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Introduction

ABSTRACT

In recent years, commodity markets show a large amount of volatility and substantial price jumps,
indicating an increasing economic scarcity in many cases. As this scarcity makes commodity procurement a
critical issue for national economies, industry sectors and manufacturing companies, a number of criticality
indices have been presented and utilized in science as well as in practice. These indices are mostly based on
an aggregation of different key figures, both qualitative and quantitative. However, the weighting of the
different factors is in most cases arbitrary or based on rough estimates.

While this may be inevitable in some areas, we believe that an empirically based aggregation is
desirable and to some degree attainable. While the broad concept of criticality is certainly hard to
operationalize from a quantitative point of view, the economic scarcity is not only one important factor of
criticality, but can be measured to some extent by the material's market price.

Therefore, in this paper we show that each single raw material comes with a fundamentally different
set of relevant factors for its economic scarcity. We determine those by performing an extended regression
analysis on the market price (dependent variable) of 42 (out of about 60 industrially relevant) chemical
elements, based on a broad range of empirical datasets, covering 11 driving factors (independent variables)
and a 26 year time span. Our analysis determines specific weights for the factors of scarcity of each raw
material and takes into account the material's individual characteristics.

We expect these results to be valuable for refining the aggregation of criticality assessments, as scarcity
is at least one aspect of criticality and many influence factors we analyzed are currently utilized in
criticality studies. However, our results are contrary to a number of well-known studies on criticality of raw
materials, which assign generic weights to the different driving factors of different commodities and
therefrom derive a criticality index. Instead, our results suggest a specific model for every single material
when assessing availability risks in criticality evaluation methods. Therefore we hope that our results
provide an additional empirical perspective regarding the weighting of factors for criticality based on the
economic scarcity of minerals and metals.

companies and entire economies essentially depending on raw
materials (Angerer et al., 2009; U.S. Department of Defense, 2009).

Commodity markets have been volatile for a long time; in the
recent past, however, the magnitude of price fluctuations has
increased dramatically and in many cases caused commodity prices
to double or even triple within only a few years (e.g. copper or tin,
LME, 2012). These price jumps indicate a strongly rising economic
scarcity of these metals and put enormous financial stress on many
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To cope with these risks, companies and economies try to under-
stand current and forecast future raw materials prices and availability
in order to facilitate sensible long term planning. However, the level of
heterogeneity and complexity of the underlying data requires exten-
sive familiarization, and decision makers are often overburdened with
this task that usually does not coincide with their regular responsi-
bilities. Therefore, indicators providing an aggregated estimate of the
overall scarcity, or more generally of the “criticality” of raw materials
have been developed to support the decision making process (Achzet
et al,, 2010) and to simplify the development of long term commodity
utilization strategies.



Currently there is a number of widely used approaches for such
criticality or scarcity indicators. For instance, Graedel et al. (2012)
present a comprehensive framework to assess raw material criticality
considering three dimensions: supply risk, environmental impli-
cations, and vulnerability to supply restriction. Bauer et al. (2010)
from the U.S. Department of Energy use fixed weighting factors
for five different criticality aspects. Rosenau-Tornow et al. (2009)
present a criticality assessment based on five indicators as well,
but aggregated graphically by using a spider web diagram. And the
European Commission (2010) promotes a method that basically
aggregates supply risks and economic importance, characterizing
this as a “pragmatic approach”. In addition, there is a large number
of other pragmatic sectoral and company-specific approaches
mostly based on a commodity-independent weighted average of
the utilized indicators. However, these pragmatic approaches
consist of rather arbitrary aggregations based on fixed percentages
or other static aggregates that universally apply to all commodities
and are not validated quantitatively or empirically. Moreover, most
presented methods use different aggregates. In practice, the
reliability of these approaches often remains unclear in particular
when it comes to their selection of relevant factors and to the
aggregation utilized.

Therefore, in this paper we present an empirical analysis based
on a number of input factors that determines what factors account
for which part of commodity prices. Here, we regard the commod-
ity price as preliminary indicator for scarcity (following Tilton,
2003) and thus for the economical aspects of criticality. By doing
so, we want to contribute to an improved understanding of the
interrelation between the commodity price, that after the theory of
efficient markets represent current and future risks, and a number
of common criticality factors like mine production, country con-
centration or economic growth. While this section presents an
introduction and motivation, the following section outlines the
relevant literature and the research question. In the Methodology
section, we describe our methods and our proceeding, while the
results of the different regressions and a number of additional tests
are given in the Empirical results section. These results are
discussed and interpreted in the penultimate section, while the
last section offers an outlook and a short conclusion.

Literature and theory

In the past years, a lot of research has been conducted regarding
the economical importance and scarcity of commodities. With the
emerging concept of raw material criticality, researchers try to
evaluate and assess the correlation between the two topics. It is
therefore still a very young and heterogeneous research area, and a
broadly accepted definition of criticality has yet to be established. In
the context of raw materials, the term first came up in 1939 within
the Material Stock Piling Act, that regulated the securing of militarily
relevant materials for which availability had become uncertain due
to geopolitical developments (National Research Council, 2007).
Nowadays, the exact selection and weighting of factors that make a
raw material critical or scarce are still open research questions. For
instance, raw materials are considered critical if they are highly
significant for national economies and if their current or future
supply is threatened in any way (European Commission, 2010). In the
broadest sense, criticality denotes the extent of current and future
risks associated with a certain metal, but this fuzzy definition is
certainly hard to operationalize. Moreover, it can be observed that
criticality also relates to ecological, social, or political considerations,
which makes it a holistic and complex concept (European
Commission, 2010; Graedel et al., 2012). All in all, a high criticality
index basically at least indicates that the material's current or future
usage requires increased attention.
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The widespread scientific and practical relevance of criticality and
the broad variety of relevant criticality factors is strikingly demon-
strated by a number of well-known and frequently discussed studies,
for instance Graedel et al. (2012), Massachusetts Institute of
Technology (2010), Geological Survey of Finland (2010), Rosenau-
Tornow et al. (2009), Wouters and Bol (2009), Waeger et al. (2010),
Behrendt et al. (2007), and Smith (2005). Table 1 shows a selection of
these and other studies especially focusing on the utilized criticality
factors. Category 1 deals with raw materials on a national economy
perspective, category 2 analyzes materials from a company's per-
spective, category 3 from a functional perspective (e.g. mobility,
energy), and category 4 discusses raw materials considering specific
criteria, such as toxicity or demand trends. Categories 3 and 4 show
that criticality assessment highly depends on sector specific aspects
or different viewpoints on what is considered a criticality driver.
Moreover, the representation shows the heterogeneity and even
arbitrariness when selecting and aggregating indicators. It is common
to examine the criticality of raw materials according to a top—down
method, starting with a rough scan using categories 1 and 2, followed
by a detailed analysis using categories 3 and 4.

When taking into account the criteria frequently discussed in the
current studies as listed in Fig. 1, it becomes obvious that identifying
the criticality of raw materials requires a high amount of interdisci-
plinary efforts. Information from different disciplines, such as geology,
economics, social science and engineering, is indispensable. Thus, the
aggregation of these results is by no means easy to accomplish.

In most studies, it is common to define general weightings for
each variable. For instance, Rosenau-Tornow et al. (2009) analyze
copper supply risks by aggregating the factors supply/demand,
geostrategic risks, market power, supply/demand trends and produc-
tion costs into a spider web diagram. Bauer et al. (2010), on behalf of
the U.S. Department of Energy, also present a selection of the most
important criticality criteria which are aggregated by predefined
weightings. Here, 40% is assigned to basic availability, 20% to
political, regulatory and social factors, 20% to producer diversity,
10% to competing technology demand, and 10% to co-dependence
on other markets. Using this specific form of aggregation, Dyspro-
sium has been rated the element with the highest long term supply
risk for the energy industry.

In the current state of research, the aggregation and especially
the weighting of different information is mostly compiled by expert
opinion. This is a very important aspect when it comes to individual
ratings for national economies or companies, addressing their
specific needs, since the assessment of criticality always depends
on the perspective from which it is conducted. However a quanti-
tative approach on determining potential driving factors could help
to confirm or to revise expert opinions on important indicators and
their influence on different raw material markets.

