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Abstract
Metals are very important resources for industrial pﬁuﬁ&n, but rece(nl'they have attracted more and more
i cer

attention from investors. While certainly indu , &:ju ers, and financial investors do have some

dle)of rele

arious fu&ental factors and characteristics known from financial
g=returns i@%q’me data sample of 30 metals.

We apply — to our knowledge for the @\m in this context — the widely accepted method of characteristic-
sorted portfolios, extended by th ece

u

actors is not yet quite clear. Therefore, in this

markets, specifically on the expeti

nt method of two-way portfolio sorts as an alternative to classical
multivariate regressions. Thi tly non-parametric approach, combined with portfolio aggregation, provides
very robust results. jor finding is that the financial characteristics value and momentum have a very high
predictive powe \no thly returns of metal portfolios. Metal-specific fundamental factors like stocks, secondary
productio 1; @l‘t consumption, country concentration, mine production, or reserves perform depending on the
inter, \{)n moderately well or rather poorly, regarding some economically interpretable transformations and

?jng multivariate two-way sorts. Hence, from the perspective of expected returns, metals are predominantly
@assets, while fundamental metal-specific factors still play a non-negligible role. Thus, to a much lesser extent,
metals can still be regarded as resources. Overall, the combination of financial characteristics and metal-specific
fundamental factors yields the best results. With these robust results, we hope to contribute to a better

understanding of metal prices and their underlying factors.
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1. Introduction

Commodities and metals in particular, have always been crucial resources for many primary industries and are still
indispensable to the modern economy. Besides their fundamental industrial importance, metals as financial assets

have played an increasingly important role in financial markets in the last decade.

Following the above two perspectives on commodities, this paper takes into consideration two models of metal
prices: an economic explanation and a financial one (see among others Borensztein and Reinhart, 1994). The
former interprets the prices of resources as a function of microeconomic, commodity-specific factors, such as
supply and demand. The latter builds on the early work of Frankel (1986). According to his idea, commodities
behave in the short term like financial assets, and are therefore dependent on interest rates and other monetary
aggregates. Correspondingly, this view derives from the idea in financial literature that commodities obey the same
rules as financial assets, and, although this concept has been developed independently from economic literature, it
is the dominating view in financial literature. The goal of our analysis is to contrast the two perspectives and
determine which is more pronounced. To this end, we examine the explanatory power of various fundamental
factors related to the supply and demand of metals, as well as characteristics known from financial markets, on

average monthly returns in a cross-section analysis.

In order to present the specific contribution of our approach, we analyze the different strands in relevant literature.
From the theoretical economic perspective, prices of commodities are determined by supply and demand factors.
To be more specific, the fundamental economic factors analyzed are on the one hand macroeconomic factors and
on the other hand microeconomic factors that apply specifically to just one metal. Starting with microeconomic
determinants the overwhelming majority of studies (see e.g. Baffes and Savescu 2014, Chai et al. 2011, Nick and
Thoenes 2014) find a negative relationship between stocks as supply factor, in theory negatively related to prices,
and prices. Other studies observe a convincingly significant positive influence of the OPEC cartel as a proxy for
market concentration on oil prices whereas reserves (e.g. see) or the amount of recycling play a minor role (see
e.g. Gleich et al. 2013, Merion and Ortiz 2005). Regarding the demand perspective some studies focus on the
demand of special countries, like China and South Korea, and are thus able to show their significant positive
influence on prices (see e.g. Klotz et al. 2014). However, most studies use the macroeconomic factor global
economic activity as proxy for demand (see e.g, Kilian 2009, Poncela et al. 2014) and show a significant influence
of the world industrial production etc. on real and nominal prices. Here, different resource prices have different
elasticities, with respect to changes in the economic activity (see Belke et al. 2014). Among the monetary

macroeconomic factors inflation drives the prices of nominal as well as real commodities prices (see e.g. Belke et



al. 2010) with different extents of overshooting for different commaodities. Regarding further monetary variables,
many studies show a significant long-term equilibrium relationship between the dollar rate and commodity prices,
as well as between interest rates and commaodity prices, especially regarding oil and indices (see e.g. Arango et al.
2012, Chen et al. 2016). The direction of the Granger causality is open, and, consequently, results in a lead-lag

relationship (see e.g. Lastrapes and Selgin 2001).

We now turn to the purely financial strand of literature, which is deeply rooted in the theory of capital markets.
According to this theory (e.g. see Sharpe 1964), expected returns of all assets are driven by their volatility and
correlation to the market portfolio, whereby other factors like interest rates or economic activity, in the form of
state variables, can additionally influence the expected returns in a dynamic model setting (Merton 1973).
Following this idea, empirical examinations of commodity future returns are mainly concerned with the cross-
sectional investigation of risk premium of commodity futures. In an early analysis, Dusak (1973) finds no
evidence for systematic risk, despite the fact that the return variability of the examined futures is comparable to
that of stock indexes. Breeden (1980) describes the risk premium with a consumption CAPM, and finds that it
plays a significant role in some commodity futures’ prices. According to Asness et al. (2013), commodity futures
below their long-term mean price have higher returns in the future, which is called a value effect in the literature
of financial economics. Furthermore, in a time series setting, Hong and Yogo (2012) and Lutzenberger (2014)
show that commodity future returns are predictable via various variables from the stock market, bond market,
macroeconomics, and the commodity market. Nevertheless, future returns deviate substantially from spot returns.
Consequently, risk premiums in future returns can be disentangled into a term premium, which is earned by holding
futures, and a spot premium by holding the resource. In a very recent study by Szymanowska et al. (2014), which
comes closest to our line of reasoning, the authors explicitly differentiate between both premiums. However, they

analyze no fundamental factors, but only observe financial characteristics as determinants of spot price returns.

