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Introduction

Michael Wiemeler

During the last 20 years several topological generalizations of non-singular toric va-
rieties were introduced. Among them quasitoric manifolds and torus manifolds are the
generalizations which are most studied.

Quasitoric manifolds were introduced by Davis and Januszkiewicz [DJ91]. Whereas
torus manifolds were introduced by Hattori and Masuda [HM03].

A torus manifold is a 2n-dimensional closed connected orientable manifold M on which
an n-dimensional torus T acts effectively such that MT is non-empty. A quasitoric
manifold is a torus manifold which satisfies two extra conditions. First it is locally
standard. This condition is satisfied if and only if the action is locally modeled on an
effective unitary representation of Tn on Cn. It implies that the orbit space of the
T -action on M is naturally a manifold with corners. The second condition which is
required for a torus manifold to be a quasitoric manifold is that M/T is face preserving
homeomorphic to a simple convex polytope.

In this Habilitationsschrift we investigate geometric properties of these manifolds and
other manifolds with natural symmetries. For example we discuss the question of which
torus manifolds admit invariant metrics of positive/non-negative sectional or scalar cur-
vature. Moreover, we investigate the moduli spaces of invariant positive scalar curvature
metrics on quasitoric manifolds.

1. Curvature

Before we describe our results in more detail, we will give a brief overview of the exis-
tence of metrics of positive/non-negative curvature on closed manifolds. There are three
classical notions of curvature. These are sectional curvature, Ricci curvature and scalar
curvature.

Among these the question of which simply connected closed manifolds admit metrics
of positive scalar curvature is best understood. For manifolds of dimension n ≥ 5, there
are two types of obstructions against metrics of positive scalar curvature.

The first class of these obstructions comes from the minimal hypersurface method of
Schoen and Yau [SY79]. This method says that any minimal hypersurface in a manifold
with positive scalar curvature also admits a metric of positive scalar curvature. To apply
this method one needs general existence results for minimal hypersurfaces which are at
present only available in dimensions less than or equal to eight. Using this method one
can prove that tori of dimension less than nine do not admit any metric of positive scalar
curvature.

The other class of obstructions comes from the relation between scalar curvature and
spin geometry. On the space of sections of the complex spinor bundle associated to a
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spin structure on a manifold M , one can define an elliptic differential operator, the so-
called Dirac operator ∂̄. If M is even dimensional, we denote the restriction of ∂̄ to the
sections of a half spinor bundle by ∂. By the Lichnerowicz–Weizenböck formula [Lic63],
the square of the Dirac operator ∂̄ on a spin manifold can be expressed as the sum of
a non-negative, self-adjoint operator and 1

4 of the scalar curvature. Therefore there are
no harmonic spinors on a spin manifold with a metric of positive scalar curvature, i.e.
ker ∂̄ = 0. In particular the index ind ∂ of the Dirac operator ∂ vanishes. Here ind ∂ is
defined as

ind ∂ = dim ker ∂ − dim coker ∂.

By the Atiyah–Singer Index Theorem [AS69] ind ∂ is equal to the Â-genus of M , which
is a topological invariant of M .

By a similar argument, Hitchin [Hit74] has shown that a KO-theoretic refinement
of the Â-genus, the so-called α-invariant, also vanishes for spin manifolds which admit
a metric of positive scalar curvature. For simply connected manifolds of high enough
dimension the converse also holds. It has been shown by Stolz [Sto92] that a simply
connected spin manifold of dimension n ≥ 5 admits a metric of positive scalar curvature
if and only if its α-invariant vanishes. A similar statement for non-spin manifolds was
proven previously by Gromov and Lawson: A simply connected non-spin manifold of
dimension n ≥ 5 always admits a metric of positive scalar curvature.

The idea of proof of these two statements is to reduce the existence problem to a
bordism problem. This was done by Gromov and Lawson and independently by Schoen
and Yau who showed that certain surgeries can be used to construct metrics of positive
scalar curvature. Therefore a simply connected manifold of dimension n ≥ 5 admits a
metric of positive scalar curvature if and only if its class in a certain bordism group can
be represented by a manifold with a metric of positive scalar curvature. The proofs are
then completed by characterizing those classes in the relevant bordism groups which can
be represented by manifolds with metrics of positive scalar curvature.

For non-simply connected manifolds it can be shown that certain higher analogues of
the α-invariant also vanish [Ros86]. Moreover, index theoretic considerations can also
be used to show that manifolds with non-positive sectional curvature do not admit any
metric of positive scalar curvature [GL80], [GL83].

After this general overview of obstructions for the existence of metrics of positive
scalar curvature, we turn to the relations between symmetries and metrics of positive
scalar curvature. We are in particular interested in the question whether a non-trivial
action of a compact connected Lie group G on a manifold M implies the existence of an
(invariant) metric of positive scalar curvature.

The case where G is non-abelian is completely understood. It has been shown by
Lawson and Yau [LY74] that a manifold with an action of such a group admits an
invariant metric of positive scalar curvature.

The case where G is a torus is more complicated. The first result which has to be
mentioned here is the vanishing of the Â-genus of a spin manifold which admits a non-
trivial circle action, proved by Atiyah and Hirzebruch [AH70]. Together with the above
mentioned result of Stolz it implies that a simply connected spin manifold of dimension
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4k ≥ 8 which admits a non-trivial circle action also admits a non-invariant metric of
positive scalar curvature. Later it has been shown by Ono [Ono91] that the α-invariant
of a spin manifold which admits an S1-action of odd type vanishes. This also gives
existence results for non-invariant metrics on simply connected manifolds. Here a S1-
action is of odd type if it does not lift to an action on the spin structure. Otherwise it
is of even type

There are examples of even S1-actions on spin manifolds with non-vanishing α-invariant.
Examples of such actions were constructed by Bredon [Bre67], Schultz [Sch75] and Joseph
[Jos81] on certain homotopy spheres which do not bound spin manifolds.

But what about S1-invariant metrics? For the case that the S1-action is free it has been
shown by Bérard Bergery [BB83] that M admits an invariant metric of positive scalar
curvature if and only if M/S1 admits a metric of positive scalar curvature. Therefore
principal S1-bundles over K3-surfaces with simply connected total space admit metrics
of positive scalar curvature but no invariant such metric.

Our first result gives the existence of invariant metrics of positive scalar curvature for
the case that there are many fixed points.

Theorem A Let M be a closed connected S1-manifold such that there is a fixed point
component of codimension two. Then there is an invariant metric of positive scalar
curvature on M .1

If M2n is a torus manifold, then for some S1 ⊂ Tn there is a component of MS1
which

has codimension two. Therefore the theorem applies in this case. One can even show
that there is a Tn-invariant metric of positive scalar curvature on M .

The idea of the proof of Theorem A is to use equivariant surgery to construct an
S1 × S1-invariant metric of positive scalar curvature on the total space of a principal
S1-bundle over M . The result then follows from a refinement of Bérard Bergery’s result.

The case where there are no codimension two fixed point components is more com-
plicated. We concentrate here on the case where dimM ≥ 6 and the maximal stratum
of the action is simply connected. Here the maximal stratum Mmax is the union of
all principal S1-orbits in M . We show that M admits an invariant metric of positive
scalar curvature if and only if its class in a certain S1-equivariant bordism group can be
represented by a manifold which admits an invariant metric of positive scalar curvature.

A construction of generators of the relevant groups leads to the following result.

Theorem B Let M be a closed S1-manifold of dimension at least 6 such that the max-
imal stratum of the S1-action is simply connected and for each subgroup H ⊂ S1, MH

is orientable.

1. If Mmax does not admit a spin structure or if M admits a spin structure but the
S1-action does not lift to an action on this structure, then there is an invariant
metric of positive scalar curvature on the equivariant connected sum of 2k copies
of M for some k ∈ N.

1We prove Theorem A in Chapter 2 “Circle actions and scalar curvature”.
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2. If M admits a spin structure, if, moreover, the S1-action lifts to an action on this
structure and if a generalized Â-genus of M/S1 vanishes, then there is a k ∈ N
such that the equivariant connected sum of 2k copies of M admits an invariant
metric of positive scalar curvature.2

Similarly to our first case, Hanke [Han08] has previously shown that if the S1-action
on M does not have fixed points, Mmax is non-spin and simply connected, and the
normal bundles of the singular strata satisfy some technical Condition C, then there is
an invariant metric of positive scalar curvature on M . Our methods for the proof of
Theorem B are based in part on refinements of his methods.

If in the second case the action is semi-free, then the generalized Â-genus of M/S1

from above coincides with a generalized Â-genus introduced by Lott [Lot00]. In general
it is the index of a Dirac operator on some submanifold with boundary of M/S1. It
vanishes if M admits an invariant metric of positive scalar curvature. In the case that
the S1-action on M is free, M/S1 is a spin manifold and its generalized Â-genus coincides
with the usual Â-genus of M/S1.

The above mentioned result of Hanke leads to the question whether taking the con-
nected sum is really necessary to construct an invariant metric of positive scalar curvature
on an S1-manifold. In view of this question we can prove the following results:

1. If M is non-spin and the S1-action on M is semi-free, then it suffices to take the
connected sum of two copies of M . This also holds more generally for S1-manifolds
with non-spin simply connected maximal stratum satisfying Condition C.

2. If Mmax is non-spin and simply connected, M satisfies Condition C and is equivari-
antly bordant to a product of two S1-manifolds M1, M2 with non-trivial S1-actions,
then one has a metric of positive scalar curvature on M . One does not have to
take the connected sums.

At the moment we do not know whether the first case can be further improved.

The bordism calculations which are used to prove Theorem B are also interesting for
other questions. For example, they lead to a new proof of the rigidity of elliptic genera
originally proved by Bott and Taubes [BT89] using different methods. Our proof of the
rigidity is based on the fact that one only has to check the rigidity of elliptic genera for
generators for the S1-equivariant spin bordism groups. The generators which we obtain
in our calculations are of a particularly simple form: They are semi-free S1-manifolds or
so-called generalized Bott manifolds. For the first class of manifolds it has been shown
by Ochanine [Och88] that the elliptic genera are rigid. His proof can be modified so that
it also works for the manifolds of the second class.

Besides the obstructions to metrics of positive scalar curvature the only known obstruc-
tion to a metric of positive Ricci curvature follows from the Theorem of Bonnet–Myers.
A consequence of this theorem is that the fundamental group of a closed manifold with

2We prove Theorem B in Chapter 3 “S1-equivariant bordism, invariant metrics of positive scalar cur-
vature and rigidity of elliptic genera.”.

6



a metric of positive Ricci curvature is finite. It has been conjectured by Bazaikin and
Matvienko that every quasitoric manifold admits an invariant metric of positive Ricci
curvature [BM11], [BM07]. They proved this conjecture in dimension four.

In view of Theorem A one might go even further and conjecture:

Conjecture 1.1 Every torus manifold with finite fundamental group admits an (invari-
ant) metric of positive Ricci curvature.3

Note that there are torus manifolds with infinite fundamental group. So not all torus
manifolds admit metrics of positive Ricci curvature.

By Synge’s theorem, the fundamental group of an even dimensional manifold with
positive sectional curvature has order at most two. (For results on the fundamental
group of odd dimensional positively curved manifolds see [Ron99], [Sha98] and [GS00].)
Using this property it is easy to find manifolds with positive Ricci curvature but no
metric of positive sectional curvature. An example of such a manifold is given by the
product of two copies of RP 2.

Gromov’s Betti Number Theorem [Gro81] gives an obstruction against non-negative
sectional curvature. It states that the sum of Betti numbers of a closed connected
manifold M which admits a metric of non-negative sectional curvature is bounded from
above by a constant which only depends on the dimension of M . Since there are metrics
of positive Ricci curvature on the connected sum of k copies of Sn × Sm, n,m > 1, for
every k ∈ N [SY91], it follows from the Betti Number Theorem that there are simply
connected manifolds which admit metrics of positive Ricci curvature but no metric of
non-negative sectional curvature. Because the connected sum of two quasitoric manifolds
is again quasitoric the existence of more such examples would follow from Bazaikin’s and
Matvienko’s conjecture.

The orbit space of a non-negatively/positively curved manifold M by an isometric
action of a compact Lie group G is a non-negatively/positively curved Alexandrov space.
Therefore tools from Alexandrov geometry can be used to study group actions on non-
negatively curved manifolds. One important result on non-negatively curved Alexandrov
spaces is an analogue of the so-called Soul Theorem of Cheeger and Gromoll [CG72].
It says that if X is a compact non-negatively curved Alexandrov space with non-empty
boundary, then there is a totally convex compact subset S without boundary which is a
strong deformation retract of X. If X has positive curvature then S is a single point.

The boundary of M/G is non-empty if for example the G-action is fixed point ho-
mogeneous, i.e. there is a component F of MG such that G acts transitively on the
normal sphere at any point of F . If M is a torus manifold, then as observed before there
is an S1 ⊂ T such that MS1

has codimension two. The action of such an S1 is fixed
point homogeneous. Using this fact and the Soul Theorem it has been shown by Grove

3Added in Proof: As pointed out to us by Vitali Kapovitch the finiteness of the fundamental group
is not the only obstruction to positive Ricci curvature besides the obstructions to positive scalar
curvature: By [KW11], the fundamental group of a positively Ricci curved manifold M contains
a nilpotent subgroup whose index is bounded by a constant only depending on the dimension of
M . Since every finite presentable group is the fundamental group of some eight-dimensional torus
manifold [Wie13], it follows that the conjecture is not true as stated.
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and Searle [GS94] that a torus manifold with an invariant metric of positive sectional
curvature is diffeomorphic to S2n or CPn. More recently it has been shown by Spindeler
[Spi14] using similar techniques that a fixed point homogeneous manifold of non-negative
curvature decomposes as the union of two disc bundles over invariant submanifolds.

One can use Toponogov’s Theorem applied to the orbit space of a four-dimensional
non-negatively curved torus manifold M with vanishing first Betti number to show that
M has at most four fixed points [GGS11]. Together with classification results for simply
connected four-dimensional torus manifolds due to Orlik and Raymond [OR70], this
leads to a classification of simply connected non-negatively curved four dimensional
torus manifolds. Each such manifold is diffeomorphic to S4, CP 2, S2 × S2, CP 2#CP 2

or CP 2#CP
2
. One can also show that these are the only non-negatively curved simply

connected four-dimensional manifolds which admit an isometric action of S1 [Kle90],
[SY94].

By a combination of all the results on non-negatively curved torus manifolds mentioned
above, we prove the following classification result for non-negatively curved simply con-
nected torus manifolds.

Theorem C Let M be a simply connected torus manifold which admits an invariant
metric of non-negative sectional curvature. Then M is diffeomorphic to a quotient of a
free linear torus action on a product of spheres.4

We give a short outline of the proof. At first one uses the results of Spindeler to show
that the manifold M is locally standard. This implies that the orbit space M/T is a
manifold with corners. Again by an inductive application of Spindeler’s result, one then
shows that all faces of M/T are diffeomorphic to standard discs. This implies that the
diffeomorphism type of M/T is determined by its face poset P(M/T ).

The condition that two-dimensional faces of M/T have at most four vertices has
strong implications for the combinatorial type of the face poset of M/T . Indeed one
can determine this combinatorial type from this condition. Then one knows that the
moment-angle complex associated to this poset is diffeomorphic to a product of spheres.
Since M is the quotient of this moment-angle complex by a free torus action, the result
follows.

For non-simply connected non-negatively curved torus manifolds we show that their
fundamental group is always finite. Therefore their universal coverings are diffeomorphic
to manifolds as in Theorem C.

If one considers actions of tori of lower dimension than in the case of torus mani-
folds, one comes naturally to the class of GKMk manifolds. These are even-dimensional
manifolds with an action of a torus such that:

1. The action has only finitely many fixed points.

2. At each fixed point any k weights of the torus representation at this fixed point
are linear independent.

4We prove Theorem C in Chapter 4 “Torus manifolds and non-negative curvature”.
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3. The action is equivariantly formal.

For k = 2 one also just speaks of GKM manifolds. GKM manifolds first appeared in
the paper [GKM98] by Goresky, Kottwitz and MacPherson. Later on these manifolds
have been studied by symplectic geometers (see for example [GM14], [GSZ13], [GHZ06],
[GH04] and [GZ99]).

Using a similar combinatorial approach as in the torus manifold case we can compute
the real cohomology of GKM3 manifolds with an invariant metric of positive sectional
curvature as follows.

Theorem D Let M be a compact connected positively curved orientable Riemannian
manifold satisfying Hodd(M ;R) = 0. Assume that M admits an isometric torus action
of type GKM3. Then M has the real cohomology ring of a compact rank one symmetric
space.5

Under stronger conditions on the weights at the fixed points, we get a similar result
for cohomology with integer coefficients and a finiteness result for the diffeomorphism
types of these manifolds.

After solving the existence question for metrics with certain curvature conditions on
a manifold, the next question is: How many such metrics exist on the manifold? Or,
what is the topology of the space of metrics with this curvature condition?

As far as the question is concerned one should also consider so-called moduli spaces of
Riemannian metrics. These are orbit spaces of spaces of Riemannian metrics equipped
with the natural action of the diffeomorphism group of M given by pull back of metrics.

Here we focus on the case of quasitoric manifolds and invariant metrics of positive
scalar curvature on these manifolds. Our main result for the above questions in this case
is the following theorem.

Theorem E There are quasitoric manifolds M of dimension 2n such that for 0 < k <
n
6−7, n odd and k ≡ 0 mod 4, πk(M+)⊗Q is non-trivial, where M+ is some component
of the moduli space M+(M ;Tn) of Tn-invariant metrics of positive scalar curvature on
M .6

It might be seen as a first step to understand the topology of the moduli space of
metrics of positive scalar curvature on these manifolds. This is because the full moduli
space of these metrics is stratified by the rank of the isometry groups of the metrics on
M . The above theorem is a non-triviality result for the homotopy type of a minimal
stratum of this moduli space. If one has non-triviality results for the homotopy types
of all strata, one might expect non-triviality results for the homotopy types of the full
moduli space.

The proof of this last theorem is based on an equivariant version of a method used
in [BHSW10] to construct non-trivial elements in homotopy groups of observer moduli
spaces of positive scalar curvature metrics.

5We prove Theorem D in Chapter 5 “Positively curved GKM manifolds”.
6We prove Theorem A in Chapter 6 “Moduli spaces of invariant metrics of positive scalar curvature on
quasitoric manifolds”.

9



2. Organization of the Habilitationsschrift

In the following chapters papers of mine written during the time 2010–2016 are presented.
The first part deals with results on torus actions and positive scalar curvature. In this

part we prove Theorems A and B.
The first of these chapters has been published as

1. Circle actions and scalar curvature, Trans. Amer. Math. Soc. 368 (2016), No. 4,
2939-2966

The second appeared as

2. S1-equivariant bordism, invariant metrics of positive scalar curvature and rigidity
of elliptic genera, Preprint, 2016

on arxiv.org and has been submitted to a journal.
In the next two chapters the results on positive and non-negative sectional curvature

and torus manifolds and GKM manifolds are presented in two chapters. Here we prove
Theorems C and D. The results of the second of these chapters are joint work with
Oliver Goertsches. Modified versions of these chapters have been published as

3. Torus manifolds and non-negative curvature, J. Lond. Math. Soc., II. Ser. 91
(2015), No. 3, 667-692,

4. (with Oliver Goertsches) Positively curved GKM-manifolds, Int. Math. Res. Not.,
2015 (2015), No. 22, 12015-12041.

In the last part we investigate the homotopy types of moduli spaces of (invariant)
metrics of positive scalar curvature on quasitoric manifolds and spheres. The chapters
of this part were never published before. In this part we prove Theorem E.
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Circle actions and scalar curvature

Michael Wiemeler

We construct metrics of positive scalar curvature on manifolds with circle
actions. One of our main results is that there exist S1-invariant metrics
of positive scalar curvature on every S1-manifold which has a fixed point
component of codimension 2. As a consequence we can prove that there are
non-invariant metrics of positive scalar curvature on many manifolds with
circle actions. Results from equivariant bordism allow us to show that there
is an invariant metric of positive scalar curvature on the connected sum of
two copies of a simply connected semi-free S1-manifold M of dimension at
least six provided that M is not spin or that M is spin and the S1-action
is of odd type. If M is spin and the S1-action of even type then there is
a k > 0 such that the equivariant connected sum of 2k copies of M admits
an invariant metric of positive scalar curvature if and only if a generalized
Â-genus of M/S1 vanishes.

1. Introduction

In this article we discuss the following questions: Let G be a compact connected Lie-
group and M a closed connected effective G-manifold.

1. Is there a G-invariant metric of positive scalar curvature on M?

2. If the answer to the first question is “no”, does there exist a non-invariant metric
of positive scalar curvature on M?

It has been shown by Lawson and Yau [LY74] that the answer to the first question is
“yes” if G is non-abelian. Therefore we concentrate on the case where G is abelian and
especially on the case G = S1.

In this case there are two extreme situations:

1. The S1-action on M is free.

2. There are “many” S1-fixed points, i.e. the fixed point set has low codimension.

The first situation was studied by Bérard Bergery [BB83], who showed that a free
S1-manifold M admits an S1-invariant metric of positive scalar curvature if and only if
M/S1 admits a metric of positive scalar curvature.

For the second case we have the following theorem.
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Theorem 1.1 (Theorem 2.4) Let G be a compact Lie-group. Assume that there is a
circle subgroup S1 ⊂ Z(G) contained in the center of G. Moreover, let M be a closed
connected effective G-manifold such that there is a component F of MS1

with codimF =
2. Then there is a G-invariant metric of positive scalar curvature on M .

A torus manifold M is a closed connected 2n-dimensional manifold with an effective
action of an n-dimensional torus T , such that MT 6= ∅. Smooth compact toric varieties
are examples of torus manifolds. As a corollary to Theorem 1.1 we prove:

Corollary 1.2 (Corollary 2.6) Every torus manifold admits an invariant metric of
positive scalar curvature.

We also show that a closed connected semi-free S1-manifold M of dimension greater
than five without fixed point components of codimension less than four admits an invari-
ant metric of positive scalar curvature if and only if the bordism class of M in a certain
equivariant bordism group can be represented by an S1-manifold with an invariant metric
of positive scalar curvature (see Theorem 4.5).

If M is simply connected, one has to distinguish between the following three cases:

1. M does not admit a Spin-structure.

2. M admits a Spin-structure and the S1-action lifts into this structure. In this case
it is said that the action is of even type.

3. M admits a Spin-structure, but the S1-action does not lift into it. In this case it
is said that the action is of odd type.

An investigation of the relevant bordism groups in these cases leads to the following
theorems.

Theorem 1.3 (Theorem 4.7) LetM be a closed simply connected semi-free S1-manifold
of dimension n > 5. If M is not spin or spin and the S1-action is odd, then the equiv-
ariant connected sum of two copies of M admits an invariant metric of positive scalar
curvature.