Thus, while the exact definition of criticality depends on the
respective field of application, in the following we assume that
economic scarcity is at least one dimension of criticality, as every
utilized commodity has to be bought for some price and large price
fluctuations or increases constitute at least some degree of critical
implications for companies as well as economies. While it is clear that
this dimension is not sufficient to capture all aspects of criticality, we
believe that definitions of criticality that do not incorporate economic
scarcity are heavily restricted in their practical applicability.

Methodology

As we have seen the evaluation of raw material criticality is an
extensive heterogeneous research area, which considers ecological,
social, political and economic impacts of the usage of raw materials.
However, when taking a closer look at all these perspectives almost all
criticality studies are using supply risks and economic scarcity for their
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Table 1
Selection of different studies dealing with criticality from different viewpoints.

Cat. | Study

factors)

Main supply risk indicators (impact

Behrent et al. (2011), Critical
raw materials for Germany*

Identifying critical
materials on a
national

1 perspective

Recyclability (10%)

Global main production countries (10%)

Main import countries (10%)

Concentration of global reserves (10%)

Company concentration in global production (25%)
Global Reserves/global production quotient (25%)
Share of global extraction as main or by-product (10%)

Rosenau-Tornow et al.
(2009), Assessing long term
supply risk for raw materials

Identifying critical
materials for
companies

Stock keeping 6,6%

Production costs 20%

Current market balance 6,6%
Minel/refinery capacity utilization 6,6%

Country related risk 10%

Production country concentration 10%
Company concentration 20%

Future market capacity 6,6%

Degree of exploration 6,6%
Investment in Mining 6,6%

Bauer et al. (2010), Critical Identifying critical
Materials Strategy materials for

3 energy
technologies

Global main production countries (20%)

Basic Availability (40%)

Competing Technology Demand (10%)

Share of global extraction as main or by-product (10%)
Political, Regulatory and Social Factors (20%)

Thorenz and Reller (2011),
Discussion of risks of platinum

Further ecological
criteria for criticality

Toxicity of dissipating materials
(no specific impact factors, qualitative weighting)

production volumes. In addition to these well known metal-specific
criteria we use general economic indicators to assess further potential
driving factors for the raw material price development.

4 resources based on a function assessments
orientated criticality assessment
*Original work published in German
Criteria
Geopolitical concentration
Static reserve range ORDER OF Data
Demand/ supply elasticity CHOSEN
Politics CRITERIA

Demand trends

Company concentration

Recycling

Substitutability

Production as a by-product

Economic relevance

Price

Competing technologies

Production costs

Exploration budgets

Mining Investment

Functionality

Stocks of exchanges, companies, etc.
Impact of raw materials on the climate change

Fig. 1. Order of frequency for criteria used as supply risk indicators in current
criticality assessment methods.

assessments. We want to support future criticality methods by
analyzing the relationship between well known supply risk and
scarcity indicators and the raw material price. Based on the hypothesis
that prices represent economic scarcity and thus to some degree
criticality as well, we address current research questions on the
selection, rating and aggregation of supply risk and scarcity indicators
in criticality assessment methods.

Therefore, regarding our methodology, we use a classical linear
regression analysis with the purpose to assess assumed correlations
between potential indicators on the one hand and the resource
shortage on the other hand, for which we use the resource price as
a proxy. For the regression analysis we use six indicators which are
most frequently used in criticality assessment methods to determine
supply risks as geopolitical concentration or secondary and primary

The following analysis is based on 26 years of historical time series
data with yearly frequency from 1984 to 2009. This time frame offers
broad data availability and allows a consistent dataset. A wide range
of industrially used elements (see Table 2) provides a broad empirical
basis to analyze to what extent the eleven considered indicators affect
the resource price. All metal prices are measured in U.S. dollars per
metric ton — most commodities, besides, are traded in U.S. dollars, the
world's leading reference currency - and originate from the U.S.
Geological Survey (USGS).

While commercial sources like MetalBulletin (www.metalbulle
tin.com) or Metal-Pages (www.metal-pages.com) would — in some
cases — offer data on specific qualities of commodities, the respective
time series hardly cover the prices before 2000 and do not offer as a
broad selection of commodities as the USGS prices do. In addition,
the USGS provides a consistent and scientifically revised dataset that
is publicly available and therefore considerably simplifies the repro-
duction of our results.

This selection represents 42 out of roughly 60 industrially relevant
chemical elements (see Fig. 2). Although not covering the full range of
chemical elements, it includes the large part of the economically
important ones, offering a very broad data basis. The analyzed raw
materials range from sulfur, the cheapest one, to rhodium, the most
expensive one, providing a wide variation of prices and consumption
levels.

When selecting potential indicators for resource price develop-
ment, according to Chambers and Bailey (1996) indicators from both
supply and demand have to be examined. Therefore, our analysis
includes major components from both dimensions.

Considering the supply dimension, resource specific indicators
were chosen according to their frequency in current criticality
assessment studies (see Table 1) and based on their data availability.
The respective data originate from the Raw Materials Group database



Table 2
Analyzed raw materials. All resource prices are taken from USGS, 2011.

353

Mineral resources

Ag (silver)
Bi (bismuth)
Fe (iron ore?)

Al (aluminium)
Br (bromine)
Ga (gallium)

As (arsenic)
Cd (cadmium)
Ge (germanium)

Au (gold) B (boron) Be (beryllium)
0 (cobalt) Cr (chromium) Cu (copper)
Hg (mercury) I (iodine) In (indium)

K (potassium) Li (lithium) Mg (magnesium) Mn (manganese) Mo (molybdenum) Na (sodium)
Ni (nickel) P (phosphorus) Pb (lead) Pd (palladium) Pt (platinum) Re (rhenium)
Rh (rhodium) S (sulfur) Sb (antimony) Si (silicon) Sn (tin) Sr (strontium)
Ta (tantalum) Ti (titanium) V (vanadium) W (tungsten) Zn (zinc) Zr (zirconium)
2 We use the iron ore prices, as steel prices strongly depend on the grade and quality.
Periodic table
H He
hydrogen helium
. Industrial usage - observed c N o E Ne

|| Industrial usage — no data available

No industrial use or plentiful supply
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Fig. 2. The periodic table showing the industrial use of chemical elements (Hageliikken and Meskers, 2008). The elements marked in dark blue (dark gray in print) are
addressed in this paper. For the elements marked in light blue (medium gray in print) no information was available. Gray (light gray in print) elements are not used in

industrial applications or are abundant, respectively, and have therefore not been

Table 3
Overview resource specific factors.

addressed.

Producer

concentration |concentration |production

Secondary

2 : Stocks
consumption |production

m HHI_Country  HHI_Comp MineProd AppConsum X2Prod Stocks

Measure [T HHI 0 It M U]

Goograpigs Global Global Global us. us. us.

focus

Data solres Raw Material Raw Material USGS, USGS, USGS, USGS,
Group, 2012  Group, 2012 2012 2012 2012 2012

(RMG) and the U.S. Geological Survey (USGS). Table 3 provides a
detailed overview of the resource specific parameters. We use the
indicator world mine production mainly determining supply. In addi-
tion, U.S. secondary production as proxy for recycling rate of materials,
could increase the supply as well. Moreover, again the U.S. proxy U.S.
stocks, i.e. inventory, could both increase or reduce demand and
supply. Thus, these indicators consequently are supposed to influence
the price of raw materials. Lastly, the Herfindahl-Hirschman indexes
(HHI) are commonly used to describe country concentration and
producer concentration, ranging from 0 (total dispersion) to 1 (all
production in one country or by one company, respectively), with
values close to 1 representing oligopolies or monopolies. Both can
influence the supply and, hence, price structure. Besides the
presumptively more explanatory generic economical demand

parameters, which will be explained next, we use the U.S. consump-
tion as an available proxy for resource specific demand. The factors
static reserves or reserve base are not included referring to Tilton
(2003) and the European Commission (2010), as geological reserve
figures are not a reliable factor for scarcity and thus for demand and
supply ratio at equilibrium. Hence, this potential indicator may lead to
wrong conclusions. By the use of the U.S. proxies and the importance
of the U.S. dollar as major international trading currency, we expect to
identify further correlations between the described factors and the
resource price. All in all, these six material specific indicators — world
mine production, US. consumption, secondary production, stocks, coun-
try concentration, and producer concentration — represent the better
part of relevant information on the supply side of non-renewable
resources.
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Table 4
Overview economic and demographic factors.

