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An in-depth analysis of the interannual variability of storms is required to detect changes in soil erosive
power of rainfall, which can also result in severe on-site and off-site damages. Evaluating long-term
rainfall erosivity is a challenging task, mainly because of the paucity of high-resolution historical
precipitation observations that are generally reported at coarser temporal resolutions (e.g., monthly to
annual totals). In this paper we suggest overcoming this limitation through an analysis of long-term
processes governing rainfall erosivity with an application to datasets available the central Ruhr region
(Western Germany) for the period 1701-2011. Based on a parsimonious interpretation of seasonal
rainfall-related processes (from spring to autumn), a model was derived using 5-min erosivity data from
10 stations covering the period 1937-2002, and then used to reconstruct a long series of annual rainfall
erosivity values. Change-points in the evolution of rainfall erosivity are revealed over the 1760s and the
1920s that mark three sub-periods characterized by increasing mean values. The results indicate that the
erosive hazard tends to increase as a consequence of an increased frequency of extreme precipitation
events occurred during the last decades, characterized by short-rain events regrouped into prolonged

wet spells.

1. Introduction

Models provide a means of deconstructing the complexity of envi-
ronmental systems and, through experimentation, of understand-
ing the univariate contribution to multivariate complexity.
[Mark Mulligan and John Wainwright, 2004. Modelling and
model building. In: Environmental Modelling, Wiley, p. 10.]

The large amounts of energy present in rainstorms cause rain-
fall splash erosion and a number of runoff related erosion features
(Toy et al., 2002) as a function of rainfall amount and intensity. The
erosive force of rainfall, expressed as rainfall erosivity (Wischmeier
and Smith, 1978), is a major driver of soil erosion resulting from
the kinetic energy of raindrop’s impact and the rate of associated
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runoff (e.g. Boardman and Poesen, 2006). Moreover, it is assumed
that rainfall erosivity will potentially increase due to climate
change because of the associated change in precipitation charac-
teristics (e.g., Nearing et al., 2004). The underlying assumption is
that rainfall is getting more variable and hence more extreme rain-
fall events could be expected (Knapp et al., 2008) resulting in
increasing rainfall erosivity. Changes in seasonal and annual ero-
sivity are driven by single extreme events. This makes difficult to
quantify them, as it requires long-term (>22 years), high resolution
(30 min) rainfall data. For central Europe, only two long-term rain-
fall erosivity data have been published with 70 and 100 years of
observations respectively (Verstraeten et al., 2006; Fiener et al.,
2013), calculated from rainfall data with 5-10 min temporal reso-
lution. Such datasets highlight the presence of some increasing
trends in rainfall erosivity between the 1940th and the 2000th
(Fiener et al., 2013). However, these two datasets are too limited
to gain better insights into longer historical periods, where indica-
tion for periodic variability could be found. Climatic variability can
drive events grouped in some particularly rainy years or months



according to storms climatic variability over interannual to century
scales (Peterson et al., 2002; Cavazos and Rivas, 2004; Wetter et al.,
2011). Changes in precipitation extremes over the time period
1951-2010 have been studied by van den Besselaar et al. (2013)
in Europe, considering five consecutive 20-year time intervals with
10-year overlap. Despite considerable decadal variability, the
results of these authors indicate that 5-, 10- and 20-year events
of 1-day and 5-day precipitation for the first 20-year period gener-
ally became more common during this 1951-2010-year period. In
spite of this, and the enormous today’s information technology
capabilities, the impact of rainstorm perturbations on lands still
remains an uncertain issue for the scarcity of quantitative studies
(Higgitt and Lee, 2001; Wainwright and Mulligan, 2004; Diodato
and Bellocchi, 2010b; Walsh et al., 2011). Climate information
uncertainty poses, in fact, challenges especially for the analysis of
observed and simulated rainstorm data since areas with the heav-
iest precipitation may just be between recording stations
(Willmott and Legates, 1991; Fiener and Auerswald, 2009).
Changes in erosive rainfall distributions could have more impact
than the more often cited global warming due to a more vigorous
hydrological cycle and concentration of rainfall in sporadic but
more irregular and intense events (Allen and Ingram, 2002;
Mullan, 2013). These particular erosive storm events are associated
with rainfall conditions occurring locally.

