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ABSTRACT In this study, we analyze the effects of Guaranteed Stop Orders (GSOs) on
stocks in the German stock index DAX. We briefly explain how GSOs work and then
we develop a jump process, based on a Variance Gamma Process, to model the share prices.
We show through simulations that the payoff of a GSO is primarily governed by volatility in
the underlying stocks’ intraday and overnight movements. We also demonstrate that the
common linear approach to price-GSOs is too general and needs to be refined in order
to show adequately differences between stocks. We show that recent turbulence in stock
markets around the world has made the GSO more interesting and that, further during

normal periods, this order type was nearly irrelevant.
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INTRODUCTION the Protective Put Option. This simple tool
There are many different forms of portfolio avoids losses below a certain barrier, but has the
insurance, all having certain advantages and drawback of not providing continuous

disadvantages. A common portfolio insurance is protection (see Bodie et al, 1996). Dynamic



insurance tools, such as synthetic puts, are used to
ensure that a portfolio never drops below a
certain level. However, they have the drawback
of requiring continuous trades. Therefore, the
investor must invest considerable effort in order
to use them. In addition, Basseer (1991)
discovered that dynamic portfolio insurances
work best in orderly markets, but become
impractical during periods of high volatility.
Risk management orders are basic tools to avoid
losses. The most common one is the Stop or Stop
Loss Order (SO). Unlike most other tools, the
investor does must not pay a premium when
placing SOs — as a result, it is a widespread tool.
One problem with SOs as to protection is that
they do not guarantee a selling price equal to
their barrier. If liquidity is tight and if it is
therefore difticult to find a counterparty willing
to execute the SO, the selling price may drop
significantly. Many studies have shown that

SOs can reinforce sudden share price drops,

a phenomenon that is often referred to as ‘price
cascades’ (see Genotte and Leland, 1990;

Easley and O’Hara, 1991). These price cascades
occur when many investors have set Stop Orders
with similar barriers and a price drop triggers
them simultaneously. These sudden sell orders
encourage other market participants to sell, or
worse, they force investors to sell owing to loss
limits.

The Guaranteed Stop Order (GSO) was
created to counteract this vulnerability to sudden
share price jumps. Basically, it is an SO with the
additional benefit of guaranteeing a selling price
equal to the barrier. If an investor uses a GSO
instead of an SO, he still contributes to the
above-mentioned problem, but he has the
distinct advantage of not being affected by
sudden price jumps. Because there is no free
lunch, the GSO has a major drawback. A GSO is
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not always superior to a simple SO, as the
investor pays a premium in order to be

insured against price jumps. Such share price
jumps are often neglected when looking

at SOs and, for major firms, this may be
appropriate in quiet and orderly times. However,
the recent financial crisis has caused considerable
turbulence and has dramatically increased

stock price volatility. Under these conditions,
we consider it to be necessary to take a closer
look at GSOs and to evaluate if their pricing is
justified.

The purpose of this essay is to make readers
aware of the valuation of GSOs, an instrument
that has received very little scientific attention
so far. A jump process is used to account for the
discontinuities in the stock market, which are the
sole reasons for the existence of GSOs. We
establish, by means of share price, simulations
to determine whether the method of pricing
GSOs as used, for example, by CMC Markets
(2005) is appropriate and reflects their true
value. We analyze which factors determine
the value of a GSO and how to price them
accordingly.

This essay is organized as follows. In the next
two sections, a model for share prices and GSOs
is developed. Then the data is presented and the
fitting process is described. Afterwards the
simulation process and its results are explained.
The following section provides a closer analysis,
determines the major influences on GSOs and
outlines a new pricing approach. Hence, the two
penultimate sections are dedicated to robustness,
and check the stability of previous findings
regarding the modeling assumptions and the
stability of the most relevant parameters. Finally,
the last section summarizes the results and by
giving an outlook on possible future research
on GSOs.



MODEL

As already defined, GSO were created to
circumvent the problem of an SO, when a
sudden price jump occurs. To clarify how a GSO
works, we give the following real-life example:
Let us assume we are short in Volkswagen shares
on 28 October 2008. We placed an SO at a level
of €525. This means that in case the share price of
Volkswagen is €525 or higher, we cut the losses
of our bearish strategy, because we close the
position at the next price. At some point this
occurred, and the next obtainable price was
€595. With respect to our SO we lost an
additional amount of €70 per stock. If we had
placed a GSO instead of an SO, the price at
which our order would have been executed
would have exactly been the guaranteed €525.
Compared with the SO we would have gained €70.
We set up the following model to answer the
question, ‘what should an investor pay in order to
be insured against price jumps?’.

First, we must decide on a model for the
underlying stocks in order to evaluate GSOs. The
most common approach would be to assume that
the stock prices follow a Brownian motion. One
characteristic of Brownian motion is the fact that
its paths are almost surely continuous. In simpler
terms, a Brownian motion does not jump. On
the other hand, GSOs are instruments specifically
developed to protect investors against jumps in
the stock markets. Therefore, it would be
desirable to use a stochastic process that focuses
on such events. According to Cont and Tankov
(2004) there are two basic categories of jump
processes to choose from: jump-diffusion models
and infinitely active models. The former consist
of a Brownian component and rare jumps, and
the latter of an infinite number of jumps in each
interval. In this article, we use a Variance Gamma

Process (VGP), a process of infinite activity, as a

starting point for our model. Carr ef al (2002),
Geman (2002) and Madan (2001) confirm that
this category provides a better representation
of historical share price processes than the
Brownian motion. Furthermore, the VGP is a
well-established model, as several authors have
shown that it fits stock market data relatively
well and can also be easily simulated (see Madan
and Seneta, 1990). Alternative models are
the jump-diffusion as well as the hyperbolic
process, which are tested relatively often
and positively evaluated. The latter process
is used especially for the German market
(see Eberlein et al, 1998; Rathgeber, 2007).
We will discuss this further in the robustness
checks section.

In the basic model (compare Schoutens, 2003;
Cont and Tankov, 2004; Seneta, 2004), the share

price S; over time ¢ 0 is given by:
S = Soexp(X;) (1)

where S is the initial share price and the

exponent X, is defined as:
X, =ca+0G+oW(G,) ()

with the parameters ¢, 8, ¢ and the Brownian
motion W. G, is a random process independent
of the Brownian motion IW/(s). G, follows

a gamma process, is a positive increasing
random process and can be interpreted

as an ‘economically relevant measure of

time’ (Geman et al, 2001). The expected
economically relevant time change per calendar
time unit is, without loss of generality,

normalized to 1.
E(G-Gi-1) =1 (3)

Hence, the expected activity time change over
unit calendar time equals 1. This normalization is

contained within 6 and ¢. The change in the



exponent X; over one unit of calendar time,

denoted by AX,, can be written as:
AX, = X,— X,_,

= +0(G—-G_)+oVG— G W(1) (&)

Consequently, the time change can be
transformed in a variance change according to
Seneta (2004). The model, as it stands now,
requires that the expected price change from one
time step to the next is constant. However, in
reference to GSOs, it is important to consider the
fact that the expected change between the last
share price of any given day and the next will not
be the same as it would between two adjacent
intraday prices. This is taken into consideration
by defining S, as follows:

S =8 CXp(ID[-i- ON,) (5)

In this definition, there are two independent
stochastic processes ID, and ON.,. ID; controls the
intraday share movement and ON, the overnight
movement. This model is based on the
assumption that each jump is independent of
previous jumps, and that especially overnight
jumps are independent of intraday jumps. This
assumption is not entirely true. There is evidence
that an over- or under-performance in the last
few share prices of a day is related to an over- or
under-performance in the overnight jumps.