Logarithmic |Logarithmic Infiation rate Real interest
world GDP |world population rate

LN_GDP LN_Pop US_Infla Interest

m Billion $ Billion Annual in%  Annual in %

Geogrmptes Global Global u.s. u.s.

focus

Data souies IMF, IMF / NPG, WDI, World FRBNY,
2011 2011 Bank, 2012 2011

In addition, the extent to which economic and demographic
factors influence the development of prices needs to be taken into
account. Here, the GDP (gross domestic product) is certainly one of
the most important factors for economic growth and can - by rising
demand - cause supply shortages and price increases. The world
population could also have great influence, as every human has
certain needs and therefore — based upon its available income —
creates an additional demand for resources (cf. e.g. Meadows et al.,
1974). Another important aspect in the context of price development
is inflation, as for instance Svedberg and Tilton (2006) state that the
question whether copper prices have actually risen or fallen depends
on the specific measure of inflation. They show several systematic
biases in inflation measurement that in turn have influenced our view
of long term price development. Nevertheless, the official inflation
rate is an interesting reference point when analyzing nominal prices.
An alternative, quite widespread approach is to associate the price
development of raw materials with the rate of interest. This idea can
be traced back to Hotelling (1931) and has been supported since then
Krautkraemer (1998). Lastly, we want to analyze if there is a general
trend in prices, i.e. if they are falling or rising over the years. Of course,
such a trend would most likely originate from a number of different
factors, which is why the indicator of time is an interesting aggregate,
but most probably does not represent a direct causality itself. Here,
we use U.S. data as proxy in case of inflation and real interest rate, as
these indicators do not exist on a global scale. As most commodities
are traded in U.S. dollars, these U.S. monetary figures should have a
considerable influence on the commodity prices.

The indicators listed above were obtained from various issues
from the World Bank — World Development Indicators, Interna-
tional Monetary Fund (IMF), Negative Population Growth (NPG),
and Federal Reserve Bank of New York (FRBNY). Table 4 gives an
overview of the examined economic and demographic factors.
Furthermore, we obtained additional global data, e.g. on stocks or
secondary production, of copper, lead and zinc from the Interna-
tional Copper Study Group (ICSG) and the International Lead and
Zinc Study Group (ILZSG) to validate our results. In all following
tables, shortcuts are used as names for indicator classes of our
analysis. Tables 7 and 8 give a brief overview of statistical key
figures of data samples, presenting the mean and the standard
deviation of the respective variable for each resource.

Data processing

With respect to the requirements of the linear regression model,
some data adjustments were necessary. To ensure scale invariance,
which is a characteristic feature of factors not changing by transfor-
mation, and with respect to the linear regression model, the resource
price, the world gross domestic product and the world population
were converted to a logarithmic scale. As, for instance, the GDP is
rising exponentially in most cases, the logarithmic scale makes this
figure compatible with a linear regression model.

To deal with missing values, the established methods mean
substitution and case deletion (list-wise), also known as complete
case analysis, were applied. All in all, 76 out of 504 columns were
deleted and 151 values out of 13608 were substituted by the mean of
the respective column.

Single regression

Since this is, to the best of our knowledge, the first quantitative study
including such a broad selection of metals over a long period of time, a
classical linear regression seems adequate, as this is a well-known and
popular method that often provides a useful first appro-ximation on
potential correlations. To gain some basic insight on the importance of
the single indicators, we first conduct a linear regression of each
indicator on the price individually,

In(price,) = py + p; - indicator; + . 1)

In all our computations, the potential indicators are the indepen-
dent variables indicator;, and we regress those on the logarithmic raw
material price In(price,), the dependent variable. Here, r stands for the
respective raw material. Therefore, we individually use the indepen-
dent variables from Tables 3 and 4. The p; coefficients represent the
marginal effect of indicator; on In(price,) and are determined based on
our data, applying the ordinary least squares (OLS) method.

To provide consistent and reliable results, we tested for each model
the assumptions of the linear regression model, i.e. normality (Jarque—
Bera test, Jarque and Bera, 1980), heteroscedasticity (Breusch-Pagan
test, Breusch and Pagan, 1979), autocorrelation (Durbin-Watson test,
Savin and White, 1977) and, especially for the multiple regressions,
multi-collinearity (Variance Inflation Factor, Marquardt, 1970).

Multiple regression

As a next step, we use a multiple indicator model to improve the
meaningfulness and precision of our model, since a great deal of the
variation in the commodity prices cannot be explained by only a
single leading indicator, but rather by a combination of different
indicators. It determines how well the given set of indicators in
combination explains the logarithmic commodity prices of each metal
and to what extent each individual factor accounts for the price.

With regard to the requirements of the multiple regression
method, first of all the number of independent variables has to be
kept in proportion to the number of observations to avoid over-fitting
and over-learning. Therefore, the multiple model was reduced by the
parameters time, US. inflation and population to reduce multicolli-
nearity and to avoid indicators with too high correlation between
each other. US. inflation has already shown a poor performance in the
single regressions, and the effect of the parameter time, despite its
good prima facie performance, is most likely just a pretext for a
number of other effects directly influencing the price. Finally, GDP
and population show a correlation close to one, so that their
combined usage would create rather misleading results.

The, however, remaining multicollinearity, quantified by the
variance inflation factor, does not bias the results, it just causes larger
standard errors for the independent variables. Thus, by removing the
correlated parameters listed in the previous paragraph, we increase
the overall significance in comparison to the full model. To identify
the relative weights of each indicator, we use the following multi-
variate regression equations for each raw material:

In(price,) = By + p1 - HHI_Country + 3, - HHI_Comp + p3 - MineProd
+p4 - AppCons + B5 - X2Prod + S - Stocks + B - Interest
+pBg - In(GDP) + ¢ )

The model parametrization and its data series are identical to the

ones introduced in the Data and Data processing sections. Again, the
regression assumptions were tested for each of the resulting models.



By considering the parameters in combination, a much higher level of
explanatory power can be achieved now. Under these assumptions
and by the improved explanatory level the analysis allows the deter
mination of weights and importance for each indicator in each mineral
raw material model analyzed. To answer the question which of the
independent variables have what effect on the dependent variable in
this multiple regression analysis, we standardized the coefficients.

The non-standardized regression weights ; are scale-dependent
with respect to the factors. Following Kleinbaum et al. (2007), we
therefore standardize them by multiplying them with the standard
deviation of the respective independent variable and dividing them
by the standard deviation of the dependent variable:

porm — g, . 7L, 3)
Oy

o; is the standard deviation of indicator i, and ¢, denotes the
standard deviation of the logarithmic price. However, these
standardized beta coefficients do not directly show which propor-
tion of the price is caused by what indicator, as they do not add up
to one (or any other predefined value). Therefore, we calculate the
relative share of variation caused by each specific indicator and
normalize this value to R? the explanatory power of the model.
Thus, we can identify which part of the price, that is explainable by
the respective model, can be assigned to what indicator:

1™ 2

in norm,
=i B

weightﬁ;.mm = 4)

Based on these values, we can determine which factors are the
main determinants for the commodity prices and quantify the
respective proportion.

Forecast and time lag

Wihile the statistical correlation of possible quantitative criteria
with the raw material price from the same time frame is certainly
informative, market participants are especially interested in potential
indicators for future commodity prices. For this purpose, we provide a
general analysis by using the Granger causality test (Granger, 1969) in
order to determine whether each indicator is useful for forecasting
the price in one, in two and in three years. Therefore an adapted
regression model is defined by

t
ln(pﬁcer) = Z ajj - ln(pricert—l)

¢
+ X p; - indicator;,_; + e. (5)
1=1

In(price,) and indicator; represent the same variables as intro-
duced in the Data section. Additionally, the variables @;; and f;
represent the adapted coefficients. f;; represents the statistical
correlation between the price in period t (In(price,)) and the
parameters (indicator;) in period t-I. @;; stands for the statistical
correlation between past prices (In(price,,_;)) and the current price
(In(price,)). The variable t represents the respective time in the
examined period and thus [ presents the resulting lag.

To examine if these time shifted indicators for the analyzed periods
le{1, 2,3} generally provide statistically significant information about
future values of In(price,), we test the three null-hypotheses,

(1) Ho : ;1 =0, (6)
(2) Ho : Bi1y =P =0, and 7)
(3) Ho : Bi1 =Pi» =Pi3 =0. 8)

To analyze the causality of lagged indicator values, we look into
the relating f—values. If the respective null-hypotheses (the 5;;'s
being 0 and thus having no effect) is rejected, the specific indicator
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can be supposed to provide some predictive information on the
resource price for the considered case and time period.