Accurate rainfall measurements on short time scales are
required to obtain rainfall erosivity values according to the RUSLE
methodology (Renard et al, 1997) or to similar procedures
(Panagos et al, 2015). There are examples in Switzerland
(Meusburger et al., 2012), Greece (Panagos et al., 2016a) and Italy
(Borrelli et al., 2016), where erosivity has been modelled based on
high temporal resolution rainfall data. This is an issue for long-
term studies, because records of this type are not available for
years antecedent to the modern instrumental period (Diodato
et al., 2008). This is also true for exploring erosive storm-land
interactions and modelling the climatic implications for European
landscapes. For that, parsimonious models can be used because
they overcome the limitations imposed from sophisticated models.
The latter are data demanding and therefore less ideally applied to
historical times for which data availability and resolution are usu-
ally limited. At present, studies are rare which make use of parsi-
monious modelling approaches to integrate historical data with
contemporary knowledge. Previous works paid attention on
Mediterranean sites in great detail (e.g., Romano and Santini,
2000; Diodato and Bellocchi, 2014). Alternative models have been
developed to estimate the long-term average rain-erosivity when
only average precipitation data, such as mean monthly or/and
annual totals (Lo et al., 1985; Renard and Fremund, 1994; Yu and
Rosewell, 1996; Mikhailova et al., 1997; Licznar, 2005) are avail-
able. Other approaches generate annual rainfall erosivity values
based on rainfall data (e.g. Diodato and Bellocchi, 2010a). They
are however not suitable to estimate rainfall erosivity amount in
individual years. In the recent past, instead, a number of studies
concerning the European environment reported on the possibility
to model the rain erosivity as a continuous process from scarce
precipitation data and then to derive rainfall erosivity time series,
also thanks to the retrieval of historical information (Diodato,
2004; Diodato et al., 2008). Most of these studies have a local value
and are conditional to the access of sufficiently complete historical
datasets in the region or basin of interest.

Aims of this study are (i) to develop and test a parsimonious
rainfall erosivity model using long-term erosivity data derived
from 10 stations in Western Germany (71 years; 5-min resolution
rain data; Fiener et al., 2013), and (ii) to analyse changes in erosiv-
ity since 1701 applying the model along the long-term precipita-
tion dataset (1701-2011) for Europe presented by Pauling et al.
(2006).

2. Materials and methods
2.1. Study area

The study area (51°33'N; 6°41'E to 52°00'N; 8°55'E) defined
through the availability of long-term high resolution precipitation
data is located in the central Ruhr region, in Western Germany,
ranging from the Lower Rhine Basin in its eastern part to the
Westphalian Plain in its western part. In its South, it is bordered
by the hills of the Rhenish Massif. The area is relatively flat with
altitudes increasing from approximately 30 m a.s.l. in the west to
150 m a.s.l. in the east.

The climate is strongly influenced by the variability of the
atmospheric circulation, with westerly flows bringing mild, rainy
weather in winter and cool, rainy weather in summer (van Ulden
etal., 2007). In the last decades, increasing convective precipitation
events have tended to be associated with higher temperatures
(Berg et al., 2013).

Fig. 1a shows, for the period 1950-2014, the 95th percentile of
annual daily rainfall across Germany. For the study area, certain
division exists between west and east, with differences in the mag-
nitudes ranging from 7-8 to >10 mm d~'. The mean annual precip-
itation is equal to 773 mm, which increases up to about 150 mm
from west to east.

2.2. Rainfall erosivity data

The annual rainfall erosivity data (1937-2002) were extracted
from a long-term high resolution precipitation dataset of high res-
olution (5 min) measurements at 10 locations. The measuring sta-
tions (Fig. 1b) are located in a distance of approximately 60 km
(over an area of about 10,000 km?) exhibiting a relatively low spa-
tial variability in annual precipitation (coefficient of variation
equal to 4%). The used rain gauges follow the standards of the Ger-
man weather service, which also uses these data in the analysis of
recurrence intervals of high-intensity rainfall (Bartels et al., 1997).

