 X kN D] 05, )
one can write
E(X)) —
5= 2K 200y ) (10)
00
VV(XD)
9=]1[keN:k<T)(t)+G—OX]llkeN:kZT)(t)- (11)

Itis also important to note that the observed process {X; : ¢t € N} is said to be out-of-control if § # 0 or  # 1 and deemed
in control otherwise.

Furthermore, Schipper and Schmid’ added that control charts should be used to check whether or not the observed
process can be reasonably described by the fitted model. Control charts can indeed be used to detect relevant structural
deviations in the observed process {X; : t € N}, underlying a financial time series, from the target process {Y; : t € N}.

Bear in mind the following.

« The traders need to promptly track structural deviations from that model because they can make a profit when those
changes occur, after all, the stock price patterns allow forecasting future stock prices (see p. 7 in the work of Schipper™).
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« When a control chart triggers a signal and a deviation is found, that information should be considered in the trading
strategy, namely, to determine if the trader keeps a security in his portfolio (see p. 9 in the aforementioned work™).

2.1 | Joint schemes for the process mean and variance

The first charts specifically designed to monitor the GARCH process were proposed by Severin and Schmid!!; these control
charts were used to monitor the process mean.

Schipper and Schmid® studied control charts to detect solely the changes in the process variance; the reader should
recall that, in finance, the variance measures the risk of an asset; thus, it is extremely important to detect any changes in
this process parameter.

However, in order to efficiently control a process, one needs to jointly monitor its location and scale, thus the use of
joint (simultaneous or combined) control schemes. The standard practice is to jointly use 2 individual charts, ie, one for
the mean value () and another one for the variance (¢2). That is the case of the joint exponentially weighted moving
average (EWMA) schemes proposed by Schipper™ (pp. 34 and 35).

In Table 1, one can find the statistics and the control limits of one individual EWMA chart for y; and 4 individual EWMA
charts for o based on the squared observations (I), the conditional variance (II), the exponentially weighted variance (III),
and the logarithm of the squared observations (IV). 41, 4, € (0, 1] denote the smoothing parameters of the individual
EWMA charts for the process mean and variance, respectively.

Please note that, according to Schipper™ (pp. 12-14, 35), the conditional variance is given by

0'3, t=1
62 =300 + (a1 + B1) [(Xic1 — o) — o] (12)
_rfi__ll [(X[—l - MO)Z - atz_l] 9 t 2 2’

where r; = (1 = 2p1a1 — f7)/[1 — (ay + p)*l and r; = 1 + 7 — 2 /1y, for t > 2; and the exponentially weighted variance

is taken to be equal to
2
% 2 O, t= 0
(Ut ) = { 0 (13)

0.94(c%,)° +0.06(X; — )%,  teN.

A control chart should be associated to infrequent false alarms and should trigger a valid signal as quickly as possible
when the process is out of control. Expectedly, the performance of any control chart is commonly assessed by making use

TABLE 1 Statistics and control limits of the individual exponentially weighted
moving average (EWMA) charts for 4 and for &
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of the run length (RL), which is the number of samples collected before a signal is triggered by the chart (see p. 100 in the
work of Wetherill and Brown!?).

The joint scheme for the process mean and variance gives a signal when at least one of its 2 individual charts does, that
is, its RL is defined as

RL9 =min {re N |78 w| > UCLY,

orz <LCLY orzy) > UCLg‘la} ke {I,ILII,IV}. (14)

In order to set the control limits (or equivalently to compute the associated values), Schipper and Schmid” define a
system of 3 nonlinear equations to obtain a unique solution satisfying the following conditions.

« The in-control average RL (ARL) of the joint scheme is equal to some desired (and reasonably large) value, say ARL".

« ERL™) = E(RLI™*") = E(RL)™") = E(RLV"), where E(RL™") (respectively E(RLIV®")) represents the in-control
ARL of an individual upper (respectively lower) one-sided chart for y, and E(RL,"™) (respectively E(RLI™*")) denotes
the in-control ARL of an individual upper (respectively lower) one-sided chart for o.

