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1 Introduction

Distribution assumptions and jump discontinuities play an important role in modeling
share returns. Jumps can generate fat tails, and in doing so they can influence the
excess skewness and kurtosis. Fama (1965) studies the distribution of daily returns
on the Dow Jones Industrial Average Index (DOW JONES) over the period from
1957 to 1962. In his analysis, he includes the stocks of the thirty companies listed
on the DOW JONES, rejects the normality assumption and suggests that non-normal
distribution assumptions would probably fit more accurately. However, he is not able
to find a Paretian stable distribution (at least one finite mean and one finite variance
according to Mandelbrot (1963)) for his non-normal distribution assumptions. Based
on these results Officer (1972) or Hsu et al. (1974) - amongst others - demand better
modeling approaches for non-stationary share returns as their attempts to estimate
Paretian stable distributions failed. Praetz (1972) was the first trying to improve share
return modeling by means of an inverse gamma distribution which implies a rescaled
Student t-distribution for returns. His results are superior to Fama’s (1965) and are
regarded as the basis for all future stochastic variance models.

Since Madan and Seneta (1987) took the results of Praetz (1972) and published
the first symmetric version of the Variance Gamma (VG) process with mean zero,
there has been some progress in developing the VG process, a Lévy process (other
known Lévy processes are for example the hyperbolic or normal inverse gaussian
process by Barndorff-Nielsen (1977, 1995) or Eberlein and Keller (1995)), as alter-
natives to the common Brownian Motion model for stock market returns. There
exist two major parts in literature about the VG process. First, the univariate case,
in which Madan and Seneta (1990) extend the Black-Scholes model by apply-
ing the VG process within the pricing framework to the Variance Gamma option
pricing model. Madan et al. (1998) conclude that Variance Gamma option pric-
ing reduces the pricing bias - in contrast to the Black-Scholes model - as the VG
process covers the excess kurtosis, which is a result of jumps. Daal and Madan
(2005) use this new idea for an empirical examination of the Variance Gamma option
pricing model, the traditional Black-Scholes model and Merton’s (1976) jump diffu-
sion model for foreign currency options. They reaffirm Madan and Seneta’s (1990)
findings that the Variance Gamma option pricing model performs better than the
others do. For further applications of the VG process see for example Leicht and
Rathgeber (2014). Furthermore, there exist several variations of the VG process, like
the CMGY process by Carr et al. (2002). Second, the multivariate case, which cares
about the integration of correlations and therefore of the dependence between the
Lévy processes. For an overview see for example Luciano and Schoutens (2006),
Luciano and Sameraro (2008), Semeraro (2008) or Luciano et al. (2014). Summed
up, the VG process, like the other Lévy processes, offers lots of possibilities in asset
pricing, risk modeling by reducing pricing errors or model miscalibrations. They
help to incorporate jumps, map a more realistic market behaviour in comparison to
traditional models and therefore are important instruments in the field of financial
€conomics.

In contrast to the two-parametric Brownian Motion the VG process mentioned
above is a four-parametric stochastic process. Therefore, these two methods used
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for stock market modeling differ widely as the VG process captures the skew-
ness and kurtosis in addition to the mean and standard deviation. The VG process
considers both, the symmetric increase in the left and right tail probabilities of the
return distribution (kurtosis) and the asymmetry of the left and right tails of the return
density (skewness). These properties allow for a more accurate representation of
stock returns. The VG process parameters (for the univariate as well as most parts for
the multivariate case) can be obtained by the application of several methods, such as
the simplified method of moments, the method of moments, the maximum likelihood
estimation, the empirical characteristic function, the Bayesian inference and Markov
chain Monte Carlo method, or the minimum X2 method. For an overview see Madan
and Seneta (1987), Madan and Seneta (1990), Seneta (2004) and particularly Finlay
and Seneta (2008).

However, there has been only little research on some essential issues of the VG
process, so far. We have recognized a gap in literature as to the performance of the
various estimation methods for modeling empirical share returns. While some papers
present only few estimated parameters for a very small, selected empirical database,
Finlay and Seneta (2008) compare most of the possible estimation methods using
simulated data. In contrast to Finlay and Seneta (2008), we utilize a broad, daily,
and empirical data set consisting of the stocks of each of the companies listed on the
DOW JONES over the period from 1991 to 2011. Additionally, the calibration quality
as well as the parameters’ range of the VG process are dependent on time. This means
that parameters vary in different market phases. As market participants are exposed
to varying situations, the selection of the correctly fitted model is an essential element
of their work. This leads us to apply a regime switching model in order to identify
normal and turbulent regimes within our data set and to fit the VG process to the data
in the respective period. This approach has two major advantages. First, it results
in a more accurate parameter estimation, which avoids over- or underestimation of
the real VG process. Second, the fitting rate - the fact that the returns follow a VG
process - increases significantly. Thus, the use of the regime switching model adds
new knowledge to the framework of the VG process.

The remainder of this paper is structured as follows. The next section provides
an overview of the theoretical background of the VG process itself, the several
estimation methods for the VG process parameters, and our hypotheses. Section 3
introduces the research design including the data set and the methodology of differ-
entiating between normal and turbulent times in financial markets. Section 4 presents
the results of the VG process parameter estimation. Subsequent to the discussion of
the results in Section 5, Section 6 concludes the paper.

2 Theoretical background

This section presents the framework for modeling risky assets by means of a VG
process and provides a brief overview of the estimation methods for the VG process
parameters. We define the price of a risky asset S; at point in time ¢ (f > 0) with the
following traditional model

St = Soe’, (1)
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where r; = lng—g is the compounded log return from t = 0 to t. r; follows
the stochastic process r; = ct + 0T, + o W(T;), where ¢, 0 and o (>0) are real
constants as defined by Seneta (2004). W (-) represents the traditional Brownian
Motion. Therefore, this approach is also known as the VG process as a modi-
fied Brownian Motion. Besides, Schoutens (2003) and Cont and Tankov (2004)
describe the VG process as the difference between two independent gamma pro-
cesses. Luciano and Schoutens (2006) take these results and define a Lévy Triplet by
means of the difference between two gamma processes. Tjetjep and Seneta (2006)
model the VG process as a normal-variance-mean-mixture-model. Seneta (2004)
models the market activity time (7;);>0 as a positive, monotonically non-decreasing
random process with stationary increments t; = T; —T;—1 (¢t > 1) and Tp = 0 (almost
surely). It is assumed that the expected duration of an increment is E(t;) = 1 V¢ > 0.
This simplification allows normalizing the expected economically relevant measure
to 1. Seneta (2004) and Finlay and Seneta (2008) - amongst others - use the corre-
sponding increments X; of S; instead of the compounded return r; for fitting the VG
process. This means that X; = c+60(T; — T;—1) + o (W (T;) — W(T;~1)) and from the

distribution properties of W (), (W (T;) — W(T;—-1)) 2 oIy — T,—1W(1), the
relevant formula for X; can be derived

X, 2 e+ 0t +oyTaW(l). 2)