In [Lot00] Lott constructed a generalized Â-genus for orbit spaces of semi-free even S1-
actions on Spin-manifolds. He showed that for such a manifold M , Â(M/S1) vanishes
if M admits an invariant metric of positive scalar curvature. We prove the following
partial converse to his result.

Theorem 1.4 (Theorem 4.11) Let M be a closed simply connected Spin-manifold of
dimension n > 5 with even semi-free S1-action. Then we have Â(M/S1) = 0 if and only
if there is a k ∈ N such that the equivariant connected sum of 2k copies of M admits an
invariant metric of positive scalar curvature.

By using Theorem 1.1, we can show that there are non-invariant metrics of positive
scalar curvature on many manifolds with S1-action. This is the content of the next
theorem.
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Theorem 1.5 (Theorem 3.3) Let M be a closed connected effective S1-manifold of
dimension n ≥ 5 such that the principal orbits in M are null-homotopic. This condition
guarantees that the S1-action on M lifts to an S1-action on the universal cover M̃ of
M . If the universal cover of M is a Spin-manifold assume that the lifted S1-action on
M̃ is of odd type.

Then M admits a non-invariant metric of positive scalar curvature.

Note that if in the situation of the above theorem MS1 6= ∅, then the principal orbits
are always null-homotopic. Since a S1-manifold M with χ(M) 6= 0 has fixed points we
get the following corollary.

Corollary 1.6 (Corollary 3.5) Let M be a closed connected manifold of dimension
n ≥ 5 with non-zero Euler-characteristic such that the universal cover of M is not spin.
If M does not admit a metric of positive scalar curvature, then there is no non-trivial
S1-action on M .

It should be noted that the condition on the principal orbits in the above theorem
cannot be omitted. This can be seen by considering a torus Tn =

∏n
i=1 S

1 on which
S1 acts by multiplication on one of the factors. Then Tn admits a Spin-structure for
which the S1-action is of odd type. But Tn does not admit a metric of positive scalar
curvature.

Bredon [Bre67], Schultz [Sch75] and Joseph [Jos81] constructed S1-actions of even type
on homotopy spheres not bounding Spin-manifolds. It is known that these homotopy
spheres do not admit metrics of positive scalar curvature. Therefore Theorem 1.5 is not
true for S1-actions of even type on Spin-manifolds.

This paper is organized as follows. In Section 2 we prove Theorem 1.1 and give some
applications. Then in Section 3 we prove Theorem 1.5 and give more applications. In
Section 4 we discuss the existence of metrics of positive scalar curvature on semi-free
S1-manifolds without fixed point components of codimension two.

I would like to thank Bernhard Hanke for helpful discussions on the subject of this
paper and a simplification of the proof of Theorem 3.3. Moreover, I would like to thank
the Max Planck Institute for Mathematics in Bonn for hospitality and financial support
while I was working on this paper. I also want to thank the anonymous referee for
comments which helped to improve the paper.

2. Construction of invariant metrics of positive scalar curvature

In this section we construct invariant metrics of positive scalar curvature on S1-manifolds
M such that MS1

has codimension two.

For the construction of our metrics of positive scalar curvature we use a surgery-
principle which was first proven independently by Gromov and Lawson [GL80] and
Schoen and Yau [SY79]. Later it was noted by Bérard Bergery [BB83] that these con-
structions also work in the equivariant setting. This gives the following theorem.
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Theorem 2.1 ([BB83, Theorem 11.1]) Let G be a compact Lie-group and M and
N be G-manifolds. Assume that N admits an G-invariant metric of positive scalar
curvature. If M is obtained from N by equivariant surgery of codimension at least three,
then M admits an invariant metric of positive scalar curvature.

Besides the construction of metrics of positive scalar curvature via surgery, we need
the following result which tells us that there are such metrics on certain orbit spaces of
free torus actions.

Theorem 2.2 Let M be a manifold with a free action of a torus T . Assume that there
is an action of a compact Lie-group which commutes with the T -action on M . Then
there is a G-invariant metric of positive scalar curvature on M/T if and only if there is
a G× T -invariant metric of positive scalar curvature on M .

Proof. In the case that G is the trivial group this theorem is part of Bérard Bergery’s
Theorem C from [BB83]. So we begin by recalling Bérard Bergery’s construction and
then indicate what has to be done to get a G-invariant metric.

Bérard Bergery starts with a T -invariant metric g of positive scalar curvature on M .
This metric induces a metric g∗ on M/T , such that the orbit map π : M → M/T is a
Riemannian submersion. The metric g∗ is then rescaled by the function F : M/T → R,
F (x) = f(x)2/(dimM/T−1), where f(x) is the volume of the T -orbit π−1(x). Bérard
Bergery proves that the resulting metric g̃ has positive scalar curvature.

If we choose the metric g to be G × T -invariant, then every element of G maps each
T -orbit in M isometrically onto another T -orbit because G and T commute. Therefore
the function F is G-invariant.

Moreover, if h is an element of G and x ∈ M , then the differential Dxh maps the
orthogonal complement of Tx(Tx) in TxM isometrically onto the orthogonal complement
of Thx(Thx) in ThxM . Since π : (M, g) → (M/T, g∗) is a Riemannian submersion, it
follows that g∗ is G-invariant.

Hence, the metric g̃ is also G-invariant.
For the construction of an invariant metric with positive scalar curvature on M from

a metric on M/T , just pick a G × T -invariant connection for the principal T -bundle
M → M/T and a flat invariant metric h on T . Then by a result of Vilms [Vil70] there
is a unique metric on M such that M →M/T is a Riemannian submersion with totally
geodesic fibers isometric to (T, h) and horizontal distribution associated to the chosen
connection. By construction this metric is G × T -invariant. After shrinking the fibers
one gets a metric of positive scalar curvature on M . In the following we will call a metric
obtained by such a construction a connection metric. �

Now we turn to our construction of invariant metrics of positive scalar curvature. For
this we need the following lemma.

Lemma 2.3 Let G be a compact Lie-group and Z be a compact connected G-manifold
with non-empty boundary. We view Z as a bordism between the empty set and ∂Z. Then
there is a G-handle decomposition of Z without handles of codimension 0.
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Proof. We choose a special G-Morse function f : Z → [0, 1] without critical orbits
on the boundary of Z, such that f−1(1) = ∂Z. For the definition of special G-Morse
functions and some of their properties see [Han08] or [May89]. The map f induces a
G-handle decomposition of Z such that the handles correspond one-to-one to the critical
orbits of f . The codimension of a handle corresponding to a critical orbit is given by
the coindex of this orbit. Therefore we have to show that we can change f in such a
way that there are no critical orbits of coindex 0. By Lemma 13 of [Han08], the critical
orbits of coindex 0 are principal orbits.

Therefore, as in the proof of Theorem 15 of [Han08], non-equivariant handle cancel-
lation on the orbit space can be used to remove all handles of codimension 0. Note
here that we only work with handles of codimension 0. Therefore we do not need the
dimension assumption from Hanke’s theorem. �

Now we can prove the first of our main theorems.

Theorem 2.4 Let G be a compact Lie-group. Assume that there is a circle subgroup
S1
0 ⊂ Z(G) contained in the center of G. Moreover, let M be a closed connected effective
G-manifold such that there is a component F of MS1

0 with codimF = 2. Then there is
an G-invariant metric of positive scalar curvature on M .

Proof. Let Z be M with an open tubular neighborhood of F removed. Then Z is a
G-manifold with boundary SF, the normal sphere bundle of F . Let S1

1 act on D2 ⊂ C
via multiplication with the inverse. Then we have a G×S1

1 -manifold X = Z ×D2 (with
corners equivariantly smoothed). A G-handle decomposition of Z induces a G × S1

1 -
handle decomposition of X (both viewed as bordisms between the empty set and their
boundaries) such that

1. the G-handles of Z are one-to-one to the G× S1
1 -handles of X.

2. the codimension of a handle of X is given by the codimension of the corresponding
handle of Z plus two.

By Lemma 2.3, we may assume that there is no handle of codimension 0 in the decom-
position of Z. Therefore in the decomposition of X all handles have codimension at least
three. Hence, it follows from Theorem 2.1 that ∂X admits an G × S1

1 -invariant metric
of positive scalar curvature.

Now we have
∂X = SF ×D2 ∪F Z × S1,

where the gluing map F : ∂(SF ×D2) = SF × S1 → SF × S1 = ∂(Z × S1) is given by
f × g−1. Here f : SF →֒ Z and g : S1 →֒ D2 are the natural inclusions.

Note that SF is a principal S1-bundle over F and the action of S1
0 on this bundle is

given by multiplication on the fibers. Therefore the orbit space of the free diag(S1
0×S1

1)-
action on SF ×D2 is the normal disc bundle of F in M . A diffeomorphism is induced
by the map

SF ×D2 → N(F,M) (x, λ) 7→ λx,

21



where λx is given by complex multiplication of λ ∈ D2 ⊂ C and x ∈ SF with respect to
the complex structure on N(F,M) induced by the action of S1

0 .
Moreover, the orbit space of the free diag(S1

0 × S1
1)-action on Z × S1 is diffeomorphic

to Z. A diffeomorphism is induced by the map

Z × S1 → Z (x, λ) 7→ λ · x,

where · denotes the action of S1
0 on Z.

Hence, it follows from the special form of F described above that F induces the natural
inclusion SF →֒ Z on the orbit space.

Therefore the quotient of the free diag(S1
0 × S1

1)-action on ∂X is G-equivariantly
diffeomorphic to M . Since the action of G on ∂X commutes with the action of diag(S1

0×
S1
1), it follows from Theorem 2.2 that M admits a G-invariant metric of positive scalar

curvature. �

Note that if a torus T acts effectively on a manifold M , then all fixed point components
have codimension greater or equal to 2 dimT . For the case of equality we have the
following corollary.

Corollary 2.5 Let T be a torus that acts effectively on the closed connected manifold
M . If there is a component of MT of codimension 2 dimT , then there is a T -invariant
metric of positive scalar curvature on M .

Proof. Let F be a component of MT of codimension 2 dimT and x ∈ F . Then up
to an automorphism of T the T -representation on the normal space Nx(F,M) is given
by the standard T -representation. Therefore there is a codimension-two subspace of
Nx(F,M) which is fixed pointwise by a circle subgroup S1 ⊂ T . Hence, it follows that
F is contained in a codimension-two submanifold of M which is fixed pointwise by S1.
Now the statement follows from Theorem 2.4. �

A torus manifold is a closed connected 2n-dimensional manifold M with an effective
action of an n-dimensional torus T , such that MT 6= ∅. Smooth compact toric varieties
are examples of torus manifolds. As a consequence of Corollary 2.5 we get the following
corollary.

Corollary 2.6 Every torus manifold admits an invariant metric of positive scalar cur-
vature.

Proof. The fixed point set of a torus manifold consists of isolated points. Therefore the
statement follows from Corollary 2.5. �

As an application of Corollary 2.6 we can improve the upper bound for the degree of
symmetry of manifolds which do not admit metrics of positive scalar curvature given by
Lawson and Yau in [LY74].
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Corollary 2.7 Let G be a compact connected Lie-group which acts effectively on a closed
connected manifold M which does not admit a metric of positive scalar curvature and
has non-zero Euler-characteristic. Then G is a torus of dimension less than 1

2 dimM .

Proof. By a result of Lawson and Yau [LY74], G must be a torus. Because the
Euler-characteristic of M is non-zero, there are G-fixed points in M . Therefore we have
2 dimG ≤ dimM . If equality holds in this inequality, then M is a torus manifold.
Therefore, by Corollary 2.6, we have 2 dimG < dimM . �

By [ABP67, Corollary 2.7], a homotopy sphere of dimension greater than one bounds
a Spin-manifold if and only if it has vanishing α-invariant. Moreover, homotopy spheres
with non-vanishing α-invariant only exist in dimensions greater or equal to 9 congru-
ent to 1 or 2 mod 8. In these dimensions they constitute half of all homotopy spheres
(see [Mil65, Proof of Theorem 2] and [Ada66, Theorem 1.2]). Since the α-invariant van-
ishes for spin-manifolds which admit metrics of positive scalar curvature, such homotopy
spheres do not admit a metric of positive scalar curvature.

Hence, even-dimensional exotic spheres Σ which do not bound Spin-manifolds are
examples of manifolds for which the assumptions on M from the above corollary hold.
Other examples of manifolds M can be constructed as follows. Let N be a torus manifold
which is spin with 10 ≤ dimN ≡ 2 mod 8. Then the α-invariant of M = N#Σ does not
vanish. Therefore M does not admit a metric of positive scalar curvature and satisfies
the assumptions of the corollary. Therefore M does not admit a smooth action of a torus
of dimension 1

2 dimM = 1
2 dimN .

For four-dimensional S1-manifolds we also have the following two corollaries.

Corollary 2.8 Let M be a closed connected effective S1-manifold with dimM = 4 and
χ(M) < 0. Then there is an invariant metric of positive scalar curvature on M .

Proof. Since χ(MS1
) = χ(M) < 0, there must be a fixed point component of dimension

two. Hence, the corollary follows from Theorem 2.4. �

Corollary 2.9 LetM be a closed connected oriented semi-free S1-manifold with dimM =
4 and non-vanishing signature. Then there is an invariant metric of positive scalar cur-
vature on M .

Proof. By Corollary 6.24 of [Kaw91], there is a fixed point component of dimension
two in M . Hence, the corollary follows from Theorem 2.4. �

3. Constructions of non-invariant metrics of positive scalar

curvature

In this section we construct non-invariant metrics of positive scalar curvature on many
manifolds with circle actions. For this construction we need the following lemma.
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Lemma 3.1 Let M be a closed connected effective S1-manifold of dimension n > 1. If
n > 2, thenM is equivariantly bordant to a closed connected effective S1-manifold N such
that there is a component of NS1

of codimension two. If n = 2, then M is equivariantly
bordant to a closed effective S1-manifold with at most two components such that each
component contains an isolated S1-fixed point. Moreover, we have:

1. If M is oriented, then N is also oriented and they are equivariantly bordant as
oriented manifolds.

2. If M is spin and the S1-action on M is of odd type, then the same holds for N
and they are equivariantly bordant as Spin-manifolds.

Proof. Let S1
0 →֒ M be the inclusion of a principal orbit in M . Then the equivariant

normal bundle of S1
0 is given by S1

0 × Rn−1, where S1 acts trivially on the Rn−1-factor.
Therefore we can do equivariant surgery on S1

0 to obtain an S1-manifold N . If n > 2,
then N is connected and has a fixed point component of codimension two. If n = 2,
then N might have two components both containing an isolated S1-fixed point. If we
let W be the trace of this surgery we see that (1) holds.

For (2) we need an extra argument to show that W is spin. This is the case if the
inclusions

S1
0 ×Dn−1 →֒M and S1

0 ×Dn−1 →֒ D2 ×Dn−1

induce the same Spin-structure on S1
0 ×Dn−1.

Let Ŝ1 be the connected double cover of S1. Then the S1-action on M induces an
action of Ŝ1 on M . This action of Ŝ1 lifts into the Spin-structure on M . Let Z2 ⊂ Ŝ1 be
the kernel of Ŝ1 → S1. If the S1-action on M is of odd type, then Z2 acts non-trivially
on each fiber of the principal Spin-bundle over M . If the S1-action on M is of even type,
then Z2 acts trivially on this bundle.

On S1
0 × Dn−1 there are two Spin-structures. For one of them the S1-action on

S1
0 ×Dn−1 is of even type. For the other it is of odd type. By the above remark about

the action of Z2, it follows that the inclusion S1
0 × Dn−1 →֒ M , induces the second

Spin-structure on S1
0 × Dn−1. This is also the Spin-structure which is induced by the

inclusion of S1
0 ×Dn−1 →֒ D2 ×Dn−1. Therefore W is an equivariant Spin-cobordism.

�

By combining Theorem 2.4 and Lemma 3.1 we recover the following result of Ono.

Corollary 3.2 ([Ono91]) LetM be a closed connected Spin-manifold with an S1-action
of odd type. Then the α-invariant of M vanishes.

Proof. The α-invariant is a Spin-bordism invariant and vanishes for Spin-manifolds
which admit metrics of positive scalar curvature. Since an action of odd type is always
non-trivial, we may assume that the S1-action on M is effective. Because by Theorem
2.4 and Lemma 3.1, M is Spin-bordant to a manifold with a metric of positive scalar
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curvature the statement follows. �

As another application of Theorem 2.4 we get:

Theorem 3.3 Let M be a closed connected effective S1-manifold of dimension n ≥ 5
such that the principal orbits in M are null-homotopic. This condition guarantees that
the S1-action on M lifts to an S1-action on the universal cover M̃ of M . If the universal
cover of M is a Spin-manifold assume that the lifted S1-action on M̃ is of odd type.
Then M admits a non-invariant metric of positive scalar curvature.

Proof. At first do an equivariant surgery on a principal orbit of the S1-action on M as in
the proof of Lemma 3.1. By Theorem 2.4, the resulting manifold has an invariant metric
of positive scalar curvature. Moreover, since the principal orbits are null-homotopic,
it follows from the assumption on the lifted action to the universal cover, that N is
diffeomorphic to the connected sum of M and S2 × Sn−2.

Indeed, the result of a surgery on a null-homotopic circle S in M is diffeomorphic to
the connected sum of M and S2 × Sn−2 or the connected sum of M and the non-trivial
Sn−2-bundle over S2, depending on the choice of the framing of the circle, for which
there are two choices. If the universal cover of M is not spin, then these two manifolds
are diffeomorphic. To see this take an embedding of S2 →֒ M with non-trivial normal
bundle. We may assume that S is contained in S2 as a small circle around the north
pole. We fix a framing of S in M . We may move S along the meridians of S2 to the south
pole and then rotate S2 so that the north and south pole are interchanged. During the
way of S in S2 its framing changes, so that the result of a surgery on S is independent
of the choice of the framing.

If the universal cover of M is spin, then the assumption on the lifted action and the
argument from the proof of Lemma 3.1 imply that the universal cover of the result of
the surgery is also spin. Therefore N is the connected sum of M and S2×Sn−2. Hence,
by surgery on the S2-factor we recover M . Since this surgery is of codimension at least
three, it follows that M admits a metric of positive scalar curvature. �

We give an example which shows that the assumptions of the above theorem are not
sufficient for the existence of S1-invariant metrics. Let X = (CP 2 × CP 1)#T 6 and M
be the principal S1-bundle over X with first Chern class a generator of H2(CP 2;Z) ⊂
H2(X;Z). Then it follows from an inspection of a Mayer-Vietoris-sequence that M is a
Spin-manifold. Moreover, the S1-action on M is of odd type because X is not a Spin-
manifold. The S1-orbits in M are null-homotopic because M |CP 2⊂X = S5 is simply
connected. But there is a degree-one map X → T 6. Hence, X does not admit a metric
of positive scalar curvature by [SY79, Corollary 2]. Therefore, by Theorem 2.2, M does
not admit a S1-invariant metric of positive scalar curvature.

As a consequence of the proof of Theorem 3.3 we get the following corollary.

Corollary 3.4 Let M be a manifold of dimension n ≥ 4 with effective S1-action and
null-homotopic principal orbits. Denote by N the non-trivial Sn−2-bundle over S2. Then
the following holds:
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1. One of the manifolds M#(S2 × Sn−2) or M#N admits an S1-action with an
invariant metric of positive scalar curvature.

2. M#N#(S2×Sn−2) admits an S1-action with an invariant metric of positive scalar
curvature.

Proof. Let M ′ be the result of an equivariant surgery on a principal orbit in M . Then
the S1-action on M ′ has a fixed point component of codimension two. Therefore M ′

has an invariant metric of positive scalar curvature. Since the principal orbits in M are
null-homotopic, M ′ is diffeomorphic to M#(S2 × Sn−2) or M#N . Therefore the first
claim follows.

The structure group of N → S2 reduces to S1. Let S1 act on S2 by rotation. Then, by
results of Hattori and Yoshida [HY76], the S1-action on S2 lifts to an action on N such
that the action on the fiber over one of the fixed points in S2 is trivial. Therefore the
lifted action on N has a fixed point component of codimension two. A similar statement
holds for an S1-action on S2 × Sn−2.

Then we can form the connected sum of M ′ and N (and also of M ′ and S2 × Sn−2)
in an equivariant way. Therefore M ′#N and M ′#(S2 × Sn−2) admit an S1-action with
an invariant metrics of positive scalar curvature. This proves the second claim. �

Since the principal orbits of an S1-action are always null-homotopic if the S1-action
has fixed points, we get the following corollary.

Corollary 3.5 Let M be a closed connected manifold of dimension n ≥ 5 with non-zero
Euler-characteristic such that the universal cover of M is not spin. If M does not admit
a metric of positive scalar curvature, then there is no non-trivial S1-action on M .

Proof. Since χ(M) 6= 0 every S1-action on M must have fixed points. Therefore it
follows from Theorem 3.3 that there is no non-trivial S1-action on M . �

It follows from Corollary 3.5, that the manifold X from the example after Theorem 3.3
does not admit any non-trivial circle action.

It was an idea of Bernhard Hanke to combine Corollary 3.5 with ideas of Schick to
construct new obstructions to S1-actions on manifolds with non-spin universal cover of
dimension greater than four. In the remainder of this section we describe what grew out
of this idea.

For these manifolds, there is only one known obstruction to a metric of positive scalar
curvature, namely the minimal hypersurface method of Schoen and Yau [SY79]. Using
this method the following theorem was proved by Joachim and Schick.

Theorem 3.6 ([JS00]) Let G be a discrete group and [M → BG] ∈ ΩSO
n (BG) with

2 ≤ n ≤ 8 and M connected. If there are α1, . . . , αn−2 ∈ H1(BG;Z) such that

α1 ∩ (· · · ∩ (αn−2 ∩ [M ]) . . . ) 6= 0 ∈ ΩSO
2 (BG),

then M does not admit a metric of positive scalar curvature.
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Here, the map

∩ : H1(BG;Z) × ΩSO
n (BG) → ΩSO

n−1(BG), (α, [M ]) 7→ α ∩ [M ]

is defined as follows. Represent an element α ∈ H1(BG;Z) by a map f : BG→ S1 and
let [φ : M → BG] ∈ ΩSO

n (BG). Let ψ : M → S1 be a differentiable map homotopic to
f ◦ φ and x ∈ S1 a regular value of ψ. Then α ∩ [M ] is represented by the restriction of
φ to the hypersurface ψ−1(x) ⊂M .

So, by combining Theorem 3.3 and Theorem 3.6, one gets the following Theorem 3.7
for certain manifolds of dimension greater than four and smaller than nine. But there is
also a direct proof for this theorem which does not use the scalar curvature of metrics
on the manifolds involved. We give this proof below.