That system can be solved using a 3-dimensional secant rule, having as starting values for the iteration the critical values
of the individual one-sided charts (see Schipper and Schmid”).

Regretfully, deriving the RL distribution is rather difficult when the target process is governed by a GARCH model.
Therefore, one has to rely on Monte Carlo simulations to obtain the critical values and to assess the performance of the
joint scheme.

Programs for the R statistical software’® and the C programming language were written to derive those critical values
and to produce all the results and plots in this paper.

2.2 | Ilustration
The purpose of this section is to provide an instructive example of the use of joint control schemes in finance.

Example 1. To monitor the mean and variance of the S&P 500 index, the target process was determined from the
data of a starting block. In practice, this starting block should be chosen based on the experience of an analyst and it
should reflect the typical behavior of the share or index. In this particular case, it consists of the daily log returns of
the S&P 500 index dated from January 2, 2012 to December 31, 2015.

%
l—ay=p,’
the following estimates: fiy = 0.08046881; &, = 0.07713434; @; = 0.1600751; and ﬁl = 0.7177052.

Based on this fitted model, a joint EWMA scheme with 4; = 1, = 0.1 was designed to monitor the process mean and
variance of the log returns of the S&P 500 index from January 2, 2016 to January 31, 2017.

Considering an in-control ARL of 60 (trading days) led to the following control limits of the 2 individual EWMA charts:
fig — ¢ = —0.31482259 and jiy + ¢\ = 0.47576021; and ¢’ @ = 0.2161774 and ¢ &) = 1.436697.

These control limits are represented by horizontal lines, as shown by Figure 2, where one also plotted the observed
values of EWMA rccursions Zfi (left) and Z;I? (right).

Let one remind the reader that the aim of this joint EWMA scheme is to detect deviations from the previously fitted
model, in particular, because of short-lived shifts in the process mean or sustained changes in the process variance.

This joint scheme triggers signals on several occasions, for instance, on January 7, 2016, June 22, 2016, and
December 2, 2016. These and many other signals confirm the occurrence of economic/financial events discussed
thoroughly by Schroders'* and other outlets covering finance.

The signals triggered by the joint scheme on January 7, 8, 11, and 13-29, 2016, reflect the fact that it was a very turbulent
month. In the US, the S&P 500 index was negatively affected by fears of slowing global and domestic growth; renewed
instability in the Chinese equity market and a further deterioration in the oil price led to steep negative returns in global
stock markets.

In a speech to the House of Commons on February 22, 2016, David Cameron announced the date of the referendum
on the UK's EU membership, June 23, 2016; on the morning of June 24, the result of this referendum was made public.

One fitted a GARCH(1, 1) model, with target mean y, and variance 67 = to this starting block data and obtained
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FIGURE 2 Exponentially weighted moving average charts for the process mean (left) and variance (right) of the log returns of the S&P500
index from January 2, 2016 to January 31, 2017

The impact and the anticipation of this news translate into sharp increases in volatility and, consequently, into signals on
June 22, 24-30, and early July 2016.

The build-up to the US presidential election and the subsequent victory for Donald Trump dominated the news flow in
November 2016. The impact of Donald Trump's electoral college vote win on markets was short lived because investors
rapidly embraced the idea of a Republican-controlled Congress being a game changer by implementing fiscal stimulus
and tax cuts. As a consequence, one detects a modest increase in volatility in the beginning of November, followed by
downward shifts in the volatility, indicating some relaxation of the financial markets. These shifts are responsible for a
first signal on December 2, 2016, several signals later that year, and on most of the trading days of January 2017.

For an illustration of a joint Shewhart scheme for the mean and variance of the returns of the Deutsche Bank share,
the reader is referred to pp. 49-56 in the work of Schipper.’® This author adds that, when the joint scheme signals, the
fund manager should decide to acquire or retain a riskier security; thus, the joint scheme can be used as a hedge tool
against structural deviations. It is worth mentioning that section 3.5 in the aforementioned work™ continued to explore
this example, namely, by describing an objective trading strategy that combines the developments in statistical process
control with trading techniques for options (see p. 57 in the work of Schipper™).