Both, Seneta (2004) and Finlay and Seneta (2006) model t; with a gamma distribu-
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which fulfills the requirements that E(t;) = 1 and Var(t;) = v. Before Madan
and Seneta (1990) introduced the VG process in 1990, there had not existed a closed
form for the PDF of the VG process. They only identified a closed form for the
characteristic function. By means of a Bessel function K it is possible to close this
research gap (see Cont and Tankov 2004) and to define fx(x) as the PDF of the VG
process
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with 6, o, v and ¢ representing the VG process parameters, according to Seneta
(2004). As suggested for example by both, Madan and Seneta (1990) and Cont
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and Tankov (2004), we apply the Bessel function of the second kind. Further-
more, the characteristic function ¢x(x) = E(e'**) for the VG process can be
generated by means of the PDF (see formula (4)) and Madan et al. (1998) define
it as

ien . O_ZVMZ v
¢x(u) =e 1 —ifvu + > , 5

with —o00 < u < oo and i = +/—1. On the basis of these properties the four
moments of the VG process can be calculated. By using the moment generating

function m;(x) = E(e"**) for the time increments t;, m(u) = (1 — vu)_%, the
i-th moment E[(t; — O)i], withi = 1,...,4, about zero, the i-th central moment
M; = E[(t;y — D], withi = 1,...,4, we get E[(X; — E(X))?] = ¢ + 0,
E[(X; — E(X)))*] = o? 4+ 0°My, E[(X; — E(X))’] = 300>M, + 6° and
E[(X; — E(X)*] = 30*(1 + My) 4 66%0%*(M> + M3) + 0 Mj. Finally, we present

the four moments M;, withi = 1, ..., 4, of the VG process mean (x), variance (02),
skewness (B) and kurtosis (x) depending on the parameter set n = (o, 6, v, ¢)
M :=0o=c+86 (6)
My: =02 =c%+6% 7
- L 20°v2 4+ 3026y
My:=p= 3 (®)
(02 4+ 6%v)2
- 304y 4+ 12026202 + 66*0?
M4::/2:3+UV+ o“0°v° + v )

(07 +6%v)?
Tjetjep and Seneta (2006) calculate some upper and lower bounds for the skewness
and the kurtosis. All the bounds depend on the subordinated VG process with its
parameter v. The skewness is embedded in the range —3./v < B < 3./v and the
kurtosis is embedded in the range 3v+3 < « < 6v+3. For a more detailed derivation
of the respective formulas see, for example, Madan and Seneta (1987, 1990) and
Seneta (2004).

For fitting the PDF of the VG process and the normalized moments mentioned
above, the related literature suggests several approaches. In the subsequent Table 1
we provide a short overview of six possible different VG process estimation methods.

For testing the quality of the parameter estimation methods we use common
applied methods such as the Kolomogorov-Smirnov (KS) test (see Massey (1951)),
the x?2 test (see Finlay and Seneta (2008)) and particularly the Anderson-Darling
test (see Anderson and Darling (1952)) for taking a special look at the tails of the
distributions.

Having described the theoretical background, we can develop some hypotheses.
All hypotheses derive from the characteristic behavior of the stock markets and the
estimation methods of the VG process parameters. So far, Finlay and Seneta (2008)
have been the only authors who conducted a broad comparison of the estimation
methods of the VG process. Their findings are mainly based on a simulated VG
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process data set and could be summarized, that in most instances, the MLE method
is the superior method and that the x? estimation is - on average - the next best
method. In accordance with Madan and Seneta (1987, 1990) and Daal and Madan
(2005), who use only one or two estimation methods, there is no evidence for a
large empirical data set, that stock markets returns can be modeled by a VG process,
although it contains the typical features of returns like drift, volatility and jumps.
For the purpose of closing this gap, we assimilate the properties of the estimation
methods, the VG process and the typical features of empirical asset returns and define
our first hypothesis (H1a).

Hypothesis 1a (Hla). The VG process is able to describe the behavior of empirical
share returns.

The SMOM can be obtained from the empirical data set more or less directly. The
empirical log returns often include outliers due to extreme events at the stock mar-
kets. These events affect the kurtosis directly and thus, produce some bias. Therefore,
the minimization problem of the MOM leads to an overestimation of the parame-
ter v and thus, to a higher market activity as to the gamma function itself. The ECF
method is closely related to the MOM. We have derived the four moments of the
VG process from the moment generating function, which is similar to the charac-
teristic function. For that reason, the ECF method is frequently confronted with the
same overestimation of v. The BI method is independent of a particular optimization
approach and relies on a simulation. As it is true for all simulations, the results are
affected by the assumptions made within the simulation framework, such as the prior
distribution of the parameter set n or the intervals for the parameter set n. Never-
theless, this approach should provide more stable and better results compared to the
SMOM, MOM and ECF method. The MLE and the x 2 methods are two approaches,
which directly use the PDF for fitting the VG process. While the MLE method
modifies the PDF to a three-parametric PDF for numerical reasons, the x2 method
utilizes the original PDF. The use of the PDF enables a close fitting between the
empirical PDF and the PDF of the VG process. Particularly, the problem of extreme
events can be captured more easily as the x2 method employs intervals being able
to handle these effects. Therefore, it can be stated that the x 2 method could be superior to
that of the MLE. We build the next hypothesis (H1b) on these fundamental
aspects.

Hypothesis 1b (HIb). If the empirical share returns follow a VG process, the x>
method provides the best approximation of the VG process for an empirical data set.

According to Hamilton (1989), Jeanne and Masson (2000) or Cerra and Saxena
(2003) - amongst others - the stock markets’ behavior can change from normal
(= non-volatile) times to turbulent (= volatile) times over a longer period as a result
of structural breaks. This market attitude can also affect the VG process’ fitting pro-
cedure and the quality of the estimated parameter set 1. Therefore, the fact whether
the VG process is fitted to a data set taken from a normal time, or a turbulent time, or
a mixture of both can be important. For example, the use of a badly selected data set
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can imply that the variance influencing parameter o under- or overestimates the real
VG process or that the asymmetry component 6 is biased. With this knowledge, we
apply a regime switching model (for an overview of this model see Hamilton (1989)
or Hamilton (2005)) for the purpose of identifying normal and turbulent times at the
stock markets and calibrate the VG process using this selected database. Therefore,
we formulate the next hypothesis (H2).

Hypothesis 2 (H2). If a stock faces different market phases, the parameter set n
of the VG process must vary over time.

Previous literature on the VG process’ fitting models - e.g. Seneta (2004), Tjetjep and
Seneta (2006), and Finlay and Seneta (2008) - use simulated data or only an empirical
data set taken from a short period of time for the whole sample. Due to insufficient
empirical testing of the above mentioned six fitting methods for large data sets, we
use the DOW JONES as well as all index stocks over the period from 1991 to 2011.
In accordance with hypothesis H2 and the assumption that the inclusion of a regime
switching model contributes to a parameter improvement we state our last hypothesis
(H3).

Hypothesis 3 (H3). The inclusion of a regime switching model in a VG process’
framework increases the fitting rate of each parameter estimation method.

We can state that Hla and HIb provide a hint for the results of the other two
hypotheses. Furthermore, H2 is closely connected to H3. Therefore, the tests of these
hypotheses will also be joined in Section 4.