Theorem 3.7 Let G be a discrete group and [φ : M → BG] ∈ ΩSO
n (BG) with n ≥ 2

and M connected. If there are α1, . . . , αn−2 ∈ H1(BG;Z) such that

α1 ∩ (· · · ∩ (αn−2 ∩ [M ]) . . . ) 6= 0 ∈ ΩSO
2 (BG),

then M does not admit an effective S1-action with null-homotopic principal orbits.

Proof. Assume that there is such an action on M . At first note that the map ψ from
the above construction can be assumed to be S1-equivariant with S1 acting trivially
on S1. This is because, by [DS82, Theorem 1.11], π1(M/S1) = π1(M)/H where H, is
generated by elements of finite order. Therefore up to homotopy every map M → S1

factors through M/S1. Note also, that if N ⊂ M is an invariant submanifold, then
the restriction of f ◦ φ to N factors up to homotopy through M/S1 and therefore also
through N/S1.

Hence, by applying the construction ∩ described above several times, we get an ori-
entable invariant two-dimensional submanifold N ′ of M with equivariantly trivial normal
bundle. Therefore the S1-action on N ′ is effective. From the classification of orientable
S1-manifolds with one-dimensional orbit space it follows that N ′ is equivariantly diffeo-
morphic to a sphere with S1 acting by rotation or to a torus S1 × S1 with S1 acting
by multiplication on the first factor. In the first case [N ′] = 0 ∈ ΩSO

2 (BG) because
π2(BG) = 0. In the second case the map N ′ = S1 × S1 → BG extends to a map
D2 × S1 → BG because the principal orbits in M are null-homotopic. Hence, N ′ is a
boundary. Therefore the statement follows. �

It follows from the above theorem that Schick’s five-dimensional counterexample [Sch98]
to the Gromov–Lawson–Rosenberg Conjecture does not admit any S1-action with fixed
points. If one does Schick’s construction in dimension six, then one gets a manifold with
non-trivial Euler characteristic. Therefore this manifold does not admit any S1-action.

4. Semi-free circle actions

In this section we discuss the question when a semi-free S1-manifold without fixed point
components of codimension less than four admits an invariant metric of positive scalar
curvature. For this discussion we need some notations and results of Stolz [Sto].
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A supergroup γ is a triple (π,w, π̂), where π is a group, π̂ → π is an extension of π
such that ker(π̂ → π) has order less than three and w : π → Z2 is a homomorphism. We
call a supergroup discrete if π is a discrete group.

For a supergroup γ = (π,w, π̂) we define the even part of γ as the group kerw ◦ ϕ.

For a discrete supergroup γ one defines a Lie group G(n, γ) as the even part of the
superproduct Pin(n)×̂γ. There is a homomorphism G(n, γ) → O(n), which is surjective
if w 6= 0 and has image SO(n) if w = 0. In both cases G(n, γ) is a covering of its image
under this homomorphism.

A γ-structure on a vector bundle E → X equipped with an inner product and with
dimE ≥ 3, is a reduction of structure group of E through the homomorphism G(n, γ) →
O(n), i.e. a γ-structure is a principal G(n, γ)-bundle PG(n,γ)(E) over X together with an
isomorphism of principal O(n)-bundles ξ : PG(n,γ)(E) ×G(n,γ) O(n) → PO(n)(E), where
PO(n)(E) is the orthogonal frame bundle of E. If M is a manifold, then a γ-structure
on M is a γ-structure on its tangent bundle. A manifold with a γ-structure is called
γ-manifold.

It can be shown that there is a natural bijection between the γ-structures on E and
E ⊕ R. Moreover, in the case that w = 0, a γ-structure induces an orientation on E.

For each vector bundle E → X over a connected space X there is a supergroup γ(E),
which encodes the information contained in the fundamental group of X and the first
two Stiefel-Whitney classes of E. It is defined as follows:

1. π = π1(X),

2. w : π → Z2 is the orientation character of E,

3. π̂ → π is the extension of π induced by the projection map PO(n)(E)/〈r〉 →
X, where r ∈ O(n) is the reflection in the hyperplane perpendicular to e1 =
(1, 0, . . . , 0) ∈ Rn.

A vector bundle together with a choice of a base point for its orthogonal frame bundle
is called a pointed vector bundle. Stolz shows that for every pointed vector bundle
E there is a canonical γ(E)-structure on E. We denote this γ(E)-structure of E by
Pγ(E)(E).

Now let X be a S1-space. Then we call a γ-structure on an S1-vector bundle E → X
equivariant if the S1-action on PO(n)(E) lifts to an S1-action on PG(n,γ)(E) in such a
way that the S1-action commutes with the G(n, γ)-action. If the S1-action on X is free,
then there is a natural isomorphism E ∼= p∗(E/S1), where p : X → X/S1 is the orbit
map. In this case we have the following lemma.

Lemma 4.1 Let E → X be a S1-vector bundle over a free S1-space with dimE ≥ 3 and
γ a discrete supergroup. Then the following two statements hold:

1. There is a bijection between the γ-structures on E/S1 and the S1-equivariant γ-
structures on E, induced by pullback.
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2. Equip PO(n)(E) and PO(n)(E/S
1) = PO(n)(E)/S1 with basepoints x and S1x. Then

there are homomorphisms

γ(E) → γ(E/S1) and G(n, γ(E)) → G(n, γ(E/S1))

and an isomorphism of γ(E/S1)-structures

Pγ(E)(E) ×G(n,γ(E)) G(n, γ(E/S1)) → p∗Pγ(E/S1)(E/S
1).

Proof. At first we prove (1). If Pγ(E) is an equivariant γ-structure on E, then the
isomorphism Pγ(E) ×G(n,γ) O(n) → PO(n)(E) induces an isomorphism

Pγ(E)/S1 ×G(n,γ) O(n) → PO(n)(E)/S1 = PO(n)(E/S
1).

Hence, Pγ(E)/S1 is a γ-structure for E/S1.
Otherwise, if Pγ(E/S1) is a γ-structure for E/S1, then the isomorphism

Pγ(E/S1) ×G(n,γ) O(n) → PO(n)(E/S
1),

induces an S1-equivariant isomorphism p∗Pγ(E/S1) ×G(n,γ) O(n) → p∗PO(n)(E/S
1).

Therefore p∗Pγ(E/S1) is an equivariant γ-structure for p∗(E/S1).
Since, for an equivariant γ-structure Pγ(E), p∗(Pγ(E)/S1) is naturally isomorphic to

Pγ(E) and p∗(E/S1) is naturally isomorphic to E, these two operations are inverse to
each other. Hence, (1) is proved.

Now we prove (2). The existence of the homomorphisms γ(E) → γ(E/S1) and
G(n, γ(E)) → G(n, γ(E/S1)) follows from the definitions of γ(E) and G(n, γ(E)) and
the choices of the basepoints. Therefore we only have to prove the existence of the
isomorphism of the γ(E/S1)-structures.

Such an isomorphism exists if and only if there is a G(n, γ(E))-equivariant map φ such
that the following diagram commutes

Pγ(E)(E) //

φ

��

Pγ(E)(E) ×G(n,γ(E)) O(n)
∼= // PO(n)(E)

p∗Pγ(E/S1)(E/S
1) // p∗Pγ(E)(E/S

1) ×G(n,γ(E/S1)) O(n)
∼= // p∗PO(n)(E/S

1)

∼=

OO

Now, by the proof of [Sto, Proposition 2.12], Pγ(E)(E) can be identified with

{a : [0, 1] → PO(n)(E); a(0) = x}/ ∼ .

Here two paths are identified if they are homotopic relative endpoints. Moreover, the
map Pγ(E)(E) → PO(n)(E) is given by [a] 7→ a(1).

Clearly, this map factors through

φ : Pγ(E)(E) → p∗Pγ(E/S1)(E/S
1) = {(y, e) ∈ X × E/S1; p(y) = ψ′(e)}

[a] 7→ (ψ(a(1)), [p̄ ◦ a])
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Here ψ : PO(n)(E) → X and ψ′ : PO(n)(E/S
1) → X/S1 denote the bundle projections

and
p̄ : PO(n)(E) → PO(n)(E)/S1 = PO(n)(E/S

1)

is the orbit map. It follows from the description of the G(n, γ(E))-action on Pγ(E)(E)
given in the proof of [Sto, Proposition 2.12] that φ is G(n, γ(E))-equivariant. Hence, the
lemma is proved. �

Construction 4.2 If M is a connected free S1-manifold, then there is an isomorphism
TM → p∗(T (M/S1) ⊕ R). Hence, by Lemma 4.1, one gets a equivariant γ(M/S1)-
structure on M from the canonical γ(M/S1)-structure on M/S1.
We want to extend this construction to connected semi-free S1-manifolds M with

codimMS1 ≥ 4. In this case we let γ(M/S1) = γ((M −MS1
)/S1). By the assumption

on the codimension of the fixed point set, the inclusionM−MS1 →M is three-connected.
In particular, πi(M −MS1

) ∼= πi(M), for i = 1, 2. Hence, it follows from comparing
the exact homotopy sequences for the fibrations PO(n)(T (M −MS1

))/〈r〉 → M −MS1

and PO(n)(TM)/〈r〉 → M that the group extensions π1(PO(n)(T (M − MS1
))/〈r〉) →

π1(M −MS1
) and π1(PO(n)(TM)/〈r〉) → π1(M) are isomorphic. Moreover, since M −

MS1 ⊂M is open it follows that the orientation character of M −MS1
factors through

the orientation character of M . Therefore we have γ(M) = γ(M −MS1
).

By the case of a free action, we have a S1-equivariant γ(M/S1)-structure onM−MS1
.

By part (2) of Lemma 4.1, this γ(M/S1)-structure extends to an γ(M/S1)-structure
Pγ(M/S1) on all of M . We will show that the S1-action on M lifts into this γ(M/S1)-
structure on M . Since γ(M/S1) is discrete, Pγ(M/S1) is a covering of PO(n)(TM) if w 6=
0 or PSO(n)(TM) if w = 0. Therefore the S1-action on PO(n)(TM) or on PSO(n)(TM)
induces an R-action on Pγ(M/S1). By construction, the restriction of this R-action to

Pγ(M/S1)|M−MS1 factors through S1. Since M −MS1
is dense in M , this also holds for

the R-action on Pγ(M/S1). Hence, the S1-action lifts into Pγ(M/S1).

So on every connected semi-free S1-manifold M with codimMS1 ≥ 4 there is a pre-
ferred equivariant γ(M/S1)-structure.

We need one more definition from [Sto].

Definition 4.3 For n ≥ 0 and a discrete supergroup γ let Rn(γ) be the bordism group
of n-dimensional γ-manifolds with positive scalar curvature metrics on their boundary,
i.e. the objects of this bordism groups are pairs (M,h) where M is an n-dimensional
γ-manifold possibly with boundary and h a metric of positive scalar curvature on ∂M .
Two pairs (M,h) and (M ′, h′) are identified if

1. there is an n-dimensional oriented manifold V with ∂V = −∂M ∐ ∂M ′ and a
positive scalar curvature metric on V which restricts to h and h′ on the boundary
respectively, and

2. there is an (n+ 1)-dimensional γ-manifold W with ∂W = M ∪∂M V ∪∂M ′ −M ′.
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In the above definition and the following we assume that all metrics on a manifold
with boundary are product metrics near the boundary.

We also define equivariant bordism groups.

Definition 4.4 For n ≥ 0 and a discrete supergroup γ let ΩSF
n,≥4(γ) be the bordism groups

of closed n-dimensional semi-free S1-manifolds equipped with equivariant γ-structures
and without fixed point components of codimension less than four. Here we identify two
manifolds M1 and M2 if there is a semi-free S1-manifold with boundary, equivariant
γ-structure and without fixed point components of codimension less than four such that
∂W = M1 ∐−M2.

Now we want to define a homomorphism φ : ΩSF
n,≥4(γ) → Rn−1(γ).

Let M be a S1-manifold as in Definition 4.4. Then we can construct from M an
(n − 1)-dimensional manifold N with boundary by removing from M an open tubular
neighborhood of the fixed point set MS1

and taking the quotient of the free S1-action
on this complement. The boundary of this quotient is a disjoint union of CP k-bundles,
k ≥ 1, over the components of MS1

. There is a natural γ-structure on this quotient
because (TM |

M−MS1 )/S1 = T ((M −MS1
)/S1) ⊕ R.

We may choose a metric on MS1
and a connection for the CP k-bundles over MS1

.
With these choices one can construct a connection metric h on ∂N with positive scalar
curvature, such that the fibers of the bundle are up to scaling with a constant isometric
to CP k with standard metric. Note that the isotopy class of h does not depend on the
above choices. Therefore (N, h) defines a well defined element of Rn−1(γ).

If W is an equivariant bordism without fixed point components of codimension less
than four between M and another S1-manifold M ′, then the quotient W̃ of the free
S1-action on the complement of an open tubular neighborhood of the fixed point set in
W gives a bordism between N and N ′. The part of the boundary of W̃ which does not
belong to N or N ′ can be equipped with a metric of positive scalar curvature by the
same argument as above. Therefore the bordism class of (N, h) depends only on the
bordism class of M . Hence, we get the desired homomorphism φ : ΩSF

n,≥4(γ) → Rn−1(γ).
It has been shown by Stolz [Sto] that a connected manifold M of dimension n ≥ 5

with boundary and a given metric h of positive scalar curvature on ∂M admits a metric
of positive scalar curvature, which extends h and is a product metric near the boundary,
if and only if (M,h) equipped with the canonical γ(M)-structure represents zero in
Rn(γ(M)).

From this fact we get the following theorem.

Theorem 4.5 Let M be closed connected semi-free S1-manifold M of dimension n ≥ 6
and codimMS1 ≥ 4. We equip M with the equivariant γ(M/S1)-structure from Con-
struction 4.2. Then M admits an invariant metric of positive scalar curvature if and
only if the class [M ] ∈ ΩSF

n,≥4(γ(M/S1)) can be represented by an S1-manifold N which
admits an invariant metric of positive scalar curvature.

Proof. We will show that M admits an invariant metric of positive scalar curvature if
and only if φ([M ]) = 0 ∈ Rn−1(γ(M/S1)). From this the statement follows.
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At first assume that M admits an invariant metric of positive scalar curvature. By
the proof of Gromov’s and Lawson’s surgery theorem [GL80] (see also [Gaj87]), this is
the case if and only if it admits an invariant metric of positive scalar curvature which
is a connection metric on a tubular neighborhood N of MS1

. Here the metrics on the
fibers of N →MS1

are so called “torpedo metrics”.
Therefore after removing a small open tubular neighborhood N ′ of MS1

, the metric
on M − N ′ is a product metric near the boundary. Its restriction to the boundary is
a connection metric with fibers isometric to a round sphere. Hence, the volume of the
S1-orbits is constant in a small neighborhood of the boundary. Therefore, by Theorem
2.2 and the definition of φ, we have φ([M ]) = 0 ∈ Rn−1(γ(M/S1)).

Now assume that φ([M ]) = 0. Then, by the result of Stolz mentioned above, there is
a metric of positive scalar curvature on (M −N ′)/S1 whose restriction to the boundary
is a connection metric with fibers isometric to CP k, k > 1. By Theorem 2.2, there is an
invariant metric on M −N ′ whose restriction to the boundary is a connection metric for
the bundle ∂(M−N ′) → ∂(M−N ′)/S1. Since the fibers of ∂(M−N ′)/S1 →MS1

are (up
to scaling) isometric to CP k with standard metric, the fibers of ∂(M −N ′) →MS1

are
isometric to spheres (S2k+1, g), where the metric g can be constructed from the standard
round metric by shrinking the orbits of the free linear S1-action on S2k+1. Moreover, the
metric on ∂(M−N ′) is a connection metric for the bundle ∂(M−N ′) →MS1

. Therefore
the metric on ∂(M−N ′) is isotopic to a connection metric with fibers isometric to round
spheres. Hence, we can glue in the normal disc bundle of MS1 ⊂ M equipped with an
appropriate metric to get an invariant metric of positive scalar curvature on M . �

Now we want to discuss the special case, where M is a simply connected semi-free
S1-manifold with codimMS1 ≥ 4. In this case M/S1 and (M−MS1

)/S1 are also simply
connected (see [Bre72, Corollary 6.3, p. 91]). Hence, a γ(M/S1)-structure on M/S1 is
a Spin-structure on (M − MS1

)/S1 if (M − MS1
)/S1 admits a Spin-structure or an

orientation on (M −MS1
)/S1, otherwise.

Note that (M −MS1
)/S1 admits a Spin-structure if and only if M admits a Spin-

structure and the S1-action on M is of even type.
Denote by ΩSO,SF

n the bordism group of closed oriented semi-free S1-manifolds and
by ΩSpin,even,SF

n the bordism group of closed semi-free S1-manifolds with Spin-structure
and an S1-action of even type. Then we have:

Theorem 4.6 Let M be a closed simply connected semi-free oriented S1-manifold M
of dimension n ≥ 6 and codimMS1 ≥ 4. If M is not spin or spin with the S1-action
of odd type, then M admits an invariant metric of positive scalar curvature if and only
if the class [M ] ∈ ΩSO,SF

n can be represented by an S1-manifold N with codimNS1 ≥ 4
and an invariant metric of positive scalar curvature. If M is spin and the S1-action is
of even type then the same holds with the oriented equivariant bordism ring replaced by
the spin equivariant bordism ring.

Proof. At first assume that M is spin and the S1-action on M is of even type. Since
on a Spin-manifold with even semi-free S1-action there are no fixed point components
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of codimension two, we have ΩSF
n,≥4(γ(M/S1)) = ΩSpin,even,SF

n . Therefore the theorem
follows from Theorem 4.5 in this case.

Next assume that we are in the other case. Then ΩSF
n (γ(M/S1)) is just the bordism

group ΩSO,SF
n,≥4 of closed oriented semi-free S1-manifolds without fixed point components

of codimension less than four. By the proof of Theorem 4.5, M admits an invariant metric
of positive scalar curvature if and only if φ([M ]) = 0. Therefore it is sufficient to show
that φ([M ]) depends only on the image of [M ] under the natural map ΩSO,SF

n,≥4 → ΩSO,SF
n .

This can be shown as follows.
Let W be a bordism between the semi-free S1-manifolds M1 and M2 such that all fixed

point components of W of codimension two do not meet the boundary. Then we can cut
out these components to get a bordism without fixed point components of codimension
two between M1 and M2 ∐ N1 ∐ · · · ∐ Nk, where the Ni are free S1-manifolds. The
claim follows if we show that φ([Ni]) vanishes for all i. The orbit spaces of the Ni are
closed manifolds. Moreover, every class in ΩSO

n−1 can be represented by a manifold which
admits a metric of positive scalar curvature (see [GL80, Proof of Theorem C]). Therefore
it follows from the definition of the groups Rn−1(γ) that φ([Ni]) = [Ni/S

1] = 0. �

4.1. The non-spin case

Our next goal is to prove the following theorem.

Theorem 4.7 Let M be a closed simply connected semi-free S1-manifold of dimension
n > 5. If M is not spin or spin and the S1-action is odd, then the equivariant connected
sum of two copies of M admits an invariant metric of positive scalar curvature.

The proof of this theorem is divided into two cases:

1. M has a fixed point component of codimension two.

2. All fixed point components of M have codimension at least four.

In the first case, the theorem follows from Theorem 2.4. In the second case, the idea
for the proof of Theorem 4.7 is to show that the class of 2M in ΩSO,SF

∗ can be represented
by a manifold which admits an invariant metric of positive scalar curvature and does
not have fixed point components of codimension less than four. Then it follows from
Theorem 4.6.

We prepare the proof by describing some structure results about the ring ΩSO,SF
∗ . For

background information on these results see for example [CF64], [May96, Chapter XV]
or [Uch70]. At first there is an exact sequence

0 // ΩSO,SF
∗

λ // F∗
µ // ΩSO

∗−2(BU(1)) // 0.

Here, F∗ =
⊕

n≥0 ΩSO
∗−2n(BU(n)) is the bordism ring of complex vector bundles over

some base spaces. The map λ sends a semi-free S1-manifold M to the normal bundle of
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its fixed point set. Note that this bundle is naturally isomorphic to a complex S1-vector
bundle over MS1

of the form V ⊗ ρ, where V is a complex vector bundle over MS1

with trivial S1-action and ρ is the standard one-dimensional complex S1-representation.
Therefore F∗ might we viewed as the bordism group of fixed point data of semi-free
oriented S1-manifolds.

In this picture the summand F0 is isomorphic to the subgroup of ΩSO,SF
∗ consisting

of bordism classes of manifolds with trivial S1-action. An isomorphism is induced by λ.
The map µ can be described as follows. The restriction of the multiplication with

elements of S1 ⊂ C on a complex vector bundle to its sphere bundle defines a free
S1-action. So we get a map from F∗ to the bordism group of free S1-manifolds. Since
every free S1-manifold is a principal S1-bundle over its orbit space, we may identify the
bordism group of free S1-actions with ΩSO

∗ (BU(1)). The map µ is the composition of
the above map and this identification.

ΩSO,SF
∗ and F∗ are actually algebras over ΩSO

∗ , with multiplication given by di-
rect products. Hence, λ is an algebra homomorphism. Moreover, F∗ is isomorphic
to ΩSO

∗ [Xi; i ≥ 0], where Xi can be identified with the dual Hopf bundle over the i-
dimensional complex projective space. Note that, by our grading of F∗, Xi has degree
2i+ 2.

We denote by CPn(ρ) the n-dimensional complex projective space equipped with
the S1-action induced by the representation ρ ⊕ Cn. Here S1 acts trivially on the Cn

summands. Then we have

λ(CPn(ρ)) = Xn−1 + (−1)nXn
0 .

Hence, F∗ is isomorphic to ΩSO
∗ [X0, λ(CPn(ρ)), n ≥ 2].

For the proof of Theorem 4.7 we need the following two lemmas. To motivated our
first lemma, consider the situation where M is a 2n-dimensional semi-free S1-manifold
with isolated fixed points. Then the normal bundle of the fixed point set in M is trivial.
Moreover, λ(M) = Xn

0 λ(S), where S is a zero dimensional S1-manifold with trivial
action. By [Kaw91, Corollar 6.24], the signature of M vanishes. Therefore, by [Kaw91,
Corollary 6.23], S represents zero in ΩSO

0 .
The following lemma is a generalization of this fact to semi-free S1-manifolds M such

that the normal bundle of the fixed point set MS1
has a section which is nowhere zero.

Lemma 4.8 Let L ∈ F∗. If X0L ∈ kerµ = ΩSO,SF
∗ , then the same holds for L. In

other words, L is the fixed point data of some semi-free S1-manifold L̃. Moreover, L̃ is
mapped to zero by the forgetful map ΩSO,SF

∗ → ΩSO
∗ .