3 | MISLEADING AND UNAMBIGUOUS SIGNALS

The concept of misleading signal was firstly introduced by St. John and Bragg,"® who identified the 3 following types of MS.

I. The process mean increases but the signal is triggered by the chart for the variance or on the negative side of the
chart for the mean.

II. The process mean decreases but the signal is triggered by the chart for the variance or on the positive side of the
chart for the mean.

II1.The process variance has shifted up but the signal is triggered by the chart for the mean.

Posteriorly, a fourth type was defined by Morais and Pacheco.'

IV. The process mean shifts but the signal is triggered by the chart for the variance.

Moreover, it seemed to Morais and Pacheco'® that it is more relevant to focus on valid signals corresponding to the mis-
interpretation of a shift on the process mean (respectively variance) as a shift in the process variance (respectively mean)
when one makes use of a joint scheme for these 2 parameters.

Additionally, Ramos'’ (p. 112) identified another class of valid signals, ie, the unambiguous signals that were divided
into 2 types by Ralha et al.’®

III. The process variance is out of control and the first chart that triggers a signal is the chart for the variance.

IV. The process mean is out of control and the corresponding chart is the first to signal.

Regarding the MS and UNS, a joint scheme should trigger MS (respectively UNS) as infrequently (respectively often)
as possible, ic, the probability of the MS (PMS) and the probability of UNS (PUNS) should be small (respectively large).



673

These probabilities have been used to assess the performance of several joint schemes. For instance, the PMS have been
computed and analyzed by several authors for univariate normal i.i.d. output (eg, see related works'®'31); univariate
stationary Gaussian processes (sce other works?**?); bivariate normal i.i.d. output (eg, sce the works of Ramos ct al'’»*);
and multivariate normal i.i.d. processes.** As far as one has investigated, the PUNS have only been addressed by Ralha
et al'® for univariate and bivariate normal i.i.d. output.

Since the assignable causes on charts for 4 can be different of those on charts for o, the appropriate trading strategy that
follows a signal can differ depending on whether the signal is triggered by the chart for u or by the one for . Therefore,
an MS can lead to a reduction in the profit made by the traders/brokers if it led them to use an inappropriate trading
strategy, say not buying a highly profitable asset or not selling an unprofitable security.

Moreover, PMS and PUNS should be indeed used to evaluate the performance of joint schemes that are used to monitor
changes in the mean and variance of financial time series, such as the 4 joint EWMA schemes introduced by Schipper’
and briefly described in the previous section.

In this paper, the attention is restricted to the misleading and unambiguous signals of types III and IV systematized as
follows.

Valid Signal H c First Chart to Signal
MS;; In control Out of control Chart for p
MSp Out of control  In control Chart for o
UNS;; In control Out of control Chart for o
UNS; Out of control In control Chart for p

Unexpectedly, the PMS and PUNS types III and IV are given by

PMS;;(8) = P[RL,(0,6) > RL,(0,6)], 6 # 1 (15)

PMSpy/(8) = P[RL,(8,1) > RLy(8,1)], 6 # 0 (16)
PUNS(6) = P[RL,(0,6) > RL,(0,6)], 6 # 1 (17)
PUNSy/(8) = P[RL,(5,1) > RL,(5,1)], § # 0, (18)

where RL, and RL, are the RLs of the individual charts for 4 and for o.

Regretfully, one is unable to derive the joint distributions regarding {Y; : ¢t € N} needed to determine the distribution
of the RL of the individual control charts and the joint distribution of those 2 dependent RLs when the target process is
governed by a GARCH model. Consequently, one cannot simplify the expressions of the probabilities of misleading and
unambiguous signals of types III and IV and one has to rely on Monte Carlo simulations to estimate PMS;;(6), PMS/(6),
PUNSIH(Q), and PUNSIV(é).

3.1 | Estimating PMS and PUNS via Monte Carlo simulation

One considered the 2 following target processes in p. 39 in the work of Schipper':

« Process I: ¢y = 0.1a; = 0.054; = 0.9; and
« Process II: @y = 1.0a; = 0.254; = 0.7.