3 Research design
3.1 Data

We distinguish between the data set needed for fitting the VG process and the
data set needed for the regime switching model. For analyzing the VG process
we use daily returns of DOW JONES stocks and of the index itself over the
period from 01.01.1991 to 31.12.2011. The stocks represent the actual composition
of the DOW JONES at the end of the year 2011. With this framework we cali-
brate the VG process for 29 stocks and the index itself. We only exclude Kraft
Foods Inc. from our research, because they went public only in June 2001. There-
fore only limited daily returns are available. Furthermore, we calibrate the regime
switching model with weekly closing prices of the DOW JONES. For back-testing
the results of this model with the safe haven theory we take the yields of daily
United States of America (US) Treasuries with a maturity of 6 months (m), 12
months, 5 years (y) and 10 years as well as the closing prices of gold. All our
data are provided by Thomson Reuters Datastream. Table 2 summarizes the data
set and Table 12 in Appendix Al provides some descriptive information about the
data set.
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Table 2 Empirical data overview

Underlying Timeframe Interval Observations Usage

Dow Jones industrial average index 01.01.1991 to 31.12.2011  daily 5298 Fitting VG process

Dow Jones industrial average index 01.01.1991 t0 31.12.2011 weekly 1094 Regime switching model
Dow Jones industrial average index stocks 01.01.1991 to 31.12.2011 daily 5298 Fitting VG process

US treasury 6 months middle rate 01.01.1991 to 31.12.2011  daily 5298 Robustness

US treasury 12 months middle rate 01.01.1991 to 31.12.2011  daily 5298 Robustness

US treasury 5 years middle 01.01.1991 to 31.12.2011  daily 5298 Robustness

US treasury 10 years middle 01.01.1991 to 31.12.2011  daily 5298 Robustness

Gold 01.01.1991 t0 31.12.2011  daily 5298 Robustness

Note: This table presents an overview about the data set provided by Thomson Reuters Datastream and
used in our empirical analysis. Hereby, it gives some information about the timeframe, the interval and the
number of observations and the usage in the respective model

Our data set includes the different phases of the past 21 years. It covers bullish
markets which could be observed in the periods from 1991 to 1998 and from
2003 to 2007, the dot-com hype and the crisis subsequent to it, the events of
9/11, the financial crisis as well as the effects of the European sovereign debt
crisis on US stocks. Additionally, it includes extreme jump events, like for exam-
ple the over 30 % drop of Protector & Gamble on 07.03.2000. This broad range
of data allows us to provide a profound analysis of the VG process in the next
sections.

3.2 Sector classification

In some cases, it can be useful to group shares into sectors in order to iden-
tify common behavior and trends in different market phases. We use the North
American Industry Classification System (NAICS) for classifying the compa-
nies listed on the DOW JONES into sectors. As to that, the classification sys-
tem of the NAICS employs a six-digit code. In our case, it often suffices to
rely on the first two digits. In some cases, however, such as in the manu-
facturing sector, which a lot of companies listed on the DOW JONES oper-
ate in, the third digit has to be employed. We identify the following six sec-
tors, which sometimes cover more than one industry. For an overview see
Table 3.

3.3 Identification of normal and turbulent timeframes

For identifying normal and turbulent timeframes in our economic time series we
use a regime switching model. Our focus is simply to distinguish normal and
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Table 3 Sectors covered by the DOW JONES according to NAICS

Sector Coverage Companies

Information & entertainment information sector ATT, MICROSOFT
entertainment sector VERIZON, WALT DISNEY

Finance & insurance financial sector AMEX, BOA, JP MORGAN
insurance sector TRAVELERS

Engineering transportation equipment manufacturing ALCOA, CAT, UTC

machinery manufacturing
primary metal manufacturing

Trade & food retail trade COCA COLA, HOME DEPOT,
wholesale MCDONALDS, WAL MART,
food industry JNJ, PG

Chemistry & oil chemical manufacturing CHEVRON, DU PONT, EXXON
petroleum and coal products manufacturing MERCK, PFIZER

Electrical & component electrical sector 3M, CISCO, GE, HP
electrical component sector INTEL, IBM

Note: This table presents the sectors, we have identified and clustered in the DOW JONES according
to NAICS. Furthermore, it shows the sector classification of the companies of the DOW JONES. The
abbreviations of the companies can be found in Table 12 in Appendix Al

turbulent timeframes for the forthcoming parameter estimations. Therefore, in our
point of view a common regime switching model like Hamilton (1989) is appro-
priate and more complex regime switching models for example with time varying
transition probabilities by Diebold et al. (1994) are not necessary. We follow the
approach by Hamilton (1988, 1989, 1994, 2005) and the implementation and cal-
culations by Perlin (2007) as proposed by Alexander (2008). For calibrating the
regime switching model we use a database of weekly closing prices from Jan-
uary 1991 to December 2011. We prefer the weekly database to the daily database
as the results are more stable. Figure 1 shows the development of the DOW
JONES as well as the smoothed probability that the share index is in a turbulent
regime.

By means of these smoothed probabilities, we divide the total timeframe into four
sub-periods - two normal states (from 01.01.1991 to 08.06.1998 and from 14.04.2003
to 15.10.2007) and two turbulent states (from 15.06.1998 to 07.04.2003 and from
22.10.2007 to 31.12.2011). Hamilton (1989) concludes that his model makes very
clear decisions about the probability of being in a certain state. In Hamilton’s con-
text this means that only few smoothed probabilities should lie between 0.3 and 0.7
and the algorithm usually identifies fairly clear decisions about the states. With this
knowledge he suggests using the decision criterion smoothed probability > 0.5 in
a two state model. In the first sub-period we treat the two short periods with a high
smoothed probability as outliers and therefore, consider them to be within a normal
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Fig. 1 Regime switching model - DOW JONES. This figure shows the development of the DOW JONES
and the corresponding probability that the DOW JONES is in a turbulent regime from 1991 to 2011. All
calculations are based on the implementation of the regime switching model by Perlin (2007) and on a
weekly database

time. In the second and fourth sub-period we face times switching from turbulent to
normal and back to turbulent with high frequency. We apply Hamilton’s (1989) deci-
sion criteria and demand an expected smoothed probability i, > 0.5 for a turbulent
time. Therefore, we perform an approximate Gauss test with a 95 % significance
level and the null hypothesis Hy : © > 0.5 and H; : u < 0.5 as the alternative
hypothesis. For more information about the regime switching model and the applied
approximate Gauss-test see Appendix A2.

To sum up, we classify our four sub-periods as follows: from 01.01.1991 to
08.06.1998 as a normal period; from 15.06.1998 to 07.04.2003 as a turbulent period;
from 14.04.2003 to 15.10.2007 as a normal period; from 22.10.2007 to 31.12.2011
as a turbulent period. We use this division in the subsequent sections. We also do
a robustness test by using the safe haven theory. The results are also shown in
Appendix A2.

4 Empirical results

At first, we try to fit a VG process over the total period of 21 years by means of
the six presented estimation methods. Table 4 demonstrates that the quality of the
fitting rates (= percentages of shares where we could not reject the null hypothe-
sis that the log returns follow a VG process) tested by the KS test is not acceptable
except for the MLE method and the x? method. In contrast to the simulated VG
process data, we even notice a strong decrease of the fitting rates with increasing
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Table 4 KS test: fitting rates of all estimation methods - total timeframe

SMOM MOM MLE BI ECF x>
d 0.0862 0.0919 0.0205 0.0467 0.0604 0.0189
1% 0 0 73.33 10 3.33 83.33
5% 0 0 36.67 0 0 50
10 % 0 0 23.33 0 0 33.33
15 % 0 0 20 0 0 26.67
20 % 0 0 20 0 0 23.33

Note: This table presents the fitting rates by the KS test of all estimation methods over the total timeframe.
All fitting rates are indicated in %. Furthermore j+4 shows the mean maximum absolute deviation between
the estimated and the empirical CDF

levels of significance. Furthermore, 4 indicates the mean maximum deviation of the
30 empirical samples. As is the case for the fitting rates, jt4 is too large and there-
fore does not reveal a high-quality approximation for all methods. Only the MLE
method and the x? method positively stands out from these methods. For a robust-
ness test of the fitting rates, have a look at the x? test’s results in Appendix A3
(see Table 15).