Proof. By Theorem 17.5 of [CF64, p. 49], a class [φ : L′ → BU(1)] ∈ ΩSO
∗ (BU(1))

represents zero if and only if its Stiefel-Whitney and Pontrjagin numbers vanish, i.e. the
characteristic numbers of the form

〈φ∗(x)lpI(L
′), [L′]〉 and 〈φ∗(x)lwI(L

′), [L′]〉

vanish, where x is a generator of H2(BU(1)) and pI(L
′) and wI(L

′) are products of the
Pontrjagin classes and Stiefel–Whitney classes of L′, respectively. Now note that µ(L) is
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represented by a sum of tautological bundles over the projectivizations P (Ei) of complex
vector bundles Ei. The class µ(X0L) is represented by the sum of tautological bundles
over the projectivizations P (Ei⊕C) of the sum Ei⊕C of these complex vector bundles
with a trivial line bundle.

Let E be a complex vector bundle of dimension n over a connected manifold B. Then
for K = Z2 or K = Q, we have

H∗(P (E);K) = H∗(B;K)[x]/(
n∑

i=0

ci(E)xn−i)

and

H∗(P (E ⊕ C);K) = H∗(B;K)[x]/((
n∑

i=0

ci(E)xn−i)x),

where x has degree two and is minus the first Chern-class of the tautological bundle over
P (E) and P (E ⊕ C).

Let y be a generator of the top cohomology group of B. Then we can orient P (E)
and P (E ⊕ C) in such a way that

〈yxn−1, [P (E)]〉 = 1 = 〈yxn, [P (E ⊕ C)]〉.
Hence, if f(x) is a power series with coefficients in H∗(B;K), then we have

〈f(x), [P (E)]〉 = 〈xf(x), [P (E ⊕ C)]〉.
The total Pontrjagin and Stiefel-Whitney classes of P (E) are given by

p(P (E)) = p(B)
∏

i

(1 + (ai + x)2), w(P (E)) = w(B)
∏

i

(1 + ai + x),

where the ai are the formal roots of the Chern classes of E.
Therefore there are the following relations between the total Pontrjagin-classes and

Stiefel-Whitney-classes of P (E) and P (E ⊕ C) (both viewed as power series in x with
coefficients in H∗(B;K))

p(P (E ⊕ C)) = p(P (E))(1 + x2), w(P (E ⊕ C)) = w(E)(1 + x).

This implies

p(P (E)) = p(P (E ⊕ C))(
∞∑

i=0

(−x2)i), w(P (E)) = w(E ⊕ C)(
∞∑

i=0

(−x)i).

For a power series f(x) and a finite sequence I of positive integers let fI =
∏
i∈I fi,

where fi denotes the degree i part of f . With this notation we have

〈xlpI(P (E)), [P (E)]〉 = 〈xl+1pI(P (E)), [P (E ⊕ C)]〉

= 〈xl+1(p(P (E ⊕ C))(
∞∑

i=0

(−x2)i))I , [P (E ⊕ C)]〉

=
∑

J

aJ〈xl+1+dJpJ(P (E ⊕ C)), [P (E ⊕ C)]〉,
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where aJ , dJ ∈ Z only depend on I but not on E. A similar calculation shows

〈xlwI(P (E)), [P (E)]〉 =
∑

J

bJ〈xl+1+d′JwJ(P (E ⊕ C)), [P (E ⊕ C)]〉.

Since µ(L) and µ(X0L) are linear combinations of some projectivizations of complex
vector bundles, it follows that µ(L) = 0 if µ(X0L) = 0. This proves that there is a L̃
with L = λ(L̃).

Now let E be the principal S1-bundle associated to the tautological bundle over
CP 1(ρ). Then the S1-action on CP 1(ρ) lifts into E in such a way that the action
on the fiber over one of the fixed points in CP 1(ρ) is trivial and multiplication on the
fiber over the other fixed point. This action induces an S1-action on E ×S1 L̃, for this
action we have

λ(E ×S1 L̃) = X0L−X0L̃
′,

where L̃′ is L̃ with trivial S1-action. Therefore, we have

µ(X0)L̃
′ = µ(X0L) − µ(λ(E ×S1 L̃)) = 0.

But µ(X0) is part of a ΩSO
∗ -basis of ΩSO

∗ (BU(1)). Hence L̃′ represents zero in ΩSO
∗ and

the lemma is proved. �

On ΩSO,SF
∗ there is an involution ι which sends a semi-free S1-manifold M to itself

equipped with the inverse S1-action. Similarly there is an involution on F∗, which sends
a complex vector bundle to its dual and changes the orientation of the base space if the
fiber dimension is odd. Since λ is compatible with these two involutions, we denote the
involution on F∗ also by ι.

Lemma 4.9 Let [M ] ∈ ΩSO,SF
∗ . Then we have

ι([M ]) =

{
[M ] if dimM ≡ 0 mod 4

−[M ] if dimM ≡ 2 mod 4.

Proof. At first note that there is an equivariant diffeomorphism between CPn(ρ) and
ι(CPn(ρ)) given by complex conjugation. It is orientation preserving if and only if n is
even. Moreover, ι(X0) = −X0.

As noted before we can write λ([M ]) as a linear combination of products

Xk
0λ(
∏

i

CPni(ρ)) × β = P × β

with β ∈ ΩSO
∗ . By the above remark we have ι(P × β) = (−1)k+lP × β, where l is the

number of odd ni appearing in the product. If dimβ 6≡ 0 mod 4, then β is of order two.
Therefore we have ι(P × β) = −P × β = P × β in this case.

If dimβ ≡ 0 mod 4, we have dimM − 2(k + l) ≡ dimβ ≡ 0 mod 4. Therefore the
statement follows. �
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The following construction provides examples of semi-free S1-manifolds with invariant
metrics of positive scalar curvature and without fixed point components of dimension
less than four.

Construction 4.10 Let γ be a complex line bundle over an oriented manifold M0.
Let also M be an oriented S1 × S1-manifold such that the S1-actions induced by the
inclusions of the S1-factors in S1 × S1 are semi-free. Denote M equipped with the first
(resp. second) of these actions by M1 (resp. M2). Then the multiplication on γ induces
an S1-action on the projectivization P (γ ⊕ C).

This action can be lifted in two different ways in the tautological bundle

γ′′ = {(x, v) ∈ P (γ ⊕ C) × (γ ⊕ C); v ∈ x}.

The first action is given by g(x, v) = (g · x, g · v), for g ∈ S1 and (x, v) ∈ γ′′. Here ·
denotes the S1-action induced by multiplication on γ.

The second action is given by g(x, v) = (g · x, g · (λ(g)v)). Here · is a defined as above
and λ(g)v is given by complex multiplication of v ∈ γ ⊕ C with λ(g) = g−1.

By dualizing these two actions we get two S1-actions on the dual γ′ of γ′′.

Let E be the principal S1 × S1-bundle associated to γ′ ⊕ γ′. Then from the two S1-
actions on γ′, we see that the S1-action on P (γ ⊕ C) lifts into E in such a way that
the weights of the restriction of the lifted S1-action to a fiber over the two fixed point
components in P (γ ⊕ C) are given by (1, 0) and (0,−1), respectively.

The S1-action on E induces a semi-free S1-action on Γ(γ,M) = E×S1×S1 M and we
have

λ(Γ(γ,M)) = [γ]λ(M1) − [γ]λ(ι(M2)),

where [γ] ∈ ΩSO
∗ (BU(1)) is represented by the bundle γ. If the S1-action on all com-

ponents of Mi, i = 1, 2, is non-trivial, then Γ(γ,M) does not have any fixed point
components of codimension less than four.

Moreover, Γ(γ,M) admits an invariant metric of positive scalar curvature. This can
be seen as follows. Since there is an invariant metric of positive scalar curvature on the
fibers CP 1(ρ) of P (γ ⊕ C), it follows that there is an S1-invariant connection metric of
positive scalar curvature on P (γ ⊕ C). Therefore it follows from Theorem 2.2 that E
admits an S1 × S1 × S1-invariant metric of positive scalar curvature. Hence, E ×M
admits an S1 × S1 × S1-invariant metric of positive scalar curvature. Now it follows,
again from Theorem 2.2, that Γ(γ,M) = E ×S1×S1 M admits an S1-invariant metric of
positive scalar curvature.

Let γ and M0 as in the above construction and M a semi-free S1-manifold. We equip
M with a S1 × S1-action induced by the homomorphism S1 × S1 → S1, (z1, z2) 7→ z1z2
and define ∆(γ,M) = Γ(γ,M). Then we have

λ(∆(γ,M)) = [γ]λ(M) − [γ]λ(ι(M)).

Now we can prove Theorem 4.7.
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Proof of Theorem 4.7. Let M be a semi-free S1-manifold. By Theorem 2.4, we may
assume that M does not have fixed point components of codimension less than four.
Denote by n the dimension of M and assume n ≥ 6.

If n ≡ 1, 3 mod 4, then the class [M ] ∈ ΩSO,SF
∗ is of order two, because all torsion

elements of ΩSO
∗ have order two, ΩSO

∗ /torsion is concentrated in degrees divisible by four
and the generators of F∗ all have even degrees. Therefore, by Theorem 4.6, the theorem
follows in this case.

Next assume that n ≡ 0 mod 4. Then there are an L in the augmentation ideal of
F∗ = ΩSO

∗ [X0, λ(CPn(ρ));n ≥ 2] and βJ ∈ ΩSO
∗ such that

λ(M) =
∑

J

βJλ(
∏

i∈J

CP i(ρ)) +X0L.

Here, the sum is taken over all finite sequences J with at least two elements, i.e. the
products

∏
i∈J CP

i(ρ) consist out of at least two factors. Since all these products admit
invariant metrics of positive scalar curvature, by Theorem 4.6, we only have to deal with
the case λ(M) = X0L. It follows from Lemma 4.8 that there is a S1-manifold L̃ of
dimension n − 2 with λ(L̃) = L. Since L is contained in the augmentation ideal of F∗,
we may assume that L̃ does not have any components with trivial S1-action. Hence,
by Lemma 4.9, we have 2λ(M) = λ(∆(X0, L̃)). Therefore the statement follows from
Theorem 4.6.

Now assume that n ≡ 2 mod 4. Then as in the previous case, me may assume that

λ(M) = X0λ(L̃),

where L̃ is a semi-free S1-manifold without components on which S1 acts trivially. By
a similar argument as above, we have

λ(L̃) =
∑

J

βJλ(
∏

i∈J

CP i(ρ)) +X0λ(L′)

with L′ ∈ ΩSO,SF
n−4 , βJ ∈ ΩSO

∗ . Here the sum is taken over all finite sequences J with at
least one element. At first we show that we may assume L′ = 0. Let L′′ be the union of
those components of L′ on which the S1-action is non-trivial. Then we have, for

N = 2CP 2(ρ) × L′′ − ∆(X1, L
′′),

λ(N) = 2X2
0λ(L′′) = 2X2

0λ(L′) because L′ − L′′ has order two in ΩSO
∗ . By a similar

construction, one sees that we may assume that the products
∏
i∈J CP

i(ρ) do not have
factors of odd complex dimension.

The next step is to show that we may assume that all these products consist out of
exactly one factor.

To see this note that one can equip
∏
i∈J CP

i with two semi-free commuting S1-
actions, namely

∏
i∈J CP

i(ρ) and
∏
i∈J−{i0}

CP i × CP i0(ρ). Therefore, by Lemma 4.9,
we have

λ(Γ(X0,
∏

i∈J

CP i)) = X0λ(
∏

i∈J

CP i(ρ)) −X0λ(CP i0(ρ)) ×
∏

i∈J−{i0}

CP i.
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Hence, after adding several multiples of Γ(X0,
∏
i∈J CP

i), we may assume that

λ(2M) = X0

(n−2)/4∑

k=1

2βkλ(CP 2k(ρ)),

with βk ∈ ΩSO
∗ . Since all torsion elements in ΩSO

∗ are of order two, this sum depends
only on the equivalence classes of the βk in ΩSO

∗ /torsion.

ΩSO
∗ /torsion is a polynomial ring over Z with one generator Y4k in each dimension

divisible by four. We will construct a non-trivial semi-free S1-action on each of the Y4k.
The Y4k can be chosen in such a way that they admit stably complex structures, that
is they belong to the image of the natural map ΩU

∗ → ΩSO
∗ . It has been shown by

Buchstaber and Ray [BR01], [BR98] that ΩU
∗ is generated by certain projectivizations

of sums of complex line bundles over bounded flag manifolds. These generators are toric
manifolds and admit a non-trivial semi-free S1-action induced by multiplication on one
of the line bundles. Hence, we may assume that each Y4k admits a non-trivial semi-free
S1-action. We denote the resulting S1-manifold by Y ′

4k.

Next we show that we may assume

λ(2M) = X0




(n−2)/4−1∑

k=1

∑

Jk

2ak,Jk
∏

i∈Jk

Y4iλ(Y ′
4k) + 2bλ(CP (n−2)/2(ρ))


 .

Here the second sum is over all finite sequences Jk of elements of the set {1, . . . , k} and
ak,Jk , b ∈ Z.

Since each βk, k < (n− 2)/4, is a linear combination of products of the Y4k, this can
be achieved by adding to 2M multiples of manifolds of the form Γ(X0, Y4i ×CP 2k) and
Γ(X0, Y4i1 × Y4i2), where S1 × S1 acts factorwise on the product, i.e. the i-th S1-factor
acts on the i-th factor of the product.

The manifold CP (n−2)/2 is indecomposable in ΩSO
∗ /torsion. Therefore it follows from

the above structure results on ΩSO
∗ /torsion and Lemma 4.8 that 2M = 0 in ΩSO,SF

∗ .
This proves the theorem. �

4.2. The spin case

In [Lot00] Lott constructed a generalized Â-genus for orbit spaces of semi-free even S1-
actions on Spin-manifolds. If M/S1 has dimension divisible by 4, then Â(M/S1) is an
integer. In all other dimensions it vanishes. Moreover, if M/S1 is a manifold without
boundary, i.e. the S1-action on M is free or trivial, Lott’s generalized Â-genus of M/S1

coincides with the usual Â-genus of M/S1.

He showed that for a semi-free even S1-manifold M , Â(M/S1) vanishes if M admits
an invariant metric of positive scalar curvature. In this subsection we prove the following
partial converse to his result.
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Theorem 4.11 Let M be a closed simply connected Spin-manifold of dimension n > 5
with an even semi-free S1-action. Then Â(M/S1) = 0 if and only if there is a k ∈ N
such that the equivariant connected sum of 2k copies of M admits an invariant metric
of positive scalar curvature.

The strategy for the proof of Theorem 4.11 is the same as in the proof of Theorem 4.7.
That means that we construct generators for the kernel of the Â-genus which admit
invariant metrics of positive scalar curvature. To do so we first review some results about
the ring ΩSpin,even,SF

∗ ⊗Z[12 ] for proofs of these results with Z[12 ] replaced by the rationals

see [Bor87]. The proofs there also work in our case since ΩSpin
∗ ⊗ Z[12 ] ∼= ΩSO

∗ ⊗ Z[12 ].
There are exact sequences

ΩSpin
∗−1 (BU(1)) ⊗ Z[12 ] // ΩSpin,even,SF

∗ ⊗ Z[12 ]

λ
��

F even
∗ ⊗ Z[12 ]

µ // ΩSO
∗−2(BU(1)) ⊗ Z[12 ]

and

0 // ΩSpin,odd,SF
∗ ⊗ Z[12 ]

λ // F odd
∗ ⊗ Z[12 ]

µ // ΩSO
∗−2(BU(1)) ⊗ Z[12 ] // 0

Here the first map is the natural map from the bordism group of Spin-manifolds with
free even action into the bordism group of semi-free actions and

F even
∗ =

⊕

k≥0

ΩSO
∗−4k(BU(2k)) ⊂ F∗,

F odd
∗ =

⊕

k≥0

ΩSO
∗−4k−2(BU(2k + 1)) ⊂ F∗.

Moreover, the maps λ and µ are the same as in the oriented case.
At first we describe another set of generators of F∗ ⊗ Z[12 ] which are more suitable

for the discussion of the spin case than the generators described in the previous section.
Denote by X̃2k+1, k > 1, the normal bundle of P (C2⊕⊕2k−1

i=1 γ⊗γ) in P (C2⊕⊕2k
i=1 γ⊗γ),

where γ is the dual Hopf bundle over CP 1 and P (E) denotes the projectivization of the
vector bundle E. Then we have

〈c1(X̃2k+1)
2k+1, [P (C2 ⊕

2k−1⊕

i=1

γ ⊗ γ)]〉 = 4.

Therefore, by [CF64, Theorem 18.1], the X̃2k+1, k > 0, together with the X2k, k ≥ 0
and X1 are a basis of ΩSO

∗ (BU(1)) ⊗ Z[12 ] as a ΩSO
∗ ⊗ Z[12 ]-module. Hence, we have

F∗ ⊗ Z[12 ] = ΩSO
∗ [12 , X0, X1, X2k, X̃2k+1; k ≥ 1].

40



For k ≥ 1, let M2k+1 = CP 2k+1(ρ) and M2k+2 = P (C2 ⊕⊕2k
i=1 γ ⊗ γ), where S1 acts

by multiplication on one of the γ ⊗ γ summands. Then we have

λ(M2k+2) = X̃2k+1 − 4X1X
2k
0 .

Moreover, let M0 be HP 2 = Sp(3)/(Sp(2)×Sp(1)) equipped with the semi-free S1-action
induced by the embedding

S1 →֒ {I} × Sp(1) →֒ Sp(2) × Sp(1) →֒ Sp(3).

This action has two fixed point components, namely HP 1 and an isolated fixed point.
The Chern classes of the normal bundle of HP 1 in HP 2 are given by

c1 = 0 c2 = −u,

where u is a generator of H4(HP 1;Z). Hence, it follows from a calculation of character-
istic numbers (cf. Theorem 17.5 of [CF64, p. 49]) that

λ(M0) = −X2
1 + 2λ(M3)X0 −

1

8
[K]X2

0 +X4
0 ,

where K is the Kummer surface. Therefore we have

F∗ ⊗ Z[
1

2
] = ΩSO

∗ [
1

2
, X0, X1, λ(Mk); k ≥ 0]/(R−X2

1 ),

where R−X2
1 is the relation described above.

The following lemma shows that the manifolds Mi defined above are Spin-manifolds.
The S1-action on Mi is even if and only if i = 0.

Lemma 4.12 Let N be a Spin-manifold with an action of a torus T = S1
1 × · · · × S1

k

such that each factor S1
i has a fixed point in N and f : E →M be a principal T -bundle.

Then we have

w2(E ×T N) = f∗(w2(M) +
k∑

i=1

ǫiw2(Ei)),

where Ei is the principal S1
i -bundle

E/(S1
1 × · · · × S1

i−1 × {e} × Si+1 × · · · × S1
k) →M

and ǫi is one or zero if the S1
i -action on N is odd or even, respectively.

Proof. The tangent bundle of E×T N is the sum of the pullback of the tangent bundle
of M and the bundle TF along the fibers. Let φ : M → BT be the classifying map of
the principal bundle E. Then there is a pullback diagram.
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TF //

��

TNT

��
E ×T N //

f
��

NT

π
��

M
φ // BT

Here TNT and NT denote the Borel constructions of TN and N , respectively. There-
fore it is sufficient to show that w2(TNT ) = π∗(

∑k
i=1 ǫixi), where xi is the generator of

H2(BS1
i ;Z2) ⊂ H2(BT ;Z2).

There is an exact sequence

0 // H2(BT ;Z2)
π∗

// H2(NT ;Z2) // H2(N ;Z2)

Hence, we have w2(TNT ) ∈ imπ∗. Let ι : BS1
i → BT be the inclusion. Then we have

ι∗NT = NS1
i
. Since there are S1

i -fixed points in N there is a section to NS1
i
→ BS1

i

induced by the inclusion of a fixed point pt. Therefore we have w2(TNS1
i
) = π∗

∑
ajxi,

where the aj are the weights of the S1
i -representation TptN . Now the S1

i -action on N is
even if and only if codimNZ2 ≡ 0 mod 4. That is if and only if there is an even number
of odd aj . Therefore the statement follows. �

It follows from this lemma, that, for a complex line bundle γ over an oriented manifold
N and a Spin-manifold M with semi-free S1-action, ∆(γ,M) is spin if and only if
w2(N) ≡ c1(γ) mod 2. Moreover, if M ′ is a Spin-manifold with two commuting semi-
free S1-actions, then Γ(γ,M ′) is spin if and only if w2(N) ≡ c1(γ) mod 2 and both
S1-actions are even or both S1-actions are odd.

Proof of Theorem 4.11. We will show that for every [M ] ∈ ΩSpin,even,SF
n , n ≥ 6,

there is a [M ′] ∈ ΩSpin,even,SF
n such that M ′ admits an invariant metric of positive scalar

curvature and λ(2k[M ]) = λ([M ′]) in F even
∗ ⊗Z[12 ]. Hence, 2k+k

′

[M ]−2k
′

[M ′] is bordant
to a free S1-manifold N . After doing some surgeries we may assume that N/S1 is simply
connected. Because Â(M/S1) is an invariant of the equivariant bordism type of M and
agrees with the usual Â-genus if the S1-action is free, it follows from Theorems 4.6 and
2.2 that 2k+k

′+1M admits an invariant metric of positive scalar curvature if and only if
2k+k

′+1Â(M/S1) = 2Â(N/S1) = 0. Hence, Theorem 4.11 follows.

Now we turn to the construction of M ′. At first assume that n is odd. Then F even
n ⊗

Z[12 ] vanishes as in the non-spin case. Therefore we may assume that [M ′] = 0.

Next assume that n ≡ 0 mod 4. Then there are αJ , βJ ∈ ΩSpin
∗ ⊗ Z[12 ] and an

L ∈ F odd
∗ ⊗ Z[12 ] such that

λ(M) =
∑

J

αJλ(
∏

i∈J

Mi) +X1

∑

J ′

βJ ′λ(
∏

i∈J ′

Mi) +X0L.
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Here the sums are taken over all finite sequences J and J ′ with at least two elements
or one element, respectively. Since all Mi admit invariant metrics of positive scalar
curvature we may assume that αJ = 0 for all J .

The S1-action on
∑

J ′ βJ ′

∏
i∈J ′ Mi is of odd type. Therefore each product

∏
i∈J ′ Mi

contains a factor Mi0 with i0 > 0.

Let E be the principal S1-bundle associated to the dual of the tautological bundle γ
over CP 2(ρ). The S1-action on CP 2(ρ) lifts into E such that the action on the fiber
over the isolated fixed point is trivial. Since the S1-action on Mi0 is odd, E×S1 Mi0 is a
Spin-manifold by Lemma 4.12. Moreover, it follows from a calculation of characteristic
numbers that

λ(E ×S1 Mi0) = X1λ(Mi0) +X0L
′

with some L′ ∈ F odd
∗ ⊗ Z[12 ].