Overall, most of the studies concentrate either on fundamental economic (partly monetary) variables or on financial
variables. The economic studies using (individual) time series of spot prices of a few commodities or commodity
indices leading to mixed results with regard to the dependencies and are more pronounced with regard to the lead
lag relationship. The financial studies analyze the relationship between factors known from asset pricing (partly
macroeconomic variables) leading to results, in which factors known from other asset returns have forecasting
power on commodity returns. In this line, we apply the cross-section methodology to ascertain if factors known
from asset pricing may predict future commodity and in particular metal spot returns better than factors known

from the economic literature, or vice versa. In particular, we focus on metal-specific microeconomic factors as



well as on elasticities of macroeconomic factors, and analyze influence on the expected or cross-section average
monthly spot returns of metals over the period of 24 years, from January, 1990 to December, 2013. Therefore, we
sort metals into portfolios according to a particular characteristic, and examine whether the average returns of
these characteristic-sorted portfolios differ significantly from each other. At this juncture, we apply a new test
method for two-way sorted portfolios according to Patton and Timmermann (2010), in order to account for possible
dependencies in the explaining factors, focusing especially on combinations of factors known from economic and

financial literature.

We contribute to the economic literature by applying an alternative method, the cross-sectional empirical
examination, to find out the determinants of commodity prices, including typical financial factors. Our contribution
to the financial literature is to include typical commodity-specific microeconomic factors - using a unique data

sample of 30 metals - in the analysis of spot prices.

The remainder of this paper is structured as follows: Section 2 introduces the portfolio formation methodology,
corresponding variables, transformations, as well as our data sample. Section 3 describes the results of the
empirical analysis. Section 4 gives an overview of our robustness checks. In section 5 we analyze the results in the

light of existing approaches determining commodity prices and influencing factors. Section 6 concludes the paper.

2. Empirical methodology and data

General assumptions, our extensive data sample and our methodological framework to determine driving factors

of metal prices or metal returns, respectively, are presented below.

2.1 Portfolio formation

Empirical asset pricing differentiates between two general views or approaches regarding the analysis of returns.
On the one hand, there are studies that examine returns in time series. These papers assess whether future spot
returns of metals are predictable by, e.g. asset-specific characteristics or cross-asset (macro) factors. For this
purpose, future returns are usually regressed on the current values of one or more of these factors. On the other
hand, there are researchers who focus on the cross-section of average returns. These studies seek to explain why
some financial assets exhibit higher average returns than others. Hence, they assess which asset-specific
characteristics cause a variation in average returns and can generally be interpreted as a nonparametric cross-
sectional regression of average returns on characteristics that use non-overlapping histogram weights (Cochrane
2011). In contrast to the first time series approach, these studies consider more than one asset (or more than one

portfolio of assets) at once. There are several reasons why the analysis of portfolios is preferable to individual



asset analysis, and hence is preferable in the context of metals. First, individual assets show a high variance of
returns, resulting in “noisy” estimates of average returns (high standard errors). Consequently, the hypothesis that
all assets have the same average returns can hardly be rejected for individual assets. The formation of portfolios
lowers the variance of returns and makes the detection of significantly different average returns more likely.
Second, characteristics measured in a first step, such as (for metals) the concentration of producing countries or
producing companies, may vary over time, and are therefore also difficult to measure for individual assets. Third,
forming portfolios of assets is what investors actually do from a financial perspective, so that practice and research
are closer when portfolios are used in such tests (Cochrane 2005, chapter 20). Following Fama and French (1992),
our paper takes the second point of view on the cross-section of metals, and obtains new insights via a different

methodology.

To evaluate which (fundamental or financial) metal-specific characteristics are able to explain the cross-sectional
variation of average returns of a number of metals, we first compute the log spot return, r, of each metal over a
given month as the natural logarithm of the ratio of its spot price at the end of the month to its spot price at the
beginning of the month. In the next step, we sort metals into portfolios based on the respective characteristic, and
test for a significant spread in these portfolios’ average returns. Specifically, we apply two different standard
approaches for portfolio formation: high-minus-low portfolios and rank-weighted portfolios. The resulting
portfolios are zero-cost long-short portfolios, i.e., an investor theoretically can hold these portfolios — on balance
— without an initial investment or payment. We thereby employ three different frequencies for portfolio formation:
monthly, yearly, and once. The monthly sorts are used for characteristics with monthly data frequency, the yearly
sorts are employed for characteristics only available in a yearly frequency, and the one-time sorts are used for
characteristics that do not change over time. We emphasize, however, that these portfolios are not meant to
represent an implementable strategy for investors in practice, since the shorting of most of the metals we consider
is — unlike shorting stocks — strongly limited. Apart from futures or novel commodity-linked (short) products, both
subject to additional costs, shorting in spot markets is only possible in a very short-run (standard delivery
obligation within 10 days) or for individual exceptions like gold. In addition, the trading of metals in general is

associated with higher transaction costs as the trading of stocks.