These results make clear that it is hardly possible to estimate a VG process
over a very long period. Problems result from data covering too many differ-
ent market phases in which the stocks change their behavior. This means that
the increments’ PDF has various symmetries, fat tails on the left or right end of
the distribution or a time varying volatility as most stocks behave differently dur-
ing the different periods. Table 11 presents - among other things - the parameter
estimation results via the 2 method and the corresponding significance levels over
the period from 1991 to 2011. It becomes apparent, that the fitting is not sector
depended and there are problems with low and kurtosis distributions. It seems that
the change of the market behavior of stocks in the last two decades has also affected

Table 5 KS test: fitting rates of all estimation methods - timeframe 1

SMOM MOM MLE BI ECF X2
a 0.0687 0.0686 0.0403 0.0428 0.0532 0.0433
1% 10 10 53.33 53.33 23.33 36.67
5% 3.33 3.33 20 23.33 6.67 26.67
10 % 0 0 10 16.67 0 20
15 % 0 0 10 13.33 0 16.67
20 % 0 0 3.33 3.33 0 13.33

Note: This table presents the fitting rates by the KS test of all estimation methods over timeframe 1. All
fitting rates are indicated in %. Furthermore ;¢4 shows the mean maximum absolute deviation between the
estimated and the empirical CDF
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Table 6 KS test: fitting rates of all estimation methods - timeframe 2

SMOM MOM MLE BI ECF x>
d 0.0545 0.0541 0.0183 0.0182 0.0342 0.0204
1% 56.67 56.67 100 100 76.67 100
5% 43.33 43.33 100 100 70 100
10 % 26.67 26.67 100 100 70 96.67
15 % 23.33 23.33 100 100 66.67 96.67
20 % 23.33 23.33 100 100 63.33 96.67

Note: This table presents the fitting rates by the KS test of all estimation methods over timeframe 2. All
fitting rates are indicated in %. Furthermore ¢4 shows the mean maximum absolute deviation between the
estimated and the empirical CDF

the fitting characteristics of the stochastic processes and therefore emphasizes our
hypotheses H2 and H3. From the results we learn that a randomly selected timeframe
or fitting method used for calibrating a stochastic process does not ensure signifi-
cant results. With this background knowledge we run the same parameter estimations
for the four timeframes identified by the regime switching model and the safe haven
theory. Tables 5, 6, 7 and 8 clearly show increasing fitting rates for all estimation
methods compared to the total timeframe estimation (see Table 4). For a robust-
ness check see Tables 16, 17, 18 and 19 in Appendix A3. While, for exam-
ple, the fitting rate for the x2 method is 83.33 % (1 % significance level)
over the total timeframe, the fitting rates vary over the four identified time-
frames. In the less volatile and calm timeframe 1, where we consequently obverse
less jumps, it decrease to 36.67 % while in all the other three timeframes
all samples could be fitted successfully. This fact highlights that the data used
to fit a model plays an important role and a well-defined period of the data
set increases the probability of obtaining high-quality estimations. Besides, we
also consider the mean maximum absolute deviation u; between the estimated

Table 7 KS test: fitting rates of all estimation methods - timeframe 3

SMOM MOM MLE BI ECF x>
d 0.0736 0.0724 0.0184 0.0568 0.0542 0.0186
1% 53.33 53.33 100 43.33 53.33 100
5% 46.67 46.67 100 30 46.67 100
10 % 43.33 43.33 100 16.67 36.67 100
15 % 43.33 43.33 100 16.67 33.33 100
20 % 43.33 43.33 100 16.67 33.33 100

Note: This table presents the fitting rates by the KS test of all estimation methods over timeframe 3. All
fitting rates are indicated in %. Furthermore 114 shows the mean maximum absolute deviation between the
estimated and the empirical CDF
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Table 8 KS test: fitting rates of all estimation methods - timeframe 4

SMOM MOM MLE BI ECF x>
d 0.0816 0.0811 0.0208 0.0618 0.0621 0.0208
1% 23.33 23.33 100 50 30 100
5% 16.67 16.67 100 46.67 13.33 100
10 % 10 13.33 100 33.33 3.33 100
15 % 10 10 100 23.33 3.33 93.33
20 % 6.67 6.67 100 20 3.33 93.33

Note: This table presents the fitting rates by the KS test of all estimation methods over timeframe 4. All
fitting rates are indicated in %. Furthermore ¢4 shows the mean maximum absolute deviation between the
estimated and the empirical CDF

and the empirical CDF. Particularly, we do not find a huge difference concerning
the well fitting quality between the last three timeframes. Further, there is a trend
that the deviations themselves decrease significantly by comparing timeframe 1 with
the other three timeframes (as to the x? method from 0.0433 to round about to
0.02). Again, these trends reaffirm that stock markets are more likely to follow a VG
process. We cannot reject our hypothesis H3 as we obtain strongly improved fit-
ting rates from the application of the regime switching model. As the fitting quotes
and pg by the KS test do not give a clear answer about the best fitting method
(H1b) and the KS test is often criticized only focusing on one point of the distri-
bution, we also use the Anderson Darling test. This test especially helps to capture
the extreme events in the return distributions. Table 9 shows that in general the
x? method is preferable to the MLE method. Table 10 gives a more detailed view
at the single fitting results. During timeframe 2 to timeframe 4, it is clearly vis-
ible that for the heavily tailed stocks, the x? method works better than the MLE
method. Timeframe 1 again highlights the problems for fitting jump processes to
less tailed returns, while the results for the overall period emphasizes that for a very
large number of observations with a high kurtosis the x> method works definitively
best. All in all, we find an outperformance of the x2 method for all sub-periods

Table 9 Summary Anderson Darling test statistics

SMOM MOM MLE BI ECF x>
Overall 75.3799 86.5248 2.477 2.9055 36.2853 1.9605
Timeframe 1 11.2572 11.1686 1.7332 4.0998 49172 3.8414
Timeframe 2 8.2616 7.9506 0.4601 0.4625 3.581 0.475
Timeframe 3 17.8564 16.9886 0.4981 0.6885 8.2424 0.4545
Timeframe 4 12.4214 12.2695 0.617 0.6305 8.6627 0.6117

Note: This table presents the mean of the Anderson Darling test statistics for all estimated timeframes
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and the total period for heavy tailed data. The MLE method is the second best
approach and particularly outperforms the moment based estimation methods. The
BI method seems to work in a more or less acceptable way, but does not justify the
efforts undertaken. These results lead to a non-rejection of H1b and confirm the sim-
ulated VG process’ results by Finlay and Seneta (2008) with the only difference that
the x2 method is slightly preferred for empirical returns.

So far we have focused on the fitting rates and the quality of the estimations.
Now we start a more detailed analysis of the stocks’ parameters of the VG process
(see Table 11). At first, we take the parameters of the total timeframe and the four
sub-periods into account. We see that the total timeframe tends to average over the
four sub-timeframes. This means, for example, that we overestimate o, 6 or v in a
normal period and underestimate them in a turbulent period. With respect to simula-
tion and forecasting applications of asset prices by means of a VG process model this
can lead to enormous biases. While o and v errors particularly lead to a mismatch of
the actual market behavior, a € error results in a wrong assumption of the log returns’
symmetry. In normal timeframes there is a trend towards a right symmetric stochas-
tic process, whereas in turbulent timeframes there is a trend towards a left symmetric
VG process’ behavior. All in all, we can not reject Hla and H2 as the share distribu-
tions follow a VG process and their parameters vary over time. Having looked at the
VG process parameters in a more general manner, we continue with some detailed
information about the sectors:

Information & entertainment and electrical & component:
We notice a different behavior in the two turbulent periods. During the dot-
com crisis, these two sectors tend to have a higher o and v in relation to the
other sectors, while these sectors are less volatile during the financial crisis (see
Table 12 in Appendix Al). Particularly, enterprises in the telecommunication and
technology sector reveal a stable performance and offer a good opportunity for
diversification.