Indeed, there are three fixed point components in E ×S1 Mi0 , namely the fiber over
the isolated fixed point in CP 2(ρ), and two components which are bundles over the two-
dimensional fixed point component of CP 2(ρ) with fibers the fixed point components of
Mi0 . The normal bundle of the first fixed point component is trivial.

The other fixed point components are diffeomorphic to cartesian products CP 1 × Fi,
where Fi, i = 1, 2, are the fixed point components in Mi0 . Hence, their cohomology with
coefficients in Q or Z2 is isomorphic to H∗(CP 1) ⊗H∗(Fi). Moreover, there are ki ∈ Z,
i = 1, 2, such that the first two Chern classes of their normal bundles are given by

c1 = kic1(γ) + c1(N(Fi,Mi0)) c2 = c1(γ)c1(N(Fi,Mi0)).

The other Chern classes vanish because these fixed point components have codimension
or dimension four, respectively.

Therefore, all characteristic numbers of λ(E ×S1 Mi0) − X1λ(Mi0) involving Chern
classes ci, i > 1, of the normal bundle of the fixed point components vanish (cf. Theorem
17.5 of [CF64, p. 49]). Since these normal bundles have complex dimension greater than
one, it follows that λ(E ×S1 Mi0) − X1λ(Mi0) is contained in the ideal of F∗ ⊗ Z[12 ]
generated by X0.

By the same argument as in Construction 4.10, E×S1 Mi0 admits an invariant metric
of positive scalar curvature. Therefore we may assume that all βJ ′ are zero.

Hence, by the same argument as in the proof of Lemma 4.8, there is a Spin-manifold
L̃ with semi-free S1-action of odd type such that λ(L̃) = 2kL. Then ∆(X0, L̃) is a
Spin-manifold such that

λ(∆(X0, L̃)) = 2k(X0L−X0ι(L)) = 2k+1X0L.

Hence, we may assume that L = 0. Therefore the claim follows in this case.

Next assume that n ≡ 2 mod 4. Then there are αk,l,J ∈ ΩSpin
∗ ⊗ Z[12 ] such that

λ(M) =

n/2∑

k=0

1∑

l=0

∑

J

αk,l,Jλ(
∏

i∈J

Mi)X
k
0X

l
1.
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We will show that we may assume that all αk,l,J vanish after adding Spin-manifolds with
even semi-free S1-actions which admit invariant metrics of positive scalar curvature. In
the case that k = l = 0 there is nothing to show.

Next assume that k = 0 and l = 1. Then the dimension of
∏
i∈JMi with αk,l,J 6= 0 is

congruent to 2 mod 4. Moreover, ∆(X1⊗X1,
∏
i∈JMi) is a Spin-manifold with semi-free

S1-action such that

λ(∆(X1 ⊗X1,
∏

i∈J

Mi)) = 4X1λ(
∏

i∈J

Mi).

Therefore we may assume that α0,1,J vanishes for all J .

Next assume that k > 0 is odd and l = 0. Then the dimension of
∏
i∈JMi with

αk,l,J 6= 0 is divisible by four and the action on this product is of odd type. Therefore
such a product contains at least one factor Mi0 with i0 > 0.

At first assume that i0 is odd. Then for the Spin-manifold

N = 2CP k(ρ) ×Mi0 − ∆(Xk−1,Mi0).

we have λ(N) = −2Xk
0λ(Mi0). Therefore we may assume that all αk,l,J with k > 0 odd

and l = 0 vanish if J contains an odd number.

Now we turn to the case where i0 is even. Then there is a second semi-free S1-action
on Mi0 induced from a lift of the S1-action on CP 1(ρ) to γ ⊗ γ. The two S1-actions
commute and are both of odd type. Let M ′

i0
be Mi0 equipped with the second S1-action.

Let

N = CP k(ρ) × (Mi0 −M ′
i0) − Γ(Xk−1,Mi0).

Then we have, by Lemma 4.9,

λ(N) = −Xk
0λ(Mi0) +Xk+1

0 λ(L),

where L is CP i0−1 equipped with some semi-free S1-action. Hence, we may assume that
all αk,l,J with k > 0 odd and l = 0 vanish.

Next assume that k > 0 is even and l = 1. Then the dimension of
∏
i∈JMi with

αk,l,J 6= 0 is congruent to 2 mod 4 and the action on this product is of odd type.

Hence,

N = 2Mk+2 ×
∏

i∈J

Mi − ∆(X̃2k+1,
∏

i∈J

Mi)

is spin and

λ(N) = −8X1X
k
0λ(
∏

i∈J

Mi).

Therefore we may assume that all αk,l,J with k > 0 even and l = 1 vanish.

Next assume that k > 0 is even and l = 0. Then the dimension of
∏
i∈JMi with

αk,l,J 6= 0 is congruent to 2 mod 4 and the action on this product is of even type.
Therefore in this product there appears at least one factor Mi0 with i0 odd and a
second factor Mi1 with i1 > 0. Let E be the principal S1-bundle associated to the
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tautological line bundle over CP k(ρ). Then the action on CP k(ρ) lifts into E in such
a way that it is trivial on the fibers of the fixed point component of codimension two
in CP k(ρ) and multiplication on the fiber over the isolated fixed point. Moreover, N =
E ×S1 Mi0 is a Spin-manifold with semi-free S1-manifold such that λ(N) = Xk

0λ(Mi0)
because dimMi0 ≡ 2 mod 4. As in Construction 4.10, one sees that N = E ×S1 Mi0

admits an invariant metric of positive scalar curvature. Hence, after adding multiples
of
∏
i∈J−{i0}

Mi × N to M , we may assume that all αk,l,J with k > 0 even and l = 0
vanish.

Next let k > 0 be odd and l = 1. Then the dimension of
∏
i∈JMi with αk,l,J 6= 0 is

divisible by four and the action on this product is of even type.

We will construct below two semi-free Spin S1-manifolds N1 and N2 with even action
from a semi-free Spin S1-manifold M of dimension divisible by four with even action
such that λ(N1) = 4X1X0(λ(M)− M̄) and λ(N2) = 2X2

0 (λ(M)− M̄), where M̄ denotes
the manifold M with trivial S1-action. N1 and N2 admit invariant metrics of positive
scalar curvature. Therefore after adding multiples of a manifold which is constructed
by iterating these constructions we may assume that all αk,l,J with k > 0, l = 1 and
non-empty J vanish.

For the construction of N1 consider the projectivization P of C ⊕ γ ⊗ γ, where γ is
the dual of the Hopf bundle over CP 1. S1 acts on P by multiplication on γ ⊗ γ. Then
PS

1
has two components and

λ(P ) = 2X1 − 2X1.

Let γ′ be the dual of the tautological bundle over P . Then the S1-action lifts into
γ′ ⊗ γ′ in such a way that the action over the two fixed point components in P are
given by multiplication and multiplication with the inverse, respectively. This action
induces a semi-free S1-action on P (C⊕ γ′ ⊗ γ′). The fixed point set of the S1-action on
P (C⊕ γ′ ⊗ γ′) has four components and

λ(P (C⊕ γ′ ⊗ γ′)) = 2X1(X0 −X0) − 2X1(−X0 +X0)

= (2X1X0 + 2X1X0) − (2X1X0 + 2X1X0)

Let E be the principal S1-bundle associated to the dual of the tautological line bundle
γ′′ over P (C⊕ γ′ ⊗ γ′). The S1-action on P (C⊕ γ′ ⊗ γ′) lifts into E in such a way that
it is trivial over the two fixed point components corresponding to −(2X1X0 + 2X1X0)
and multiplication and multiplication with the inverse over the other two. Therefore it
follows that for N1 = E ×S1 M , λ(N1) = 4X1X0(M − M̄). As in Construction 4.10 one
sees that N1 admits an invariant metric of positive scalar curvature. Because the action
on M is even, N1 is spin. The construction of N2 is similar with P replaced by CP 1(ρ).
We omit the details.

By the above constructions we may now assume that

λ(M) =

(n−1)/2∑

k=1

X1X
k
0βk
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with βk ∈ ΩSpin
∗ ⊗ Z[12 ]. But the µ(X1X

k
0 ) are part of a basis of ΩSO

∗ (BU(1)) ⊗ Z[12 ].
Therefore all the βk must vanish and Theorem 4.11 is proved. �
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S1-equivariant bordism,

invariant metrics of positive scalar curvature,

and rigidity of elliptic genera

Michael Wiemeler
∗

We construct geometric generators of the effective S1-equivariant Spin-
(and oriented) bordism groups with two inverted. We apply this construction
to the question of which S1-manifolds admit invariant metrics of positive
scalar curvature.

As a further application of our results we give a new proof of the vanishing
of the Â-genus of a spin manifold with non-trivial S1-action originally proven
by Atiyah and Hirzebruch. Moreover, based on our computations we can give
a bordism-theoretic proof for the rigidity of elliptic genera originally proven
by Taubes and Bott–Taubes.

1. Introduction

The problem of determining generators of S1-equivariant bordism rings dates back to the
1970s. There first results were obtained by Uchida [Uch70], Ossa [Oss70], Kosniowski
and Yahia [KY83] and Hattori and Taniguchi [HT72]. Most of these papers deal with
oriented or unitary bordism. Moreover they construct additive generators.

Using these generators bordism-theoretic proofs of the Kosniowski formula and the
Atiyah–Singer formula have been given [HT72], [KU71]. The Kosniowski formula ex-
presses the Ty-genus of a unitary S1-manifold in terms of fixed point data [Kos70]. The
Atiyah–Singer formula expresses the signature of an oriented S1-manifold in terms of
the signatures of the fixed point components [AS68]. They have originally been proved
using the Atiyah–Singer G-signature theorem.

More recently the problem of finding multiplicative generators for unitary bordism
was studied by Sinha [Sin05].

Semi-free S1-equivariant Spin-bordism has previously been considered by Borsari
[Bor87]. Her motivation was a question of Witten, who asked if the equivariant in-
dices of certain twisted Dirac operators are constants and suggested to approach this
question via equivariant bordism theory [Wit85, pp. 258-259]. The indices of these
twisted Dirac operators are coefficients in the Laurent expansion of the universal elliptic
genus in the Â-cusp. Therefore a positive answer to Witten’s question is implied by the
rigidity of elliptic genera which was proven by Taubes [Tau89] and Bott–Taubes [BT89].

∗The research for this paper was supported by DFG grant HA 3160/6-1.
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However, contrary to what Witten suggested their proof was not based on equivariant
bordism theory but instead used equivariant K-theory, the Lefschetz fixed point formula
and some complex analysis. Later an alternative proof was given by Liu [Liu95] using
modularity properties of the universal elliptic genus.

It seems that after their proofs appeared nobody carried out the bordism theoretic
approach to the rigidity problem. We pick up this problem and prove the rigidity of
elliptic genera via equivariant bordism theory, thus realizing Witten’s original plan.
Moreover, we give a bordism-theoretic proof for the vanishing of the Â-genus of a Spin-
manifold which admits a non-trivial smooth S1-action originally proved by Atiyah and
Hirzebruch [AH70].

This classical result follows from general existence results for S1-invariant metrics of
positive scalar curvature (see Theorem 1.5 and Theorem 1.6). Up to a power of 2 these
results are conclusive, thus finishing a line of thought begun in [BB83] and continued
in [RW88], [Han08], [Wie15]. We remark that the Atiyah-Hirzebruch vanishing theorem
mentioned before and the existence of S1-invariant metrics of positive scalar curvature
have not been considered as related subjects, so far.

These proofs are based on a construction of additive generators of the S1-equivariant
Spin- and oriented bordism groups. These generators are described in the following
theorem. To state it we first have to fix some notations.

Let G = SO or G = Spin. Denote by ΩG,S1

n the bordism group of n-dimensional
manifolds with effective S1-actions and G-structures on their tangent bundles. In the
non-spin case we also assume that the closed strata, i.e. the submanifolds of H-fixed
points MH for any subgroup H ⊂ S1, of our S1-manifolds are orientable.

Moreover, denote by ΩG,S1

≥4,n similar groups of those S1-manifolds which satisfy the
above conditions and do not have fixed point components of codimension two. We also
assume in this case that the bordisms between the manifolds do not have codimension-
two fixed point components.

We also need the notion of a generalized Bott manifold. A generalized Bott manifold
M is a manifold of the following type: There exists a sequence of fibrations

M = Nl → Nl−1 → . . . N1 → N0 = {pt},

such that N0 is a point and each Ni is the projectivization of a Whitney sum of ni + 1
complex line bundles over Ni−1. Then M has dimension 2n = 2

∑l
i=1 ni and admits an

effective action of an n-dimensional torus T which has a fixed point. Hence it is a so-
called torus manifold (for details on the construction of this torus action see Section 2).

Theorem 1.1 ΩG,S1

∗ [12 ] and ΩG,S1

≥4,∗ [12 ] are generated as modules over ΩG
∗ [12 ] by manifolds

of the following two types:

1. Semi-free S1-manifolds, i.e. S1-manifolds M , such that all orbits in M are free
orbits or fixed points.

2. Generalized Bott manifolds M , equipped with a restricted S1-action.
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The proof of this result is based on techniques first used by Kosniowski and Yahia
[KY83] in combination with a result of Saihi [Sai01].

Using the above result, we can give a bordism-theoretic proof of the rigidity of elliptic
genera. This gives the following theorem:

Theorem 1.2 ([BT89]) Let ϕ : ΩSpin,S1

n → H∗∗(BS1,C) = C[[z]] be an equivariant
elliptic genus. Then ϕ(M) is constant, as a power series in z, for every effective S1-

manifold [M ] ∈ ΩSpin,S1

n .

The idea of our proof of this theorem is as follows. By Theorem 1.1 one only has
to prove the rigidity of elliptic genera for semi-free S1-manifolds and generalized Bott
manifolds. For semi-free S1-manifolds this was done by Ochanine [Och88]. His proof
can be modified in such a way that it gives the rigidity of T -equivariant elliptic genera
of effective T -manifolds M such that all fixed point components have minimal codimen-
sion 2 dimT . Here T denotes a torus. This minimality condition is satisfied for torus
manifolds and therefore also for generalized Bott manifolds. So the theorem follows.

We also apply Theorem 1.1 to the question of which S1-manifolds admit invariant
metrics of positive scalar curvature. It is necessary for this application to consider

the bordism groups ΩG,S1

≥4,n because the bordism principle which we will prove to attack
this question only works for bordisms which do not have fixed point components of
codimension two.

The existence question in the non-equivariant setting was finally answered by Gromov
and Lawson [GL80] for high dimensional simply connected manifolds which do not admit
spin structures and by Stolz [Sto92] for high dimensional simply connected manifolds
which admit such a structure.

Their results are summarized by the following theorem.

Theorem 1.3 Let M be a simply connected closed manifold of dimension at least five.
Then the following holds:

1. If M does not admit a spin-structure, then M admits a metric of positive scalar
curvature.

2. If M admits a spin-structure, then M admits a metric of positive scalar curvature
if and only if α(M) = 0.

In the above theorem α(M) denotes the α-invariant of M . It is a KO-theoretic refine-
ment of the Â-genus of M and an invariant of the spin-bordism type of M .

The proof of this theorem consists of two steps; one is geometric, the other is topo-
logical. The geometric step is to show that a manifold M which is constructed from
another manifold N by surgery in codimension at least 3 admits a metric of positive
scalar curvature if N admits such a metric. This is the so-called surgery principle. It
has been shown independently by Gromov–Lawson [GL80] and Schoen–Yau [SY79].

From this principle it follows that a manifold of dimension at least five admits a
metric of positive scalar curvature if and only if its class in a certain bordism group can
be represented by a manifold with such a metric. This is called the bordism principle.
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The final step in the proof of the above theorem is then to find all bordism classes
which can be represented by manifolds which admit a metric of positive scalar curvature.

The answer to the existence question in the equivariant setting is less clear.

First of all, the question if there exists an invariant metric of positive scalar curvature
on a G-manifold, G a compact Lie group acting effectively, has been answered positively
by Lawson and Yau [LY74] for the case that the identity component of G is non-abelian.
The proof of this result does not use bordism theory or surgery. It is based on the fact
that a homogeneous G-space admits an invariant metric of positive scalar curvature,
which is induced from an bi-invariant metric on G.

If the identity component of G is abelian, then the answer to this question is more
complicated. In this case the existence question was first studied by Bérard Bergery
[BB83].

He gave examples of simply connected manifolds with a non-trivial S1-action which
admit metrics of positive scalar curvature, but no S1-invariant such metric. There are
also examples of manifolds which admit S1-actions, but no metric of positive scalar
curvature. Such examples are given by certain homotopy spheres not bounding spin
manifolds [Bre67], [Sch75], [Jos81].

Bérard Bergery also showed that the proofs of the surgery principle carry over to the
equivariant setting for actions of any compact Lie group G. Based on this several authors
have tried to adopt the proof of Theorem 1.3 to the equivariant situation.

At first a bordism principle has been proposed by Rosenberg and Weinberger [RW88]
for finite cyclic groups G and actions without fixed point components of codimension
two. The proof of this theorem is potentially problematic, because its proof needs more
assumptions than those which are stated in the theorem (see the discussion following
Corollary 16 in [Han08]). Based on Rosenberg’s and Weinberger’s theorem Farsi [Far92]
studied Spin-manifolds of dimension less than eight with actions of cyclic groups of odd
order.

Later Hanke [Han08] proved a bordism principle for actions of any compact Lie group
G which also takes codimension-two singular strata into account. He used this result to
prove the existence of invariant metrics of positive scalar curvature on certain non-spin
S1-manifolds which do not have fixed points and satisfy Condition C (see Definition 2.1).

In [Wie15] the author showed that every S1-manifold with a fixed point component
of codimension two admits an invariant metric of positive scalar curvature. In that
paper existence results for invariant metrics of positive scalar curvature on semi-free
S1-manifolds without fixed point components of codimension two were also discussed.

Here we extend the results from that paper to certain non-semi-free S1-manifolds. We
prove the following existence results for metrics of positive scalar curvature on non-semi-
free S1-manifolds.

Theorem 1.4 Let M be a connected effective S1-manifold of dimension at least six such
that π1(Mmax) = 0, Mmax is not Spin and for all subgroups H ⊂ S1, MH is orientable.
Then for some k ≥ 0, the equivariant connected sum of 2k copies of M admits an
invariant metric of positive scalar curvature. Here Mmax denotes the maximal stratum
of M , i.e. the union of the principal orbits.
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Here a equivariant connected sum of two S1-manifolds M1, M2 can be a fiber connected
sum at principal orbits, a connected sum at fixed points or more generally the result of
a zero-dimensional equivariant surgery on orbits Oi ⊂Mi, i = 1, 2.

Now we turn to a similar result in the case that M is a spin manifold. For this we first
note that on spin manifolds there are two types of actions. Those which lift to actions
on the spin-structure and those which do not lift to the spin-structure. The actions of
the first type are called actions of even type. Whereas the actions of the second kind
are called actions of odd type.

Theorem 1.5 Let M be a spin S1-manifold with dimM ≥ 6, an effective S1-action of
odd type and π1(Mmax) = 0. Then there is a k ∈ N such that the equivariant connected
sum of 2k copies of M admits an invariant metric of positive scalar curvature.

Theorem 1.6 There is an equivariant bordism invariant ÂS1 with values in Z[12 ], such
that, for a spin S1-manifold M with dimM ≥ 6, an effective S1-action of even type and
π1(Mmax) = 0, the following conditions are equivalent:

1. ÂS1(M) = 0.

2. There is a k ∈ N such that the equivariant connected sum of 2k copies of M admits
an invariant metric of positive scalar curvature.

For free S1-manifolds M , ÂS1(M) is equal to the Â-genus of the orbit space of M .
If the action on M is semi-free, then it coincides with a generalized Â-genus of the
orbit space defined by Lott [Lot00]. In general we can identify ÂS1 with the index of a
Dirac-operator defined on a submanifold with boundary of Mmax/S

1.
ÂS1(M) can only be non-trivial if the dimension of M is 4k + 1. Moreover, the usual

Â-genus of M is zero in these dimensions. It also vanishes, if M admits a metric of
positive scalar curvature. Therefore Theorems 1.5 and 1.6 imply the following theorem
which has originally been proved by Atiyah and Hirzebruch [AH70] using the Lefschetz
fixed point formula and some complex analysis.

Theorem 1.7 Let M be a Spin-manifold with a non-trivial S1-action. Then Â(M) = 0.

The proofs of the above results are based on a generalization (Theorem 5.9) of the
bordism principle proved by Hanke [Han08] to S1-manifolds with fixed points. When
this is established the theorems follow from the fact that our generators of the second

type of ΩG,S1

≥4,∗ [12 ] admit invariant metrics of positive scalar curvature and the existence

results from [Wie15] for semi-free S1-manifolds.
This paper is organized as follows. In Sections 2 and 3 we prove Theorem 1.1 for man-

ifolds satisfying Condition C. Then in Section 4 we generalize these results to manifolds
not satisfying Condition C. This completes the proof of Theorem 1.1.

Then we turn to the existence question for invariant metrics of positive scalar curvature
on S1-manifolds. In Section 5 we generalize the bordism principle of Hanke [Han08] to
S1-manifolds with fixed points. Then in Section 6 we show that, under mild assumptions
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on the isotropy groups of the codimension-two singular strata, normally symmetric met-
rics are dense in all invariant metrics on an S1-manifold with respect to the C2-topology.
Here normally symmetric metrics are metrics which are invariant under certain extra S1-
symmetries which are defined on small neighborhoods of the codimension-two singular
strata. In Section 7 we introduce our obstruction ÂS1 to invariant metrics of positive
scalar curvature on spin S1-manifolds with actions of even type. Then in Section 8 we
complete the proof of our existence results for metrics of positive scalar curvature on
S1-manifolds. Moreover, we give a new proof of the above mentioned result of Atiyah
and Hirzebruch using our results.

In the last Section 9 we give a proof of the rigidity of elliptic genera based on our
Theorem 1.1.

I would like to thank Bernhard Hanke and Anand Dessai for helpful discussions on
the subject of this paper.

2. Non-semi-free actions on non-spin manifolds

In this section we prove a version of Theorem 1.1 for the S1-equivariant oriented bordism
groups of manifolds which satisfy Condition C. At first we recall Condition C.

Definition 2.1 Let T be a torus and M a compact T -manifold. We say that M satisfies
Condition C if for each closed subgroup H ⊂ T , the T -equivariant normal bundle of
the closed submanifold MH ⊂ M is equipped with the structure of a complex T -vector
bundle such that the following compatibility condition holds: If K ⊂ H ⊂ T are two
closed subgroups, then the restriction of N(MK ,M) to MH is a direct summand of
N(MH ,M) as a complex T -vector bundle.

Before we state and prove our main result of this section, we introduce some notations
from [KY83].