Let one remind the reader that, in finance, the value of a; is usually small and the one of f, is typically large.

The smoothing parameters 4; and A, of the individual EWMA charts are in Table 2 and coincide with the ones
considered by Schipper® (p. 48) and Schipper and Schmid.”

These schemes were calibrated in such a way that ARL* is approximately equal to 60. According to Schipper and
Schmid,?® the value 60 roughly reflects 3 months at the stock exchange. Moreover, the 3 critical values for each joint scheme
and for (41, 4;) can be found in the work of Schipper’® (tables A.3 to A.6, pp. 109 and 110) and have been reproduced by
Sousa? (tables A.1 to A.4, p. 89).
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TABLE 2 Pairs of smoothing parameters (4, 4,)—joint
exponentially weighted moving average schemes
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FIGURE 3 Estimated PMS;;;(0) for all pairs (41, 4,)

As far as the shifts in the parameters are concerned, 2 different out-of-control scenarios have been considered to estimate
the PMS and PUNS of types III and IV.

« In the first case, the process standard deviation suffers a sustained shift of magnitude & = 0.7,0.8,0.9,1.1,1.2,1.3,
1.5,2.0,3.0 and the process mean stays on-target (6 = 0).

« In the second situation, the process mean suffers a short-lived shift of magnitude § = 0.5,1.0,1.5, 2.0, 2.5, 3.0 and the
process variance is on-target (6 = 1).
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TABLE 3 Minimum PMS;;;(6) and maximum PUNS;;(0), processes I and I1-joint exponentially weighted moving
average scheme with chart for ¢ listed in order corresponding to squared observations (I), conditional variance (II),
exponentially weighted variance (IIT), and logarithm of squared observations (IV)
2}
Process I 0.7 0.8 0.9 1.1 1.2 1.3 1.5 2.0 3.0
min(PMSy;)  0.016(7) 0.075(7) 0.203(9) 0.378(9) 0.380(9) 0.360(9) 0.269(1) 0.118(1) 0.034(1)
0.014 (5) 0.070(5) 0.208(5) 0.467(5) 0.435(6) 0.356(6) 0.224(6) 0.075(6) 0.015(6)
0.016 (5) 0.074(5) 0.221(5) 0.515(6) 0.473(6) 0.400(6) 0.273(6) 0.129(6) 0.042(6)
0.023(7) 0.107(7) 0.240(5) 0.343(5) 0.349(5) 0.336(5) 0.281(6) 0.134(6) 0.041 (6)
max(PUNSy;) 0.981(7) 0.909(7) 0.717(7) 0.474(6) 0.491(6) 0.522(6) 0.582(6) 0.670(6) 0.632(6)
0.984 (8) 0.918(7) 0.737(7) 0.447(6) 0.472(6) 0.528(6) 0.632(6) 0.7306) 0.681(6)
0.983(8) 0.915(8) 0.736(7) 0.419(6) 0.433(6) 0.486(6) 0.571(6) 0.635(6) 0.578 (6)

0.976 (7) 0.889(7) 0.709(7) 0.475(6) 0.490(6) 0.521(6) 0.585(6) 0.671(6) 0.632(6)

0
Process I1 0.7 0.8 0.9 1.1 1.2 1.3 1.5 2.0 3.0

min(PMS;)  0.075(9) 0.135(9) 0.213(9) 0.319(5) 0.348(5) 0.363(5) 0.369(5) 0.312(6) 0.127(6)
0.074(5) 0.136(5) 0.218(5) 0.385(5) 0.437(5) 0453(5) 0.442(5) 0.308(6) 0.105(6)
0.094(5) 0.161(5) 0.255(5) 0.469(5) 0.535(5) 0.563(5) 0.521(6) 0.355(6) 0.157(6)
0.115(7) 0.171(5) 0.2251(5) 0.309(5) 0.335(5) 0.351(5) 0.357(5) 0.306(5) 0.127(6)
max(PUNSy;) 0.869(7) 0.769(7) 0.629(7) 0.455(6) 0.428(6) 0.419(6) 0.427(6) 0.500(6) 0.556 (6)