Finance & insurance:
This sector has an extremely high o and v during the financial crisis. The VG
process is able to capture this behavior according to the KS test and the respec-
tive significance levels. Therefore, the VG process and the jumps generated by a
gamma function using the parameter v are helpful approaches to cover this diffi-
cult market behavior. These findings are in contrast to the first timeframe where
the finance & insurance stocks do not directly follow a VG process. This change
in market behavior highlights the transition from a stable to a volatile and nervous
sector as a consequence of a financial crisis and political and economic changes.

Engineering:
This sector seems to be strongly dependent on the current economic situation.
In turbulent phases o and v increase. For that reason, the VG process is a good
procedure for modeling stocks of cyclical industries.
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Chemistry & oil and trade & food:

The VG process parameters o and v show that these sectors decouple from the
rest of the market in turbulent phases. The parameters indicating nervous markets
are lower than those of other sectors. From a risk perspective, we can - again - find
some opportunities for diversification.

To sum up, the parameters analysis emphasizes the importance of a clearly defined
separation of normal and turbulent market phases and verifies our second hypothe-
sis H2. Additionally, the examination of the four parameters allows a more detailed
analysis of stocks from a risk perspective. In some cases, there is only a concentra-
tion on the mean and the variance. The VG process allows an extended consideration
of risk by also taking the symmetry of stocks’ log return PDF, the kurtosis or the
market activity with the parameter v into account.

5 Discussion

After presenting the empirical results, we put them in relation to each other.
The quality of a VG process depends on the estimation method used. Unlike
comparable cases, where there often exists a trade off between estimation quality and
estimation time, the x 2 method allows a high quality estimation by keeping the esti-
mation effort acceptable. Furthermore, we notice that we even get high fitting rates
for the 2 method when we apply the very restrictive KS test. The detailed analysis
with the Anderson Darling test reveals, that for heavy tailed data the x? method par-
ticularly works well. This fact verifies the good VG process approximation by means
of the x2 method.

We contribute to existing literature, such as Seneta (2004) or Finlay and Seneta
(2008), by comparing all estimation methods with a large empirical data set of the
DOW JONES for a period of more than 21 years. In contrast to Seneta (2004)
and Finlay and Seneta (2008), we do not choose the timeframes for fitting the
VG process randomly, we apply a regime switching model for identifying normal
and turbulent timeframes. This additional aspect offers a good opportunity for
identifying time varying VG process parameters and is also a progress in avoiding the
over- or underestimation of the actual parameters. However, we are aware that
the differentiation between normal and turbulent timeframes is only based on the
DOW JONES and not on a single asset decision. Therefore, our results and the
behavior of an asset are always compared to the market behavior of the DOW
JONES. Nevertheless, the regime switching model increases the fitting rates of the six
estimation methods significantly. We also notice that markets are more likely to
follow jump processes, such as the VG process, as we identified increasing fitting
rates over the four timeframes. Besides improved fitting rates, the regime switching
model highlights that VG process parameters vary over time and the sensitivity of



S0E6°01 7568'1 9LLE'T LTT1'66 €850°1 €L6L'T ELL8Y  9¥0S0 SE65°0 Yo'y 80TTT 8PPl 91€1°CC £70S'C 865T'€ MOYAN
SI8T'L  86LTO  96TT0 1€90°'L L¥68°0 198L°0 L8SE9  69TF0  TOOSO 88¢8'¢ 66019 8ST1°¢ PLO'L  T9ST'T  6SIST SATYNOUDIN
90$8°¥1 S0L90 80L°0 L¥'S 10950 STSH0 1658°01 669€°0 £69%°0 99L6°¢ 86TH'T 1S81°1 966 €2990  9¥9L0 NI
G808'6  6S¥8'0  6TIZ0 9LTE'S  TILI'O  SE8T0 L6T8'S TS8€°0  ¥HTTO I¥€9°S  L6T0F  6€SSI 1€18°C1 1280 6096'C NVOION dr
21899 LILY0  TPLYO LLT'8 889€0  6SI¥0 96ZF'L  690¥'0  +0TS0 €0S0'8 0Tyl LSLS'T 8CTIL'6  TOS9'T LOST'C N4l
YOLT'9 STLED  LLIFO SILTL  T9SY'0  ¥T69°0 £6S%'9 816570 16SL°0 €LTI'9  9LY6'I €€T6'1 YELY'S LYOL' 8TST'T TAINI
vLTL9  PIPT0 LETO L10S'S  $LIEO  96VE€0  8SOI'LI 688€0 9S850 66Ty  8THPE 6T6€'1 868%'L1 9¢e’l TELY'T 10ddd ANOH
8TEYEL 1+62°0 65€°0 1068°11 ¥SPE0 90S°0 6909  608T0 90870 8T€'6 9T'1 Sors'l 10166 991T1 1928'1 dH
91’8 1%9°0 SI9L°0 9L6'E 9050 €18T0 T6E8Y  880S0  T6TSO SSIl'y  €sLTe 79891 69201 6901y ToTr'y a0
LYE YL €6€9°0  9IE0l rly  9TLS0  ¥LoYo 9r60°S STe0 SILEO SILYY  80TYIL 9269’1 89T’ 11 €0LY'T 1TLLT NOXXd
8S1T'9 9GS0 196+°0 ¥8LE'S 68850 98990 PSI9Y  €8€E’l 18%°0 8LILY  €VLTE 988’1 68999 ¥9€'C 198°C INOd Na
96%0°€1 817€°0 11740 €066'C1 CESL0 el YTLY'S  ¥9LS0  FTIFO 919€y  SLLES  9SEFT 91's  68SS1 €6£6°1 V100 VO0D
TESLO1 LL6TO 1€7€°0 8T80°6 SO0 S¥19°0 Y6LE'S 99680 1128°0 16¥L°9 SE6T'T 9Tl 8090'8 86L°0 S8ET'l 0DSID
L916°¢1 §S05°0 19€L°0 681¢°¢ 1990 618€0 ¥89€Y  9¥6T0 1€72°0 9Tr9'¢ €LYL'E REVE’l €EEL'TT TS6L'1 Er'T NOYAHHD
€E8L'S  9€€T0 IS61°0  TEITEl 10SY'0  L6LSO T6£9' I1Iy0  TLYTo I76TS 9518’1 89S1°1 T0L99  9g€T’] w671 1vD
6L66'S  609%°0 90 LTSY'Y 79810 §ST0 LS9€E'8 £60%°0 1Z23Y0) TSEV6 SS65Y STeEET vL81'6  ¥OI¥'C 8YLL'T ONIFOd
SYS6'I1 TS19T  9S60CT  6LES'LI TTSTO LIEE0 8TT0'Y 6200  ¥8LIO 169%'1 1901°S 6Se8'l 8065'8T 8079°9 616 vod
7650°8 680L°0  ¥E€T9°0 TLEY'S  TE610 161°0 LEEY  ¥I9F0  90E¥°0 TS8EY  SLTS'S  #SESE €9IL'6 8661 SLS9T XY
I61L°L  96£9°0 $896°0 LYYy ILETO  TSOTO S09S'F  88¥8'0  8TOY0 116y TLOSY  LSEL'] T61°01 8€0C  61T6T Vo1V
8TYS'11 €619°0 LELO I€709  ¥8EE0 S00€0 6CSTY  €0LTO €061°0 69vEY  PEIT'L 1SL0°C TLYEL  ¥EPYT  PIVPT LLV
6LTT9 96£T°0 L99T°0 LTTI 89LY'0  €OLLO P9y 9vTT0 €561°0 €9LY'L S820°¢ 68¢'1 6810°L  #06¥'1 SL'1 NE
87506 TIL80O  6LEYD 8200  6E¥E0 §TTE0 ELYT'S 1S61°0 LTTTO 6CST'6 8LED  9€6€0 S6S0'T1 9TLLO  TH60'1 SANOSL MOA
Hny X ATN any X TN Hany X ATN uny X TN ny X ATN Suikpopun
L1CITE 0 LO0T91 LOOT°ST 02 €0°'70'80 €0'70°L0 03 86'90°60 86'90'80 0 16'10°10 [[e12AQ