Let M be a S1-manifold satisfying Condition C and x ∈M . Then the isotropy group
S1
x of x acts linearly on the tangent space of M at x. There is an isomorphism of
S1
x-representations TxM ∼= V̄x ⊕ Vx, where V̄x is a trivial S1

x-representation and Vx is a
unitary S1

x-representation without trivial summands. The slice type of x ∈M is defined
to be the pair [S1

x;Vx].

A S1-slice-type is a pair [H;W ], where H is a closed subgroup of S1 and W is a unitary
H-representation without trivial summands. We call a slice-type [H;W ] effective (semi-
free, resp.) if the S1-action on S1 ×H W is effective (semi-free, resp.). By a family F of
slice-types we mean a collection of S1-slice types such that if [H;W ] ∈ F then for every
x ∈ S1 ×H W , [S1

x, Vx] ∈ F .

A S1-manifold M satisfying Condition C is of type F , if for every x ∈ M , [S1
x, Vx] ∈

F . We denote by ΩC,S1

∗ [F ] the bordism groups of all oriented S1-manifolds satisfying

Condition C of type F . We set ΩC,S1

∗ = ΩC,S1

∗ [All], where All denotes the family of all
slice-types. We denote by AE the family of all effective slice-types.
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Let ρ = [H;W ] be a S1-slice type. A complex S1-vector bundle E over a manifold
N is called of type ρ if the set of points in E having slice type ρ is precisely the zero

section of E. Bordism of bundles of type ρ leads to a bundle bordism group ΩC,S1

∗ [ρ].
If F = F ′ ∪ {ρ} is a family of slice-types such that F ′ is a family of slice types, then

ΩC,S1

∗ [ρ] is isomorphic to the relative equivariant bordism group ΩC,S1

∗ [F ,F ′], which
consists of those S1-manifolds with boundary of type F whose boundary is of type F ′.
Moreover, there is a long exact sequence of ΩSO

∗ -modules

. . . // ΩC,S1

n [F ′] // ΩC,S1

n [F ]
ν // ΩC,S1

n [ρ]
∂ // ΩC,S1

n−1 [F ′] // . . . .

Here ν is the map which sends a S1-manifold satisfying Condition C of type F to the
normal bundle of the submanifold of points of type ρ. Moreover, ∂ assigns to a bundle
of type ρ its sphere bundle.

This sequence provides an inductive method of calculating the bordism groups of
S1-manifolds satisfying Condition C of type F .

Theorem 2.2 Let F = AE or F = AE − {[S1;W ]; dimCW = 1} be the family of all
effective S1-slice types with or without, respectively, the slice types of the form [S1;W ]

with W an unitary S1-representation of dimension one. Then ΩC,S1

∗ [F ] is generated
by semi-free S1-manifolds and generalized Bott manifolds M with a restricted S1-action
which does not have fixed point components of codimension two.

Before we prove this theorem we describe the torus action on the generalized Bott
manifolds in more detail.

A generalized Bott manifold M is a manifold of the following type: There exists a
sequence of fibrations

M = Nl → Nl−1 → . . . N1 → N0 = {pt},

such that N0 is a point and each Ni is the projectivization a Whitney sum of ni + 1
complex line bundles over Ni−1.

The torus action on these manifolds can be constructed inductively as follows. At first
note that each Ni−1 is simply connected. Therefore, if Ni−1 has an effective action of an
(
∑i−1

j=1 nj)-dimensional torus T , then the natural map H2
T (Ni−1;Z) → H2(Ni−1;Z) from

equivariant to ordinary cohomology is surjective. Hence, by [HY76], the T -action lifts
to an action on each of the ni + 1 line bundles from which Ni is constructed. Together
with the action of an (ni + 1)-dimensional torus given by componentwise multiplication
on each of these line bundles, this action induces an effective action of an (

∑i
j=1 nj)-

dimensional torus T ′ on Ni. Note that, by [HY76], the T ′-action constructed in this way
is unique up to automorphisms of T ′, i.e. does not depend on the actual choice of the
lifts of the T -actions. So each Ni becomes a so-called torus manifold with this torus
action, i.e. the dimension of the acting torus is half of the dimension of the manifold
and there are fixed points.
Proof of Theorem 2.2. At first we define a sequence of families Fi of S1-slice types

such that
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1. Fi+1 = Fi ∪ {σi+1} for a slice type σi+1,

2. F =
⋃∞
i=0Fi,

3. F0 consists of semi-free S1-slice types.

When this is done it is sufficient to prove that each ΩC,S1

∗ [Fi] is generated by semi-free

S1-manifolds, generalized Bott manifolds and manifolds which bound in ΩC,S1

∗ [F ].

Before we do that we introduce some notations for the S1-slice types. The irreducible
non-trivial S1-representations are denoted by

. . . , V−1, V1, V2, . . . ,

where Vi is C equipped with the S1-action given by multiplication with si for s ∈ S1. For
Zm ⊂ S1 we denote the irreducible non-trivial Zm-representations by V−1, . . . , V−m+1.
Here Vi is C with s ∈ Zm acting by multiplication with si.

The effective S1-slice types are then of the forms

[S1;Vk(1) ⊕ Vk(2) ⊕ · · · ⊕ Vk(n)]

with k(1) ≥ k(2) ≥ · · · ≥ k(n), n ≥ 1 and gcd{k(1), . . . , k(n)} = 1 or

[Zm;Vk(1) ⊕ Vk(2) ⊕ · · · ⊕ Vk(n)]

with 0 > k(1) ≥ k(2) ≥ · · · ≥ k(n) > −m, n ≥ 1 if m > 1, and gcd{k(1), . . . , k(n),m} =
1. Such a slice type is semi-free if it is of the form [S1;Vk(1) ⊕ Vk(2) · · · ⊕ Vk(n)] with
|k(i)| = 1 for all i or [Z1; 0].

The non-semi-free effective slice types fall into three different classes:

F = {[H;W ]; H is finite}
SF = {[S1;W ]; W = Vk(1) ⊕ · · · ⊕ Vk(n) ⊕ V−m with

0 > k(1) ≥ k(2) ≥ · · · ≥ k(n) > −m}
T = {all other non-semi-free effective slice types}

For ρ = [Zm;Vk(1)⊕· · ·⊕Vk(n)] ∈ F we define e(ρ) = [S1;Vk(1)⊕· · ·⊕Vk(n)⊕V−m] ∈ SF.

We define an ordering of the non-semi-free slice types as follows similarly to the or-
dering in [KY83, Section 6]: Let

δ[S1;Vk(1) ⊕ · · · ⊕ Vk(n)] = max{|k(1)|, . . . , |k(n)|}
d[S1;Vk(1) ⊕ · · · ⊕ Vk(n)] = n,

we order T ∪SF at first by δ + d, then by d and then lexicographically. This together
with the following conditions gives an ordering on T ∪SF ∪ F. If ρ ∈ F and ρ′ 6∈ F then
define ρ < ρ′ if e(ρ) ≤ ρ′. If ρ ∈ F and ρ′ ∈ F then let ρ ≤ ρ′ if e(ρ) ≤ e(ρ′).
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Denote the elements of T ∪SF ∪ F by σ1, σ2, . . . so that σi < σj if i < j. Then one
can check that

F0 = {semi-free slice-types} − {[S1;Vi]; |i| = 1},
Fi = F0 ∪ {σ1, . . . , σi} for i ≥ 1

are families of slice types. The difference between these families of slice types and the
families of slice types ST i appearing in [KY83] is that Fi = (ST j(i) ∩ F) ∪ F0 with
j(i) < j(i′) if i < i′.

Now we prove by induction on i that ΩC,S1

∗ [Fi] is generated by semi-free S1-manifolds,

generalized Bott manifolds and manifolds which bound in ΩC,S1

∗ [Fi+1].

We may assume that i ≥ 1. Then we have an exact sequence

. . . // ΩC,S1

n [Fi−1] // ΩC,S1

n [Fi]
νi // ΩC,S1

n [σi]
∂i // ΩC,S1

n−1 [Fi−1] // .

At first assume that σi ∈ F. Then one can define a section qi to νi as in [KY83, Section

6]. For E ∈ ΩC,S1

∗ [σi], qi(E) is represented by a sphere bundle associated to a unitary
S1-vector bundle of rank at least two over a manifold with trivial S1-action.

Hence ΩC,S1

n [Fi] is generated by manifolds of type Fi−1 and the qi(E), E ∈ ΩC,S1

n [σi].
Moreover, the disc bundle associated to E is bounded by qi(E) and is of type Fi+1.
Therefore the claim follows in this case from the induction hypothesis.

Next assume that σi ∈ SF. Then as in [KY83, Section 5], one sees that ∂i induces

an isomorphism ΩC,S1

n [σi] → im qi−1. Therefore we have an isomorphism ΩC,S1

∗ [Fi−2] →
ΩC,S1

∗ [Fi]. Hence the claim follows in this case from the induction hypothesis.

At the end assume that σi ∈ T. Then one defines a section qi to νi as in [KY83, Section

7]. For E ∈ ΩC,S1

∗ [σi], qi(E) is represented by a projectivization P (Ẽ) of a unitary S1-
vector bundle Ẽ of rank at least two over a manifold with trivial S1-action or a manifold
M2 of the following form. First let M1 be the projectivization of a unitary S1-vector
bundle Ẽ1 over a manifold with trivial S1-action. M2 is then the projectivization of a
unitary S1-vector bundle E2 of rank at least two over M1.

Moreover, one sees from the definition of qi in [KY83, Section 7] and the fact that σi
is not semi-free that qi(E) does not have fixed point components of codimension two.
Since ΩSO

∗ (
∏
iBU(ji)) is generated as a module over ΩSO

∗ by sums of line bundles over
complex projective spaces, we may assume that the qi(E) are generalized Bott manifolds.
Hence the claim follows in this case from the induction hypothesis. �

3. The spin case

In this section we prove the following theorem about the S1-equivariant Spin-bordism
groups of those manifolds which satisfy Condition C.
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Theorem 3.1 Let F = AE or F = AE −{[S1;W ]; dimCW = 1} be the family of all ef-
fective S1-slice types with or without, respectively, the slice types of the form [S1;W ] with

W an unitary S1-representation of dimension one. Then ΩC,Spin,S1

∗ [12 ][F ] is generated
by semi-free S1-manifolds and generalized Bott manifolds with restricted S1-action.

For the proof of this theorem we will use the same families of slice types and the
following exact sequences analogues to the ones used in the proof of Theorem 2.2.

. . . // ΩC,Spin,S1

n [Fi−1] // ΩC,Spin,S1

n [Fi]

��

ΩC,Spin,S1

n [σi] // ΩC,Spin,S1

n−1 [Fi−1] // . . .

Before we prove Theorem 3.1, we describe the groups ΩC,Spin,S1

n [σi]. These groups
have been computed by Saihi [Sai01]. She showed that

ΩC,Spin,S1

n [H,V ] ∼= Ωn−1−2
∑k

i=1 ni
(BΓu ∐BΓv, f),

where H is a finite group, Γu,Γv are connected two-fold covering groups of Γ = SO ×
S1 ×H

∏k
i U(ni) and f = fu ∐ fv where fu : BΓu → BSO, fv : BΓv → BSO are the

fibrations induced by the projection Γ → SO.

Lemma 3.2 The two components of BΓu∐BΓv are in one-to-one correspondence to the
two spin-structures U ,V on S1×H V , in such a way that for E ∈ Ω∗(BΓu∐BΓv, fu∐fv)
we have E ∈ Ω∗(BΓu, fu) (, E ∈ Ω∗(BΓv, fv), respectively) if and only if the restriction
of the spin structure on E to an invariant tubular neighborhood of an orbit of type [H,V ]
in E coincides with the spin structure U (, V, respectively).
Proof. The spin structures on S1×H V ×Rk are in one to one-to-one correspondence to
the spin structures on S1 ×H V . Every spin structure on S1 ×H V induces a homotopy
class of lifts of the map pt→ BΓ to BΓu∐BΓv. Moreover, every such lift induces a spin
structure on S1 ×H V . Since the fiber of BΓu ∐BΓv → BΓ has two components, there
are exactly two homotopy classes of lifts. These lifts induce different spin structures on
S1 ×H V because they represent different elements in Ω∗(BΓu ∐ BΓv, fu ∐ fv). Since
there are exactly two spin structures on S1 ×H V the claim follows. �

After inverting two, we get the following isomorphism:

ΩC,Spin,S1

n [H,V ][
1

2
] ∼= Ωn−1−2

∑k
i=1 ni

[
1

2
](BΓ ∐BΓ, f)

∼= ΩSpin

n−1−2
∑k

i=1 ni
[
1

2
](B(S1 ×H

k∏

i

U(ni)) ∐B(S1 ×H

k∏

i

U(ni)))

∼= ΩSpin

n−1−2
∑k

i=1 ni
[
1

2
](B(S1/H ×

k∏

i

U(ni)) ∐B(S1/H ×
k∏

i

U(ni))).
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Here the first isomorphism is induced by the two-fold coverings Γu,Γv → Γ. Moreover,
the third isomorphism is induced by the homomorphism

S1 ×H

k∏

i=1

U(ni) → S1/H ×
k∏

i=1

U(ni),

[z, u1, . . . , uk] 7→ ([z], zα1u1, . . . , z
αkuk).

We also have

ΩC,Spin,S1

n [S1, V ][
1

2
] ∼= Ω̃Spin

n [
1

2
](MU(n1) ∧ · · · ∧MU(nk))

∼= Ω̃SO
n [

1

2
](MU(n1) ∧ · · · ∧MU(nk))

∼= ΩSO
n−2

∑k
i=1 ni

[
1

2
](BU(n1) × · · · ×BU(nk))

∼= ΩSpin

n−2
∑k

i=1 ni
[
1

2
](BU(n1) × · · · ×BU(nk)).

Here the first isomorphism has been shown by Saihi [Sai01], the second and fourth
isomorphism are deduced from the fact that after inverting two ΩSO

∗ and ΩSpin
∗ become

isomorphic.
Moreover, the third isomorphism is constructed as follows: Make a map φ : M →

MU(n1) ∧ · · · ∧MU(nk) transversal to the zero section of the classifying bundle over
BU(n1)× · · · ×BU(nk). Then restrict φ to the preimage of the zero section. This gives
an element of ΩSO

∗−2
∑k

i=1 ni
(BU(n1) × · · · ×BU(nk)).

We will need a basis of the ΩSpin
∗ [12 ]-module ΩSpin

∗ [12 ](BU(n1)×· · ·×BU(nk)). For odd
i > 0 denote by Xi the tensor product of two copies of the tautological line bundle over
CP i. For even i > 0 denote by Xi the tensor product of two copies of the tautological
line bundle over CP (γ ⊗ γ ⊕ C). Here γ denotes the tautological bundle over CP i−1.
Moreover for i = 0 denote by X0 the trivial line bundle over a point. Then the

k∏

i=1

ni∏

h=1

Xjhi with 0 ≤ j1i ≤ · · · ≤ jnki (1)

form a basis of ΩSpin
∗ [12 ](BU(n1) × · · · ×BU(nk)) as a ΩSpin

∗ [12 ]-module.
This can be seen as follows: First of all the Xi, i ≥ 0, form a basis of Ω∗[

1
2 ](BS1)

as a module over Ω∗[
1
2 ] because the characteristic numbers 〈ci1(Xi), [Bi]〉 are powers of

two [CF64, Theorem 18.1]. Moreover, for a torus T = (S1)k, Ω∗[
1
2 ](BT ) is isomorphic

to
⊗k

i=1 Ω∗[
1
2 ](BS1). Now consider the Atiyah–Hirzebruch spectral sequences for

Ω∗[
1

2
](BT )

and

Ω∗[
1

2
](BU(n1) × · · · ×BU(nk)),
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where T is a maximal torus of U(n1) × · · · × U(nk). They degenerate at the E2-level.
Hence, it follows that the products in (1) form a basis of Ω∗[

1
2 ](BU(n1)× · · · ×BU(nk))

from a comparison of the singular homologies of the two spaces (for details see [Koc96,
Section 4.3]).

For the proof of Theorem 3.1 we will also need the following construction of twisted

projective space bundles C̃TP (E1;E2).

Construction 3.3 Let Ei → Bi, i = 1, 2, be unitary S1-vector bundles such that the
actions on the base spaces are trivial. Then Ei splits as a sum of unitary S1-vector
bundles

Ei =

ki⊕

j=1

E
βij
i

with βi1, . . . , βiki ∈ Z such that the action of z ∈ S1 on each E
βij
i is given by multiplica-

tion with zβij . We call E
βij
i the weight bundle of the weight βij.

Moreover, we write

E+
i =

⊕

βij>0

E
βij
i

and

E−
i =

⊕

βij<0

E
βij
i .

Then we have Ei = E+
i ⊕ E−

i ⊕ E0
i .

Also let β2max ∈ {β21, . . . , β2k2} such that |β2max| = max1≤j≤k2 |β2j |.
In the following we assume that dimCE2 is even and dimCE

0
i = 1 for i = 1, 2. We

also assume that one of the following three cases holds:

1. dimCE1 is odd.

2. dimCE1 is even, β2max = ±2, dimCE
β2max
2 = 1, |β2j | = |β1j′ | = 1 for β2j 6= β2max

and all j′ ∈ {1, . . . , k1}.

3. dimCE1 is even, case 2 does not hold and Eβ2max
2 splits off an S1-invariant line

bundle F .

In each of these cases we define a free T 2-action on the product of sphere bundles
S(E1) × S(E2).

In case 1 we define this action as follows

(s, t) · ((e+1 , e
−
1 , e

0
1), (e

+
2 , e

−
2 , e

0
2)) = ((te+1 , t

−1e−1 , te
0
1), (tse

+
2 , t

−1s−1e−2 , se
0
2)),

where (s, t) ∈ S1 × S1 = T 2, e±i ∈ E±
i and e0i ∈ E0

i .

If, in case 2, β2max < 0, we define this action by

(s, t) · ((e+1 , e
−
1 , e

0
1), (e

+
2 , e

−
2 , e

0
2, f)) = ((te+1 , t

−1e−1 , te
0
1), (tse

+
2 , t

−1s−1e−2 , se
0
2, s

−1f)),

60



where (s, t) ∈ S1 × S1 = T 2, e±1 ∈ E±
1 , e

+
2 ∈ E+

2 , e
−
2 ∈ E−

2 ⊖ Eβ2max
2 , e0i ∈ E0

i and

f ∈ Eβ2max
2 .

If, in case 2, β2max > 0, we define this action by

(s, t) · ((e+1 , e
−
1 , e

0
1), (e

+
2 , e

−
2 , e

0
2, f)) = ((te+1 , t

−1e−1 , te
0
1), (tse

+
2 , t

−1s−1e−2 , se
0
2, sf)),

where (s, t) ∈ S1 × S1 = T 2, e±1 ∈ E±
1 , e

+
2 ∈ E+

2 ⊖ Eβ2max
2 , e−2 ∈ E−

2 , e
0
i ∈ E0

i and

f ∈ Eβ2max
2 .

If, in case 3, β2max < 0, we define this action by

(s, t) · ((e+1 , e
−
1 , e

0
1), (e

+
2 , e

−
2 , e

0
2, f)) = ((te+1 , t

−1e−1 , te
0
1), (tse

+
2 , t

−1s−1e−2 , se
0
2, s

−1t−2f)),

where (s, t) ∈ S1 × S1 = T 2, e±1 ∈ E±
1 , e

+
2 ∈ E+

2 , e
−
2 ∈ E−

2 ⊖ F , e0i ∈ E0
i and f ∈ F .

If, in case 3, β2max > 0, we define this action by

(s, t) · ((e+1 , e
−
1 , e

0
1), (e

+
2 , e

−
2 , e

0
2, f)) = ((te+1 , t

−1e−1 , te
0
1), (tse

+
2 , t

−1s−1e−2 , se
0
2, st

2f)),

where (s, t) ∈ S1 × S1 = T 2, e±1 ∈ E±
1 , e

+
2 ∈ E+

2 ⊖ F , e−2 ∈ E−
2 , e

0
i ∈ E0

i and f ∈ F .

We denote the orbit space of these actions by C̃TP (E1;E2). It is diffeomorphic to a
CPn2-bundle over a manifold M , where M is a CPn1-bundle over B1 × B2. Here we
have ni = dimCEi − 1.
One can compute the cohomology of the total space of the CPn1-bundle ξ : M →

B1 ×B2 by using the Leray–Hirsch-Theorem as

H∗(M ;Z2) ∼= H∗(B1 ×B2;Z2)[u]/(f(u)),

where u is the mod 2-reduction of the first Chern-class of the tautological line bundle
over M and f(u) is a polynomial of degree 2(n1 + 1).
Moreover, its tangent bundle splits as a direct sum

ξ∗T (B1 ×B2) ⊕ η,

where η is the tangent bundle along the fibers of ξ.
Note that η is isomorphic to γ⊗ (E+

1 ⊕E0
1)⊕ γ̄⊗E−

1 , where γ denotes the tautological
line bundle over M .
From this fact it follows that the second Stiefel–Whitney class of M is given by

w2(M) = w2(B1 ×B2) + (n1 + 1)u+ w2(E1).

The same reasoning with M replaced by C̃TP (E1;E2) and B1 × B2 replaced by M

shows that the second Stiefel–Whitney class of C̃TP (E1;E2) is given by

w2(C̃TP (E1;E2)) = w2(B1 ×B2) + w2(E1) + w2(E2).

Therefore it follows that C̃TP (E1;E2) is a spin manifold if B1, B2 are spin-manifolds
and E1, E2 are spin-vector bundles.

61



The S1-actions on E1 and E2 induce an S
1-action on C̃TP (E1;E2). The submanifolds

Nβ1j ,β2j′
= (S(E

β1j
1 ) × S(E

β2j′
2 ))/T 2 ⊂ C̃TP (E1;E2)

S1

are fixed by this S1-action on C̃TP (E1;E2).

In the proof of Theorem 3.1 we want that the manifolds C̃TP (E1;E2) are of type Fi
for certain families Fi of slice types. For this it is important to know the weights of the
S1-representations on the normal bundles of Nβ1j ,β2j′

. In particular it is important how

they differ from the weights at N0,0. The weights of the S1-action on the normal bundle
of Nβ1j ,β2j′

can be computed as listed in tables 1, 2, 3.

In the proof of Theorem 3.1 we will always have

max
1≤j≤k1

|β1j | < max
1≤j≤k2

|β2j | = |β2max|.

Assume that this holds and that (β1j , β2j′) 6= (0, 0), (0,±β2max), then we have in cases
1 and 3:

max{|weights at Nβ1j ,β2j′
|} < max{|weights at N0,0|}.

In case 2 let Yβ1j ,β2j′ be the component of C̃TP (E1;E2)
S1

containing Nβ1j ,β2j′
. Then

we have

codimYβ1j ,β2j′ < dimE1 + dimE2 − 2 = codimY0,0

if (β1j , β2j′) 6= (0, 0), (0,±2), (±1,±2) or (β1j , β2j′) 6= (0, 0), (0,±2) and dimCE1 6= 2.