This dependence lends itself to further research
but is ignored in the present model. To be

able to formally define ID; and ON,, we create

a set T containing all points in time which
coincide with the first price fixing of each day.
The change in ID; is now defined similar to
AX,in.

AID, =
0, ifreT
{ ap+0ip (G (kip) — Gi—1 (kip)) . (6)
otherwise
+om\/Gi(kip) — Gi—1 (kip) W (1)
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This definition shows that the intraday
movement follows a VGP that does not affect the
overnight movement. ON; adds a jump between
the closing and the opening price with the jump

being distributed according to the marginal

distribution of the VGP:
AON, =
con +0on(Gi(kon) = Gi-1 (kon)) freT
+oony/ Gi(kon) = Gi-1(kon) W (1), (7)
0 otherwise

Furthermore, the overnight jump does not affect

intraday movement.

GUARANTEED STOP ORDERS

As mentioned before, GSOs are similar to
standard Stop Orders. The difference is that a
GSO guarantees a selling price which is equal to
the chosen barrier, whereas the SO only provides
the next selling price after the barrier has been
broken. Basically, a GSO can be seen as an
insurance that pays the difference between the
barrier and the next possible selling price. We
evaluate GSOs using the share price model. The
payoft Ppis defined as:

Py = |B- S| (8)

It is assumed that 7 is the first point in time for the
share price S;, which can be less than or equal to
or, if it is short selling, exceed the barrier B.

The model considers a time frame T of 1 year
between GSO placement and cancellation. If the
barrier is not reached within this time frame, the
payoff Pgis 0. It is extremely uncommon to place
(guaranteed) stop orders for a longer period.
Many brokerage services do not even permit it.
Unlike an SO, an insurance premium must be
paid when placing a GSO to reflect the offered
protection. This fee is calculated according to
CMC Markets (2005). For stocks in the German



stock index DAX, the premium is set to be 0.3
per cent of the GSOs’ barrier by CMC (similar
also Macquarie, 2011; IG, 2012) and must be
paid immediately. Stocks in other indices have
different premium rates, but they follow the

same structure. Therefore, the premium R is
defined as:

R=cB )

with ¢=0.003 in our case. This definition is
intuitive for long positions, but seems counter-
intuitive for short positions, where the premium
rises farther away from the initial share price
where the barrier is set. This structure is probably
due to the fact that the expected relative jump
sizes are assumed to be constant and the absolute
jumps, therefore, are expected to increase in case
of higher share prices. An additional rule is that a
GSO cannot be set within 5 per cent limit of the
current price of a share. For example, if a share is
listed at 100, one can set a GSO at 95 and pay a
premium of 0.285. In this article, we focus on
long positions, where the barrier is consequently
below the initial stock price.

In order to be able to price the GSO we need
to calculate the expected payoff. Therefore, we
can define the stopping time, when the price

process crosses the barrier:

7 =min {r € [0; T]|S,<B} (10)

Consequently, the expected payoff with regard
to the new measure (¢,,,) discounted by the

riskless rate r is:

E, (Pg(7) - 1(z<T)) - exp(—r7)—cB  (11)

To price the contingent claim according to
Equation (11), we had to find an equivalent
martingale measure; as Chan (1999) points out,
this must be done even if the market is
incomplete. As there is no unique measure in

incomplete markets, we had to choose among

the different possibilities. For the sake of
simplicity, we use the mean correcting measure
according to Schoutens (2003, p. 79). Within
our robustness checks we stress this choice by
applying another measure transformation:

by following Schoutens (2003, p. 80) and
applying the parameter transformation in
Schoutnes (2003, p. 57), the mean corrected

measure ¢, 1

1 <(M—1)(G+1)> 12

Cpew = '+ ;ln G

whereby

-1
1 1 1
M = 1/—92K2+—02K——9K and
4 2 2
f 1 1\
G= —0°k2+ — 02k + — Ok
4 2 2

Last but not least, in order to solve Equation
(11) the first passage time must be evaluated.
Owing to the overshoot problem of the general
Lévy Processes, there exist only rare cases where
analytical solutions are feasible (see Kou and
Wang, 2003). Because of the special structure of
the different parameters for overnight and
intraday returns, we faced the problem that we
could not apply any of these rare cases. Hence,
we chose a simulation framework to evaluate the

Equation (11).

DATA

The next step is to obtain data to fit the model to.
We adjusted our parameters to the stock prices of
the 35 firms, which have been listed on the
Deutscher Aktienindex (DAX), the most
important German stock index, since 2005. As
we intend to simulate stock prices at a tick level,
we require share price data of the same level. The
stock exchange in Stuttgart provided us with the
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necessary time series of quotes for each tick in the
stock market. In order to fit the intraday aspect of
our model, we collected quotes ranging from

1 January 2010 to 31 October 2010. Two
hundred trading days may seem to be a very short
period of time, but since we use tick data we have
an average of 8265 data points per firm. Deutsche
Bank AG shows the highest activity with 28 172
data points. Metro AG, the firm with the least
activity in this period, still provides 875 data
points. Therefore, we believe these 200 trading
days to be sufficient for the intraday fit of our
model. This time period provides us with only
200 overnight returns, which do not suffice for
an adequate fit of the model’s overnight aspect.
As we assume the overnight returns to be
independent of the intraday returns, we can
extend the time period to gain additional data
points, by using overnight returns ranging from
1 January 2003 to 31 October 2010. This period
amounts to more than 2000 returns, which
should enable an adequate fit. The overnight
returns corresponding to dividend payment dates
were removed from this series. As a result there is
one less data point for most firms. Intraday
returns are not directly affected by the dividend
payments; therefore none had to be removed.
To check the robustness of our results, we applied
our model first to quotes ranging from 1 April
2009 to 14 May 2009 (intraday) as well as

1 January 2008 to 14 May 2009 (overnight). These
periods were chosen due to the high volatility
during the financial crisis. Second, we analyzed
how the model results change, if we look at mid-
or small-cap stocks. To this end, we used a time
series of the 20 most important (index weights)
MDAX and SDAX stocks, which spans from

1 September 2010 to 31 October 2010 (intraday)
as well as 1 July 2009 to 31 December 2011
(overnight).
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FITTING THE PARAMETERS