By applying this method to the different time periods, we can
also identify possible early indicators.

Out-of-sample test

After all, the correlations identified by the presented methods
could still be the result of overlearning (i.e. the model applies to the
sample it has been calibrated for, but fails out of this sample), and
therefore would not be useful beyond the calibrated sample. To
ensure the robustness of our model, we implemented an out-of-
sample test that performs the multiple regressions with a reduced
dataset (rds), from which the last five years have been removed. In
the next step, we use the resulting g; , values to compute the prices
for all elements of the dataset (cds), including the last five years, for
which the reduced model has not been calibrated.

In(price,q;) = fo,,, + b1, - HHI_Compy;
+p,,, - MinePrody; , + fp5 , - AppCons,;
+Bay, - X2Prodyi , + s, - Stocks;i,
+Ps,,, - Interesty; . + p7,, - Inflation,;
+Ps,, - IN(GDPy; ) + €

The difference between the prices calculated with the original
model (see multiple regression section) and the prices calculated with
the parameters of the reduced dataset is an important indicator for
the validity of the model. However, a difference between the results of
the full and the reduced dataset is unobjectionable, if there is a sound
reason for this difference, e.g. some new influence on the resource
price, that could not be captured by the use of the reduced dataset.

Empirical results

A comprehensive presentation of our results can be found in
Tables 9 and 11. Table 9 shows the explanatory power on the resource
price for each indicator in the single regression models. The multiple
regression models presented in Table 11 enable us to investigate the
relative influence of the considered indicators on the historical price
development. The results of some additional validations can be found
in Table 10, where we present four additional regressions with
modified data sources. In addition, a number of more detailed results
are presented in Tables 6 and 12, in particular the results of the out-of-
sample test (Table 6) and the results of the Granger causality test
(Table 12).

All in all, the results are rather heterogeneous. While some
indicators show significant explanatory power in nearly all cases,
others only offer sporadic significance and little explanatory
power altogether. Therefore, an indicator specific analysis of these
results is required.

In the single regression model, secondary production shows a
significant influence on the price development for 16 out of 18 raw
materials (89%) where data was available, with a 24% average
explanatory power. The highest explanatory power can be found
for lead (67%) and platinum (83%), since for either one (platinum
as in automotive catalysts and lead as in lead acid batteries), the
recycling volume has increased over the past ten to twenty years.
An acceptable short term forecast quality for secondary production
based on the Granger causality test is only given for tantalum. This
indicates that the recycling volume should not be used as an
indicator for short or medium term price or supply risks. Recycling
consists of several time consuming and complex processing steps,
such as collecting the old product, screening and dissembling the
respective parts, refining the materials, and finally converting it
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into a high grade secondary raw material. For this reason, there are
only few specific products for which the recycling volume can, to a
certain extent, react to short term price development. In this
context, the significant relationship for tantalum is not a discre-
pancy: Here the recycling volume refers to “new scrap recycling”,
which means that the tantalum is “reused” during the production
process in the manufacturing industry, and this process can of
course be price sensitive. Overall, recycling seems to be a very
relevant indicator despite its limited ability to forecast prices.

Mine production shows significant results for 32 out of all 42
considered elements (76%). But while mine production in almost
every case has a strong influence on the price, the direction varies
extensively.

A remarkable relationship between production and price devel-
opment in the single and multiple regression models has been
observed, for instance, in the case of molybdenum: The strongly
positive beta-value indicates that a growing molybdenum production
leads to considerably rising prices. A reason for this could be the fact
that molybdenum is mainly produced as a co-product of copper
mining. Thus, it is not possible to just double molybdenum produc-
tion by opening new molybdenum mines. On the other hand, a
copper mine that also produces molybdenum as byproduct has a
rather fixed copper-molybdenum rate and has no economic incen-
tive to produce more molybdenum and thus reduce the price of
copper by additional supplies. Here, Langhammer (2010) could show
that, due to the strong dependency on copper production, a change
in the supply-demand-ratio can have a disproportionately large
impact on the molybdenum price. In fact, while gold for instance is
less expensive if produced in larger amounts, the opposite is the case
for molybdenum. Therefore, it seems likely that molybdenum shows
a rather low price elasticity of supply.

Metals that show hardly any or no correlation with mine
production at all are rather uncommon. For tantalum and tin, both
mainly produced in small scale mining, no significance at all could be
detected, which could be caused by the specific mining conditions.
Small scale mining or artisanal mining is often operated by indivi-
duals and small-scale enterprises, generally working with hand tools
under inadequate working conditions. The livelihood of the people is
the production of those minerals, and since they depend on their
income, production volume is not necessarily correlated with market
price development.

Another interesting raw material specific indicator is the US.
apparent consumption, showing significance for 24 out of the 42
investigated elements (57%) and a 30% average explanatory power in
the single regressions. Here, for iron ore the model shows the biggest
explanatory power with 64%, which is somewhat surprising, as it
identifies the U.S. consumption a core determinant for the iron ore
prices. Nowadays, usually China with its expanding demand is
assigned such a role. The predominant role of the U.S. could however
be a historical relict, as our study extends to 26 years and China did
not have as strong an impact on the markets back then as it has today.

While the next indicator, stocks, shows an average performance
in the single regression, it is the second best indicator in the
multiple regression, only exceeded by the GDP. However, while
explaining in average about 9% of the price in the multiple
regression, the stocks show a considerable variance, as for instance
they account for only 6% of the copper price, while explaining
about 29% of the price chances of cadmium. In addition, stocks
show the second best forecast quality (exceeded only by mine
production), as presumably high stocks have to be depleted at
some point and low stocks have to be replenished.

The concentration of producing countries (HHI_country) is sig-
nificant for 14 out of the 26 elements (54%) for which data was
available. However, it can be observed that in many cases where a
relationship would naturally have been assumed, only small or no
significance could be observed. For instance, the market for tungsten

or chromium is now dominated by a Chinese monopoly, and
characteristic price peaks can already be detected. While the market
concentration has substantially changed within the past decades, the
indicator HHI_country should have captured this structural change
with — for instance — a correlation between increasing concentration
and increasing prices. Thus, either the HHI_country indicator is not
suitable to capture these effects (perhaps due to other reasons for the
price changes) or our data does not suffice to derive the supposed
correlation. This result is confirmed by the multiple regression
models, where this indicator shows a measurable influence only
for eight materials.

The concentration of producing companies (HHI_company) is not
able to capture the presumed relationship between the market
structure and potential price peaks either. In the case of lithium, an
oligopoly of South American mining companies caused characteristic
price peaks. But this relationship could not be validated by the single
or the multiple regression models. Likewise, the Granger causality
test shows forecast qualities only for phosphorous and iron ore.

As for the general economic indicators, the gross domestic product
(In_GDP) and the population development (In_pop) show significant
results for 35 or 30 out of all analyzed 42 elements, respectively.
The average explanatory power in the single regressions is about 40%.
The Granger causality test shows only limited forecast qualities for
these indicators. However, in the multiple regression the GDP explains
about 14% of the price overall and thus is the best indicator in

Table 5
Spread of weights in the multiple regression.

This table shows the minimum and maximum weight of each indicator resulting
from the multiple regression and the mean and standard deviation of weights of
the respective indicator regarding all analyzed metals.

weights giom Min (%) Max (%) Mean Standard
(%) deviation (%)
GDP 0.40 (Rh) 50.20 (Sr) 14.59 13.19
MineProd 0.40 (In) 40.00 (Re) 12.68 9.71
Apparent 0.10 (Re) 37.10 (Fe) 7.38 7.42
consumption
Interest 0.20 (Ag) 21.10 (Bi) 6.36 4.56
Stocks 0.00 (K) 28.70 (Cd) 9.54 6.25
Secondary 0.20 (Mg)  42.10 (Pt) 7.76 9.29
production
HHI_country 0.00 (Fe) 28.70 (Hg) 7.43 6.94
HHI_company 1.10 (Au) 30.60 (Hg) 7.36 7.71

Table 6
Out-of-sample test-results.

Legend: The uneven columns show the respective metal using common chemical
symbols. The even columns show the deviation in percent between the original
model and the model using all but the last five years for calibration. A negative
percentage indicates that the price predicted by the reduced dataset is smaller than
the price predicted by the full dataset. As prices are measured on a logarithmic
scale, this scale applies to the presented values in percent, too.