Following Asness et al. (2013), high-minus-low portfolios for monthly characteristics are constructed as follows.
Each month, metals are ranked by a characteristic C, and sorted into three equally large groups. In this sorting
procedure, we only consider those metals having a value for the characteristic at the time of the portfolio

composition, as well as a return in the following month (i.e. a price in the current and following month). Out of



these three groups, we form three portfolios (low, middle, and high), in which all metals are equally weighted. We

then calculate the monthly returns of each portfolio in the month serving as a basis for portfolio composition, and

subtract the one-month U.S. Treasury bill rate from these returns. Finally, for each month we compute the spread
C,high C,low

in monthly returns between the third and first portfolios, ../, " and r,;;"", resulting in the monthly returns of the

high-minus-low (HML) portfolio:

C,HML _ _Chigh C,low
tv1 T Tv1 —Ttda (D

We then test whether the average returns of the high-minus-low portfolio are significantly different from zero by

computing the respective t-statistic. We repeat this procedure with each characteristic that changes monthly.

In addition to the high-minus-low portfolios, we form rank-weighted portfolios, again following Asness et al.
(2013). These portfolios are zero-cost long-short portfolios that use — in contrast to the high-minus-low portfolios,
which only consist of metals sorted into the first and third portfolios — the entire cross-section of metals. Returns
on the factor of the rank-weighted portfolios for monthly characteristics are computed as follows. First, in each
month t, each metal i (having a value for the characteristic in the respective month as well as a return in the
following month) is weighted in proportion to its cross-sectional rank based on the value of its characteristic in
month t (referred to as “signal” by Asness et al. 2013), C;,, minus the cross-sectional average rank of the

characteristic. In particular, the weight of metal i in month t, based on characteristic C, is computed as

N
wi = s, (rank(Ci,t) - Z rank(Cy;) /N>, ()
i=1

where N is the number of metals considered in the portfolio formation, and s; is a scaling factor that scales the
portfolio to one dollar long and one dollar short. Thus, the sum of weights across all metals equals zero and the
portfolio is dollar-neutral long-short. Second, in each month that follows the portfolio formation, t 4+ 1, the

portfolio return is computed by summing the products of each metal’s returnin t + 1, r; .4, and its weight in ¢:

N

C,Rank __ C

Tt+1 = § WitTie+1- (3)
i=1

The test procedure then is identical to the one for the high-minus-low portfolios, described before. We repeat this

procedure for each monthly-changing characteristic.



The high-minus-low as well as the rank-weighted portfolios for yearly characteristics are built similarly to the
portfolios based on monthly characteristics, except that the yearly portfolios are built in each year t at the end of
December using the value of the characteristic in t. Then, monthly returns are computed from January to December
in year t + 1 for these portfolios, formed at the end of December in t. The high-minus-low as well as the rank-
weighted portfolios for constant characteristics are built correspondingly to the monthly and yearly sorts, except

that these portfolios are built only once.

2.2 Multivariate portfolio formation

We further face the problem that our methodology evaluates each characteristics in isolation, while the cross-
section analysis aims to evaluate the importance of the financial characteristic while controlling for the effect of
the fundamental characteristic and vice versa. In other words, we want to answer the question whether a pricing
model with only fundamental characteristics can be improved by including value or momentum as additional
characteristics.

Therefore, it is common practice in finance literature to use Fama and MacBeth (1973) type regressions to examine
whether the characteristics can explain the cross-sectional variation of metal prices. Although we use a very large
data set of 30 metals, a cross-sectional portfolio analysis using regressions (usually Fama MacBeth type) would
hardly generate any significant results provided the low degrees of freedom given the number of portfolios in a
cross-section analysis of 30 metals. Our methodology following Patton and Timmermann (2010) requires us to
split up metals in 2™ portfolios (with n being the number of dimensions, e.g. independent variables), because for
every possible combination (variable one high or low, variable two high or low and so on) we need one specific
portfolio. Thus, the number of observations needed for additional explaining variables rises exponentially. For
instance, for two explaining variables, we need four portfolios (leading to about seven metals per portfolio).
However, three explaining variables already would require eight portfolios, reducing the metals per portfolio to
only about four. For multivariate regressions, with about four or seven metals per portfolio, the number of

observations (four or eight portfolios) is simply too low to allow any significant results.

Thus, due to the fact that there are not enough metals, we are unable to construct portfolios to which the time series
and the cross-sectional regression could be applied. Consequently, this implies that we could only run the Fama
and MacBeth type regressions on single metals, which suggests high standard errors in the metals average returns

— thus leading to insignificant results.



Hence, we choose an alternative methodology, following Patton and Timmermann (2010), by forming two-way
sorted portfolios and applying a specialized test for the conditional differences in returns. Particularly, we sort the

portfolios for two characteristics, C; and C,, and therefore calculate the average of the returns for the four different
portfolios 7(r,S A MIM) (LW CEMINY (p CLIMIMC2IOWY gng 7(1,S410Wi€219W)  According to Patton and
Timmermann (2010) an appropriate test statistic for the joint event of a characteristic's C; predictability given a

second characteristic C, is

—C1,HML;C2,high , —C1,HML;C2,l . —C1,HML;C2,high —C1,HML;C2,l
max (AT 9" AT W) if AT 9" < 0 and A7 W<

. , 4)
_C1,HML;C2,high » —C1, 5C2, . _C1,HML;C2,high _C1, ;C2, (
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C
J(€) n >0

min(
whereby

—C1,HML;C2,high __ —r. Cl,high;C2,high —r_Cllow;C2,high
AF = 7(n )= 7(n )

t+1

—C1,HML;C2,low __ C1,high;C2,low low;C2,low
AF =r(n ) )

- 7(ry
are the average return differentials of the HML portfolios. Otherwise, we obtain contradicting averages yielding
insignificant results. Because the test statistic includes minimum or maximum functions, according to Patton and
Timmermann (2010) we should only find a distribution for the test statistic J in case of specially distributed returns.
Hence, Patton and Timmermann (2010) suggest following Politis and Romano (1994), by calculating p-values
with the help of a stationary bootstrap approach. The central idea of the bootstrap approach is to draw cross-
sectional dependencies thus preserving returns data in blocks, where the starting and end points of the series are
random. The block length is generated by a geometric distribution. As recommended by Patton and Timmermann
(2010), we use an average block length of ten months, and specifically for our case we employ 10,000 bootstrap
replications, to prevent Monte Carlo errors from influencing p-values (Monotonic relation test or MR test).