After obtaining the data, the next step is to decide
on a method to fit the model to the data.
Following Cont and Tankov (2004), there are
two main approaches: the method of moments
(MoM) and the maximum likelihood estimation.
Recently, Finlay and Seneta (2008) have shown
that the minimum y* procedure produces an
acceptable approximation of the marginal
distribution in connection with a low calculation
time. The y* procedure corresponds to the
goodness-of-fit test of the same name and tries to
minimize the squared difference between
observed absolute frequency and the number of
observations derived from the theoretical
probability. Mathematically speaking, we had to
numerically minimize the y* value with respect
to the distribution parameters, whereby the y*

value can be expressed by the following sum:

m O”_E” 2
)(2(5078-7’(0700) = ZQ (13)

n=1 E,
Here, O,, is the total number of observations in
the data set divided by the number of sample
bands m, and E,, is the expected number of
observations falling within the n-th sample
quantile band. According to Finlay and Seneta
(2008), we split the data set into 100 equal-sized
sample bands. Owing to the different time series,
we fitted the overnight parameters (con, Gon,
Kon» 0on) and the intraday parameters (¢p, O1p,
K1p, o1p) separately (for example, the dot at ¢
stands for either ON or ID) (Table 1).

The minimum y* procedure requires a starting
value for the parameters. Therefore, following
Seneta (2004), we use an MoM approach. The
overnight and intraday parameters are fitted to
the first four moments of the Variance Gamma
Distribution (VGD) (Seneta, 2004). Then we use
these estimated parameters as starting values for



Table 1: Goodness-of-fit test statistics (base case)

Firm Reuters code )(2 statistics
Intraday Overnight

Addidas ADS 6.21 2.68
Allianz ALV 7.06 5.03
BASF BAS 6.69 3.69
Bayer BAY 4.87 2.30
Beiersdorf BEI 2.30 1.59
BMW BMW 5.16 3.06
CBK CBK 12.01 2.15
Continental CON 9.51 1.97
Daimler DAI 10.46 4.64
Deutsche Boerse DB1 177.84*** 2.54
Deutsche Bank DBK 7.62 5.27
Deutsche Postbank DPB 8.27 1.70
Deutsche Post DPW 12.49 2.72
Deutsche Telekom DTE 8.08 3.01
EON EOAN 17.11 2.71
Fresenius Medical Care FME 2.34 1.57
Fresenius FRE3 19.96 1.51
Henkel HEN3 5.90 3.16
Hannover Riick HNR1 5.13 2.06
Infineon IEX 9.58 2.31
Lufthansa LHA 5.56 2.43
Linde LIN 3.36 2.23
Lanxess LXS 2.30 2.11
MAN MAN 3.98 2.58
Metro MEO 4.25 1.53
Merck MRK 4.17 2.94
Miinchner Riick MUV2 5.84 2.38
RWE RWE 8.93 2.82
SAP SAP 6.54 1.68
Kali und Salz SDF 4.65 5.70
Siemens SIE 5.49 2.68
Salzgitter SZG 4.06 1.57
Thyssen-Krupp TKA 2.77 1.78
TUI TUI 5.14 2.62
Volkswagen VOW 107.57%** 3.13

Notes: Table 1 presents the goodness-of-fit y statistics for the returns of the 35 different stocks in our data sample

(base case, period January—October 2010). The y* method was applied to intraday (Column 3) and overnight

returns (Column 4) separately. The values for which the null hypothesis (drawn from VGD) are rejected on a

1 per cent significance level are indicated by three stars ***. In Column 2, the Reuters instrument code is also

depicted.
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the minimum y” procedure produces. Table 2
shows the fitted parameters for overnight and
intraday returns separately. Furthermore, Table 1
comprises the y” statistics to test the goodness of
fit.

The null hypothesis that the samples are drawn
from the reference distribution at a level of 1 per
cent can be rejected for two cases. Deutsche
Boerse AG (DB1) goes up to a test statistic of
177.84 regarding overnight returns, and
Volkswagen AG (VOW) goes up to 107.57.
Therefore, we remove Deutsche Boerse as well as
Volkswagen from our further observation, as the
error is too large and the simulation results with
these parameters cannot be trusted. In addition,
we tested whether the overnight and intraday
distribution can be drawn from the same
distribution. A closer look at the first three

parameters proves that it is not possible.

SIMULATION PROCESS

Having fitted the parameters of our model to the
data, we must now decide on a simulation
process. In order to be able to simulate the price
process, a time grid has to be chosen. The payoff
of'a GSO is determined by the first obtainable
stock price after the relevant barrier has been
broken. Therefore, one calendar time unit is
defined as one tick. A problem with this
definition is that the number of ticks per day
varies for each stock and day. In the base model,
we will assume that the number of ticks per day
Ny is constant for a given stock but may be
different for different firms. For each stock S the
average number of ticks per day is calculated and
defined as Ng. To determine the value of the
GSOs, we run 10 000 simulations for each stock
in our sample. During these simulation runs, we

evaluate GSOs for 10 different barrier levels,
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ranging from 50 to 95 per cent in 5 per cent
intervals. We simulate a period of 1 year, which is
assumed to have 250 trading days. If a GSO is not
triggered in the course of 1 year, it is canceled and
has a payoft of 0. The simulation algorithm is
based on Cont and Tankov (2004, p. 184) and is
modified to fit our specific model.

SIMULATION RESULTS

Table 3 shows the simulated GSO payott. Every
second GSO barrier is omitted in order to keep
the table at a reasonable size. Payoffs that exceed
the costs are in bold type and underlined. One
can observe that, at the highest possible barrier,
over 10 per cent of the firms (15 per cent) have a
payoft which is higher than the costs. This figure
decreases steadily, down to O per cent at the
lowest barrier.

Table 4 takes a closer look at the difference
between the payofts and costs of GSOs. The
numbers in the table indicate the percentage of
firms with a payoff to cost ratio at a certain barrier
in the respective interval. We can observe that, at
the highest barrier, half of the firms have a payoft
to cost ratio between 75 and 125 per cent. As the
barrier decreases, fewer and fewer firms remain at
moderate ratios. At the 85 per cent barrier and
below, over 25 out of 33 firms have ratios of
either less than 50 per cent or more than 150 per
cent. This clearly shows that the proposed
approach to pricing GSOs does not reflect their
true value. In addition, we can observe that the
payoff decreases at a rate significantly higher than
the cost and, with a barrier of 85 per cent or
lower, most results show a payoff to cost ratio of
less than 50 per cent.

The payoft of a GSO depends on two factors:
the probability that the stock reaches the barrier
and the amount at which it breaks the barrier.