670

poyow - X pue poypow g 10§ SIN[EA SUI[IE(] UOSIOpUY uostredwo) (O dqeL



671

JuImiy 91BINOOE AIOW B SALIIPUT AN[EA SUILIE(] UOSIOPUY JO[[BWS Y 'S[IE) JeJ 10J Juryiom [[om A[[eroadsd st poypow - X ay) ey ‘Sunysiysiy
J0J SISOMINY 3Y) MOYS AJ[EUODIPPE O “QIOWLISYLIN,] "POYIdW X 3y} JOF SE [[om SB POYIAUW T SY) J0J SAN[EA SIS 183} SUILIE(] UOSIAPUY Y sudsaxd a[qes siyL, ‘HION

SS6'L 8SISO SSTHO  6T89TI  68YTO  THOED SOVS'L  8PLSO L1I60  LI6O'S $S9LT  TPSL'I 6£96'6  6VV0T  6VP9T  AANSIA LTVM
8101 SO0F0 6950 YLYTY  SPLTO 80970 IYIy  8€8%°0  911¥0  1€8L°9  9¥LOTI 991y 80V8'9  9LTET  €6LST LAVIN TVM
TLLE6  €T8TO  €TEE0 ITIYy SELEO  L6LTO WS TSHY0  IKSHO T6€°S 618'Y 8L vE99'L  166V'T L9’ NOZI¥AA
TSTE'L  LII90  6S6T0 8€EY  808T0 €P1°0  SLLS'LT  9S8T0 96550 LTS 60Y0°C  LOLY'T 9S¥'LT  €061'T ST oLN
YSLLOT 9zL0  T0T6'0 €SIE'S  9I¥WF0  SPIY0 86S'S  TREFO  869€0  TISH'S 6v16'C vSI'T  8619ST  8ELI'E  8T0I'Y SYATAAVYIL
6TLEG  VTHED  TOVFO LTSE'S  €0SE0  S8EE0  TEELLY  TSISO  €0960  8986'C €6TTT 10T TSI9'IL 6680  9¥S9'T od
66£0°L  €6L9°0  T1898°0  PITI'ST  T6ESO  6EL60 810V’ 1€€S0  LYOY'O  T9ELE LIOLT 79560 $896'S  TLYST  €¥99'1 YAZI4d
1L80°0T  TELSO  6V0S0  L960'ST  SL8T'T  €66S0 1S099  66T4'0  PSISO  SE86'C 95880 ¥909°0 9v0T8  6LIS0  9¥880 LIOSOIDIN
qany X TN any X TN qny X TN any X TN qany X TN Suikpopun
1121 TE 0 L0'0T'91 LOOT'ST O €040°80 €0H0°L0 O 86'90°60 86'90'80 01 [6'10° 10 [[b39A0

(ponunuod) (Y AqEL



672

x*C0S8°0  %x61100°0—  %¥C0T0'0 *Pery9'0  «¥9100°0— «6¥€10°0 «PISETO *EST000— *1€0C00 =ILLEEO  %¥BE00'0 =CO6S10'0 %L9T8F'0  %C0000— =EELIOO MDYIN
x*L66¥8°0  +1€100°0— «CThPI0°0 %1TSSP'O0  %C0I000 +LEEIO0 =LEEVP'O  %LLTOO'0 %660C0°0  T9C9CTO L9%00°0  ¥T¥I00  SE6EV0 611000 65100 SATYNOUDIN
*€6CL6'0 xS0—96  xEVII00 910990  +¥L000'0 %86800°0 =¥¥CCE'0  x16C00°0 «LSLIOO =CTEETO  %86100°0 =91S10°0 %€81T90  «¥6000°0 =«SI¥FI00 INS
«L8Y1'] 102000 xS89€0°0  xLS98S°0  «SPO00'0 +«ELITO0 +6198€°0  +87€00°0 %6S6C0°0  €819%°0 L8T00'0  TL8IO0 =£¥688'0  +CEI00'0 €100 NVOIOW dI
«SIVLL'O  %SST00°0—  «¥P910°0  %2T0E0 L0000 x92010°0 =9€TLY'0  %98100°0 «¥8YC0'0 =+¥ILIF'0  xS6100°0 «6CLIO0 +6T91L0 %€000°0  %L6LTO0 N4l
x79989'0  x€0C00°0—  %8TCO'0 1090 %€000°0  %SS910°0  %E¥9ST'0  x€0T00'0  +6€9€0°0 «8ILLTO +610000— %xLTECO'0 =90€1S0  %€€000°0 «STSTO0 THLNI
x7SG98'0  x€6000°0 «xSITTO0  *xELSICO x*1€00°0  «90€10°0  «I€LLE'D  %S6T00°0 %6S8C0°0  [LTIE0 61000  €ILTI00 =88I1LS°0  %ISI000 %L£020'0 1OdHA HNOH
*PPI880  «1ST00°0—  %1TTO0  %€S98F'0  x99000°0  «LS10'0  «S8YSY'0  +PLTOO0  %8BECO'0  %S868C0  %99€00°0 =C0ITO'0  +SOS90 *S0—93L  x9€70°0 dH
«9IV0' T %6L200°0—  x98SC0°0 «SYCSE'0  %CSTO0'0  %€6600°0 =S8LIE0  +CCY00'0  +¥CECO'0  896L1°0 YCr00'0  TETIO0  %9S9SL°0  %€1000°0  %S0810°0 q4o
%x8€€6L°0  x¥6000°0—  «6LLIO'0  x96L0€°0 +61€00°0— «ITCIO'0 %8S8ET'O  +¥€000'0— «LLLIO'O  $T8SS'O LY100°0  T€110°0  €PLLY'0  9T1100°0—  99%10°0 NOXXH
xSPSOL'0  %1SE00°0— «I€€C0'0 «PLTETO  +E€1000°0— =«CITI00  «¥6EPY'O x9€00'0  *8LTTO0 LL9T0 LTI00'0  TIST00 =S¥PSTS'0  *LITOO0 %SO810°0 INOd Nd
%€8€C6'0  %66100°0— xELETO'0  «LELE'0  «ILT0O0'0 =8I800'0 =9¥T8Y'0  =+PLIO00 x9S0C0°0  8I6£CO 62000  BYEI00  «60L8S°0  %990000 «6¥¥100  VIOD VOOD
x«10LT80  +IL100°0— %8TTCO'0 +BP6IE0  %SCIO00 909100 %1698C°0  +1000°0—  %L6€0'0  +98CC'0 x€9100°0— #VLLTOO %S6E19'0  +¥9100°0— %TBLTO0 0ODSID
x«LTT€8'0  %56C00°0— 166100 «¥9S0I'0  +¥6C00°0— xCSCIO'0  «I1090%'0  «I9100°0 =+€ELIO0  690SE°0 €6000°0  86TI00 %xS0STY'0  +¥8000°0—  «I¥SI0°0 NOJAHHD
xS00SL'0  x€8I00°0— #¥6920°0 «CIL6TO +P0L00'0—  «ISTO'0 =%8SBLE'D  %BOYOO'0 +6¥FC0’0  +8ELSE'0 *€700°0  %STLIO0  %8S6YS'0  «¥0I00°0  %T8OTO'0 IVD
*LT6V9'0  #TC00°0—  %S0ET0'0  +ILYOT0  %SIT00°0 +6LEI00  %I610F'0  %¥1000°0— =SLYTO'0  L961¥'0 PIE00'0  9TSI00  %619S°0 70000 %C€610°0 DNIHO4
«CLEY' T %L000°0— xS0°0  «SLEYE'0  %STT000—  =8LBOO'0 =ESIOY'0  %€9100°0 =«¥TSTO'0  9TTSY'O 62000 TO6S10°0 IvI'L L9000°0—  10¥200 vod
*C0TT T %¥0T00°0—  %97€0°0  %SPS8I'0  +¥IT00'0 «I9TT0°0 +EEPLT'O  %LLOOO'0— %99LT00  SPI9E'0 TEP00'0  TO6LTO0 +¥00VL'0  %87000°0 %8LTTO0 XHNV
%*S0T88°0  %¥8S00°0— %€TIEO0  %ESTOFO %S0"06—  %6ELTO'0 %ST98TO  %6I¥00°0 =LILTO0  TFE8E'0 £7r00°0 9T0°0 %88999°0  %9€T000 +6EE€TO'0 VOOTV
x*L9688°0  «CI100°0— %96910°0 =6¥¥6¥0 *8€000°0  *80CI0'0  %S8Y9€°0 *7L000°0  x6CSC0'0  L8ROY0 802000  TLEIO0 666990 6€000°0  9€L1I00 LIV
*981C8°0  %L8100°0—  %S08T0°0  %68CEY( *SC100°0  x€1010°0  «¥¥9TH'0 %9€00°0  %T6810°0  610LS0 €8000°0  6€TI0°0  %8LIOLO *91000°0  %20ST10°0 A3
#CCEC T «CI100°0—  «9%S10°0  +€CPPS' 0 x19000°0—  =1TLOO0 =¥TYI¥'0 #79000°0  «8¥€10°0  «91€0S0  x¥000'0—  %¥9L00°0 +9€116'0  %S9000°0—  %89010°0 SANOI MOd
a 0 0 a 2 0 a A 0 a 0 0 a 0 0 SurAropun
TTCITE 0 LO0T 9T LO'0T"ST 03 €0'70°80 €0'70°L0 01 86°90°60 86'90'80 0 T6'TOTO [BI9AQ