Ag -5.6% Ge 0.4% Pt 33.6%
Al -2.1% Hg =7.5% Re -2.3%
As 6.7% I -1.7% Rh -13.4%
Au -2.8% In -8.3% S -8.4%
B 1.1% K -9.5% Sb -11.5%
Be 6.6% Li -3.8% Si -2.2%
Bi -6.0% Mg -4.0% Sn -8.5%
Br -0.3% Mn -12.5% Sr 1.4%
Cd -10.8% Mo 3.1% Ta 5.3%
Co -14.4% Na -13.6% Ti -4.1%
Cr 0.9% Ni -6.5% \ -10.1%
Cu -4.7% P -12.9% w -6.2%
Fe -13.0% Pb -4.8% Zn -7.3%
Ga -0.2% Pd 19.4% Zr -2.0%




comparison. Therefore, economic growth highly influences raw mate-
rials prices, while the direction can be both positive and negative.

Lastly, the interest rate performs rather poor, while the infla-
tion shows a moderate performance. For only 7 out of the 42
analyzed raw materials (17%), there is a relationship between
inflation and price development, whereas interest rates show
significant influence for at least half the raw materials. On the
other hand, interest rates are the weakest of all indicators in the
multiple regression, explaining only about 6% of the overall price.
However, while the inflation has nearly no predictive qualities at
all, the interest rate shows the fourth best forecast performance,
probably due to the general function of interest rates as medium
and long term economic regulator.

When it comes to the general explanatory power in the multiple
regression model, the coefficient of determination (adjusted R?)is about
60%. With over 90% copper and zirconium show the highest values. But
the precious metals — gold, silver, platinum and palladium - do have
above average price determinations, too. However, the ave-rage amount
of price determination of an indicator strongly depends on the element
considered. For instance, the price determination of the secondary
production is 45% for platinum, but only 0.2% for magnesium. Table 5
shows an overview of the large variation in the price determination of
the factors regarding different raw materials.

Table 7
Statistical data analysis — metal specific variables.
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To validate our main data source, some regressions with other
data sources have been performed (see Table 10). For copper, we
replaced the figures on secondary production, mine production,
aparent consumption and stocks with global figures from the ICSG.
For iron ore, we utilized price time series data from the IMF instead
of the USGS. For lead and zinc, we replaced the figures on mine
production, stocks and secondary production with data from the
ILZSG. Here, the ICSG data on copper show better performance for
the apparent consumption (which is a global figure, in this case) and
to some degree for secondary production. However, the results on
mine production are practically identical and for stocks, the USGS
data perform better. The ILZSG data on lead show similar results,
while for mine production and secondary production the ILZSG data

Table 8
Statistical data analysis — economic variables.

The first column lists the analyzed metals using common chemical symbols. The
following columns each show the mean and the standard deviation of the
respective variable. We use scientific e notation where needed. For more informa-
tion on the variables and their units, see Table 4.

Variable In_.GDP In_Pop US_.Infla Time Interest

Mean and variance 10 021 87 01 3 11 2e+03 75 5 25

The first column lists the analyzed metals using common chemical symbols. The following columns each show the mean and the standard deviation of the values of the
respective variable for the respective metal, using scientific e notation. For more information on the variables and their units, see Table 3.

Metal LN_Price HHI_Country MineProd AppConsum 2Prod Stocks HHI_comp

Ag 12 0.38 0.09 0.0049 1.7e+04 2.7e+03 5.4e+03 1.1e+03 5.8e+02 2.9e+02 2e+03 1.6e+03 0.017 0.0032
Al 7.4 0.25 0.097 0.02 2.4e+07 7.1e+06 5.5e+06 8.7e+05 2.8e+06 6.2e+05 2e+06 4e+05 0.054 0.022
As 6.7 0.23 - - 4.4e+04 1.1e+04 1.8e+04 7.3e+03 - - 5.5e+02 8.2e+02 - -
Au 16 0.32 0.12 0.058 2.2e+03 3.3e+02 5.4e+03 1.1e+03 56 16 - - 0.032 0.019
B 6.8 0.16 0.3 0.086 3.7e+06 8.7e+05 4e+05 9.1e+04 - - - - 0.26 0.071
Be 13 0.48 - - 2.4e+02 80 2.1e+02 81 - - 1.1e+02 50 - -
Bi 9.1 0.42 - - 4.5e+03 1.3e+03 1.7e+03 4.5e+02 - - 2.4e+02 1.1e+02 - -
Br 6.7 0.16 - - 4.6e+05 8.4e+04 2.1e+05 4.4e+04 - - - - - -
Ccd 7.7 1 - - 2e+04 9.5e+02 2.2e+03 1.2e+03 - - 5.8e+02 4.7e+02 - -
Co 10 0.45 0.18 0.076 4.5e+04 1.6e+04 9.2e+03 1.7e+03 1.8e+03 7e+02 2.2e+03 1.6e+03 0.12 0.083
Cr 6.9 0.4 0.23 0.026 4.5e+06 1.2e+06 5.2e+05 1.1e+05 1.8e+05 1.9e+04 6.4e+04 4.7e+04 0.076 0.029
Cu 7.8 0.47 0.12 0.029 1.2e+07 2.7e+06 2.4e+06 3.6e+05 3.8e+05 1.5e+05 3.1e+05 2.6e+05 0.04 0.004
Fe 3.5 0.34 0.13 0.017 5.4e+07 7.8e+06 6.3e+07 le+07 - - 1.9e+07 9.6e+06 0.033 0.013
Ga 13 0.18 - - 62 21 19 8.1 - - 1.6 13 - -
Ge 14 0.34 - - 75 22 34 9.8 - - 44 19 - -
Hg 8.9 0.5 0.12 0.078 3e+03 2.1e+03 8.4e+02 5.7e+02 3.6e+02 97 4.1e+02 2.4e+02 0.12 0.078
1 9.5 0.3 - - 1.9e+04 5.1e+03 4.4e+03 1.2e+03 - - - - - -
In 12 0.71 - - 2.7e+02 2e+02 60 37 - - 11 0.53 - -
K 5 0.25 0.19 0.022 2.8e+07 3.8e+06 5.4e+06 7.3e+05 - - 2.9e+05 5.2e+04 0.076 0.036
Li 8.1 0.39 0.27 0.11 2.1e+05 8.4e+04 2.4e+03 5e+02 - - - - - -
Mg 8.2 0.22 0.15 0.044 4.3e+05 1.4e+05 1.4e+05 2.3e+04 2.7e+04 4.1e+03 2.6e+04 6.6e+03 - -
Mn 6.5 0.41 0.15 0.044 8.7e+06 1.7e+06 7.2e+05 1.4e+05 - - 1.5e+06 5.6e+05 0.034 0.026
Mo 9.3 0.87 0.24 0.046 1.4e+05 3.7e+04 2.3e+04 8.8e+03 - - 1.3e+04 4.4e+03 0.11 0.062
Na 44 0.19 - - 3.5e+07 5.2e+06 6.3e+06 3.6e+05 - - - - - -
Ni 9.1 0.55 0.13 0.013 1.2e+06 2.5e+05 2e+05 2.4e+04 7.1e+04 2.1e+04 4.1e+04 2e+04 0.084 0.014
P 33 0.42 0.17 0.015 1.5e+08 1.3e+07 3.9e+07 4.4e+06 - - - - - -
Pb 6.9 0.43 0.13 0.045 3.2e+06 2.9e+05 1.4e+06 1.9e+05 9.5e+05 2e+05 9.3e+04 2.9e+04 0.046 0.086
Pd 16 0.56 0.41 0.088 5.8e+03 2.1e+03 5.8e+03 2.2e+03 3.7e+02 5.2e+02 3.6e+02 7.9e+02 - -
Pt 17 0.45 0.6 0.058 1.5e+02 40 5.3e+03 1.8e+03 5.4e+02 5e+02 - - 0.21 0.028
Re 14 0.4 - - 34 10 18 11 - - - - - -
Rh 17 0.85 0.62 0.079 5.3e+02 1.9e+02 5.7e+02 2.5e+02 79 66 - - - -
S 3.7 0.94 - - 5.9e+07 5.8e+06 1.3e+07 1e+06 - - 9e+05 8.3e+05 - -
Sb 7.9 0.46 - - 1.1e+05 4.4e+04 3.6e+04 7.7e+03 le+04 5.7e+03 6.8e+03 3.3e+03 0.012 0.0097
Si 71 0.21 - - 3.9e+06 1.1e+06 5.3e+05 le+05 - - 4.4e+04 2.2e+04 - -
Sn 9.2 0.26 - - 2.3e+05 4e+04 S5e+04 6e+03 9.2e+03 2.2e+03 1.1e+04 2.5e+03 0.052 0.021
Sr 6.5 0.3 - - 3.3e+05 1.4e+05 2.4e+04 9e+03 - - - - - -
Ta 1 0.42 0.27 0.13 6.9e+02 4.1e+02 5.3e+02 1.4e+02 80 32 - - 0.19 0.13
Ti 9.2 0.25 0.16 0.029 2.7e+03 3.3e+02 2.2e+04 5.4e+03 - - 6.1e+03 3.6e+03 0.11 0.018
\% 9.6 0.63 0.32 0.038 3.7e+04 1.6e+04 - - - - 9.1e+02 8.9e+02 - -
'\ 94 0.53 0.52 0.18 4.7e+04 9.1e+03 1.1e+04 2.2e+03 3.2e+03 1.3e+03 2.8e+03 1.4e+03 - -
Zn 7.2 0.36 0.097 0.016 8.2e+06 1.5e+06 1.1e+06 1.3e+05 1.2e+05 2.9e+04 2.9e+05 1.5e+05 0.021 0.0035
Zr 5.9 0.42 0.3 0.042 0.14 0.027 9.2e+05 1.8e+05 1.5e+05 2.2e+04 - - - -
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Table 9
Single regression results.