Table 2: Fitted parameters (base case)

Firm Intraday Overnight

ap X 1077 O X 1077 opX 1077 kppX 1 conX 1077 Oon X 1077 60X 1077 kon X 1

ADS 2.94 —2.00 4.17 2.92 —119.89 46.44 11.08 1.43
ALV =7.89 4.58 1.74 1.96 —242.41 171.37 12.01 1.33
BAS 11.03 9.78 1.71 2.10 =93.16 22.47 8.60 1.24
BAY 6.89 0.62 2.39 2.04 —107.48 30.07 10.16 1.13
BEI 2.78 —39.61 4.09 3.21 —108.67 28.39 9.61 0.97
BMW =3.32 -1.12 3.28 2.52 —182.85 97.10 11.64 1.43
CBK 8.15 =7.80 2.29 2.23 —154.96 —28.36 18.05 12.01
CON 6.46 7.16 6.56 3.14 =70.97 —147.83 15.43 1.83
DAI 7.76 =9.27 1.75 2.21 —104.88 21.00 9.99 0.95
DB1 —18.27 17.02 2.82 2.12 —94.01 66.47 21.36 177.84
DBK 5.31 -3.85 1.77 213 —184.77 102.09 13.35 1.52
DPB 20.94 =20.92 4.61 2.73 —205.53 114.63 13.71 1.71
DPW 38.38 —=32.42 2.44 2.20 —173.80 73.16 12.90 11.24
DTE 5.33 1.71 0.97 2.48 —78.44 20.30 6.90 1.18
EOAN 10.67 —10.29 1.33 1.74 —31.87 29.11 11.34 17.11
FME 11.45 —0.86 2.50 1.94 —104.19 82.16 8.34 1.08
FRE3 —18.07 16.07 2.73 1.95 —73.33 63.12 11.40 19.96
HEN3 4.78 —8.93 2.90 1.93 —89.25 22.16 9.75 1.42
HNR1 13.34 —0.98 3.33 2.94 19.42 -115.17 14.95 1.77
IFX —0.01 0.25 2.24 2.07 —258.96 78.77 16.14 1.25
LHA —16.06 18.84 2.50 1.76 —271.74 220.82 10.29 1.19
LIN 11.71 —14.56 2.29 2.54 —98.70 39.59 9.45 1.26
LXS 5.91 —8.97 5.58 2.69 —221.75 50.12 17.06 1.54
MAN 9.17 10.80 3.23 2.63 —171.22 78.13 13.66 1.42
MEO —3.03 —44.16 441 2.70 —128.42 51.46 12.13 1.43
MRK 16.64 6.01 2.13 2.43 —102.47 107.36 11.91 1.03
MUV2 0.16 1.34 1.69 1.56 —174.62 118.57 11.09 1.33
RWE 541 =5.79 1.52 2.01 —175.14 138.62 8.52 1.11
SAP 13.89 —10.05 2.15 2.13 —144.75 102.62 10.18 1.22
SDF 10.97 15.59 2.71 2.32 —119.61 16.99 14.15 1.50
SIE 13.35 =7.98 2.00 2.07 —113.30 —2.92 11.30 1.22
SZG 9.54 —20.96 3.54 2.03 —253.54 119.25 16.84 1.36
TKA 18.03 —22.54 2.54 1.86 —192.47 93.10 12.60 1.23
TUIl 8.80 23.53 7.41 3.35 —134.53 59.26 14.95 1.82
VOwW 13.90 =37.04 3.64 3.20 =19.18 20.09 22.30 107.57

Notes: The four parameters determining the VGP and governing the intraday returns are depicted in Columns 2-5
(period January—October 2010). The four parameters determining the VGP and governing the overnight returns
are depicted in Columns 6-9. For the purpose of a more convenient reading, c, as well as @, are depicted in 107>

and o is depicted in 107,

265



Table 3: Simulated and discounted GSO payoff (base case)

Firm Barrier

95% 85% 75% 65% 55%
ADS 0.244 0.070 0.010 0.000 0.000
ALV 0.235 0.209 0.180 0.154 0.112
BAS 0.143 0.128 0.113 0.097 0.080
BAY 0.250 0.118 0.033 0.005 0.000
BEI 0.052 0.000 0.000 0.000 0.000
BMW 0.248 0.115 0.032 0.003 0.000
CBK 0.000 0.000 0.000 0.000 0.000
CON 0.279 0.121 0.033 0.004 0.000
DAI 0.005 0.000 0.000 0.000 0.000
DBK 0.027 0.000 0.000 0.000 0.000
DPB 0.078 0.002 0.000 0.000 0.000
DPW 0.000 0.000 0.000 0.000 0.000
DTE 0.153 0.138 0.110 0.057 0.007
EOAN 0.000 0.000 0.000 0.000 0.000
FME 0.196 0.051 0.006 0.000 0.000
FRE3 0.098 0.084 0.069 0.017 0.000
HEN3 0.077 0.004 0.000 0.000 0.000
HNR1 0.135 0.010 0.000 0.000 0.000
IFX 0.328 0.237 0.140 0.060 0.020
LHA 0.233 0.202 0.181 0.148 0.125
LIN 0.015 0.000 0.000 0.000 0.000
LXS 0.316 0.093 0.018 0.002 0.000
MAN 0.345 0.300 0.253 0.203 0.125
MEO 0.079 0.001 0.000 0.000 0.000
MRK 0.475 0.337 0.174 0.056 0.007
MUV2 0.254 0.163 0.069 0.013 0.001
RWE 0.023 0.000 0.000 0.000 0.000
SAP 0.055 0.001 0.000 0.000 0.000
SDF 0.253 0.227 0.200 0.172 0.141
SIE 0.026 0.000 0.000 0.000 0.000
SZG 0.133 0.006 0.000 0.000 0.000
TKA 0.006 0.000 0.000 0.000 0.000
TUN 0.329 0.294 0.256 0.201 0.115

Notes: The table depicts the discounted and expected payofts (in percentage) of the price for the 33 different stocks

at different barriers ranging from 95 to 55 per cent (period January—October 2010). In case the discounted and

expected payoft is higher than the costs (see also Table 5), the value is bold faced and underlined.
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Table 4: GSO payoff buckets (base case)

Payoff/cost Barrier

95% 90% 85% 80% 75% 70% 65% 60% 55% 50%

<50% 52 61 76 79 82 85 85 91 100 100
50-75% 9 21 9 12 12 9 15 9 0 0
75-100% 24 9 6 9 6 6 0 0 0 0
100-125% 12 6 9 0 0 0 0 0 0 0
125-150% 0 3 0 0 0 0 0 0 0 0
>150% 3 0 0 0 0 0 0 0 0 0

Notes: The table describes the relative frequency of different payoff to cost ratios depending on the 10 difterent
barrier levels and the 33 different stocks (period January—October 2010).