Furthermore, we apply these methodologies for all combinations of characteristics and variables specified below.

We implement these portfolio compositions for all metals at once. To improve robustness (see section 4) and to
identify possible distinctions and characteristics among these main groups of metals, two classifications are
applied: exchange-traded or non-exchange-traded metals, and precious metals or non-precious metals,

respectively. For the specific classification of each metal, see Table 1.



2.3 Data

As this paper intends to present an analysis that is as extensive as possible, our main priority is to obtain data for
many different metals. Overall, our analysis uses prices and variables for 30 different metals, as outlined in Table

1, and comprises the most economically important metals, in a sample period from 1990 to 2013.

To generate specific results for every metal, we mostly restrict our variables to metal-specific characteristics, which
allow portfolio building and provide a broad availability of data across many or all metals, thereby enabling a
cross-sectional analysis. These variables are in most cases only available in an annual frequency, which is why we
optimize our method to deal with this small number of observations (see below). Non metal-specific

macroeconomic data are used to complement these results and to control for macroeconomic influence.

Monthly price data and yearly data on reserves and country concentration are obtained from the German Federal
Institute for Geosciences and Natural Resources (BGR) as a proprietary data set. The source for the remaining
fundamental data (world mine production, U.S. apparent consumption, U.S. secondary production, and U.S.
stocks) is the United States Geological Survey (USGS). For the USGS variables, the respective units are metric
tons, while the units of the BGR data vary and are presented in the legend of Table 1. The HHI uses squared
percentage points (0...10.000) as unit, as is quite common. Table 1 also presents descriptive statistics for our price
data, including mean, standard deviation, skewness, kurtosis, and Jarque-Bera statistics for absolute prices and log
returns. It is noteworthy that these figures strongly suggest prices and returns are not normally distributed, which
also applies to all fundamental variables with only some isolated exceptions (hence we do not present the Jarque-
Bera statistics for the fundamental variables, as they provide no specific information). Therefore, a portfolio
aggregation of returns, as described in our method section as well as a non-parametric statistical method as used

in this paper, is highly advisable and provides additional robustness.

In addition, macroeconomic variables are obtained from various sources like the World Bank or the Federal
Reserve Bank (see Table 2). These variables are constructed according to Ahumada and Cornejo (2015). We
approximate monthly GDP data from the most recent quarterly observation by the price-output ratio using the

MSCI world index (see Rangvid 2006).

Most data are available from 1990 up to 2013. Some variables, like the value factor, use prices of a few preceding
years; therefore, the first prices used in our analysis come from 1984. The exact number of data points is presented
in Table 1, Table 3, and Table 4, along with values for mean and standard deviation. Table 4 again presents values

for skewness, kurtosis, and Jarque-Bera statistics of macroeconomic variables, where three variables could



potentially be normally distributed. Overall, the extent of our data is unique in this context and provides a

promising foundation for new scientific insights on the determinants of expected returns of metal prices.

Table 1: Descriptive statistics for metal prices

Metal Mean SD Skewness |Elj(l’(;(e)§ISS JB statistic JB statistic (log returns)
Ag” (silver) 9.51 8.19 2.02 3.28 408.01 57.18
Al (aluminium) 1712.07 493.86 0.87 0.18 46.00 215.11
As (arsenic) 1.32 0.29 0.76 0.64 29.88 11313.88
Au” (gold) 567.06 399.44 1.73 1.73 224.10 45.84
Bi (bismuth) 11672.44 7289.71 1.59 2.01 212.49 544.07
Cd (cadmium) 3.49 3.73 2.27 5.08 701.61 302.23
Co (cobalt) 37367.32 18598.00 1.09 1.69 114.52 431.85
Cr (chromium) 1591.67 904.02 2.20 6.64 959.43 2147.26
Cu (copper) 3517.11 2428.04 111 -0.30 74.99 260.15
Ge (germanium)  621536.68  326766.18 0.92 -0.28 51.78 36911.28
Hg" (mercury) 535.55 77553 2.71 6.64 1110.24 2255.93
In (indium) 355877.67 244725.98 0.89 -0.13 47.81 1233.23
Li (lithium) 3071.09 1821.84 1.03 -0.65 68.87 19721.35
Mg (magnesium) 2796.12 747.24 0.84 1.51 77.88 7331.42
Mn (manganese) 762.65 510.89 2.25 6.16 879.30 15306.74
Mo (molybdenum)  22609.05 22515.94 151 1.06 152.49 8835.59
Ni (nickel) 11739.93 8120.81 1.83 4.18 467.15 500.45
Pb (lead) 984.90 725.54 1.40 0.83 127.29 94.78
Pd" (palladium) 288.92 212.11 1.23 0.47 92.94 147.38
Pt" (platinum) 751.99 474.35 111 -0.09 73.16 1405.71
Rh” (rhodium) 2392.33 2086.65 1.78 2.58 140.95 545.94
Sb (antimony) 3998.09 3475.82 1.81 2.49 290.61 538.31
Si (silicon) 804.80 326.44 2.54 7.91 1248.29 8146.86
Sn (tin) 9624.86 6198.23 1.47 1.12 148.89 162.63
Ta (tantalum) 662.47 478.74 2.23 5.66 784.26 2864.06
Ti (titanium) 78413.45 47253.06 6.10 42.46 27647.76 43316.90
V (vanadium) 100.56 56.57 2.61 6.69 1086.24 129192.90
W (tungsten) 22.12 16.37 2.54 9.39 1728.76 723.63
Zn (zinc) 103.05 89.40 153 1.22 163.01 1193.55
Zr (zirconium) 1395.44 692.28 1.73 3.22 337.33 50.89