The first column presents every analyzed metal, using common chemical symbols. The following columns each show the results of the single regression for the metal in
the respective row with the used independent variable in the respective column. The bar in every cell stands for the R? of the resulting model which is additionally presented
as a percentage on the right side of the bar. The value at the bottom left is the calculated g;, supplemented on the right side by a symbol (see below) indicating its
significance. To improve readability, the significance also determines the brightness of the text color in the respective cell, while black stands for maximum (***) significance
and white for no (p > 0.1) significance. Instead of a significance value, the last row shows the number of significant (p<0.1) models for each variable and the average values
for all key figures. (¥&p=<0.1, *=p=<0.05, **<p<0.01, **=p<0.001).

Time HHI_comp |Interest HHI_Country| MineProd AppConsum | X2Prod ‘_Stocks In_POP US_Infla
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( **[-2.4e-08 . 7e- -2.4-08 *** ¢
Ga | ) |
W 17.8%) I ] [ T
Ge 0.057 g 3 034
H % 25.0%]| (W 25.0%| A ] 15.4%)
9 3.3 *.0.01 3.3 [1.8 0.00042  *
| l: 35.9%] A
: 6-05  *|5.16-05
n 0 10.9% ] 46.2%|i 41.8%) [
-0.093  # 0.0025 ***[0.012  ***
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0 10.9% 30.0%)
Na 0.024  # -2.90-07 _**
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show better performance, the USGS data generate better results for explained by the high importance of US. figures for the global
stocks, again. Surprisingly, the global ILZSG data on zinc lead to lesser market. Lastly, the IMF time series data on iron ore prices shows
2 and significance for every (significant) indicator, which could be superior results in comparison with the USGS time series data on



Table 10
Single regression results with different data sources.
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This table lists regression results with different data sources (iron ore: IMF, copper: ICSG, lead and zinc: ILZSG). The format is just as in Table 9.

HHI_comp

Stocks US_Infla

358%|Hl  41.9%[Hl

Interest ’l—lHI_Country' MineProd AppConsum | X2Prod
[

35.7%
**]0.00011 ***|0.00078 **

24.1%| Il 68.1%
-4.7e-08 ***

E [ 2238%[l
L *|21 *l0.12

Pb

Zn

prices. With the exception of HHI_Country and mine production, all
indicators perform better for the IMF prices, which could reflect the
high degree of market regulation for iron ore and steel in the U.S.

To test the robustness of the multiple regression models, an out-
of-sample test for the past five years was conducted (see Table 6). On
an average, the calculated raw material price was about 6% lower than
the actual price development. Only 11 raw material price models out
of 42 show differences above 10%. The greatest discrepancy is found
for platinum (36%), palladium (19%), cobalt (-14%), and iron ore
(=13%). It is interesting to observe that the platinum-group metals are
actually cheaper than the model with the reduced dataset estimated.
A reason could be that especially the platinum price declined by 60%
during the economic crisis in 2008 and did not recover enough within
the observed time range, which ended in 2009. As roughly three
quarters of the prices calculated by the reduced model are lower than
the prices calculated by the full model, there is some indication that
there has been a structural change in commodity markets making
commodities more expensive in relation to the factors indicating their
price. This is in line with the common observation that the commod-
ity markets are getting more susceptible to price jumps within the
previous years. Nevertheless, due to these moderate and plausible
deviations, from an overall perspective, the out-of-sample test con-
firms the robustness of our multiple regression model.

Discussion

All in all, our results show that prices of raw materials are in fact
significantly influenced by a number of material specific and general
economic indicators. Thus, these prices are not just random walks,
but are at least partially driven by fundamental factors. This can be
used for the supply side and the economic scarcity aspects of
criticality indicators, as a commodity is basically the more critical,
the more its prices are increasing. Moreover, as some indicators show
predictive qualities, this information does not seem to have been
fully included in the price, which additionally increases their value.

However, as our database is limited to 26 years, it could be the
case that some effects are just coincidence, or that we missed to
observe some other correlation not included in the data. In addition,
due to the absolute values used in the process, it is possible that
indicators canceling each other out (i.e. the mostly falling inflation
and the mostly rising GDP) gain an unduly large proportion. In
particular, this effect can emerge from highly correlated indicators,
which is why we excluded the indicator population, which highly
correlates with the GDP.

Nevertheless, many of our results show a considerable signifi-
cance, so that it would be improbable for all results to be just a result
of coincidence. Therefore, even taking into account the limitations of
classical regressions, the presented results are still valid, and because
of the broad number of different indicators and metals they can be
considered as robust. This conclusion is supported by the out-of-
sample test that shows an overall fit with the original model despite
some minor discrepancies.

In the end, we have identified three central conclusions of our
results in contrast to the literature: first, based on our results we think

that from an empirical point of view, arbitrarily chosen percentages for
supply risk and scarcity aspects of criticality are not justified. Secondly,
we are convinced that generic weights assigned to all materials are
highly error-prone, as different materials show highly different
cor-relations with each indicator. This thesis is also supported
by Chen (2010), who found out that most metal price volatility is
commodity-specific. Thirdly, a fixed selection of indicators for every
metal is inadequate, as some indicators show a high correlation with
the price of some raw materials, but no correlation at all with the price
of others. Therefore, a criticality index should - at least for the scarcity
and supply risk aspects — incorporate a specific and empirically deter-
mined weighting for every specific metal based on a specific set of
indicators to give a significant statement on raw material supply risks.
This result suggests an adaption of methods presented by, for instance,
the Department of Energy Bauer et al. (2010), the European Com-
mission (2010) or the IZT (Behrent et al.,, 2011). These methods could
therefore be revised with an individual weighting factors for each
element in order to come to reliable conclusions.

However, some systematic limitations have to be pointed out: first
of all, our results, e.g. the percentages from the multiple regression, do
not directly correspond to the percentages of criticality, as they only
represent the percentages to which the respective indicator explains
the price in the same period.

Nevertheless, the market price to a certain degree is an aggregate
of geological and economic scarcity. Following this line of argument,
our results can to some extent be interpreted as weights of different
factors for the total economic scarcity. And as criticality indicators
have — among others — take into account economic factors, we believe
that these results can be transferred to some degree to criticality
studies as well, at least regarding the economic aspects. From a
general point of view, while our approach has a number of limita-
tions, it provides some empirical means to determine specific
wei-ghts of specific influencing factors, while many current appro-
aches do not use empirically determined values at all. Therefore, we
regard our approach as a first step towards a more empirically
substantiated weighting of factors of scarcity and to some degree of
criticality, while there is certainly much room for further work in
this area.