0.876 (9) 0.774(8) 0.637(7) 0.413(6) 0.364(6) 0.353(6) 0.384(6) 0.518(6) 0.620 (6)
0.871(5) 0.774(5) 0.643(8) 0.391(6) 0.332(6) 0.313(6) 0.342(6) 0.437(6) 0.485 (6)
0.872(7) 0.772(7) 0.643(7) 0.452(6) 0.428(6) 0.418(6) 0.425(6) 0.500(6) 0.557 (6)

When it comes to the simulations, it is important to refer that the rugarch package was used instead of fGarch.*
Furthermore, for each joint scheme and tuple («o, a1, #1, 41, 42, 6, 0), one:

+ simulated the time series {y;;, ... ,y; 5} foreachi(i = 1, ... , rep), drawn from the target process, where the number of
replications is equal to rep = 10° and the number of observations is equal to N = 1000;"
« obtained the corresponding realization of the observed process {x;1, ... .x;n} foreachi(i=1, ... , rep);

« computed the associated values of the control statistics for the charts, for the mean, and for the variance; and compared
them with the associated control limits; and

« counted the number of misleading signals, the number of unambiguous signals, and the number of signals triggered
by the joint schemes; and estimated the corresponding PMS and PUNS.

3.2 | Summary of findings

The following tables and plots prove to be essential to devise the behavior of the estimated probabilities of misleading and
unambiguous signals of types III and IV.

The reader should bear something important in mind, one desires that a joint scheme triggers misleading signals spo-
radically and triggers unambiguous signals as often as possible. Thus, when several joint control schemes are compared,
one ought to choose the one associated with the minimum PMS and/or the maximum PUNS.

Before making any comments on the estimates of PMSy;, the reader should also be reminded that Knoth et al*® (respec-
tively p. 27 in the work of Ramos'’) have previously established that the PMSy;; does not depend on the parameters that
translate the autocorrelation structure of the target process when a joint residual scheme is used to control both increases
and decreases (respectively increases) in the process mean and solely increases in the process variance of an AR(1) (respec-
tively stationary Gaussian) process. Moreover, these authors have reported a decreasing behavior of PMSy(0) in this
specific case.

*Note that this last package can lead to simulation times up to nine times larger than the ones associated with rugarch.
TOne was forced to simulate a fixed number of observations N because the software does not allow to sequentially simulate a GARCH process, say until
a signal is triggered.
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FIGURE 4 Estimated PUNS;;;(0) for all pairs (4;, 4,)

This is obviously not the case when one is leading with a GARCH(1, 1) target process and other types of joint schemes.
Judging by the plots in Figure 3, the estimates of PMSy; can increase with the magnitude # > 1 (an undesirable behavior);
on top of that, they can be larger than 0.8 for large shifts in the process variance. Additionally, the general behavior of the
estimates of PMSy;; can vary not only with the type of joint scheme and the pair (4;, 4,) but also with the target process.

The estimates of the minimum PMS;; and the maximum PUNS;;; for processes I and II can be found in Table 3 and
are followed by the associated pair (41, 4;). These estimates suggest that, when there is a sustained shift in the process
variance (and the process mean is on-target), the joint scheme with the minimum PMSp; in bold were attained, in most
cases, when one uses joint scheme (IT) (respectively (IV)), with 4, = 1.0, for Process I (respectively II).

The plots of the estimates of PUNSrin Figure 4 give no clue as to which of the joint schemes should be used to maximize
the PUNS;; under the presence of decreases in the process variance. However, we can add that the joint scheme (IV), with
a chart for ¢ based on In X2, should be avoided when one is dealing with Process II and anticipating moderate or large
increases in the process variance; the estimates of PUNSy;; are indeed rather small for all pairs (43, 4;), with the honorable
exception of (43, 4;) = (0.10, 1.00).
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FIGURE 5 Estimated PMS;y(8) for all pairs (41, 4,)

Moreover, the PUNS ;; estimates decreases with 6 > 0 in several cases, contrary to what one would expect and strongly
wishes for, ie, an increasing behavior with # > 1 and a decreasing behavior with 6 < 1.