Note: This table provides an overview of the metals analyzed. Price data are taken from the German Federal Institute for Geosciences and
Natural Resources (BGR). The sample period is from January 1990 (or July 1984 for out of sample figures, like value) to December 2013,
with a monthly sample frequency. Furthermore, metals belonging to the category of exchange-traded metals (either LME or CME Group) are
italicized. Precious metals are marked with *. Furthermore, it displays the mean, standard deviation (SD), skewness, excess kurtosis and
Jarque-Bera (JB) test statistics of the monthly prices as well as additional Jarque-Bera test statistics for the log returns for the metals
considered. Prices use following units: US$/t: Al, Cu, In, Li, Mg, Ni, Pb, Sh, Si, Sn, Ta, Ti, Zn, Zr; US$/kg: As, Bi, Cd, Co, Cr, Ge, Mo, V;
US$/troz: Ag, Au, Pd, Pt, Rh; US$/flask: Hg; €/t: Mn, RMB/t: W. The number (#) of data points is 354 except for arsenic (258), rhodium
(168), silicon (330) and titanium (330).
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Table 2: Overview of fundamental variables

Name Description Data source

Fundamental variables

The Herfindahl-Hirschman Index of producing countries, German Federal Institute for

HHI Country i.e. the global sum of squares of the market shares of Geosciences and Natural Resources
producing countries (in percent points). (BGR)

Reserves Global known and probable reserves. BGR

. . . United States Geological Survey

MineProd Global mine production. (USGS)

AppConsum Apparent consumption in the United States. USGS

2Prod Secondary production in the United States. USGS

Stocks Aggregated Stocks in the United States. USGS

Macroeconomic variables

World gross domestic product at market prices (US$). We

World GDP define a monthly GDP series from the most recent quarterly The World Bank (Global Economic

(seasonally adjusted annual rate) observation. Monitor)
World Industrial . S . The World Bank (Global Economic
Production World Industrial production index seasonally adjusted Monitor)
World Inflation World Core CPI seasonally adjusted ',l'/lhe World Bank (Global Economic

onitor)

Treasury Rate One-year US treasury constant maturity rate Federal Reserve Bank of St. Louis
Exchange Rate Broad effective exchange rate for the US Federal Reserve Bank of St. Louis
Global Market Global market factors includes stocks from 23 countries , .
Factor worldwide Kenneth R. French’s Data Library
GSCI All Metals ISr:EéZXGoIdman Sachs Commodity Index (GSCI) All Metals S&P Dow Jones Indices

London Metal Exchange Index (LMEX) including LME's six

LMEX Index .
primary non-ferrous metals

London Metal Exchange (LME)

Note: This table provides an overview of the fundamental factors or characteristics included in our study.

11



Table 3: Descriptive statistics of metal-specific fundamental factors

Variable HHI Country Reserves MineProd AppConsum 2Prod Stocks
Metal Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Ag 916.26 76.13 308.76 83.25 18954.17 3449.88 5747.08 1249.06 1186.68 521.43 2841.76 1637.43
Al 1136.38 449.27 24602.33 2083.14 29087500.00 9332796.67 5418333.33 1090300.67 3187500.00 474888.14 614701.09 863077.29
As 41541.67 7091.66 15741.25 8556.84 75.70 0.00
Au 873.00 279.86 45815.16 3632.10 2441.25 169.71 220.92 43.75 91.66 70.35

Bi 5203.33 1710.52 1638.75 511.88 192.38 94.07
Cd 955.08 357.66 572.55 69.23 20083.33 1343.71 1788.24 879.10 620.76 518.32
Co 2179.41 1191.71 5556.96 1565.60 55875.00 28913.42 9623.33 1472.30 2140.00 445.30 1303.04 508.78
Cr 2343.06 292.72 1648.49 1358.10 5277500.00 1648469.62 508083.33 112343.56 172125.00 20931.06 41973.33 41771.63
Cu 1370.90 208.99 439269.06 126587.40 13278750.00 2748522.80 2370833.33 444540.18 316458.33 156794.71 327520.83 254148.23
Ge 4672.72 2203.01 83.25 33.38 33.67 10.17 40.82 20.70
Hg 2975.25 1182.64 106739.07 29595.08 1931.67 648.08 440.00 155.71 393.13 80.24 346.13 99.40