The data were collected by local water authorities
(Emschergenossenschaft and Lippeverband, http://www.eglv.de/
en) and were provided by the environmental agency of North-
Rhine Westphalia (LANUV-NRW). The data were used for several
projects focusing on extreme events and therefore intensively
tested for consistency including minor gap filling (for details see
Anonymous, 2010; Fiener et al., 2013). The non-equidistant time
series (time step <5 min) were resampled to equidistant 5-min
values and thereafter grouped in rainfall events subdivided form
each other through rain gaps >6 h to calculate rainfall erosivity.
Event rainfall erosivity (consisting of n time-steps) was calculated
following Eqs. (1) and (2) (Schwertmann et al., 1990; Deutsches
Institut fiir Normung, 2005):

RE — EZ]Ri:zyzlEi‘Imaxm PE = 10mm 0r1max30 = ‘lommhil
0 otherwise

(1)
with

0 I; < 0.05
Re ={ [11.89 + (8.73 -logl;)] - P;i- 107 0.05 < I; < 76.2 (2)
28.33.P,-107° I >76.2

where Rg is the erosivity of one event (k] m2 mm h™!), R; is the ero-
sivity in time step i (kf m~2 mm h~"), E; is kinetic energy during
time step i (k] m~2), I; is rainfall intensity in time step i (mm h™'),
P; is rainfall depth in time step i (mm), Pg is rain depth during event,
Imax30 1S maximum 30-min rain intensity during event.
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Fig. 1. (a) 95th percentile of annual daily rainfall across Germany, as arranged from Climate Explorer (http://climexp.knmi.nl) over the period 1950-2014, and (b) location in

Germany of the 10 stations used in this study.

The annual rainfall erosivity was first computed for each sta-
tion, as follows, and then average over 10 stations:

Ra=10-) Re 3)

where R, is the annual (April-November) erosivity
(MJmm ha=! h=! yr~!) calculated from the number S of individual
storms events E in a specific year.

The annual erosivity data vary from a minimum of 155 (1947)
to a maximum of 1111 (1968) MJmm 'h 'ha !yr ! (mean and
standard deviation: 509 + 201 MJmm~' h~!'ha~'yr!). The origi-
nal study (Fiener et al., 2013) was intended to analyse trends in
rainfall erosivity. To avoid misinterpretations of trends due to
potential systematic shifts due to reduced snowfall events follow-
ing warming trends (decrease in wind effect and hence increase in
measured rainfall) rainfall erosivity was solely calculated for the
months of April to November (for details see Fiener et al., 2013).
Hence, our modelling approach also focuses on rainfall erosivity
between April and November (subsequently referred to as annual
erosivity). The modelled erosivity for the Ruhr area is later on com-
pared with the mean of the 10 measuring stations represented in
Fig. 1b.

2.3. Long-term precipitation data

For our analysis, we used the precipitation reconstructions from
Pauling et al. (2006). This dataset is seasonally resolved from 2000
back to 1500 covering all European land areas (30°W-40°E/
30°N-71°N) on a 0.5° grid. It has been developed using
precipitation-sensitive proxies including long instrumental series,
indices based on documentary evidence and natural proxies
(tree-rings, ice cores, and coral and speleothem data). These prox-
ies served as input to a Principal Component Regression technique
to reconstruct large-scale fields (as documented in Pauling and
Paeth, 2007). For the purpose of this study, we have gone back
no further than 1701 because precipitation data at earlier times
were reconstructed from non-instrumental proxies only and, as
such, are affected by a larger amount of uncertainties then more
recent data (through ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/v3).

The CRU Global Climate Dataset, available through http://
catalogue.ceda.ac.uk/uuid/3f8944800cc48e1cbc29a5ee12d8542d,
provided for an extension of the seasonal precipitation dataset
until 2011.

2.4. Model development

We first acquired a comprehensive knowledge about factors
potentially driving rainfall erosivity. Then an iterative process
(trial-and-error to compose relevant drivers) enabled us to explain
long-term dynamics in relatively simple terms, that is, the princi-
ple of parsimony or explaining classes of events with a limited
number of factors. A parsimonious approach based on a nonlinear
equation was thus derived to estimate annual erosivity (Rs_mod,
MJmmha 'h Tyr 1)

RA_mod =0a- (1 + 2. Cvis) ’ (PSum . PAut) + B . PSpr (4)

where Pgym, Pay: and Psp, (in mm season~!) are the precipitation fal-
len in the seasons of summer, autumn and spring, respectively
(Pauling et al., 2006); CVjs is the inter-seasonal coefficient of varia-
tion (standard deviation of the series of seasonal precipitation totals
divided by the mean of the series), computed each year on four val-
ues of precipitation amount (one total per season); o and B are
model parameters.