If we have (β1j , β2j′) = (±1,±2), dimCE1 = 2 and dimCE2 ≥ 4, then the weight
−2 appears in the weights at Nβ1j ,β2j′

with multiplicity greater than one. Therefore the

S1-representation at Nβ1j ,β2j′
does not coincide with the S1-representation at N0,0.

Note that in all three cases we have that the weights of the S1-representation at N0,β2max

are given by

{−|β2max|, β11, . . . , β1k, signβ2i(|β2i| − |β2max|); i = 1, . . . , k′ and β2i 6= 0}.

Proof of Theorem 3.1. Now as in the non-spin case we construct sections to the maps

νi : ΩC,Spin,S1

n [Fi][
1

2
] → im νi ⊂ ΩC,Spin,S1

n [σi][
1

2
].

At first assume that σi = [H,V ] with H finite and V =
⊕k

i=1 Vαi with 0 > α1 ≥
· · · ≥ αk > αk+1 = −m = − ordH. Then, by Lemma 3.2, the two copies of BΓ in

ΩC,Spin,S1

n [12 ][σi] correspond to the two spin structures on

S1 ×H V.
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(β1j , β2j′) weights at Nβ1j ,β2j′

(0, 0) β11, . . . , β1k, β21, . . . , β2k′

(0, γ) with γ 6= 0 −|γ|,
β11, . . . , β1k,
signβ2i(|β2i| − |γ|) for i = 1, . . . k′ and β2i 6= 0

(γ, 0) with γ 6= 0 −|γ|,
signβ1i(|β1i| − |γ|) for i = 1, . . . k and β1i 6= 0,
signβ2i(|β2i| − |γ|) for i = 1, . . . k′ and β2i 6= 0

(γ1, γ2) with γi 6= 0 −|γ1|,
signβ1i(|β1i| − |γ1|) for i = 1, . . . k and β1i 6= 0,
signβ2i(|β2i| − |γ2|) for i = 1, . . . k′ and β2i 6= 0,
|γ1| − |γ2|

Table 1: The weights of the S1-action on C̃TP in the first case.

(β1j , β2j′) weights at Nβ1j ,β2j′

(0, 0) β11, . . . , β1k, β21, . . . , β2k′

(0,±1) β11, . . . , β1k,∓1

(0,±2) β11, . . . , β1k,−2,∓1

(±1, 0), (±1,±1) −1,±2

(±1,±2) −1,−2

Table 2: The weights of the S1-action on C̃TP in the second case.

(β1j , β2j′) weights at Nβ1j ,β2j′

(0, 0) β11, . . . , β1k, β21, . . . , β2k′

(0, γ) with γ 6= 0 −|γ|, β11, . . . , β1k,
signβ2i(|β2i| − |γ|) for i = 1, . . . k′ and β2i 6= 0

(γ, 0) with γ 6= 0 −|γ|,
signβ1i(|β1i| − |γ|) for i = 1, . . . k and β1i 6= 0,
signβ2i(|β2i| − |γ|) for i = 1, . . . k′ and β2i 6= 0, α,
signα(|α| − 2|γ|)

(γ1, γ2) with γi 6= 0, −|γ1|,
signβ1i(|β1i| − |γ1|) for i = 1, . . . k and β1i 6= 0,

γ2 6= α signβ2i(|β2i| − |γ2|) for i = 1, . . . k′ and β2i 6= 0, α,
|γ1| − |γ2|,
signα(|α| − |γ1| − |γ2|)

(γ, α) with γ 6= 0 −|γ|,
signβ1i(|β1i| − |γ|) for i = 1, . . . k and β1i 6= 0,
signβ2i(|β2i| − |α| + |γ|) for i = 1, . . . k′ and β2i 6= 0, α,
2|γ| − |α|

Table 3: The weights of the S1-action on C̃TP in the third case.
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There are equivariant diffeomorphisms

S1/H ×
k⊕

i=1

Vαi → S1 ×H

k⊕

i=1

Vαi

([z], v1, . . . , vk) 7→ [z, z−α1v1, . . . , z
−αkvk]

and

S1/H × (Vα1+m ⊕
k⊕

i=2

Vαi) → S1 ×H

k⊕

i=1

Vαi

([z], v1, . . . , vk) 7→ [z, z−α1−mv1, . . . , z
−αkvk],

where the action on the left hand spaces is given by the product action and on the right
hand spaces the action is induced by left multiplication on the first factor.

Moreover, we can (non-equivariantly) identify

S1/H ×
k⊕

i=1

Vαi
∼= S1 ×

k⊕

i=1

Vαi

and

S1/H × (Vαi+m ⊕
k⊕

i=2

Vαi)
∼= S1 × (Vαi+m ⊕

k⊕

i=2

Vαi).

Composing these diffeomorphisms leads to the map

S1 × Ck ∼= S1 ×
k⊕

i=1

Vαi → S1 × (Vαi+m ⊕
k⊕

i=2

Vαi)
∼= S1 × Ck

(z, v1, . . . , vk) 7→ (z, zv1, . . . , vk).

This map interchanges the two spin structures on S1 × Ck. Therefore one of the
two spin structures on S1 ×H V equivariantly bounds D2 × (

⊕k
i=1 Vαi). The other

equivariantly bounds D2 × (Vαi+m ⊕⊕k
i=2 Vαi).

Let E =
∏k+1
i=1

∏ni
h=1Xjhi ∈ ΩSpin

∗ [12 ](BΓfirst copy). Then the sphere bundle associated

to
∏k+1
i=1

∏ni
h=1Xjhi,αi gives the desired preimage. Here Xj,α denotes the bundle Xj

equipped with the action of S1 induced by multiplication with zα for z ∈ S1.
This can be seen as follows: The normal bundle of S(E)H in S(E) bounds the normal

bundle of D(E)H in D(E). Therefore a tubular neighborhood of an orbit of type [H,V ]
in S(E), equipped with its natural spin structure, equivariantly bounds D2 × V × Rk.
Hence, this spin structure is the one which corresponds to BΓfirst copy. In particular,
S(E) is the desired preimage of E.

Next assume that E =
∏k+1
i=1

∏ni
h=1Xjhi ∈ Ω∗[

1
2 ](BΓsecond copy), then, by an argument

similar to the one from above, the sphere bundle associated to

(Xjn11,α1 ⊗ X̄j1(k+1),m ⊕Xj1k+1,−m) ×
n1−1∏

h=1

Xjh1,α1 ×
k∏

i=2

ni∏

h=1

Xjhi,αi
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gives the desired preimage. Here X̄j1(k+1)
is the dual vector bundle of Xj1(k+1)

. Moreover,

Xjn11
⊗X̄j1(k+1)

⊕Xj1k+1
is the vector bundle over the base space B1×B2 of Xjn11

×Xj1k+1

given by the Whitney sum of pr∗1(Xjn11
) ⊗ pr∗2(X̄j1(k+1)

) and pr∗2(Xj1k+1
).

Next assume that σi = [S1, V ] where V =
⊕k

i=1 V
ni
αi

with αi > αi+1. For this case we

will use Construction 3.3 of twisted projective space bundles C̃TP (E1; E2).
Case 1: At first also assume, that all weights of V are negative and the minimal

weight appears with multiplicity one. Then one can see that the map ΩC,Spin,S1

∗ [12 ][σi] →
ΩC,Spin,S1

∗ [12 ][Fi−1] has the same image as the first section constructed above for slice
types with finite isotropy groups. Hence it is injective.
Case 2: Next assume that all weights except α1 of V are negative, the minimal weight

and α1 appear with multiplicity one and 0 > α1−m ≥ αi for all i > 1, where −m = αk.

Then one can see that the map ΩC,Spin,S1

∗ [12 ][σi] → ΩC,Spin,S1

∗ [12 ][Fi−1] has the same
image as the second section constructed above for slice types with finite isotropy groups.

Then

(Xj11,α1−m ⊗ X̄j1k,αk
⊕Xj1k,αk

) ×
∏

i>1

ni∏

h=1

Xjhi,αi , 0 ≤ j1i ≤ j2i ≤ · · · ≤ jnii for i ≥ 1

is a basis of ΩC,Spin
∗ [12 ][σi] as an ΩSpin

∗ [12 ]-module. To see this, note that the map

Ω∗[
1

2
](BU(1) ×BU(1) ×

k−1∏

i=2

BU(ni)) → Ω∗[
1

2
](BU(1) ×BU(1) ×

k−1∏

i=2

BU(ni))

X ⊕ Y ⊕ Z 7→ X ⊗ Ȳ ⊕ Y ⊕ Z

is an isomorphism. Moreover, the elements given above are the images of the basis (1)
under this isomorphism.

If j11 ≥ jn22 with α2 = α1 −m or α1 −m > α2, then the image of

Xj11,α1−m ⊗Xj1k,αk
⊕Xj1k,αk

×
∏

k>i>1

ni∏

h=1

Xjhi,αi

under the map ΩC,Spin,S1

∗ [12 ][σi] → ΩC,Spin,S1

∗ [12 ][Fi−1] is part of a basis of the image
of the second section constructed for normal orbit types with finite isotropy groups.
Therefore for these basis elements we do not have to define preimages under νi.

Therefore assume that α2 = α1 −m and j11 < jn22. Then

C̃TP (C×
n2−1∏

h=1

Xjh2,α2 ×
∏

2<i<k

ni∏

h=1

Xjhi,αi ;

(Xj11,α1−m ⊗ X̄j1k,αk
⊕Xj1k,αk

) ×Xj2n2 ,α2 × C)

is mapped by νi to

n2−1∏

h=1

Xjh2,α2 ×
∏

2<i<k

ni∏

h=1

Xjhi,αi×(Xj11,α1−m ⊗ X̄j1k,αk
⊕Xj1k,αk

×Xj2n2 ,α2

−Xj11,α1−m ×Xj2n2 ,α2 ⊗ X̄j1k,αk
⊕Xj1k,αk

).
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Here the two components of C̃TP (E1;E2)
S1

which correspond to the two summands of

the above sum are given by C̃TP (C;C) and C̃TP (C;Xj1k,αk
). The other fixed point

components are of different slice types. Therefore we have found the generators in this
case.
Case 3: Next assume that σi = [S1, V ], such that all weights except α1 of V are

negative, the minimal weight and α1 appear with multiplicity one and α1 < −αk = m,
α1 −m < α2. Then

C̃TP (C×
n2−1∏

h=1

Xjh2,α2 ×
∏

2<i<k

ni∏

h=1

Xjhi,αi ; Xj11,α1 ×Xjn22,α2 ×Xj1k,αk
× C)

is mapped by νi to
k∏

i=1

ni∏

h=1

Xjhi,αi .

Here the component of C̃TP (E1;E2)
S1

which corresponds to this product is given by

C̃TP (C;C)S
1
. The other components of the fixed point set are of different slice types.

Therefore we have found the generators in this case.
Case 4: Next assume that σi = [S1, V ], such that α1 > 0 appears with multiplicity

at least two and the minimal weight appears with multiplicity one and is negative and
α1 < −αk = m. Then

C̃TP (C×
n1∏

h=3

Xjh1,α1 ×
∏

1<i<k

ni∏

h=1

Xjhi,αi ; Xj11,α1 ×Xj21,α1 ×Xj1k,αk
× C)

is mapped by νi to
k∏

i=1

ni∏

h=1

Xjhi,αi

Therefore we have found the generators in this case.
Case 5: Next assume that σi = [S1, V ], such that α1 > α2 > 0 and the minimal

weight appears with multiplicity one and is negative and α1 < −αk = m. Then

C̃TP (C×
n1∏

h=2

Xjh1,α1 ×
n2∏

h=2

Xjh2,α2 ×
∏

1<i<k

ni∏

h=1

Xjhi,αi ; Xj11,α1 ×Xj12,α2 ×Xj1k,αk
× C)

is mapped by νi to
k∏

i=1

ni∏

h=1

Xjhi,αi

Therefore we have found the generators in this case.
Case 6: Next assume that α1 = 2 and α2 = ±1 are the only weights. Then

M = CP (Xj11α1 ⊕ C) × CP (Xj12,α2 ⊕ C)
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is a manifold which satisfies Condition C such that the weights at the four fixed point
components are (−2,−1), (−2, 1), (2,−1), (2, 1). If α2 = −1, we conjugate the complex
structure on the summand N(MS1

,MZ2) of the normal bundle of the last fixed point
component. In this way we get the desired generators in this case.
Case 7: In all other cases let β ∈ {α1, αk} be a weight of maximal norm. Then there

is a second weight δ 6= β,−β. In these cases one of

C̃TP (C×
nδ∏

h=2

Xjhδ,δ ×
∏

αi 6=δ,−β,β

ni∏

h=1

Xjhi,αi ; Xj1δ,δ ×
nβ∏

h=1

Xjh,β ,β ×
n−β∏

h=1

Xjh,−β ,−β × C)

or

C̃TP (C×
∏

αi 6=−β,β

ni∏

h=1

Xjhi,αi ;

nβ∏

h=1

Xjh,β ,β ×
n−β∏

h=1

Xjh,−β ,−β × C)

is spin and mapped by νi to
k∏

i=1

ni∏

h=1

Xjhi,αi .

Therefore we have found the generators in this case.
Hence we have found generators of the image of νi in all cases. This completes the

proofs of the theorem. �

4. S1-manifolds not satisfying Condition C

In this section we prove Theorem 1.1. In view of Theorems 2.2, 3.1 it suffices to prove
the following lemma.

Lemma 4.1 For G = SO or G = Spin and F = AE or F = AE − {[S1,W ]; dimCW =
1}, the natural map

ΩC,G,S1

n [
1

2
][F ] → ΩG,S1

n [
1

2
][F ]

is surjective. Here ΩG,S1

n [F ] denotes the bordism group of n-dimensional G-manifolds
with effective S1-action of type F such that, for all subgroups H ⊂ S1, MH is orientable.

To prove this lemma, we use an induction as in Section 3. To do so, we first recall
that the real slice types of S1, which appear in an orientable S1-manifold, are given by

[Zm;
∏

−m<α≤−m
2

V jα
α ] [S1;

∏

α<0

V jα
α ]

Therefore for each real slice type ρ there is a preferred complex slice type σ such that
after forgetting the complex structure we have ρ = σ. Note that this slice type is the first
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complex slice type representing ρ with respect to the ordering introduced in Section 2.
We call two complex slice types equivalent if they represent the same real slice type.

The ordering of preferred complex slice types induces an ordering of the real slice
types. Moreover, this leads to a sequence Gi of families of slice types such that

G0 = {semi-free slice types} − {[S1, V−1]}
Gi+1 = Gi ∐ {ρi} for a slice type ρi
∞⋃

i=0

Gi = {effective slice types without codimension two fixed point sets}

We will show by induction on i that every [M ] ∈ ΩG,S1

∗ [12 ][Gi] can be represented by
an effective S1-manifold which satisfies Condition C.

We have the following commutative diagram with exact rows:

ΩC,G,S1

∗ [12 ][Fh(i)−1] //

��

ΩC,G,S1

∗ [12 ][Fh(i)]
νCi //

��

ΩC,G,S1

∗ [12 ][σh(i)]
∂C
h(i) //

��

ΩC,G,S1

∗ [12 ][Fh(i)−1]

��

ΩG,S1

∗ [12 ][Gi−1] // ΩG,S1

∗ [12 ][Gi]
νi // ΩG,S1

∗ [12 ][ρi]
∂i // ΩG,S1

∗ [12 ][Gi−1]

Here σh(i) denotes the preferred complex slice type representing ρi.
A diagram chase shows that we are done with the induction step if we can show that

the composition of maps

ΩC,G,S1

∗ [
1

2
][Fi] → ΩG,S1

∗ [
1

2
][Gi] → ker ∂i

is surjective.
The following isomorphisms can be constructed in a similar way as in the case of the

groups ΩC,G,S1

∗ [12 ][σ].

ΩSO,S1

n [Zm,

−m
2∏

α=−m

V jα
α ][

1

2
] ∼= ΩSO

n−1−2
∑

−m/2
α=−m jα

[
1

2
](B(S1 ×Zm SO(2j−m/2))

×B(

−(m+1)/2∏

α=−m

U(jα)))

ΩSpin,S1

n [Zm,

−m
2∏

α=−m

V jα
α ][

1

2
] ∼= ΩSpin

n−1−2
∑

−m/2
α=−m jα

[
1

2
](B(S1 ×Zm SO(2j−m/2))

×B(

−(m+1)/2∏

α=−m

U(jα))) if j−m/2 > 0
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ΩSpin,S1

n [Zm,

−m+1
2∏

α=−m

V jα
α ][

1

2
] ∼= ΩSpin

n−1−2
∑

−m/2
α=−m jα

[
1

2
](B(S1/Zm) ×

−(m+1)/2∏

α=−m

BU(jα)

∐B(S1/Zm) ×
−(m+1)/2∏

α=−m

BU(jα))

∼= ΩSpin

n−1−2
∑

−m/2
α=−m jα

[
1

2
](BΓfirst copy ∐BΓsecond copy)

ΩG,S1

n [S1,
∏

α<0

V jα
α ][

1

2
] ∼= ΩG

n−2
∑

α jα
[
1

2
](
∏

α<0

BU(jα)),

For the construction of these isomorphisms in the spin case see [Sai01].

In particular, it follows that the maps ΩC,G,S1

n [σh(i)][
1
2 ] → ΩG,S1

n [ρi][
1
2 ] are surjective.

Indeed, if ρi 6= [Zm,
∏−m

2
α=−m V

jα
α ] with j−m

2
> 0, then these maps are isomorphisms.

In the case that ρi = [Zm,
∏−m

2
α=−m V

jα
α ] with j−m

2
> 0, we consider the map

f : BT → BG̃,

where T is a maximal torus of G̃ = (S1/Zm
2

) × SO(2jm
2

) × ∏α 6=m
2
U(jα). This map

induces an surjective map in singular homology with coefficients in Z[12 ] because G̃ does
not have odd torsion.

Since H∗(BT ;Z[12 ]) and H∗(BG̃;Z[12 ]) are concentrated in even degrees, the Atiyah–
Hirzebruch spectral sequence for the bordism groups (with two inverted) for these spaces
degenerates at the E2-level. Hence it follows that f induces a surjective map on bordism
groups.

Because this map factors through BG̃C , where GC = (S1/Zm
2

)×U(jm
2

)×∏α 6=m
2
U(jα)

and G and GC are two-fold covering groups of

(S1 ×Zm SO(2jm
2

)) ×
∏

α 6=m
2

U(jα) and (S1 ×Zm U(jm
2

)) ×
∏

α 6=m
2

U(jα),

respectively, it follows from the above isomorphism that ΩC,G,S1

n [σh(i)][
1
2 ] → ΩG,S1

n [ρi][
1
2 ]

is surjective.
We have a section qh(i) : im νCh(i) → ΩC,G,S1

[Fh(i)][12 ]. Hence, it suffices to consider

those real slice types for which νCh(i) is not surjective. These are of the form

[S1;V j1
α1

× · · · × V
jk−1
αk−1 × V−m]

with 0 > α1 > α2 > · · · > αk = −m.
Case 1: At first assume that α1 < −m

2 . Then ΩC,G,S1
[σh(i−1)][

1
2 ] and ΩG,S1

[ρi−1][
1
2 ]

are isomorphic. Moreover, ∂Ch(i) is a injection into the image of qh(i)−1. In the non-spin

case we have im qh(i−1) = im ∂Ch(i). In the spin case we have qh(i−1)(BΓfirst copy) = im ∂Ch(i).
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Since ΩC,G,S1
[σh(i)][

1
2 ] and ΩG,S1

[ρi][
1
2 ] are isomorphic, it follows that ∂i is also injective.

Therefore in this case the maps νCh(i) and νi are the zero maps. Therefore in this case
the statement follows from the induction hypothesis.
Case 2: Next assume that α1 > −m

2 and αi0 > −m
2 > αi0+1 for some i0. Then σ′h(i)

is equivalent to σ̃ = [S1;V j1
−α1

× · · · × V
ji0
−αi0

× V
ji0+1
αi0+1 × · · · × V−m].

In the non-spin-case the map νCσ̃ is surjective for this slice type. Moreover, the section

qσ̃ to νCσ̃ has the following property: If X ∈ ΩSO,S1
[12 ][σ̃], then there is no point in qσ̃(X)

with slice type σ′ such that σh(i) ≤ σ′ < σ̃. Therefore in the family of slice types Fh(i)
we can replace σh(i) by σ̃. The map qσ̃ is then still a section to the map νCσ̃ with image

in ΩC,SO,S1

∗ [Fh(i)].
In the spin case we have to look at three cases:

• α2 > −m
2

• α1 is the only weight with α1 > −m
2 and appears with multiplicity greater than

one.

• α1 is the only weight with α1 > −m
2 and appears with multiplicity one.

As seen in Cases 4 and 5 of the proof of Theorem 3.1 in the first two cases the map νCσ̃
is surjective. Moreover, one can check that the section qσ̃ has the same property as in
the non-spin case. Therefore one can argue as in the non-spin case to get the conclusion
in these two cases.

In the last case we can replace σh(i) by σ̃ by the same reason as in the first two cases.
Therefore we have the commutative diagram

ΩC,G,S1

∗ [12 ][σ̃] //

��

ΩC,G,S1

∗ [12 ][Fi−1] //

��

ΩC,G,S1

∗ [12 ][σi−1]

��

ΩC,G,S1

∗ [12 ][ρi] // ΩC,G,S1

∗ [12 ][Gi−1] // ΩC,G,S1

∗ [12 ][ρi−1]

where the vertical maps on the left and right are isomorphisms. Moreover, in Case 2 of
the proof of Theorem 3.1 it was shown that the restriction of the upper right map to
the image of the upper left map is injective. Therefore it follows that the kernel of the
lower left map is contained in the image of the kernel of the upper left map under the
isomorphism on the left.

From this it follows by diagram chasing that the map ΩC,G,S1

∗ [Fh(i)] → ΩG,S1

∗ [Gi] is
surjective.
Case 3: Next assume α1 > −m

2 and αi0 = −m
2 . Then σi is equivalent to σ̃ =

[S1;V j1
−α1

×V ji0
−αi0

×∏i 6=1,i0
V ji
αi ]. As shown in Case 5 of the proof of Theorem 3.1, for this

slice type νCσ̃ is surjective in the spin case. In the non-spin case this map is surjective
because −α1 > 0. Moreover, the section qσ̃ to νCσ̃ has the following property: If X ∈
ΩG,S1

[12 ][σ̃], then there is no point in qσ̃(X) with slice type σ′ such that σh(i) ≤ σ′ < σ̃.
Therefore we can argue as in the previous cases to get the conclusion.
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Case 4: At last assume that α1 = −m
2 . Then we have a commutative diagram:

ΩG,S1
[12 ][σi]

∼= //

νi−1◦∂i

��

Ω∗[
1
2 ](BS1/Zm × U(j1))

��

Ω∗[
1
2 ](BS1/Zm

2
× U(j1))

∼=oo

��
Ω∗[

1
2 ](BS1 ×Zm U(j1))

��

Ω∗[
1
2 ](BS1 ×Zm

2
U(j1))

∼=oo

��
Ω∗[

1
2 ](BS1 ×Zm SO(2j1))

��

Ω∗[
1
2 ](BS1 ×Zm

2
SO(2j1))

∼=oo

��
ΩG,S1

[12 ][σi−1]
∼= // Ω∗[

1
2 ](BS1/Zm

2
×Z2 SO(2j1)) Ω∗[

1
2 ](BS1/Zm

2
× SO(2j1))

∼=oo

Here we have omitted the BU(ji) factors with i > 1 in the middle and right hand
column.