In 2449.18 967.73 413.00 231.75 75.46 33.44 0.65 0.67

Li 2500.31 457.59 5065233.82 3820120.46 298708.33 160125.86 2191.67 556.71

Mg 2492.67 1145.38 511833.33 180532.47 136541.67 26539.25 26550.00 4268.10 22444.44 4192.88
Mn 1554.50 569.54 618.98 141.41 9919166.67 3186101.22 741541.67 135797.02 1157166.67 543035.81
Mo 2303.32 281.75 7050.36 2098.60 164966.67 53003.39 22104.17 5828.70 9789.17 5645.44
Ni 1221.75 159.84 56819.73 12307.86 1346416.67 315751.47 208333.33 20791.96 80466.67 16177.08 32083.33 15068.58
Pb 1643.02 633.14 70033.39 9596.31 3484583.33 694993.88 1520000.00 141244 .47 1051208.33 112053.55 81133.33 21064.06
Pd 3719.43 485.19 67968.64 13855.81 396.08 81.63 219.13 45.33 4.76 0.95 22.37 2411
Pt 5928.84 405.95 67968.64 13855.81 396.08 81.63 219.13 45.33 4.76 0.95 22.37 2411
Rh 67968.64 13855.81 396.08 81.63 219.13 45.33 4.76 0.95 22.37 2411
Sh 6422.79 1075.17 2693.44 1080.32 135420.83 40370.16 34662.50 8560.90 7510.42 5356.98 6059.58 3971.48
Si 2790.22 704.04 4750000.00 1599531.18 529000.00 118870.38 35954.17 16277.05
Sn 2169.20 523.86 6511.19 1218.74 244083.33 35750.19 48104.17 6246.43 9067.92 232381 9570.00 2525.74
Ta 2990.53 945.50 53950.34 44279.70 815.79 384.92 587.22 222.77 93.62 29.83

Ti 1628.10 170.43 24704.55 8338.44 8548.33 5328.02
V_ 3324.34 331.84 11071.31 2668.14 48108.33 15832.51 4917.50 1877.54 444.00 301.72
W_ 6130.14 977.32 2583.83 397.31 51691.67 14120.93 12132.08 2669.27 4477.50 2282.33 2111.67 1059.15
Zn 1095.62 209.61 189524.33 38144.15 9397500.00 2124745.57 1107583.33 148051.49 135500.00 16810.22 227704.17 121409.18
Zr 2803.81 305.25 1037791.67 271808.45 151071.43 21802.57 28330.77 4818.30

Note: This table displays the number of data points (#), mean and standard deviation (SD) of the metal specific fundamental factors or characteristics included in our study. The factors’ abbreviations and units are defined in Table 1 and
Table 2. Empty cells denote missing data. The sample period is from January 1990 to December 2013, with a yearly sample frequency. For platinum group metals, in some case there are only aggregated data for all its metals, therefore
these values have been used for Pt, Pd and Rh. If the cells are not empty, the number of observations is usually 288 with following exceptions: HHI Country: 276 observations for indium, manganese and zinc and 180 for silicon. Reserves:
276 observations for mercury. AppConsum: 252 observations for cadmium, 132 for mercury, 264 for titanium and 168 for zirconium. 2Prod: 264 observations for Silver, 96 for mercury, 60 for palladium, platinum and rhodium and 156 for
tantalum. Stocks: 252 observations for silver, 276 for aluminum, 12 for arsenic, 252 for cadmium, 276 for germanium, 96 for mercury, 120 for indium, 108 for magnesium and 156 for zirconium.
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Table 4: Summary statistics of fundamental macroeconomic factors

Variable # Mean SD Skewness Kurtosis Jarque-Bera statistics
World GDP (Seas. adj., indexed) 206 -9.15 0.27 -0.32 -0.34 4.38
World Industrial Production (US$ per month) 218 1.27E+12  1.84E+11 0.17 -1.26 15.52
Treasury Rate (%) 354 4.35 2.77 0.07 -0.67 6.79
Exchange Rate (Indexed to 100, 2010) 240 105.54 10.50 0.20 -0.89 941
World Inflation (Indexed to 100, 2010) 218 90.88 9.35 0.0074 -1.17 12.46
Global Market Factor (monthly change) 282 0.45 4.46 -0.73 1.52 53.98
LMEX Index 353  1915.23 999.27 1.06 -0.28 67.81
GSCI All Metals 227 133.02 65.45 0.52 -1.35 27.52

Note: This table displays the number of data points (#), mean, standard deviation (SD), skewness, kurtosis and Jarque-Bera statistics of the
monthly changes for fundamental macroeconomic factors or characteristics included in our study. We approximate monthly GDP data from
the most recent quarterly observation by the price-output ratio using the MSCI world index (see Rangvid 2006). The factors’ abbreviations and
units are defined in Table 2. The sample period is from January 1990 to December 2013.

2.4 Variables and transformations

The most important utilized transformations and figures are presented in Table 5. In this list, characteristics are

sorted according to monthly (Panel A), yearly (Panel B), or constant frequency (Panel C).

Table 5: Variables and transformations

Transformations Formula N. Description
Panel A. Yearly
No transformation C=f; The baseline for our analysis.
. fi—f Normalization and scale invariance are obtained by subtracting the
Z-transformation . = R L
Std(f) mean and dividing by the standard deviation.

Logarithmic ( fr ) A combination of logarithm and relative returns, also known as

C=In|{— o
growth fe1 logarithmic returns or log returns.

Ratio to total
production

Figures that denote amounts of metals are normalized to the total
C,=1In ( >Prod fl\t/l Prod ) production (mine production and secondary production). As above,
rod; + MineProd, the logarithm provides additional normalization.
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Table 5: Variables and transformations (continued)

Variables Formula N Description

Panel B. Monthly

“Value* is the logarithmic inverse return within a 5 year time
(ZtZSi P ) /13 fr_ame: As timespans of these cycles may vary, we gdditiopally use
value Ce = ln< S=L6675 ) historical prices from 4 and 6 years ago. The historical price is
calculated as the mean of the month exactly 4, 5, or 6 years past
and 6 months before and after, for each.

P

F ) “Momentum” is the sum of the logarithmic returns within the
short-term past. We use the last 12 months and last 6 months as
these past timeframes.

Ct = In

s=t—timeframe

momentum

t-6 We also measure momentum regarding the last 7 to 12 months,

momentum By T . . .