The rationale behind our model in Eq. (4) is that the most rele-
vant processes describing the rainfall erosivity generation are the
following: power of rainfall by erosive-storm events with seasonal
variability, and runoff erosivity. The first process (o - X;) is inter-
preted by the interaction between summer and autumn precipita-
tion amounts (Psy, - Paye) With an inter-seasonal variation term (1
+2 - CVj), while the second process (B - X3) is essentially reflected
by spring precipitation amounts as runoff index.

The underlying assumptions reflect the climatology of Central
and Western Europe, where highest-intensity rainstorms generally
coincide with a period between end of spring and beginning of
autumn. For instance, Romero et al. (2007) described severe con-
vective storms occurring between June and October using the
reanalysis of the European Centre for Medium-Range Weather
Forecasts of the global atmosphere and surface conditions (ERA-
40, http://www.ecmwf.int/en/elibrary/miscellaneous/10595-era-
40-archive-revised-October-2007) for the period 1971-2000, on a
grid resolution with approximately 125 km spacing. Spring and
summer precipitation (which may extend until October) is also
known to be an important driver for pursuing rainfall-runoff pro-
cesses in Central-Western Europe (van Delden, 2001; Twardosz,
2007).

The first term of Eq. (4) accounts for the variability of total
season precipitation while controlling for the interaction between
precipitation amounts in summer and autumn. The inter-seasonal
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coefficient of variation accounts for the erosive risk (which is
higher when season-to-season rainfall variability is higher), e.g.,
after Aronica and Ferro (1997), who detected a relationship
between coefficient of variation of precipitation and rainfall erosiv-
ity (in our data series, the range in CVj; across years was 0.09 in
1970 to 0.79 in 1983). The summer-autumn interaction accounts
for the fact that a wet autumn following a wet summer increases
the risk of flooding while the transport capacity of overland runoff
is also increased (Gaume et al., 2009; Alberico et al., 2014). The
multiplicative component Ps,, - P4y, in particular, supports the
nonlinear dependence of rainfall erosivity on precipitation inten-
sity (e.g., D’Odorico et al., 2001).

The second term of Eq. (4), instead, incorporates effects of the
low-intensity precipitation typically occurring in early spring,
which is mostly infiltrated and, if the ground becomes saturated,
the remaining rainfall becomes runoff. It is also meant to capture
a shift in heavy convective storms into the late spring time because
of warming conditions (Murawski et al., 2015). Rain events occur-
ring in winter months have not been explicitly taken into account
by the model because rainfall intensity is generally low in that sea-
son in the study-area.

2.5. Model evaluation

Rainfall erosivity (Eq. (3)) and seasonal precipitation gridded
datasets were available from 1937 to 2002. This period was split
in two sub-periods: the first one (1956-1990) was used for the
purpose of model development and calibration (derivation of
model parameter values, o and B, in Eq. (4)), whereas the second
one (1937-1954 plus 1991-2002) was used for the validation of
model estimates. Validation was run against two climatically dif-
ferent periods, so as to ensure robustness in the solution found.
The first (colder) validation period (10.2 °C on average) was char-
acterized by higher erosivity values than the second (warmer) per-
iod (10.7 °C on average), while the calibration period was long
enough to capture the extremes of erosivity of the whole series
(from ~200 to >1000 M mm ha=' h=!yr1).

The calibration work was performed through a trial-and-error
process comparing the model estimates with observational data.
For both calibration and validation, performance indices were
applied to evaluate the agreement between model and measured
rainfall erosivity. First, the Pearson’s correlation coefficient r was
calculated to assess the linear dependence between modelled
and actual data. Second, the Nash-Sutcliffe Index (NSI) (Nash and
Sutcliffe, 1970) and the mean absolute error (MAE) were derived
to assess quantitative differences. For ideal models, MAE is 0 and
NSl is 1. Poor models have high MAE (up to +oo) and low NSI (down
to —oo). Third, the Durbin-Watson test (Durbin and Watson, 1950,
1951) was performed to seek for auto-correlation in the residuals,
since strong temporal dependence may induce spurious correla-
tions (Granger et al., 2001). An analysis of the erosivity model
was performed as a regression analysis on the statistical relation-
ship between two predictors (X;, X,) and the response variable,
the p-value for each term testing the null hypothesis that the coef-
ficient (o, B) is equal to zero.