poyow - X B1A SHNOI MO $HNsa1 uonewysd sopwered ss9001d DA TT d[qeL



673

159) S Y] JOJ [OAJ] 20UBIYIUSIS 94, | B SAIBIIPUL , ‘a pue g ‘o s1oweted jueliodwll 910W Y} UO SNO0J pue SISA[eUr SIY) UI 31 199[30U am J(d oy Jo jurodprux
ay) $109§5€ A[UO O SY "SQWELIWN qns IO [[¢ J0J SE [[oM St SWEHIW [£10} AY) 10§ poylowr , X Yy AQ $s3001d HA 9y Jo sijowesed pajewrnss Ay syudsard d[qe) SIY], 20N

*€8598°0  %xSP000'0—  %60TCO'0  *8IL6TO  %SS000°0—  %39CI00 %E€9EPE'0  x8EE00'0  %8SYTO'0 806T°0  1S€00°0  TESIO0 *TOY8SO0  %8L000'0 %¥CT610'0  AHNSIA L'TVM
*LV89L0  %8L0000—  +6€E€10°0  %SOYOE'0 #1000 80100 =+€116€°0  «SPP00'0  %S9¥T0'0  6600€°0  ¥8E000  ¥I9I0'0 %SST9SO  %8TIV0'0  *TELIOO LAVIN TVM
*C61€6°0  %9ST000—  %L9T0°0 %ST96E'0  %€9000°0  =CTITO'0 =+€ELOE0  %9LE00'0  =PETO'0  I8FYSE0  LTIOO0  TSETO'0  %TTBISO  %TSO00'0—  %LEITO0 NOZIIgGA
*€09€6°0  =LETO00—  =PS6I0'0 *I€TOE0  %CST00'0 =LITIO0 =LP8ET'0  %€T000'0 =ITETO'0  8S8ISO  TLTOOO  T6ETO0  %I8E€9°0  %TR000'0  =ILTI00 JLN
*€SLT' T %T9000°0—  %C0€TO'0  %8L9SSO0  %9¥000°0 69CI00 %¥C90S0  %S8C00'0 %T9ETO'0  €€5€T0 860000  ¥ITIO0  TO9¥L'0  61000°0—  L¥VLIOO SYFTIAVIL
#V186°0  x¥8000°0—  «¥8CTIN0  «919¢¥°() *10T00°0 978000  +¥PES0  xLE000'0—  =PE€610°0 %9C61T0  «CI¥00'0  *¥SET0'0  *¥SLEY O *LL0000  x66€10°0 Dd
*L1€69°0 *CP100°0  «6¥L1I00 805070 #76100°0  «LITIO0  =LL6SE0 %0 x6LTC00  xS0€0T'0  %8CSO0'0  *€ILIO'0  *x9T68F'0 *C9100°0  %96L10°0 JdZ14d
*V8TCR0  %LETO00— 650200  %T908°0  %96000°0 +9€TT00 %TLBLTO  %66C00°0 %LELTOO +609¥CT0  +¥S00'0 %86610°0 *x6L£69°0  %LST00'0  xL80TO0 LAOSOYDIN
a 0 0 a 0 0 a 0 0 a 0 0 a 0 0 Surkrepun
ITCITE 9 LO0OT'9T LOOT'ST 93 €0'70°80 €0'70°L0 01 86'90'60 869080 9 16°'10°10 [1eeA0

(ponunuoo) 1 dqeL



674

the VG process itself becomes apparent. As a consequence, we can suggest two main
points in the context of modeling share returns and calibrating risk models. First, it is
essential to use an accurate estimation method and second, we highly recommend to
take care about the timeframes used for calibrating the models for avoiding over- or
underestimation.