5 C = E In (P ) which includes a gap of 6 months in relation to the current price,
s=t-11 s=1 (Novy-Marx (2012)).

Panel C. Constant

1 - excess return: log return in excess of the one-month U.S.
C=p treasury rate (obtained from Kenneth R. French’s website)
(ry =a+pr"+¢) r{" - excess market return: log return of the “market portfolio” in
excess of the one-month U.S. treasury rate

CAPM Beta

1 - excess return: log return in excess of the one-month U.S.
cC=p treasury.rate . ) )
(r, = a+Brma+e,) ™ — d1ffer§nces in macroeconomic variables: monthly.chan.ge of
world GDP, industrial production, exchange rate, world inflation or
treasury rate.

Macro Beta

Note: This table provides an overview of the variables and their respective transformations employed in our study.

For yearly data (Panel A), besides the original type of a characteristic, the central transformations are the z-
transformation, logarithmic growth, and the ratio to total production, according to e.g. Arango et al. (2012),
Coleman (2012), or Frankel (2008). In contrast to fundamental data, which are only available on a yearly basis,
we obtain monthly data for financial figures in Panel B. The most important characteristic in this category is
“value”, which is widely cited in the finance literature (e.g. Asness et al. 2013). Value is the logarithm of the
inverse return for a five-year time frame. The rationale for value as a factor for average returns is the assumption
of a mean reverting nature (e.g. Pindyck 1978) of (metal) prices: if an asset has had a negative return within the
last five years, it could presumably soon change for the better. In relation to the microeconomics of resource
markets, it can be argued that a longer downturn in resources prices could lead to cuts in production capacities.
Due to tightened supply, price increases may follow. This characteristic performs well if there is a cyclical nature

of prices. As the timespan of these cycles varies, we calculate the value for 4 and 6 years of historic data.

A similar capital market phenomenon is known as momentum, which is related to the returns of an asset in the
recent past. Momentum is the sum of the logarithmic returns within a certain time frame. The assumption is that
if an asset has had very positive returns for some time, it may have some momentum that carries its performance
on. The existence of momentum is partly seen as a proof of market inefficiency or irrational behavior according

to the financial literature (Fama and Litterman 2012, p. 18). This effect is also observed for several commodities
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from various asset classes (e.g. Erb and Harvey 2006; Asness et al. 2013), but not for the broad range of metals in
our sample. From a resource-market perspective, this can be seen as an ongoing increase in demand, which in the
short run cannot be met by inventories or production increases. In addition to the standard momentum measure
proposed by Jegadeesh and Titman (1993), which incorporates the last 12 respective months, we also utilize the
momentum of the last 6 months and the momentum of the last 7 to 12 months (which includes a gap of 6 months

in relation to the current price). These figures are, for instance, examined by Novy-Marx (2012).

Panel C of Table 5 includes constant characteristics, where the respective figures do not vary over time. Consistent
with the transformations in Panel A, we also apply logarithms to constant characteristics as a basis for calculating
the betas. To explicate the method, we first concentrate on the CAPM beta, 8. This important figure in the context
of asset pricing represents systematic risk and is worthwhile to examine. Usually assets with a high beta show

higher than average returns. To determine S, we conduct the following regression model:

r, =a+prit+e (6)
Where r, represents the excess return, that is, the return in excess of the one-month U.S. Treasury bill rate
(obtained from Kenneth R. French’s website), and 17" is the excess market return, i.e., the log return on the “market
portfolio” in excess of the one-month U.S. Treasury bill rate. We use four different portfolios or indices as proxies
for the market portfolio: a portfolio that contains all metals included in this study, weighted equally; the GSCI all
metals index; the LMEX index; and the global market factor of Fama and French (2012) (see Table 2). Hence, our

analysis employs four different g-factors, as r{™ is determined in four different ways.

In addition to the CAPM beta, we furthermore consider betas with respect to the changes in the macroeconomic
variables, presented in Table 2. Here, consistent with current methodology, we compute the first differences of

each of the aforementioned variables to proxy for their innovations according to Lutzenberger (2014).

3. Empirical Results

3.1 Univariate Results

Results for the univariate analysis are presented in Table 6. Overall, the results strongly differ for the respective
panels A, B, and C. In Panel A (monthly sorts using financial key figures), 3 of 6 sorting characteristics show a
large and highly significant predictive power for expected returns. In Panel B (yearly sorts using fundamental
metal-specific variables), only 4 of 24 sorting characteristics are able to predict expected returns with some

significance. Lastly, Panel C (monthly/quarterly sorts using macroeconomic variables) provides only 1 significant
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sorting characteristic among 9 characteristics. Thus, financial key figures seem to be superior in predicting

expected returns.

In detail in Panel A, both variables value and momentum are very useful predictors: Value performs best for a 6
year interval, in which the factor portfolio shows highly significant returns of 0.94% per month, summing to about
11.3% per year. Value for 5 years is still highly significant, although with somewhat smaller returns, while value
for 4 years is not significant at all. As the value variable stands for a kind of cyclicity, it seems that economic

cycles for metals are at least 5 or 6 years long or perhaps even longer.

On the other hand, the momentum variable shows best results for the shortest periods, i.e. 2-6 months. Here, the
factor portfolio exhibits 0.77% monthly returns on a high level of significance, summing to about 9.2% return per
year. In contrast, both other momentum characteristics provide no significant results at all. Therefore, the
momentum effect for metals seems to be limited to about half a year, while the value effect, which has an opposite
impact, only becomes evident after about 5 years. Thus, in the short term, there is a positive autocorrelation of

prices or returns, respectively, while in the long term, there is a negative autocorrelation.