Seasonal precipitation inputs being available back to 1701, the
calibrated model was used to generate a long series of erosivity
data (1701-2011). Abrupt change-points in the estimated erosivity
time-series were detected using the Buishand test (Buishand,
1982) in order to locate the years where stepwise shifts are likely,
and one-way ANOVA was used to investigate differences in differ-
ent time periods. Tukey’s HSD (honest significance difference) was
used to determine the nature of the differences between time peri-
ods. The assumption of homogeneity of variances was tested via
Levene’s test (Levene, 1960).

The statistical analysis was performed with the support of Excel
statistical package, and STATGRAPHICS (http://www.statgraphic-
sonline.com) and WESSA (http://www.wessa.net) online packages.

3. Results and discussion
3.1. Model evaluation

At calibration stage, a strong dependence was detected between
estimated rainfall erosivity and its basic terms (X; and Xj): the
highest p-value was 0.009, pertaining to the second term (X;, with
spring precipitation) of Eq. (4). Consequently, both terms of the
model have a statistical significance. The calibrated parameters
in Eq. (4) are: oo =0.0045, and B = 1.00. They ensure the best fit of
the model estimates with the observed data, according to NSI, r
and MAE (MJ mm ha—' h~! yr~'). The performances obtained with
these parameters for the calibration and validation periods are
illustrated in Table 1. The values of the three performance indices
show that the model is robust in the calibration stage and can rea-
sonably be used as estimator of rainfall erosivity values
(Fig. 2a and b). In particular, the NSI value obtained (0.71) is higher
than 0.6, which is commonly assumed as a threshold between bad
and good performance (e.g., Lim et al., 2006), and indicates limited
model uncertainty (likely associated with narrow parameter
uncertainty, after Shrestha and Solomatine, 2008). In view of the
satisfactory results obtained from model parameterization, the
performance achieved was considered sufficiently robust and sen-
sitivity analysis was not added to the study (the same as in Diodato
et al., 2013). Model predictions were less accurate in the validation
set (Fig. 2c). This is also reflected in the residuals, which are con-
centrated near zero at calibration (Fig. 3a), whereas a noticeable
reduction is observed in their tendency to cluster around zero at
validation (Fig. 3b).

The Durbin-Watson test indicates that the residuals were not
autocorrelated at both stages (p > 0.10). Actual measured, R4 (Eq.
(3)), and modelled, Ry o4 (Eq. (4)), rainfall erosivity data are thus
quite similar, with main discrepancies found for the years 1968
and 1971 when the measured erosivity values were rather under-
estimated (orange dots in Fig. 2a). Such divergences can be attrib-
uted to some inaccuracy and averaging effect in the seasonal data,
not always representative of extreme single storm events. For
example, in 1968 a single event occurred with a recurrence interval
of approximately 300 years (Fiener et al., 2013). A linear relation-
ship between annual values of rainfall erosivity and precipitation
resulted in poorer performance (e.g., r=0.69 in the calibration),
which justifies the use of multiple seasonal inputs nonlinearly
driving annual rainfall erosivity. We failed to find in the literature
suitable modelling approaches, with seasonal resolution of inputs,
to compare with our model. All this considered, taking into account
the complexity of estimating rainfall erosivity processes in any
context, and especially in a climate data scarcity context, the pro-
posed model catches and elucidates patterns of rainfall erosivity in
spite of its limitations in accuracy.

To summarize what emerged from this outcome, the estimated
time series reproduces reasonably well the pattern of annual rain-
fall erosivity with satisfactory values of NSI (0.71),r (0.81, p < 0.01)
and MAE (92 M] mm ha~! h™!). In the validation dataset, the per-
formance is poorer with discrepancies clearly shown in the inter-
annual variations, especially in the years 2000s (Fig.2c). We
explain this by the higher proportion of extreme rainfall events
(compared to precipitation totals) occurred recently, which might
be attributed to increased warming (e.g., Sugiyama et al., 2010;
Coumou and Rahmstorf, 2012). Thus we can deduce that with
the model of Eq. (4) individual years may not be adequately repre-
sented (e.g., in case of extremely high values). However, for this



Table 1

Model performance and autocorrelation statistics, for the calibration and validation periods.