One more limitation is the fact that our regression is only linear
(however with logarithmic/exponential extensions). This reduces the
amount of possible correlations that we can detect, however the
correlations we can detect are valid nonetheless. In addition, as our
model is purely quantitative, no qualitative effects can be observed
beyond the quantitative dataset. And, of course, as we use the current
logarithmic price as dependent variable for the regression, our model
only explains the current price. The theory of efficient markets would
claim that all known and predictable future risks (and therefore in a
way a metal's criticality) are included in the current price, but the
results of the Granger causality test show that in several cases there is
reason to doubt perfectly efficient markets in this domain. This result
quantitatively confirms what already a qualitative analysis of the
imperfect market structure in many mineral product markets sug-
gests. Moreover many social or environmental aspects are not
inclu-ded in the market price at all. Furthermore, our results do not
deter-mine the actual chain of causation underlying the observed
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Table 11

Multiple regression results.
The table shows the results of the multiple regression for the metals in the respective rows with the respective beta values and their significance for each independent
variable in the respective column. There, each cell shows the relative weight (weightwm) of the respective independent variable for the total model (as bar on the left side

and as percentage on the right side) and presents the normalized °™, indicating the direction and strength of the linear dependence, supplemented by its significance on

i

the bottom right. To improve readability, the significance also determines the brightness of the text color in the respective cell, while black stands for maximum (seks)
significance and white for no (p > 0.1) significance. The right column presents the total adjusted R? of the multiple regression as bar and as percentage. While in this case,
there is no beta-value, the significance of the total model is presented on the bottom right. Instead of a significance value, the last row shows the number of significant
(p=0.1) models for each variable and the average values for all other key figures. (¥p<0.1, *2p<0.05, **=p=<0.01, *=p<0.001).

HHI_comp Interest | HHI_Country | MineProd AppConsum LXZProd Stocks In_GDP Total
A I 31% 0.2%W 13.6%] T5%|W 14.4%|0 10.5%]1
9 0.11 0.01 0.4 *lo.05 -0.5 #]0.43 0.29
Al [ 2.5%]1 6.5%W 12.7%]0 9.4%| 35%[1
-0.12 0.32 0.62 0.46 -0.17 0.41 -0.3
As T 9.0 I 5.6%|l 19.7% 1]
-0.32 0.2 0.69 L] -0.5
A 1.1%)] 2.4%|1 32.4%|1 8.9%|l ]
-0.05 -0.11 0.4 *+-0.41 ailons 1.38
B ] 26.9%]|1 6.3%]1 19.4%| 24 L]
0.53 *lo.12 0.1 0.05 -0.54
Bo [ 4.3% 19.0%] 25% I 3.4%|
-0.22 *lo.13 -0.17 0.13
Bi ] 21.1%) 26.0% 0.7% T 8.2%[1
0.75 *+.0.03 0.29 #[0.42
Br I 2.1%) 3.7%| 213 (
0.29 -0.32 0.47
1.1 12.8%l 55
Cd 0.03 o.13 0.02
& [ 2.7%|! 4.2% 6.4% 0.3%]1 Al
0.25 0.39 0.13 -0.03 -0.52 1.12
or 0 5.2%|1 6.3%|1 33.2% 0.7%]1 0
0.13 -0.16 0.12 *+[-0.02 0.17 0.29
& I 207 8.9%]1 17.0%]1 6.0%] ]
0.1 0.44 0.4 0.3 *[-0.02 2.32
Fe I 7.0%W 13.0%) 14.6%|H 37.1%] |l
-0.26 0.49 # *|-1.39 0.2
{ 7.9%) 4.0%[l 8.6%) Al
Ga 0.43 0.48 0.28
0 51 T7%]1 75% I
Ge 0.32 0.48 -0.09
H [ 30.6% 0.6%|Il 2.5% 0.6% 1.0%]
9 -7.96 0.16 7.46 0.16 0.27 #(0.3
| m 18.3%) 18.5%] 28
0.7 A #]-0.11
- (] 10.1% 0.4%[1 7.7%] 1
0.45 # -0.34 0.48
K L] 15.5%]| 3.1% 5.5%| 2.3
-1.53 **lo.3 0.02 *lo.23
U [ 35%| 8.6%|0 12.2%)
-0.21 0.21 0.72 &
0.3% 0.2% 02
Mg -0.56 0.35 0.36 -0.06
( 4.2%|l 3.5%[l 1.8%)] U
Mn 0.21 -0.17 -0.48 [0.65
Mo [ 9% [N 12.3%|1 9.8%) U
0.08 -0.5 *l0.41 g -0.33
{ 7.6% 11.4%)
Na 0.21
N 0 9.3%] 1.9%]1 4.9%|0 13.8%|W
0.51 *+lo.1 -0.22 0.75 #1.02
P Q 9.0% 18.1%
-0.17 0.18 g
26.9%|1
Pa 0.27 *-1.23
Pb [ 3.2%1 7.0%W 5.5%0
0.12 0.27 -0.63 0.37
Pt [ 3.8%|l 4.7%]1 647,
0.11 -0.13 0.11 1.17
U 11.3%
Re -0.29
[ 3.0%) 8570 10.3%)
B 0.36 -0.17 1.23 #
S 0.7% 15.6%) F
0.03 0.86
[ 2.9%| 2.9 7.4%]! 4.9%
Sb 03 0.3 *0.51 0.2
S [ 21% 85% ]
0.07 0.29 -0.58
Sn ( 5.7%|l 6.9% | 1.3%]l 3.4%| 2.8%|l
-0.42 0.5 -0.1 -0.25 0.2 -0.45
o 0 10.2% i 8.0%[1 8.5%
0.19 0.15 0.16
Ta 10.9%[1 6.7%] 1770 10.3%] 2.3%1 9.5%]
-1.05 *|0.64 *lo.17 0.99 *l0.22 0.91 s
Ti O 7.1%|l 7.5%|l 3.7%|l 4.1%]l 3.3%) (
0.48 0.51 -0.25 0.28 0.23 -0.27
v | 4.1%) 1.8%| 1.3%) 0
0.33 -0.15 0.1 0.63
W I 5.3-Q|i 12.9%]1 47%[1 6.1% 1T.9%[W
0.24 -0.58 A #]-0.27 0.09 0.49
7n [ 4.6%[1 8.7%|L 8.5%|1 5.7%]1 4.5%] 0.9%[W
-0.45 *|o.87 ***[0.84 #]-0.57 -0.45 *[0.09 1.52
o [ 247 10.7%|M 21.7%|W 15.4%] 3.7%
0.07 0.18 #]-0.37 **|0.26 *+|-0.06
i 7.4%] 6.4% 7.4% 12.7%]1 7.4%) 7.8%0
0.5 5x|0.16 9x[0.29 6x/0.15 21x[0.12 12x[0.28 7x[0.12

correlation. Thus, the resulting percentages just represent the external
effects of some black box correlations, on whose inner workings our

statis-tical method does not provide any interpretation.

A further issue is data reliability or quality. The data situation
especially for trace metals like indium or gallium is highly non-
trans-parent, and all data is often provided by a single source, only.
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Granger causality test results.
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The first column presents the analyzed metals. Every subsequent column shows if there is a significant time-shifted correlation between the independent variable and the
price of the respective metal. In particular, the three symbols indicate significant predictive qualities for one, two or three years. For instance, the notion -/*/- means that a
certain independent variable has a significant predictive quality for two years, but not for one or three years. (*<p<0.1, *p<0.05, *<p=<0.01, **<p<0.001).
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More-over, data on more common metals and minerals shows a
num-ber of flaws, too. Our selective analysis of the influence of
additional data sources (see Table 10) strongly suggests that the USGS
database — while being a reasonable starting point — can be sig-
nificantly improved by additional data sources, especially where
global figures are concerned. It is therefore important to include this
issue in future criticality assessments to make sure that scientifically
obtained results are based on as a reliable database as possible.
Lastly, we do neither analyze the specific vulnerability of specific
metals in specific sectors nor do we take into account different grades
of the respective commodities we analyze. This has to be taken into
account when applying our results. Our generalized results have to be
complemented by an analysis of the metal specific vulnerability, by
ecological, social or technical factors like substitutability and of course
by the specific price of the desired grade of the relevant commodity.
Nevertheless, taken as a whole, in spite of the presented limita-
tions, we hope that our results contribute to the clarification of some
frequently discussed questions, especially on how which indicator
actually influences the price, the scarcity and thus to some degree

the criticality for what raw material. While the resulting values are
certainly not a final result, we are convinced that it is now clear
that fixed percentages over all raw materials are highly doubtful, and
that material and indicator specific weights offer a much more valid
base-line for scarcity and for the economic aspect of criticality
indicators.