Table 5: Averages of all simulations (base case)

Average Barrier

95% 90% 85% 80% 75% 70% 65% 60%  55%  50%

Cost 0285 0270 0255 0240 0225 0210 0.195 0.180 0.165 0.150
Payoff 0.154 0.112  0.088 0071 0.057 0.046 0.036 0029 0022 0.017
Payoff when triggered 0343 0.309 0339 0293 0.222 0246 0.191 0.178 0.170 0.151
Trigger probability ~ 51.1 419 366 325 290 255 217 186 161 137
Overnight probability 47.0 503 483 489 397 463 369 379 356  37.1

Notes: The first three lines indicate the relative values of costs, payoffs and payoffs when triggered (in percentage)
of the price for the 33 different stocks at diftferent barriers ranging from 95 to 50 per cent (period January—October
2010). The fourth line comprises the trigger probability as relative frequency of paths where the GSO was

executed in relation to 10 000. In the last line the overnight probability is depicted, which is defined as the relative
frequency of barrier breaches by overnight jumps in relation to barrier breaches overall. Averages were calculated
in two steps. Step 1: For each firm: average of all simulations. Step 2: Average of each firm’s average. In the case of
‘payoff when triggered’ and ‘overnight probability’, only those firms were considered that reached the respective

barrier in at least one simulation run.

Table 5 shows averages, across all firms, for the average payoff among the DAX firms, only
payoff, the payoft under the condition that the barriers of 90 per cent or higher have an

barrier is reached (payoff when triggered), the acceptable return. This is evidence that the linear
trigger probability and the percentage of pricing structure is not adequate for low barriers.
overnight jumps that break the barrier. In The decline in ‘payoff when triggered’ is due to
addition, the cost of the GSO is shown for the fact that the expected relative jump size is
comparative purposes. When considering the constant, and the expected absolute jump size is
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Figure 1: Payoff histogram for Deutsche Bank and Lanxess at 95 per cent barrier (base case).
Notes: The graph describes the relative frequency of the GSO payoff under the condition that

the barrier was broken (in percentage of the share price), when the order was submitted
(period January—October 2010). The black bars stand for Lanxess (LXS), whereas the gray bars

represent Deutsche Bank (DBK).

not. Hence, the payoff when triggered should be
proportional to the share price, and therefore to
the barrier. The simulation results reflect this
relation with the exception of the two barriers.
Here a not-marginal increase is observable. This
increase can be explained easily when
considering that not all of the firms reach these
barriers. Firms with little movement and small
jumps will not reach the lower barriers, whereas
firms with much movement and the largest
jumps will. Therefore, the weights of the most
active firms increase at low barriers and the
average is biased upwards. As expected, the
probability of reaching a barrier decreases as the
barrier goes down. The percentages of barrier
passages that occur overnight are evidently
constant at about 50 per cent and seem to be
independent of the barrier. As overnight

movements are independent of the intraday
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movements in our model, they are also
independent of the share prices. Hence, the
simulated all-in-all constant percentage is in

accordance with the model.

ANALYSIS

The goal of this section is to analyze what
determines the value of a GSO, and by using this
information to analyze how to price GSOs
adequately on different stocks. Two important
questions arise: Is the value driven by overnight
movement or by intraday movement? Which
parameter of the VGP is the major determinant
of the payoff?

Figure 1 compares two typical ‘payoff when
triggered’ histograms with a barrier of 95 per
cent. Lanxess is a company with a very high
simulated payoft, Deutsche Bank has a very low



simulated payoff. It is obvious that the
distribution of payoffs is very difterent. Lanxess’s
payoff has much more weight regarding the tail
than that of Deutsche Bank. Deutsche Bank
shows only a few simulation runs with a payoff
of more than 2 per cent. Lanxess has several runs
of more than 2 per cent up to payoffs of nearly
4 per cent. The variance in these payofts is 0.46
for Lanxess and 0.18 for Deutsche Bank. These
results are typical for firms with high and low
payofts, respectively, and they show that the
value of a GSO is strongly driven by the
distribution of this conditional payoff. This
indicates that payoff, when triggered, might be
the relevant factor.

Table 6 is an excerpt from a correlation matrix
of the 95 per cent barrier that aims to answer the
previous questions. It uses the simulation inputs
and results of all 33 firms. The hypothesis, that
they are O at the 99 per cent confidence level, can
be rejected for all correlations with an absolute
value above 44.21 per cent. This was determined
by using a t-test, which, according to
Zimmermann (1986), performs well even for
small, non-normally distributed samples. When
looking at the GSO payoff, we see that it has a
small correlation with the ‘payoff when triggered’
(4.68 per cent), but an extremely high correlation
of 83.34 per cent with the trigger probability.
This clearly shows that, when calculating the
value as the product of trigger probability and
‘payoft when triggered’, the first factor in our
sample is of much greater importance. Columns
4-9 of the first line of Table 6 show that intraday
moments and overnight moments are only partly
correlated with the GSO payoftf. This is not
astonishing due to the measure change that the
expected value seems not to be influential.

A closer look at intraday and overnight variances
and payoft reveals that larger variances lead to

Table 6: Correlations (base case)

Moments of the log returns

Variance of the payoff

Payoff when

Trigger

when triggered

triggered

probability

Owernight overall

Intraday

Skewness Kurtosis

Variance

Expected

Variance Skewness Kurtosis

Expected

value

value

—=3.95%  —33.45%%**

=10.11% 32.44%**

5.58%
18.16%

47.49%xxk

33.57%**

14.36%

27.18%
—49.71%%* 29.13%%*

12.69%
—28.01%

—27.55%

4.68%
—38.78%**

83.33%***

Simulated payoft

—8.56%

18.38%
—38.64%** —47.89%***

—37.32%%*% —32.42%%*

6.71%
18.69%

9.07%
—4.86% —27.57% 31.75%*

61.58%%**
—49.90%*** —21.40% —16.09%

—33.73%%**

14.14%

Trigger probability

92.00%%**

Payoff when triggered

13.87%

Variance of the payoff

when triggered

Notes: The correlogram depicts the correlation in percentage between the simulated payoff, the trigger probability, the payoff when triggered (see also Table 5), as well as the

variance of the payoff when triggered and the moments of the four intraday and four overnight log returns, as well as (the correlation) with themselves (period January—October

2010). Here * represents a significance level of 10 per cent, ** a significance level of 5 per cent and *** a significance level of 1 per cent.
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larger payoffs. Hence, we can conclude that
variance is the most important parameter in
comparison with the other moments.

In addition, the intraday skewness as well as
the overnight kurtosis plays an important role.
Positively skewed and therefore right skewed
returns lead to a more pronounced right tail but
also to a more rounded peak at the left of the
mean and therefore higher intermediate values
on the left. The latter seems to be responsible for
the observed positive relationship. If we look at
the trigger probability, there is only one highly
significant factor. A huge intraday skewness is
responsible for a high trigger probability. This is
not astonishing because a high probability is in
line with higher intermediate values on the left of
the mean.