It is worth mentioning that one got the estimates of the PUNS;; much smaller than 0.1 for large shifts in the process
variance. This is not a surprising fact given the large values of the PMSy;; under these circumstances.

According to Table 3, the largest PUNS;;; estimates are usually observed, for both processes, when one adopts the joint
scheme (II) with a chart for o based on the conditional variance. It is worth mentioning that, for some small increases in
o, the maximum values of PUNS; in bold are regretfully smaller than 0.5.

In the presence of a short-lived shift in the process mean (with the process variance on target), the examination of the
PMS;y profiles in Figure 5 suggests that the joint scheme (III), with a chart for ¢ based on (a;‘)z, should be used if one
intends to avoid PMSy values larger than 0.5 as much as possible.

Furthermore, for the 2 GARCH processes one considered, the PMSyy, estimates usually decrease with 6, as desired;
regretfully, for some joint schemes and pairs (4, 4;), those estimates may increase and exceed 0.6 for large shifts in the
process mecan. One also realized that the behavior of the estimates of PMS;, depends on the autocorrelation structure
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TABLE 4 Minimum PMS;(6) and maximum PUNS;y/(8), processes I and II-joint
exponentially weighted moving average scheme with chart for ¢ listed in order
corresponding to squared observations (I), conditional variance (IT), exponentially
weighted variance (II1), and logarithm of squared observations (IV)

o
Process I 0.5 1.0 1.5 2.0 2.5 3.0

min(PMSry)  0.155(5) 0.148(5) 0.132(5) 0.110(5) 0.079(5) 0.045(5)
0.460(5) 0.440(5) 0.401(5) 0.331(5) 0.243(5) 0.151(5)
0.464(5) 0.442(5) 0.406(5) 0.333(5) 0.246(5) 0.150(5)
0.366(5) 0.348(5) 0.311(5) 0.255(5) 0.184(5) 0.109(5)
max(PUNSp,) 0472(6) 0.462(1) 0.454(1) 0.465(7) 0.462(7) 0.405(7)
0.516 (7) 0.536(7) 0.574(7) 0.644(7) 0.741(7) 0.835(7)
0.516(7) 0.538(7) 0.577(7) 0.649(7) 0.742(7) 0.841(7)
0497 (1) 0.501(1) 0.530(7) 0.607(7) 0.711(7) 0.821(8)

Process II 0.5 1.0 1.5 2.0 2.5 3.0

min(PMSy) 0.405(5) 0.386(5) 0.345(5) 0.264(5) 0.168(5) 0.077(5)
0.442(5) 0.431(8) 0.388(9) 0.305(9) 0.199(9) 0.101(9)
0.464 (1) 0.459(9) 0.415(9) 0.330(9) 0.215(9) 0.109 (9)
0.414(5) 0.398(5) 0.354(5) 0.275(5) 0.172(5) 0.084(5)

max(PUNSp,) 0454(1) 0.453(1) 0.455(1) 0.486(7) 0.506(7) 0.439(7)
0.491 (1) 0.503(7) 0.536(7) 0.588(7) 0.611(7) 0.546(7)
0.518(1) 0.519(1) 0.558(7) 0.645(7) 0.767(7) 0.875(7)
0.500 (1) 0.509(1) 0.515(7) 0.613(7) 0.744(7) 0.868(7)

of the target process, as reported by Ramos' (p. 27) and Knoth et al,? for joint residual schemes to monitor the process
mean and variance of other target processes.

The estimates found in Table 4 lead one to believe that the smallest estimates of PMS, were obtained, for both pro-
cesses, when one uses the joint Shewhart scheme (I), with (43, 4;) = (1.00, 1.00) and a chart for ¢ based on the squared
observations.

The plots in Figure 6 refer to the estimates PUNS of Type IV as function of § and suggest that this performance measure
seems to behave heterogeneously, can sadly decrease, depends on the parameters of the target process, and can be smaller
than 0.20.

The estimates of the probability of unambiguous signals of Type IV in Table 4 lead one to conclude that the use of the
joint scheme (I1I), with a chart for ¢ based on (¢;)?, leads in general to the largest values of PUNSyy for both GARCH
processes; moreover, the maximum PUNS}, estimates were indeed attained, in nearly all the cases, when 4, = 0.1.