Outlook and conclusion

In this paper, we have presented an empirical approach to identify
what part of commodity prices can be explained by which factors,
providing an empirical basis for the weighting of factors for the supply
risk and scarcity aspects of criticality. Therefore, after an introduction
and motivation in the Introduction section, we have presented a
selection of relevant literature in the Literature and theory section and
identified 11 relevant quantitative factors for the supply risk part in
criticality assessment methods. The influence of these factors on the
price of 42 commodities within 26 years is analyzed by the linear
regression method and a number of extensions, as described in the
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Methodology section. The results and their evaluation (see Empirical
results and Discussion sections) show that a number of common
assumptions, for instance static and general percentages for different
factors and metals, have to be questioned as outlined in our discus-
sion. This section presents an outlook and concludes the paper.

From an overall perspective, our results show that modeling
the supply risk and scarcity aspects of criticality of commodities
based on their price and the price influencing indicators leads to
interesting and relevant results for a many chemical elements. Our
model can be helpful for a better understanding of possible price
influencing factors and price development, which is relevant both
for research and practice. It also contributes to answer the
question which factors should be weighted how much. In addition,
for a limited number of metals a price forecast is possible, making
these factors even more interesting for long-term criticality
assessment. By adjusting the price indicators element by element,
even better results can be achieved.

However, even the extensive analysis we performed in this paper
still does not exhaustively explain the inner workings on how
commodity prices really develop. Therefore, as future work, an
extended analysis taking into account additional (e.g. global) indicators
and a longer period of time will certainly be worthwhile. Like-
wise, analyzing different forms and grades of the analyzed commod-
ities might provide further useful insights. Moreover, it has to be
questioned if there are other valid quantitative proxies for the scarcity
and supply risk part of criticality in addition to the commodity price.
Here, we plan to identify to which part the market price represents
geological or economical scarcity, respectively. In addition, many
studies use price changes instead of absolute prices, which - in spite
of some less encouraging first tests we performed — deserves further
study. It would also be interesting to analyze future prices as well, or
even completely different measures for criticality, in order to identify
what really makes a commodity critical from an empirical point of
view. Finally, extended methods capturing the nonlinear dynamics of
the correlation between prices and their indicators would certainly be
worthwhile to gain additional insights.

In the meantime, there is a need for improved decision support
methods that refrain from using across-the-board indicators and
weights for every metal. For some elements, a purely quantitative
approach is not properly working (e.g. tin, tantalum, rare earth
elements). Here, solutions could be achieved by qualitative social-
science methods such as expert surveys and interviews on the
market or on the technological potential of different commodities.
All in all, we hope that our approach can contribute to a more
empirically substantiated view on the influence of different factors
on the scarcity and supply risk aspects of criticality of commod-
ities, although this topic still yields a large number of further
questions to be answered by future research.

References

Achzet, B., Zepf, V. Meissner, S., Reller, A, 10-01 2010. Strategien fiir einen
verantwortlichen Umgang mit Metallen und deren Ressourcen (Strategies for
a Responsible Handling of Metals and their Resources). Chemie Ingenieur
Technik 82 (10).

Angerer, G., Marscheider-Weidemann, F, Lillmann, A., Erdmann, L, Scharp, M.,
Handke, V., Marwede, M., 2009. Raw Materials for Emerging Technologies—The
Influence of sector-specific feedstock demand on future raw materials con-
sumption in Material-Intensive Emerging Technologies. German Federal Min-
istry of Economics and Technology.

Bauer, D., Diamond, D., Li, J., Sandalow, D., Telleen, P., Wanner, B., 2010. Critical
Materials Strategy. U.S. Department of Energy.

Behrendst, S., Scharp, M., Kahlenborn, W., Feil, M., Dereje, C., Bleischwitz, R., Delzeit, R.,
2007. Seltene Metalle—Manahmen und Konzepte zur Losung des Problems
konfliktverscharfender Rohstoffausbeutung am Beispiel Coltan. Umweltbundesamt.

Behrent, S., Erdman, L. Feil, M., 2011. Kritische Rohstoffe fiir Deutschland—
Identifikation aus Sicht deutscher Unternehmen wirtschaftlich bedeutsamer
mineralischer Rohstoffe, deren Versorgungslage sich mittel-bis langfristig als
kritisch erweisen konnte. KfW Bankengruppe.

Breusch, T.S., Pagan, AR., 1979. A simple test for heteroscedasticity and random
coefficient variation. Econometrica 47 (5), 1287.

Chambers, M.J., Bailey, R.E., 1996. A theory of commodity price fluctuations. Journal
of Political Economy 104 (October (5)), 924-957.

Chen, M.-H., 2010. Understanding world metals prices—returns, volatility and
diversification. Resources Policy 35 (September (3)), 127-140.

Bob Jaffe, Jon Price (Eds.), Critical Elements for New Energy Technologies.
Massachusetts Institute of Technology, April 2010.

European Commission, 2010. Critical raw materials for the EU. Technical Report, June.

Geological Survey of Finland, 2010. Finland's Minerals Strategy. (www.mineraalis
trategia.fiy.

Graedel, T.E., Barr, R., Chandler, C., Chase, T., Choi, ]., Christoffersen, L., Friedlander,
E., Henly, C, Jun, C., Nassar, N.T., Schechner, D., Warren, S., Yang, M.Y., Zhu, C,,
2012. Methodology of metal criticality determination. Environmental Science
and Technology 46 (2), 1063-1070.

Granger, CWJ., 1969. Investigating causal relations by econometric models and
cross-spectral methods. Econometrica 37 (3), 424-438.

Hageliiken, C., Meskers, C.E.M., 2008. Mining our computers—opportunities and
challenges to recover scarce and valuable metals from end-of-life electronic
devices. In: Electronic Goes Green.

Hotelling, H., 1931. The economics of exhaustible resources. Journal of Political
Economy 39 (April (2)), 137-175.

Jarque, C.M., Bera, A.K., 1980. Efficient tests for normality, homoscedasticity and
serial independence of regression residuals. Economics Letters 6 (3), 255-259.

Kleinbaum, D.G., Kupper, L.L., Nizam, A., Muller, K.E., 2007. Applied Regression Analysis
and Other Multivariate Methods, 4th edition Duxbury Press, Belmont, April.

Krautkraemer, J.A., 1998. Nonrenewable resource scarcity. Journal of Economic
Literature 36 (4), 2065-2107.

Langhammer, D., 2010. An Empirical Analysis of structural forces in Refractory
Metal Markets. Augsburg.

LME, 2012. London metal exchange market data.

Marquardt, D.W., 1970. Generalized inverses, ridge regression, biased linear
estimation, and nonlinear estimation. Technometrics 12 (3), 591-612.

Meadows, D., Meadows, D., Randers, J., Behrens, W., 1974. The Limits to Growth:
A Report for the Club of Rome's Project on the Predicament of Mankind.
A Potomac Associates Book. Universe Books.

National Research Council, 2007. Minerals, Critical Minerals, and the U.S. Economy.
The National Academies Press.

Rosenau-Tornow, D., Buchholz, P., Riemann, A., Wagner, M., 2009. Assessing the
long-term supply risks for mineral raw materials—a combined evaluation of
past and future trends. Resources Policy 34 (4), 161-175.

Savin, N.E., White, KJ., 1977. The Durbin-Watson test for serial correlation with
extreme sample sizes or many regressors. Econometric 45 (November (8)),
1989-1996.

Smith, M., 2005. European strategic metals & industrial minerals—knowledge gaps
risks and vulnerabilities. Gecko Environment.

Svedberg, P, Tilton, J.E., 2006. The real, real price of nonrenewable resources:
copper 1870-2000. World Development 34 (March (3)), 501-519.

Tilton, J., 2003. On Borrowed Time?: Assessing the Threat of Mineral Depletion. Rff
Press, Taylor & Francis.

U.S. Department of Defense, 2009. Reconfiguration of the national defense stockpile
report to congress. Available at: (https://www.dnsc.dla.mil/pdf/NDSReconfigur
ationReporttoCongress.pdf) (accessed 11.12.12).

Waeger, P, Lang, D., Bleischwitz, R., Hageliiken, C., Meissner, S., Reller, A., Wittmer,
D., 2010. Rare Metals—Raw Materials for Technologies of the Future. Swiss
Academy of Engineering Sciences.

Wouters, H., Bol, D., 2009. Material Scarcity. Materials Innovation Institute, November.