The overnight kurtosis is negatively related
to the expected payoft, whereby a lower
kurtosis leads to a higher payoff when triggered.
Before the simulation, one might have expected
the kurtosis to play the most significant role
instead of the variance. The importance of the
variance is due to the VGD used for the stock
log returns. Cont and Tankov (2004) show that
parameter K, basically defines the kurtosis and
parameter o, defines the variance. In the VGD,
the rate of decay in case of the negative tail is

governed by:

6'.+\/93+2f<’—E
Io=— V> & (14)

_ =
Therefore, an increase in both «, or ¢, leads to a
smaller A_, which means a slower decay in the
tail. But an increase in &, also means a less
rounded peak. If combined, this means that a
decrease in k,, which represents an decrease of
the kurtosis, will decrease probabilities near the
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peak value and in the tail, but it will increase
intermediate values (see also Madan and Seneta,
1990). The latter leads to the higher payoffs
when triggered. By contrast, an increase in o,,
which represents an increase of the variance, will
increase probabilities in the tail and it will
increase symmetry, which implies the
dominating influence.

As mentioned earlier, the pricing method that
uses the linear formula (9) does not reflect the
payoft structure of GSOs adequately. As the
empirical study shows, the payoft decreases more
rapidly with decreasing barriers. The reason for
this can be found in the fact that, on the one
hand, costs are proportional to the barrier (see
also Table 5). On the other hand, the expected
value is the product of the ‘payoff when
triggered’ — which is, as we have seen,
proportional to the barrier — and the trigger
probability, which exponentially decays due to
the distribution function. Consequently, in
contrast to the costs, the expected value decreases
exponentially. Therefore, overpricing is
especially high at low barriers. Furthermore, the
payoft is greatly dependent on the underlying
stocks’ intraday volatility.

The fact that an exponential pricing approach
better represents the payoft, as well as the fact
that the most important driver for the payoff is
the intraday volatility, could be included in a
better approach to finding an adequate GSO

premium.

ROBUSTNESS CHECKS I:
METHODOLOGY

First, we want to relax some assumptions. To this
end, we use a different change in measurement to
price the GSO. In addition, we add a stochastic
clock, which implies that the number of ticks



Table 7: Averages of all simulations (Esscher transform)

Average Barrier

95%  90%  85%  80% 75% 70%  65% 60%  55%  50%
Cost 0.285 0.270 0.255 0.240 0.225 0.210 0.195 0.180 0.165 0.150
Payoff 0.149 0.115 0.092 0.072 0.054 0.039 0.027 0.019 0.013  0.009
Payoft when triggered  0.369  0.344 0.276 0.278 0.251 0.239 0.236 0.166 0.163  0.128
Trigger probability 45.2 38.3 33.7 29.4 25.4 21.7 18.5 15.8 11.8 9.0
Overnight probability  60.6 58.6 49.2 50.2 48.9 46.1 49.0 39.4 44.9 40.4

Notes: The first three lines indicate the relative values of costs, payoffs and payoffs when triggered (in percentage)

of the price for the 33 different stocks at different barriers ranging from 95 to 50 per cent, whereby the Esscher

transform is used to generate the equivalent martingale measure (period January—October 2010). The fourth line

comprises the trigger probability as relative frequency of paths where the GSO was executed in relation to 10 000.

Overnight probability is depicted in the last line, defined as

the relative frequency of barrier breaches by overnight

jumps in relation to barrier breaches overall. Averages were calculated in two steps. Step 1: For each firm: average

of all simulations. Step 2: average of each firm’s average. In the case of ‘payoff when triggered’ and ‘overnight

probability’, only those firms were considered which reached the respective barrier in at least one simulation run

(see also Table 5). The Esscher transform is according to Hubalek and Sgarra (2006) and transformed according to

Madan and Seneta (1990).
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with

per day is an independent lognormally distributed
random variable with a mean and variance,
which correspond to the means and variances of
the number of ticks per day in the sample. The
concept of a stochastic clock is introduced by
means of simulating a random number at the
beginning of the day which determines the ticks
per day. Furthermore, we applied different Lévy
processes to stress the choice of the VGP. Lastly,

we tried to estimate the influence of price
cascades on the value of the GSO.

With regard to the martingale approach, there
are several possibilities to change the measure. To
test the robustness of our choice, we use the
Esscher transformation according to Schoutens
(2003, p. 77) in connection with Hubalek and
Sgarra (2006) as alternative. According to Table 7,
the values are in general lower than in the base
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case. The payoft hardly exceeds the costs. This
can rarely be observed, especially at low barriers.
Thereby, the ranking of GSO values is similar in
both the Esscher and the base case. The major
driving force is again the intraday volatility as well
as the overnight volatility followed by intraday
skewness and overnight kurtosis. If we look at the
results with a stochastic clock, there is nearly no
change in comparison with the base case (not
reported). The reason for this can be found in the
relatively stable trade frequency from day-to-day
and the fact that the expected value only has a
slightly negative correlation of —0.1 with the
ticks per day (not reported).

To check the robustness with respect to the
process, we fitted two additional processes, which
are often discussed in the literature especially
with regard to the German market. In addition,
these processes should be conveniently simulated
due to the size of the study. We therefore choose
the jump-diffusion as well as the hyperbolic
process (see Schoutens, 2003, p. 80, for the
measure transformation). For both processes the
four parameter version seems to be in the line the
VG process. The results are similar using the
jump-diffusion as well as the hyperbolic model
(not reported). Even after changing the
underlying process the main findings remain the
same. The overall results do not change
dramatically, although values at high barriers
increase and at low barriers decrease.
Furthermore, there is still an exponential decay in
the values and they strictly depend on the
corresponding stocks (not reported).

So far we have estimated the prices and
therefore the payoff of the GSO by simulating
the stock prices. Thereby the random numbers
were drawn from a distribution, which was fitted
to the historic traded quotes. In doing so, we
could not include resulting price cascades.
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For example, imagine that the price drops sharply
and many investors place market orders. Then
the execution price of a corresponding SO may
not be the next quote due to the existence of
other competing market orders. In this case, the
execution price of the corresponding SO is lower
than the price we obtained from the historical
data and the payoft of the GSO is higher.
Because it 1s difficult to measure the cascade
effect, we tried to proxy it by taking the second
negative return after the price process crossed the
barrier.! For the latter, we used the same
procedure as in the base case. However, instead
of taking the stock price after crossing the barrier
we used the second stock price, if it was lower
than the first one. The results of this procedure
lead to slightly higher values for the GSO (not
reported). As can be seen, the trigger probability
as well as the overnight probability are almost the
same as in the base case. However, the payoff
when triggered rises and the expected payoff
logically increases. All in all, the eftect is relatively
small and the overall observation remain the

same.

ROBUSTNESS CHECKS II: SMALL
AND MEDIUM CAPS AND CRISES

In the previous sections we have shown how
GSOs on DAX stocks perform during normal,
volatile periods. Here two questions arise. First,
does the result change if we look at medium- and
small-cap stocks? Due to the lower trading
activity, medium- and small-cap stocks show in
general higher volatility on tick data, and
volatility was the most influential parameter
according to the previous sections.