6 Conclusion

We have taken the common knowledge about the VG process (see Madan and Seneta
1987, 1990; Seneta 2004; Finlay and Seneta 2008, amongst others) and the knowl-
edge about the estimation methods of the VG process estimation methods by means
of a simulated VG process data set (see Finlay and Seneta 2008) and applied it on a
large empirical data set, the DOW JONES. Based on the theoretical background we
develop four hypotheses, each of which includes an aspect of practical usage of the
VG process. We reach our aim to improve the quality of a VG process by integrating
a regime switching model developed by Hamilton (1989) and Hamilton (2005) into
the VG process framework, and in this way, identify VG process parameters which
depend on timeframes (hypothesis H2). This approach results in the improvement of
fitting rates (hypothesis H3), which are determined by the conservatively adjusted KS
test for CDF. Finlay and Seneta (2008) suggest using a MLE method or x? method
in order to fit a VG process by means of a simulated data set. We can verify this
knowledge for empirical data, but in contrast to Finlay and Seneta (2008), we find
a superiority of the x2 method for empirical data with a high kurtosis (hypothesis
H1b). Finally, we can verify that empirical share returns can be modeled by a VG
process (Hla). All these findings are representative of empirical stock return time
series, as we apply a very large data set. For other studies and time series simulated
and/or empirical data is necessary.

The regime switching model allows us to have a closer look at the parameters of
the VG process over the various normal and turbulent regimes over our daily data set
comprising 21 years. Furthermore, we can learn that such a differentiation helps to
avoid an over- or underestimation of the real VG process stock market behavior.

However, we state that our results only cover the DOW JONES and the new knowl-
edge about the VG process is limited to this data set. The scope of the analysis could
be broadened to cover other markets such as the commodities, currency or bond mar-
kets by extending the data set. Furthermore, this paper focuses on the identification
of the estimation method fitting the VG process best. On the basis of these results we
could compare the VG process with other stochastic models.

To sum up, our findings should ensure a better understanding of the VG
process in connection with an empirical dataset. This empirical study on the VG pro-
cess should provide a useful basis for further research on the permanent consideration
of the combination of the regime switching model and the VG process.
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Appendix A2

As we have no idea about the distribution of the smoothed probabilities, we do not
assume any distribution for calculating the test statistic value V. Table 13 demon-
strates that we can reject H,, in the first and third sub-period, but not in other periods.

Table 13 Descriptive statistics: approximate Gauss test for smoothed probabilities

Timeframe Observations  fgm Osm \" Rejection interval
01.01.1991 to 08.06.1998 387 0.067651  0.16408 —51.8376 (—00, —1.6449)
15.06.1998 to 07.04.2003 252 0.48732 0.40017 —0.50313 (—00, —1.6449)
14.04.2003 to 15.10.2007 236 0.013478  0.036818  —202.9983  (—o0, —1.6449)
22.10.2007 to 31.12.2011 219 0.60208 0.44601 3.3869 (—00, —1.6449)

NOTE: This table presents the results of the approximate Gauss test for the smoothed probabilities of the
regime switching model. It shows the the observations as well as the test statistics for each timeframe
based on a 5 % significance level

We also present the estimated transition matrix P* for the regime switching model
for the DOW JONES

0.99 0.01
« | 0.00%%) (0.01%*)
Pr=1"004 " 096 | 10)

(0.00***) (0.00%**)

which provides the probabilities of switching from one state to another. The figures
in brackets denoted are the test values and the significances levels, with *** indicating
a 1 % significance level.

Table 14 Corrclation between DOW JONES and US Treasuries and gold

Timeframe Yield US Yield US Yield US Yield US gold
T-Bills 6m T-Bills 12m T-Notes Sy T-Notes 10y

01.01.1991 to 08.06.1998 0.32654 0.29208 —0.25329 —0.51722 —0.45986
15.06.1998 to 07.04.2003 0.59068 0.61947 0.76689 0.80246 —0.67852
14.04.2003 to 15.10.2007 0.761 0.75848 0.73629 0.63986 0.90282
22.10.2007 to 31.12.2011 0.45577 0.41158 0.24329 0.23187 0.31944

Note: This table presents the correlation between DOW JONES and US Treasuries and gold. We apply
this as a robustness test and therefore use different maturities for the US Treasuries
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For running a robustness test which is in accordance with the safe haven theory,
we have a look at the correlations between the DOW JONES, US Treasury yields
and gold. In turbulent times, the correlation between the DOW JONES and the US
Treasury yields increases. This means that while stock markets decrease, US Trea-
sury prices increase (yields =decrease). Furthermore, gold decouples from the DOW
JONES in turbulent times.

Appendix A3

The following six tables show the fitting rates based on the x? test. As mentioned
above we use these results as a robustness check for the KS test. Each time a robust-
ness test is needed, a reference can be found in the main part of this paper. The results
of the x?2 test are in accordance with the KS test and verify the x? method as the best
estimation method of the VG process. All in all, the results only differ in that they
reveal lower fitting rates.

Table 15 x? test: fitting rates of all estimation methods - total timeframe

SMOM MOM MLE BI ECF x2
My 764.4 826.68 93.8 95.7 406.44 84.46
1% 0 0 3.33 3.33 0 3.33
5% 0 0 0 0 0 3.33
10 % 0 0 0 0 0 3.33
15% 0 0 0 0 0 0

20 % 0 0 0 0 0 0

Note: This table presents the fitting rates by the x> test as a robustness test for all estimation methods over
the total timeframe. All fitting rates are indicated in %. > is the mean of the x 2 test statistic values

Table 16 x? test: fitting rates of all estimation methods - timeframe 1

SMOM MOM MLE BI ECF x>
1, 203.76 201.87 116.28 132.95 150.97 118.87
1% 0 0 3.33 333 0 3.33
5% 0 0 3.33 3.33 0 333
10 % 0 0 3.33 3.33 0 333
15 % 0 0 3.33 3.33 0 3.33
20 % 0 0 333 3.33 0 3.33

Note: This table presents the fitting rates by the x? test as a robustness test for all estimation methods over

timeframe 1. All fitting rates are indicated in %. > is the mean of the x? test statistic values
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Table 17 x? test: fitting rates of all estimation methods - timeframe 2

SMOM MOM MLE BI ECF x>
1y 70.79 69.34 22.26 2191 54.41 2118
1% 20 20 86.67 90 50 90
5% 13.33 13.33 56.67 63.33 36.67 66.67
10 % 10 10 46.67 50 36.67 56.67
15 % 10 10 46.67 43.33 33.33 46.67
20 % 10 10 43.33 43.33 26.67 46.67

Note: This table presents the fitting rates by the x 2 test as a robustness test for all estimation methods over
timeframe 2. All fitting rates are indicated in %. 1> is the mean of the x? test statistic values

Table 18 x?2 test: fitting rates of all estimation methods - timeframe 3

SMOM MOM MLE BI ECF x?
T 169.48 160.51 24.36 24.97 97.55 21.65
1% 40 36.67 76.67 80 33.33 93.33
5% 2333 26.67 56.67 60 16.67 66.67
10 % 16.67 13.33 4333 4333 10 56.67
15 % 13.33 10 30 3333 10 50
20 % 13.33 10 26.67 26.67 10 40

Note: This table presents the fitting rates by the x? test as a robustness test for all estimation methods over
timeframe 3. All fitting rates are indicated in %. j1,> is the mean of the x? test statistic values

Table 19 x? test: fitting rates of all estimation methods - timeframe 4

SMOM MOM MLE BI ECF x?
[y 149.99 137.74 21.36 20.99 113.56 20.08
1% 10 10 86.67 86.67 333 86.67
5% 6.67 10 76.67 76.67 0 80
10 % 6.67 6.67 63.33 66.67 0 76.67
15 % 0 0 60 60 0 66.67
20 % 0 0 50 53.33 0 60

Note: This table presents the fitting rates by the x 2 test as a robustness test for all estimation methods over
timeframe 4. All fitting rates are indicated in %. 1,2 is the mean of the x? test statistic values
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