4 | FINAL THOUGHTS

The main purpose of this paper is to assess the phenomenon of misleading and unambiguous signals, in joint schemes,
for monitoring changes in the mean and variance of GARCH processes.

The reader should be reminded that MS can result in money and time spent in attempting to identify inexistent causes
of unnatural variation or misapplying a trading strategy.

We wrap up with a few recommendations for future work to complement the findings of this paper.

The PMS and PUNS of types IIT and IV of the 4 joint EWMA schemes introduced by Schipper'® were estimated only for
2 different GARCH(1, 1) target processes. Consequently, further results on the influence of the model structure on PMS
and PUNS should be obtained to shed more light on the phenomenon of misleading and unambiguous signals.

In addition, we should also compute the probability of a simultaneous signal to provide further insights on the
out-of-control performance of the 4 joint control schemes. The reader should bear in mind that a simultaneous sig-
nal occurs when both x4 and ¢ are out of control and both individual charts of the joint scheme, trigger a signal (see
Ralha et al.’®).



679

o
©
7 o
g |
o
Z ° g g
Z o b S
S5 & >
o o o
S | 8
e T T T T T T ©
05 10 15 20 25 30
8
@ (X;,X?), Process |
o | - ] .A;
: 0 | I M
b S e o (2)
© B S N
g S g e —
N 4 — -
7
< 3 < g
aq | °
o T T T T T T
05 10 15 20 25 30
3
) (X;,67), Process 1
© prL]
S | .
] )
> > .
2 S 2 15
s © =} 8
o 4 [ (7§
(8
A
o
T T T T T T
05 10 15 20 25 30
8
(1) (X;, (0;)?), Process 1
@ ) n
S ® «
i L o
= B " . - = © |
PR e SRR -
2 o mrszzzzzaezeezit e g <
D | | /0———0\. =) <
o e o S
- — —— —— o -
o e o
° T T T T T ? e T T T T T '\'
05 10 15 20 25 30 05 10 15 20 25 30
8 3
2 2
(IV) (X;,In(X;), Process I (IV) (X;,In(X;), Process 1T

FIGURE 6 Estimated PUNS;y(6) for all pairs (41, 4,)

Other joint control schemes can be considered, namely, a different chart to monitor the variance, such as the one used
by Schipper and Schmid’” and based on the squared residuals (X; — uy)? /(?t2 or a chart for x4 based on a more complex
function of X,.

It is important to refer that the simulation study carried out in this paper ought to be extended to GARCH processes of
higher order and for the univariate and multivariate extensions of these models, namely, for the following.

« The multivariate GARCH(p, q).*” Okhrin and Schmid® analyzed surveillance procedures for the variance (respec-
tively covariance matrix) of univariate (respectively multivariate) GARCH processes, therefore adding charts to control
the process mean (respectively mean vector) would lead to joint schemes whose ARL, PMS, and PUNS performances
ought be cvaluated.

+ The threshold GARCH models.? As far as we have investigated, the in-control ARL of a modified Shewhart chart to
control the mean of a threshold GARCH process was studied by Gongalves et al;* thus, if joint schemes are to be
proposed to monitor this process mean and variance, then their ARL, PMS, and PUNS performances should be assessed.

« The constant conditional correlation model (see p. 167 in the work of Enders'). Garthoff et al*! introduced control
charts to monitor jointly the means and variances of CCC processes but only assessed their ARL performance.
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We strongly believe that proposing joint schemes to monitor the mean and variance of intraday data and assessing their
ARL, PMS, and PUNS performances also deserves some consideration, after all, intraday price movements are particularly
important to short-term traders looking to make many trades over the course of a single trading session.

Finally, in practical applications, p, o9, 8, 6, and = are often unknown and have to be estimated from a starting (or
historical) block of data; thus, it is crucial to investigate the effect of estimation on the ARL and the probabilities of
misleading and unambiguous signals of these joint schemes. This topic is far from trivial and is certainly worthy of future
research.
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