Second, the question arises as to how GSO
perform in periods of relatively high volatility,
and how large the change in the parameters must



Table 8: Averages of all simulations (mid- and small-cap stocks)

Barrier

95%  90%  85%  80%  T75%  70%  65%  60% @ 55% @ 50%

Average mid-cap
Cost 0.285 0.270 0.255 0.240 0.225 0.210 0.195 0.180 0.165 0.150
Payoft 0561 0.441 0366 0312 0.269 0231 0.199 0.167 0.138 0.112
Payoft when triggered  0.782 0.828 0.790 0.751 0.689 0.613 0.524 0427 0.331 0.328
Trigger probability 68.4 585 499 440 394 357 324 293 262 230
Overnight probability 83.4 884  88.6 89.1 904 792 80.6 626 50.7 53.1

Average small-cap
Payoft 0537 0.409 0.320 0247 0.194 0.153 0.118 0.090 0.067 0.049
Payoft when triggered  0.774 0.717 0.686 0.656 0.600 0.511 0.422 0.321 0.308 0.286
Trigger probability 587 466 374 302 249 209 176 148 123  10.0
Overnight probability 79.3 747 749 743 751 652 621 462 461 438

Notes: The first three lines of sub-Table 1 (upper part) indicate the relative values of costs, payoffs and payofts
when triggered (in percentage) of the price for the 19 different mid-cap stocks (max y” test statistic 4.4) at different
barriers ranging from 95 to 50 per cent (period September—October 2010). The first two lines of sub-Table 2
(lower part) indicate the relative values, payofts and payoffs when triggered (in percentage) of the price for the 19
different small-cap stocks (max y” test statistic 8.1). The fourth line of sub-Table 1 and the third line of sub-Table
2 comprise the trigger probability as relative frequency of paths where the GSO was executed in relation to 10
000. In the last line of both sub-tables the overnight probability is depicted, which is defined as the relative
frequency of barrier breaches by overnight jumps in relation to barrier breaches overall. Averages were calculated
in two steps. Step 1: For each firm: average of all simulations. Step 2: average of each firm’s average. In the case of
‘payoff when triggered’ and ‘overnight probability’, only those firms were considered that reached the respective
barrier in at least one simulation run (see also Table 5, Ticker symbols of mid-cap stocks inspected: CLS1, EAD,
FPE3, FRA, G1A, GBF, HOT, KCO, MTX, NDA, PSM, PUM, RHK (excluded), RHM, SAZ, SGL, SY1,
SZU, WCH, WIN; Ticker symbols of small-cap stocks inspected: 2HR, AOX (excluded), COM, DBA, DEX,
DEZ, DWNI, EVD, GFK, GLJ, GWI1, HBH3, INH, JUN3, KU2, KWS, MDN, MLP, MVV1, WAC).

be so GSOs are attractive to buyers. To answer With regard to the medium- and small-cap
this question, we evaluate two additional stocks, we applied the model to 20 MDAX and
simulations. For the first, we obtained the 20 SDAX stocks (which have the highest weights
parameters for a second sample period, when the in the index). Again we had to exclude one
financial crisis was still active and volatility was MDAX as well as one SDAX stock due to high
very high. For the second, we looked at how X test statistics, leaving 38 stocks. As we expected,
high the most influential parameters must be so the value of the GSO was higher for both types
that the GSO’s value is equal to its cost. of stocks than for DAX stocks (see Table 8).
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Table 9: Averages of all simulations (financial crises)

Average Barrier
95%  90%  85% 80% 75% 70% 65% 60%  55%  50%
Cost 0285 0.270 0.255 0.240 0.225 0.210 0.195 0.180 0.165 0.150
Payoft 0.462 0399 0353 0.313 0.278 0247 0216 0.190 0.166 0.143
Payoff when triggered  0.682 0.690 0.666 0.562 0.492 0395 0.348 0.306 0.271 0.254

Trigger probability 77.4 72.8 69.8 67.2 64.7 62.4 60.2 58.2 56.2 54.1
Overnight probability 47.4 48.4 46.8 47.8 41.4 37.6 37.1 34.0 33.4 35.8

Notes: The first three lines indicate the relative values of costs, payoffs and payoffs when triggered (in percentage)
of the price for the 25 different stocks (max y* test statistic 12.7) at different barriers ranging from 95 to

50 per cent, when the data of the financial crisis 1s used (period April-May 2009). The fourth line comprises the
trigger probability as relative frequency of paths where the GSO was executed in relation to 10 000. In the last line
the overnight probability is depicted, which is defined as the relative frequency of barrier breaches by overnight
jumps in relation to barrier breaches at all. Averages were calculated in two steps. Step 1: For each firm: average of
all simulations. Step 2: average of each firm’s average. In the case of ‘payoft when triggered’ and ‘overnight

probability’, only those firms were considered that reached the respective barrier in at least one simulation run

(see also Table 5).

This held true for every barrier applied, and was
driven by a higher trigger probability and a more
pronounced payoff when triggered. In particular,
the more than doubled payoft when triggered is
responsible for the higher value, which might be
the result of higher price changes in case of lower
trading activity (MDAX at 21.1 and SDAX at 3.4
trades per day). In addition, the overnight
changes play a more important role, even if the
overnight price changes account only for 5 per
cent (mid-cap) and 22 per cent (small-cap, for
comparison DAX <2 per cent), respectively, of all
price changes. The latter is also the result of lower
trading activity. Furthermore, there is nearly no
difference between medium and small caps. All in
all, prices for high and especially middle barriers
seem to be more adequate in this case, but the
linear pricing method still does not reflect the

payoff structure of GSOs.
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Regarding the second question, we use the
same model, but fit it to data from early 2009
while using the same algorithms. To be precise,
we use intraday data on 25 stocks out of 30 stocks
after performing the y” test. The average payoffis
now much higher than the cost at high barriers
(see Table 9). This implies that, in volatile
periods, the guarantee of the GSO may be
necessary. Even at the lowest barrier, three firms
(12 per cent) have a positive GSO value, and at
the highest barrier about half of the firms have
GSO payofts of more than half the cost. All in all,
this confirms our findings that the proportional
costs are inadequate. The intraday as well as the
overnight volatility is again the most influential
parameter. Altogether, even in the case of high
volatility regimes, the intraday as well as the
overnight volatility are adequate to justify the

costs. This result is, for example, in line with



Table 10: Implied parameters

Firm Intraday Overnight
ox 107’ Annualized ox 1077 Annualized
Barrier Historical 95% 75% 50% 50% Historical 95% 75% 50% 50%
estimate estimate