Dataset Performance statistics Autocorrelation statistics
Nash-Sutcliffe Index Correlation coefficient =~ Mean absolute error (MAE, Lag-1 residual Durbin-Watson
(NSI) (r) MJmmha'h lyr ) correlation (significance)
Calibration 0.71 0.81 92 -0.10112 2.12 (p=0.638)
Validation  0.11 0.41 131 —0.0900 2.16 (p =0.890)
Calibration - scatter plot Calibration - time series Validation - time series
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Fig. 2. Scatterplot between observed and modelled rainfall erosivity at calibration stage (in orange, data excluded from calibration because outlying the bounds of 99% to
generate prediction limits for new observations), and the corresponding 95% (dark band) and 99% (clear band) prediction bounds, and 1:1 line (a), and co-evolution of actual
(orange curve) and modelled (grey curve) erosivity data at both stages of calibration (b) and validation (c). All the erosivity units are expressed in M mm ha ' h~!yr. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Histogram of residuals for (a) calibration and (b) validation stages.

study designed to capture patterns of erosivity at interdecadal time
scales, this mismatch on single years should be unproblematic.

To interpret further these results, we compared the statistical
location parameters of the observed and modelled time series for
both the validation sub-periods (Table 2). A right-hand shift of all
parameters, but the 75th percentile, is visible when moving from
the calibration to the validation period. There is an agreement in
such shifts between the observed and modelled data (increases
or decreases of parameters in observations also occur in estima-
tions), which reflects a similar tendency for the two distributions.
Thus in spite of discrepancies in the validation results represented
in Table 1, which are based on yearly values, we hold the indication
that the model can be suitably used for the estimation of inter-
decadal variations of rainfall erosivity data.

3.2. Rainfall erosivity reconstruction

Additional results of the model-based erosivity reconstruction
are illustrated in Fig. 4. The homogenized series of reconstructed
data provides a view of the temporal evolution of annual data,
which is the basis for the extraction of climate signals. Buishand’s

Table 2
Mean, median, and 25th and 75th percentiles of the observed and modelled erosivity
data for both validation sub-periods.

Statistic Dataset Validation 1st sub- Validation 2nd sub-
period (1937-1954) period (1991-2002)
Mean Observed 488 548
Modelled 509 644
Median Observed 448 495
Modelled 476 666
25th percentile Observed 357 419
Modelled 380 543
75th percentile Observed 575 567
Modelled 688 683

cumulative deviation test also predicts a significant discontinuity
(p <0.10) around the year 1921 (Fig. 4, blue curve). The cumulative
deviation also indicates a change point around the year 1760, yet
nonsignificant (p > 0.10). These sub-periods are characterized by
increasing median values (horizontal black lines) as time evolves.
The distribution type also changed from log-normal (highly asym-
metric), with a few years with high rainfall erosivity, to normal
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(roughly symmetric), with erosive years concentrated around the
central tendency. As the sample values failed to show a Gaussian
distribution (Fig. 4), and the variances were also not homogeneous
according to Levene’s test (p <0.01), a nonparametric ANOVA with
rank-transformed data (Helsel and Hirsch, 1995) was applied to
assess mean differences between sub-periods. The one-way
ANOVA test indicates a statistically significant difference
(p<0.01) among these groups. In particular, the Tukey’s HSD dis-
criminates (with p<0.01) between the warming period and the
two other periods. Hurdecha and Bardossy (2005) report that the
trend of precipitation in West Germany over the 20th century
has been found to be towards more extreme rain days with
increased contribution of extreme events to the total amount of
precipitation.

The intermediate period 1761-1920 is characterized by a smal-
ler interannual variability too, which is followed by the modern era
(1921-2013) with a positive shift in both the mean and extremes
values. Quasi-regular intervals are however crossed by strong ero-
sive storm pulsing, e.g., around the years 1710, 1770, 1840, 1881,
1930 and 2007, with a less pronounced change in 1973 (Fiener
et al., 2013).

Furthermore, the average moisture content of the atmosphere
has increased by about 4% since the 1970s, as expected from the
Clausius—Clapeyron law when assuming constant relative humid-
ity (Trenberth, 2010). Also Berg et al. (2013) concluded that con-
vective precipitation responds in a much more sensitive manner
to temperature increases than stratiform precipitation, and
increasingly dominates events of extreme precipitation. In Hong
Kong and The Netherlands, for instance, hourly precipitation
extremes have been observed to increase roughly in the period
1980-2010 at about twice this rate (Lenderink et al., 2011).