Regarding the fundamental metal-specific variables, there are a few interesting results: 4 of 6 variables provide a
significant result in exactly one transformation each, while two other variables (AppConsum and reserves) show
no significant results at all. Specifically, secondary production (2Prod) shows weak significance when looking at
the logarithmic growth. Metals with a high change in recycling amounts provide higher expected returns. Usually,
high recycling rates would be associated with lower prices due to higher supply. Other explanations, like some
indirect momentum effect (high prices lead to high returns, but high recycling as well) or recycling as early
indicator would be possible, but are not fully convincing. The same applies to the HHI and Stocks: they both show
significance for one transformation, but their directions of influence are prima facie counterintuitive; positive
changes in the HHI (log growth) lead to low returns, while a high country concentration should usually increase
prices due to monopolistic market structures. Here, a shakeout could be responsible for leaving only those countries
producing with the lowest production costs, and therefore reducing prices (as can currently be observed in the oil
markets). The same problem applies to Stocks: When related to the total production (a very sensible
transformation, especially for stocks: This percentage indicates how long supply shortages can be withstood.), they
significantly are related to positive returns. Thus, high stocks (in relation to total production) correlate with high
returns, while usually a high inventory stock leads to decreasing prices. One possible explanation could be
speculators stocking up, because they are awaiting future price increases. Lastly, the total world production

(MineProd) predicts expected returns with high significance and an intuitive direction of influence: metals with
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relatively high production (z-transformation) exhibit low expected returns, as would be expected due to rising
supply. As the z-transformation shows deviation from the long-term average, this effect is comparable to the value
effect and can be attributed to cyclicity. Thus, all in all, while the world production is definitely an important
variable for predicting expected returns, the state of the other fundamental metal-specific variables remains

ambiguous due to their few and weak significances.

The same is true for the macroeconomic variables, where even fewer significant results can be observed, as only
the Treasury rate is able to predict expected returns to some degree: metals positively correlated with the treasury
rate (e.g. industrial metals like chromium or nickel) tend to have lower expected returns and vice versa. All other

macroeconomic variables are not useful for predicting expected returns, as they show no significant results.
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Table 6: Characteristic-sorted metal portfolios

Panel A: Monthly sorts

Sorting characteristic P, P, P Ps-Py Factor
Value (5 years) Mean Return  -045%*  022%  0,20%  0,64%%** 0,68%%**
ale (o years Avg. Com. 9,58 9,69 9,58 19,16 28,85
Value (4 Mean Return 0.22%  0,13%  0,08% 0,30% 0,37%
alue (4 years) Avg. Com. 9,62 9,69 9,62 19,27 28,93
g
Mean Return -0,56%**  026%  0,40%**  0,96%*** 0,04%%%*
Value (6 years)
Y Avg. Com. 9,16 9,27 9,16 18,75 27,60
g
Mormentum (26 Mean Return — -0,45%**  -0,02%  0,39%*  0,84%%*** 0,77%*%*
omentum (2-6) Avg. Com. 9,79 960 979 18,75 29,26
Momentum (212 Mean Return 029%  0,19%  0,02% 0,31% 0,37%
omentum (2-12) Avg. Com. 9,77 969 977 18,75 2922
Momentum (7-12) Mean Return 028%  0,30%  -0,09% 0,18% 0,17%
omentum 2 Avg. Com. 9,77 9,69 9,77 18,75 29,23
Panel B: Yearly sorts
Sorting characteristic P, P, Ps Ps-Py Factor
Mean Return 0,08% 0,03% -0,01% -0,10% -0,13%
2Prod Avg. Com. 478 4,70 478 18,43 14,26
_ Mean Return 001% 027%  -0,14% 0,13% 0,13%
2Prod (z-transformation) Avg. Com. 4,78 4,70 4,78 18,43 14,26
Mean Return  -0,19%  -0,12%  0,47% 0,65%* 0,55%*
2Prod (log growth) Avg. Com. 4,70 4,65 4,70 18,39 14,04
, , Mean Return 001%  0,06%  0,02% 0,01% 0,05%
2Prod (ratio to total production) Ave. Com 478 470 478 957 1426
Mean Return 0,03%  0,05%  -0,10% -0,13% 0,13%
AppConsum Avg. Com. 943 9,39 943 18,43 28,26
. Mean Return 0,06%  -0,12%  0,10% 0,05% 0,07%
AppConsum (z-transformation) Avg. Com. 9,43 9,39 9,43 18,43 28,26
Mean Return 0,19% -0,07%  0,25% 0,44% 0,44%
AppConsum (log growth) Avg. Com. 9,39 9,30 9,39 18,39 28,09
_ _ Mean Return 0,12%  -0,17%  0,10% -0,03% 0,06%
AppConsum (ratio to total production) Avg. Com 478 470 478 957 14.26
Mean Return  -0,10%  0,22%  0,06% 0,16% 0,31%
HHI Country Avg. Com. 8,91 8,61 8,91 18,46 26,43
, Mean Return 0,05%  0,14%  -0,01% 0,05% 0,01%
HHI Country (z-transformation) Avg. Com. 8,91 8,61 8,91 18,43 26,43
Mean Return 033%  0,06%  -0,23% -0,56%" -0,53%"
HHI Country (log growth) Avg. Com. 8,87 8,57 8,87 18,39 26,30
, Mean Return 0,04%  -0,02%  0,20% 0,23% 0,23%
HHI Country (ratio to total production) Avg. Com 478 470 478 1430 14.