ADS 4.17 8.63 15.32 21.63 112 11.08 12.33 23.49 39.73 63
ALV 1.74 6.79 7.07 7.84 104 12.01 13.60 13.52 17.12 27
BAS 1.71 7.71 7.71 7.71 111 8.60 13.82 13.74 13.91 22
BAY 2.39 6.79 9.27 12.37 116 10.16 11.08 19.02 32.18 51
BEI 4.09 17.50 27.87 36.38 141 9.61 14.69 27.00 39.80 63
BMW 3.28 7.80 11.06 14.92 116 11.64 12.72 22.08 37.70 60
CBK 2.29 9.30 11.33 12.95 206 18.05 104.37 118.88 131.42 208
CON 6.56 7.04 14.48 20.20 120 15.43 15.48 28.40 46.32 73
DAI 1.75 9.22 11.51 13.17 230 9.99 24.49 44.27 60.80 96
DBK 1.77 7.86 8.91 10.29 193 13.35 26.64 45.34 62.26 98
DPB 4.61 11.80 18.05 23.55 130 13.71 20.87 37.14 54.66 86
DPW 2.44 12.83 18.00 21.71 175 12.90 98.98 113.38 127.49 202
DTE 0.97 8.59 8.71 9.16 161 6.90 9.94 10.94 22.63 36
EOAN 1.33 8.02 10.20 12.02 191 11.34 111.02 122.00 133.76 211
FME 2.5 7.57 11.79 16.62 102 8.34 10.44 19.53 32.78 52
FRE3 2.73 7.60 8.88 14.82 75 11.40 103.97 99.65 99.65 158
HEN3 2.9 8.96 13.43 18.30 111 9.75 16.49 29.58 45.18 71
HNR1 3.33 10.46 17.03 23.02 126 14.95 19.19 34.72 52.66 83
IEX 2.24 6.19 7.20 8.61 143 16.14 14.83 20.15 32.60 52
LHA 2.5 6.13 6.29 7.04 59 10.29 12.09 12.17 12.87 20
LIN 2.29 11.66 16.53 20.85 138 9.45 18.39 32.71 47.83 76
LXS 5.58 3.70 14.88 20.94 119 17.06 16.19 29.61 46.05 73
MAN 3.23 6.30 5.30 9.90 79 13.66 12.23 12.23 19.14 30
MEO 441 15.55 27.50 38.37 127 12.13 17.71 32.64 49.37 78
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Table 10: (Continued)

Firm Intraday Overnight
ox107° Annualized ox 1077 Annualized
Barrier Historical 95% 75% 50% 50% Historical 95% 75% 50% 50%
estimate estimate

MRK 2.13 8.63 14.49 96 11.91 8.06 13.59 26.28 42
MUV2 1.69 5.87 7.64 10.51 95 11.09 11.83 18.65 33.23 53
RWE 1.52 8.22 10.62 13.15 144 8.52 16.43 28.98 42.29 67
SAP 2.15 9.03 13.08 17.00 128 10.18 16.27 29.56 43.33 69
SDF 2.71 6.95 7.05 7.32 76 14.15 15.20 15.37 15.54 25
SIE 2 8.59 11.24 13.87 160 11.30 20.91 36.76 51.66 82
SZzG 3.54 8.78 14.44 18.68 137 16.84 21.96 38.77 54.68 86
TKA 2.54 9.81 13.96 16.86 181 12.60 27.91 49.98 66.71 105
TUI1 7.41 14.52 74 14.95 12.69 13.03 24.00 38
Average 2.92 8.75 12.34 16.02 130 12.11 26.75 36.57 48.96 77

Notes: Historical estimates are taken from Table 1. For the calculation of the implied parameters at the barriers of 95, 75 and 50 per cent, a bisection method
was applied with one bound at the historical estimation and one bound at 0.2 or 107, The procedure was applied until the payoff differentiates at a

maximum of 3 per cent of the cost by means of a martingale approach (mean correcting measure). The latter was chosen due to the numerical exactness of
the Monte Carlo method. In case of an antitone payoff function in ¢ the procedure was repeated with a new bound to obtain the nearest intersection value.
The intraday value at the 95 per cent barrier for MRK as well as the two intraday values for TUI1 were excluded due to bad convergence. For comparative
purposes, the parameters at the 50 per cent barrier were annualized by using 250 days for the overnight parameter and the average yearly trading activity for

the intraday parameters.




Walker (2009), who details the application of
GSO in financial crises.

In addition, we look at those implied
parameters, which can balance the value
of the GSO with costs in the base case. As the
payoft is not always an isotonic function in o,
o must be increased in order to find appropriate
values. In case of non-uniqueness we use the
parameter which is closer to the actual one.
This is in line with the concept of parameter
stability.

At first sight, there seem to be huge
differences between the historical parameters
and the implied parameters (see Table 10).
Especially at low barriers, these differences are
enormous. In that case ¢, which can be
interpreted as implied volatility, is by far higher
than historically estimated. As to the overnight
parameter, the difference between estimated
and implied parameters at a 50 per cent barrier
was less than 70 per cent only in the case of
Lufthansa (LHA). To clarify, this ¢ is
annualized as well. According to Table 7, the
overnight as well as the intraday volatilities
very often exceed 100 per cent per year. This is
more the case for intraday than for overnight
parameters, which is the result of neglecting
the complete intraday movement. All in all, the
requested parameters differ greatly from
historical parameters in normal times, and the
absolute difference is, with the exception
Salzgitter (SZG), always higher if the barrier is
lower.

Altogether, we can conclude that in quiet
periods, a Stop Order is sufficient to protect
shares against sudden losses, and the guarantee of
a GSO is not necessary. In other words, the
current pricing model renders GSOs
uninteresting to investors, as it does not factor in

volatilities.

CONCLUSION

We have analyzed the effects of GSOs on shares
by means of our modified VGP. We have shown
that the pricing of GSOs poorly reflects their
expected payoffs. The pricing performs best in
turbulent stock markets with GSO barriers close
to the share price. Furthermore, the payoff
exceeds costs when mid- and small-cap stocks
with high GSO barriers are inspected. Barriers
that are farther from the share price cause a drop
in the payoff which is larger than the drop in the
price of GSOs. A better illustration of this
decrease would probably make GSOs more
attractive to investors, what can only be in the
interest of the issuing stock exchange. Further,
we have shown that the variance of the underlying
shares’ log-returns is the main factor in forecasting
the payoff of a GSO and determining an adequate
premium. The pricing, therefore, needs to be
linked to volatility in order to ensure that GSOs, as
a product, remain interesting to investors. In
addition, in contrast to the actual pricing model,
which implies a proportional decline with a lower
barrier, the pricing should imply an exponential
decay with a decreasing barrier.

Future research may develop a pricing
approach which is more precise than the linear
one, maybe by means of a 6-dependent
exponential behavior, as proposed earlier. In
addition, it may be interesting to see how GSOs
behave in a more flexible model, which considers
dependencies between returns, especially overnight
returns, which are dependent on intraday
movement. Finally, one could take a closer look at
the value of GSOs when they are being sold short.
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NOTE

1 The measurement builds on the effect that SO
is normally placed just above or below round
numbers. Hence, trends after crossing round
numbers should be relatively rapid and

occasionally cause price cascades (see Osler, 2005).
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