The most remarkable erosive times occurred in the mid-18th to
the early 19th century. To have an idea of rainfall erosivity and
land-cover coevolution we would remind that woodland area has
not changed that much since the 16th century in Germany,
although grazing intensity lowered in German forests since the
19th century. Soil erosion rates increased again in many German

landscapes during the fifth decade of the 18th century and in
others a few decades later. This is in agreement with stormy peri-
ods recorded between the end of the 18th and the beginning of the
19th century. Severe gullying was common until the end of the
18th century and in some areas until the second and the third dec-
ade of the 19th century. Based on soil and sediment analyses and
on contemporary documents, the occurrence of gullying can be
clearly linked to an increased number of rainstorms (Lang et al.,
2003). The increase in rainstorms over the autumn season is thus
particularly critical for Western Germany. Most of the gully sys-
tems in Europe today are a result of these catastrophic occurrences.
These punctual events triggered land abandonment and influenced
the ecosystem and the socio-economic situation (after Ellis et al.,
2010).

3.3. Spatial intensification of storminess

Fig. 5 shows maps of the 98th percentile of seasonal precipita-
tions over some zones of Germany. To assess interdecadal changes,
precipitation data were extracted from two periods so as to sepa-
rate the most recent warming (in the 20th century, Fig. 5b) from
a past period (in the 18th century, Fig. 5a). It appears that the study
area is prone to intensified precipitation with an increase in the
98th percentile of seasonal precipitation when comparing recent
to past decades. In particular, a shift eastward is underway, which
includes southern and northern portions of the study area. This is
relevant because the 98th percentiles in seasonal precipitation
are associated with rainfall erosivity in Europe (Diodato and
Bellocchi, 2012). This observation may help explain the higher
median rainfall erosivity values observed in the reconstructed ser-
ies during the warming period compared to earlier times. Climate
change can also exacerbate the problem as precipitation events
have become more erratic with a greater intensity of rainstorms
(Osborn et al., 2000).

This might have triggered highly erosive rainfall events, and in
turn, soil loss in the months with low soil cover after harvest and
tillage.
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Fig. 5. 98th percentile of seasonal precipitation across Germany for (a) the period 1701-1760 and (b) the period 1921-2000. The Ruhr area is in the rectangle (data arranged

from CRU TS3.22 database via KNMI - Climate Explorer, http://climexp.knmi.nl).

4. Concluding remarks and perspectives

The present study presents an evaluation of a novel model of
rainfall erosivity in Western Germany, which was used to quan-
titatively assess the variation of interdecadal erosivity it the
same area. It reveals propagation of a wetting front resulting
in rainfalls with great energy, and provides essential information
to understand storm-related phenomena in Western Germany.
These results agree with studies by Zolina et al. (2010), Chou
et al. (2013) and Cohen et al. (2014), who documented trends
in precipitation extremes over the past decades when the annual
range of precipitation has increased largely because wet seasons
have become wetter, especially in Europe. The results imply that
a future increase in land-use intensity and extreme precipitation
events during climatic change might have severe consequences
regarding soil erosion, flash-flood risk, and ecological aspects.
However, the equation used does not claim to express a physical
law and seasonal precipitation data used as a proxy for rainfall
erosivity ignore changes in the character of rainfall (for example,
a shift to more convective rainfall could occur even for the same
seasonal totals, yet the estimated erosivity would be unchanged).
Using more detailed data, which would be even closer to the
desired metric of erosive power of rainfall (e.g., Maraun et al.,
2008), could be a natural evolution of what has already been
presented here based on a parsimonious approach which simpli-
fies important features of erosive processes and in which the fol-
lowing limitations are of primary importance: first, the
limitation of the model to capture extreme events and, second,
the limitation of the model as it does not take into account high
temporal resolution data. Moreover, the model only explores
erosivity dynamics at sub-regional scale (roughly 0.5°). An eval-
uation of the transient rainfall erosivity response at catchment
scale with integrated hydrologic simulations (Romano, 2016)
could represent a more accurate reproduction of the variability
across all spatial-temporal scales going from days to decades
and from metres to kilometres. Actually, the presented model
fits well for Western Germany where the erosivity is high during
summer months (Panagos et al., 2016b), which indicates that the
model may potentially be suitable for applications at other
places in Europe, characterized by a continental climate similar
to the one in this study (provided that parameter values will
be documented, e.g. via calibration, for other stations than the
ones investigated here). Conversely, the model is not appropriate
for applications in climates characterized by rainy winters and
droughty summers.
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