Moreover, the left hand horizontal maps are the isomorphisms from the previous page.
The right hand horizontal maps are induced by two-fold coverings of the respective
groups.

The right hand vertical maps are as follows:
The first map maps a pair (X,Y ) where X is a line bundle over some manifold M and

Y is an j1-dimensional complex vector bundle over M to (X,X ⊗ Y ).
The second map is the map which forgets the complex structure on Y . The kernel of

this map can be described as follows.
There are natural actions of the Weyl-groups W (U(j1)) and W (SO(2j1)) on Ω∗(BT

j1),
where S1×· · ·×S1 = T j1 ⊂ U(j1) ⊂ SO(2j1) is a maximal torus. Note that W (SO(2j1))
can be identified with a semi-direct product Zj1−1

2 ⋊ Sj1 . Moreover W (U(j1)) can be

identified with the permutation subgroup Sj1 . An element of Zj1−1
2 acts on H2(BT ) =

H2(BS1) ⊕ · · · ⊕H2(BS1) by multiplication with −1 on an even number of summands.
An element of Sj1 acts by permuting the summands. It follows from an inspection of the
relevant Atiyah–Hirzebruch spectral sequences that the kernels of the natural surjective
maps

Ω∗[
1

2
](BS1 ×Zm

2
T j1) → Ω∗[

1

2
](BS1 ×Zm

2
U(j1))

and

Ω∗[
1

2
](BS1 ×Zm

2
T j1) → Ω∗[

1

2
](BS1 ×Zm

2
SO(2j1))

are generated by elements of the form (X,Z−γZ) with γ ∈W (U(j1)) or γ ∈W (SO(2j1)),
respectively. Therefore the kernel of the map

Ω∗[
1

2
](BS1 ×Zm

2
U(j1)) → Ω∗[

1

2
](BS1 ×Zm

2
SO(2j1))

is generated by elements of the form (X,Z − γZ) with γ ∈ W (SO(2j1))/W (U(j1)) =
Zj1−1
2 .
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The third map is induced by the isomorphism S1 ×Zm
2
SO(2j1) → S1/Zm

2
×SO(2j1).

This isomorphism exists since Zm
2

acts trivially on SO(2j1).
Since the right hand horizontal maps are induced by two-fold coverings, it follows that,

if j1 > 1, then the kernel of the composition of the middle vertical maps is generated by
bundles of the form

(X,Z − (Z1 ⊕ Z̄2 ⊗ X̄)),

where X and Z are complex vector bundles over the same base manifold with dimension
one and j1 respectively, γ is an element of W (SO(2j1))/W (U(j1)). Moreover, we have
Z = Z1 ⊕Z2 with γZ1 = Z1 and γZ2 = Z̄2 and X̄, Z̄2 denote the conjugated bundles of
X and Z2, respectively.

If j1 = 1 then this map is injective. Therefore in the following we will assume that
j1 > 1. In this case a bundle as above is the image under νi of

C̃TP (Y ⊕ Z1 ⊕ C; X ⊕ Z2 ⊕ C),

where Z = Z1 ⊕ Z2, X is a complex line bundle and Y is a complex vector bundle
induced by the projection BS1 × BU(j1) ×

∏
i>1BU(ji) → ∏

i>1BU(ji). Note that
since W (SO(2j1)) acts on H2(BT ) in the way described above, Z2 is always even-
dimensional. Therefore the above manifold is spin if the involved bundles X,Y, Z1, Z2

are spin bundles and the base space is a spin manifold. This is the case for our generators

of ΩSpin,S1

∗ [σi][
1
2 ] considered in Section 3. Therefore the lemma is proved.

5. Resolving singularities

Now we turn to the construction of invariant metrics of positive scalar curvature on S1-
manifolds. In this and the next two sections we prepare the proof of Theorems 1.4, 1.5
and 1.6 which will be carried out in Section 8.

In this section we discuss a general construction for invariant metrics of positive scalar
curvature on certain S1-manifolds. These S1-manifolds are not semi-free and have S1-
fixed points. The construction is a generalization of a construction from [Han08], where
it was done for fixed point free S1-manifolds.

For this construction we need the following technical definition.

Definition 5.1 (cf. [Han08, Definition 21]) LetM be a manifold (possibly with bound-
ary) with an action of a torus T and an T -invariant Riemannian metric g.

1. Assume T = S1 and MS1
= ∅. We say that g is scaled if the vector field generated

by the S1-action is of constant length.

2. We call g normally symmetric in codimension two if the following holds: Let H ⊂
T be a closed subgroup and F a component of MH of codimension two in M .
Then there is an T -invariant tubular neighborhood NF ⊂M of F together with an
isometric S1-action σF on NF which commutes with the T -action and has fixed
point set F .
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The next lemma is a generalization of Lemma 23 of [Han08] to S1-manifolds with fixed
points.

Lemma 5.2 Let M be a compact S1-manifold, dimM ≥ 3, such that codimMS1 ≥ 4,
and V a small tubular neighborhood of MS1

. If M admits an invariant metric g of
positive scalar curvature, then there is another metric g̃ of positive scalar curvature on
M such that g̃ is scaled on M − V . If g is normally symmetric in codimension two on
M − V , then the same can be assumed for g̃.

Proof. Let V ′ ⊂ V be a slightly smaller tubular neighborhood of MS1
in M . By

an equivariant version of Theorem 2’ of [Gaj87] , there is a metric g1 of positive scalar
curvature on M − V ′, such that in a collar of SMS1

= ∂V ′, g1 is of the form h1 + ds2,
where h1 is the restriction of a metric of the form g|

N(MS1
,M)

+H h to the normal sphere

bundle of MS1
of sufficiently small radius δ, where h is the metric induced by g on

MS1
and H is the normal connection. Here ds2 denotes the standard metric on [0, 1].

Moreover, g1 coincides with g on the complement of V .
We have N(MS1

,M) =
⊕

i>0Ei, where Ei is a complex S1-bundle such that each
z ∈ S1 acts by multiplication with zi on Ei. Since g is S1-invariant, the Ei are orthogonal
to each other with respect to g|

N(MS1
,M)

. Using O’Neill’s formula for the fibration

Sδ →֒ SMS1 → MS1
, one sees that there is a δ′ > 0 such that h1 is isotopic via S1-

invariant metrics of positive scalar curvature to the restriction h2 of δ′(
∑

i>0
1
i2
g|Ei)+H h

to SMS1
. (The isotopy is given by convex combination of the metrics

∑
i>0

1
i2
g|Ei +H h

and g|
N(MS1

,M)
+H h and rescaling the fibers.) Note that h2 is scaled.

Therefore by Lemma 3 of [GL80], there is a invariant metric g2 of positive scalar
curvature on M − V ′ such that g2 restricted to a collar of ∂V ′ is of the form h2 + ds2

and g2 restricted to M − V is equal to g.
Now let X : M − V ′ → T (M − V ′) be the vector field generated by the S1-action.

Because there are no fixed points in M − V ′, X is nowhere zero. Denote by V the one-
dimensional subbundle of T (M −V ′) generated by X and H its orthogonal complement
with respect to g2. For p ∈M − V ′, define f(p) = ‖X(p)‖g2 . Note that f is constant in
a small neighborhood of ∂V ′.

Next we describe some local Riemannian submersions which are useful to show that
our scaled metrics have positive scalar curvature. Let S1×H D(W ) ⊂M −V ′ be a tube
around an orbit in M − V ′. We pull back the metric g2 via the covering S1 ×D(W ) →
S1 ×H D(W ). This yields a metric which is invariant under the free circle action on the
first factor. Let g′2 be the induced quotient metric on D(W ). Then the argument from
the proof of Theorem C of [BB83], shows that the metric

f
2

dimM−2 · g′2
on D(W ) has positive scalar curvature.

Now let dt2 be the metric on V for which X has constant length one. By O’Neill’s
formula applied in the above local fibration, the scalar curvature of the metric

gǫ,3 = (ǫ2 · dt2) + (f
2

dimM−2 · g2|H)
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on M − V ′ is given by

scalgǫ,3 = scal
f

2
dimM−2 g′2

−ǫ2‖A‖g1,3 , (2)

where A is the A-tensor for the connection induced by g1,3 in the fibration S1×D(W ) →
D(W ). Since M is compact it follows that there is an ǫ0 > 0 such that for all ǫ0 > ǫ > 0
the metric gǫ,3 has positive scalar curvature.

Moreover, since the restriction of g2 to a collar of ∂V ′ was a product metric and f is
constant in this neighborhood gǫ,3 is also a product metric on this collar.

Next we show that gǫ,3|∂V and h2 are isotopic via invariant metrics of positive scalar
curvature. We have

gǫ,3|∂V ′ = (ǫ2 · dt2) + (f
2

dimM−2 · g2|H∩T∂V ′)

h2 = f−
2

dimM−2 ((f2f
2

dimM−2 · dt2) + (f
2

dimM−2 · g2|H∩T∂V ′)),

where f > 0 is constant.
In other words, h2 is equal to the metric g

f ·f
1

dimM−2 ,3
up to scaling. Hence, it follows

from formula (2) that the metrics h2 and gǫ,3|∂V are isotopic via invariant metrics of
positive scalar curvature because both metrics have positive scalar curvature. One only
has to increase or decrease the parameter ǫ and then rescale the metric. Since h2 is
isotopic to h1 it follows from Lemma 3 of [GL80], that there is an invariant metric of
positive scalar curvature on M whose restriction to M − V ′ is gǫ,3.

The remark about the normally symmetric metrics of positive scalar curvature can be
seen as follows. Because the local S1-actions σF commute with the global S1-action, they
respect the decomposition T (M − V ) = H ⊕ V . Therefore the new metric is invariant
under these actions. This completes the proof. �

Remark 5.3 Note that every gǫ,3, 0 < ǫ < ǫ0, can be extended to an invariant metric
of positive scalar curvature on M and that the restrictions of all these metrics to H are
the same. This shows that the metric gǫ,3 can be scaled down on V without effecting the
restriction of the metric to H and the fact that the gǫ,3 can be extended to a metric of
positive scalar curvature on M .

Next we describe a resolution of singularities for singular strata of codimension two
from [Han08]. Let M be a S1-manifold of dimension n ≥ 3 and

φ : S1 ×H (Sn−3 ×D(W )) →֒M

be an S1-equivariant embedding where H is a finite subgroup of S1 and W is an one-
dimensional unitary effective H-representation. Here H acts trivially on Sn−3.

Since S(W )/H can be identified with S1, the S1-principal bundle

S1 →֒ S1 ×H (Sn−3 × S(W )) → Sn−3 × S(W )/H
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is trivial. Choose a trivialization

χ : S1 ×H (Sn−3 × S(W )) → S1 × Sn−3 × S(W )/H

and consider S(W )/H as the boundary of D2. Then we can glue the free S1-manifold
S1 × Sn−3 ×D2 to M − imφ to get a new S1-manifold M ′. We say that M ′ is obtained
from M by resolving the singular stratum φ(S1 ×H (Sn−3 × {0})).

Now we can state the following generalization of Theorem 25 of [Han08].

Theorem 5.4 LetM be a closed S1-manifold of dimension n ≥ 3 such that codimMS1 ≥
4 and H ⊂ S1 a finite subgroup. Let V be an invariant tubular neighborhood of MS1

.
Moreover, let

φ : S1 ×H (Sn−3 ×D(W )) →֒M − V

be an S1-equivariant embedding where W is a unitary effective H-representation of di-
mension one. Let M ′ be obtained from M by resolving the singular stratum φ(S1 ×H

(Sn−3×{0})) ⊂M . IfM admits an invariant metric of positive scalar curvature which is
normally symmetric in codimension 2 outside of V , then also M ′ admits such a metric.

Since the proof of Theorem 25 of [Han08] is mainly a local argument in a neighborhood
of the singular stratum which is resolved with some down scaling at the end, its proof
is also valid in the case where M has fixed points components of codimension at least
four, by Lemma 5.2 and Remark 5.3. Therefore we have the above theorem.

The next step is the following generalization of Lemma 24 of [Han08]:

Lemma 5.5 Let Z be a compact orientable S1-bordism between S1-manifolds X and
Y such that for all subgroups H ⊂ S1 all components of codimension two of ZH are
orientable. Assume that X carries an invariant metric of positive scalar curvature which
is normally symmetric in codimension 2. If Z admits a decomposition into special S1-
handles of codimension at least 3, then Y carries an invariant metric of positive scalar
curvature which is normally symmetric in codimension 2.

Proof. First recall that a special S1-handle is an S1-handle of the form

S1 ×H (Dd ×D(W )),

where H is a subgroup of S1, W is an orthogonal H-representation, D(W ) is the unit
disc in W and H acts trivially on the d-dimensional disc Dd. Here the codimension of
the handle is given by dimW .

Therefore as in the proof of Lemma 24 in [Han08] we may assume that Y may be
constructed from X by equivariant surgery on S = S1 ×H (Sd−1 ×D(W )).

First assume that d = 0. Then we have S = ∅. Hence the surgery on S produces a new
component S1 ×H (D0 × S(W )) of Y . Since Z is orientable, there is a homomorphism
φ : H → SO(n) which corresponds to the H-representation W . As a subgroup of S1, H
has a dense cyclic subgroup. Therefore φ(H) is contained in a maximal torus of SO(n).
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Hence W is isomorphic to Rk ⊕⊕iWi, where Rk denotes the trivial H-representation
and the Wi are complex one-dimensional H-representations.

If K ⊂ S1 is a subgroup such that S1 ×H (D0 × S(W ))K 6= ∅, then K is contained
in H. If SK has codimension two in S, then there is exactly one Wi0 such that K
acts non-trivially on Wi0 . Therefore the S1-action on S1 ×H (D0 × S(W )), which is
induced by complex multiplication on Wi0 commutes with the original S1-action and
leaves all connection metrics induced from the round metric on S(W ) invariant. Since
there are such connection metrics with positive scalar curvature on S1 ×H (D0 ×S(W ))
the theorem follows in this case.

Now assume that d ≥ 1. Then S is non-empty. The proof proceeds as in Hanke’s
paper. This is done as follows. As in Hanke’s paper we may assume that there is a
K ⊂ H and a component F ⊂ XK of codimension 2 with

S1 ×H (Sd−1 × {0}) ⊂ F.

Moreover, the extra symmetry σ induces an orthogonal action σ of S1 on the third factor
of S1×H (Sd−1×D(W )). This action extends to an orthogonal action on the third factor
of the handle S1 ×H (Sd−1 ×D(W )).

Indeed, if d > 1, then Sd−1 is connected and hence the action extends.
If d = 1, then Sd−1 = {±1} has two components. And in principle the H × S1-

representations σ± on {±1}×W might have different isomorphism types. If this happens
the S1-action on S1 ×H (Sd−1 ×D(W ) cannot be extended to an action on the handle
S1 ×H (Dd ×D(W )).

Therefore we have to rule out this case. This is done as follows. By assumption
F ′ = (F × I) ∪ S1 ×H ([−1,+1] ×D(W )K) ⊂ ZK is orientable. Therefore the structure
group of N(F ′, Z) is SO(2) = U(1) and the S1-action σ extends to an action which is
defined on a neighborhood of F ′.

Since the actions σ± are restrictions of this action their isomorphism types coincide.
Therefore the actions σ± extend to an orthogonal action on S1×H ([−1, 1]×D(W )) with
fixed point set S1 ×H ([−1, 1] ×D(W )K).

Now one can construct an invariant metric of positive scalar curvature which is nor-
mally symmetric in codimension 2 on Y as in the proof of Lemma 24 of [Han08]. �

Remark 5.6 It follows from an argument of Edmonds [Edm81] that the condition on
the codimension-two singular strata of Z in the above lemma is always satisfied if Z is
spin (see also section 10 of Bott-Taubes [BT89]).

Let p : B → BO be a fibration. A B-structure on a manifold M is a lift ν̂ : M → B
of the classifying map ν → BO of the stable normal bundle of M . We denote by ΩB

n,S1

the equivariant bordism group of S1-manifolds with B-structures on maximal strata,
i.e. an element of ΩB

n,S1 is represented by a pair (M, ν̂), where M is an n-dimensional

S1-manifold and ν̂ : Mmax → B is a B-structure. Moreover, such a pair represents
zero if there is an n+ 1-dimensional S1-manifold with boundary W with a B-structure
f : Wmax → B on its maximal stratum such that ∂W = M and f |Mmax = ν̂.
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Lemma 5.7 Let M be a connected S1-manifold of dimension n ≥ 6 with a B-structure
ν̂ : Mmax → B on its maximal stratum such that ν̂ is a two-equivalence, i.e. ν̂ induces an
isomorphism on π1 and a surjection on π2. Let W be a connected equivariant B-bordism
between M and another S1-manifold N . Then there is a B-bordism W ′ between M and
N such that Mmax →֒W ′

max is a two-equivalence and there is a diffeomorphism V → V ′,
where V and V ′ are open neighborhoods of ∂W ∪Wsing and ∂W ′ ∪W ′

sing, respectively.

Proof. We first show that surgery on Wmax can be used to construct a B-bordism
W1 such that the inclusion Mmax →֒ W1,max induces an isomorphism on fundamental
groups. We have the following commutative diagram with exact rows.

π1(S
1)

Id
��

Id

��

// π1(Mmax) //

��

Id

__

π1(Mmax/S
1)

��

Id

��

// 0

π1(S
1) //

Id

��

π1(Wmax) //

f∗
��

π1(Wmax/S
1)

φ

��

// 0

π1(B)

ν̂−1
∗

��
π1(S

1) // π1(Mmax) // π1(Mmax/S
1) // 0

Here the dashed map φ is induced by the commutativity of the diagram and the universal
property of the quotient group. It follows from an easy diagram chase that kerφ ∼=
ker ν̂−1

∗ ◦ f∗.
Let c : S1 →Wmax/S

1 be an embedding that represents an element of kerφ and does
not meet the boundary. Then there is an equivariant embedding c′ : S1 × S1 → Wmax,
where S1 acts by rotation on the first factor, such that c = π ◦ c′ ◦ ι2, where ι2 : S1 →
S1×S1 is the inclusion of the second factor and π : Wmax →Wmax/S

1 is the orbit map.
Since c ∈ kerφ, there is a map c′′ : S1 → S1 such that c′ ◦ (ι2 ∗ (ι1 ◦ c′′)) is contained in
the kernel of f∗. Therefore by precomposing c′ with

(s, t) 7→ (sc′′(t), t)

we may assume that c′ ◦ ι2 ∈ ker ν̂−1
∗ ◦ f∗. Therefore we can do equivariant surgery on

c′ to construct a new B-bordism W ′ such that π1(W
′
max/S

1) = π1(Wmax/S
1)/〈c〉, where

〈c〉 denotes the normal subgroup of π1(Wmax/S
1) which is generated by c.

Since π1(Wmax/S
1) and π1(Mmax/S

1) are finitely presentable, it follows that kerφ is
finitely generated as a normal subgroup of π1(Wmax/S

1). Therefore after a finite number
of iterations of the above surgery step we may achieve that ker ν̂−1

∗ ◦ f∗ = 0. This is
equivalent to the fact that π1(Mmax) → π1(Wmax) is an isomorphism.

The next step is to make the map π2(Mmax) → π2(Wmax) surjective. We have the
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following commutative diagram with exact rows.

0 // π2(Mmax) //

��

π2(Mmax/S
1) //

��

π1(S
1) //

∼=
��

π1(Mmax)

∼=
��

0 // π2(Wmax) // π2(Wmax/S
1) // π1(S

1) // π1(Wmax)

It follows from an application of the snake lemma that there is an isomorphism

π2(Wmax)/π2(Mmax) → π2(Wmax/S
1)/π2(Mmax/S

1).

Let c : S2 → Wmax be a representative of a class in π2(Wmax)/π2(Mmax) such that
π ◦ c is an embedding. Then there is an equivariant embedding c′ : S1 × S2 →֒ Wmax

such that c′ ◦ ι2 = c. Since ν̂∗ : π2(Mmax) → π2(B) is surjective we may assume that
f∗c = 0. Therefore we can do equivariant surgery on c′ to construct a new B-bordism
W ′ such that

π2(W
′
max/S

1) = π2(Wmax/S
1)/〈π∗c〉,

where 〈π∗c〉 denotes the Z[π1(Wmax/S
1)]-submodule of π2(Wmax/S

1) which is generated
by π∗c.

Since π2(Wmax)/S1 is a finitely generated Z[π1(Wmax/S
1)]-module we get after a finite

number of repetitions of this step a bordism W ′ for which

π2(W
′
max)/π2(Mmax) = 0.

This completes the proof. �

Remark 5.8 If in the situation of the above lemma Mmax is spin, then p : B =
Bπ1(Mmax) × BSpin → BO and ν̂ = f × s : Mmax → B, where p is the composi-
tion of the projection on the second factor with the natural fibration BSpin → BO, f
is the classifying map of the universal covering of Mmax and s is a Spin-structure on
Mmax, satisfies the assumptions on B.
If Mmax is orientable, not spin with universal covering not spin, then p : B =

Bπ1(Mmax) × BSO → BO and ν̂ = f × s : Mmax → B, where p is the composition
of the projection on the second factor with the natural fibration BSO → BO, f is the
classifying map of the universal covering of Mmax and s is a orientation on Mmax, sat-
isfies the assumptions on B.
If Mmax is orientable, not spin with universal covering spin, then it follows that

w2(Mmax) = f∗(β) for some β ∈ H2(Bπ1(Mmax;Z/2Z)). Let Y (π1(Mmax), β) be the
pullback of β : Bπ1(Mmax) → BZ/2Z and w2 : BSO → BZ/2Z. Then f × s : Mmax →
Bπ1(Mmax) × BSO as in the previous case lifts to a map ν̂ : Mmax → Y (π1(Mmax), β).
If we let p : B = Y (π1(Mmax), β) → BO be the composition of the natural fibrations
Y (π1(Mmax), β) → BSO and BSO → BO, then ν̂ and B satisfy the assumptions from
the above lemma.
For more details see [RS94].
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Now we can prove the following generalization of Theorem 34 of [Han08].

Theorem 5.9 Let Z be a compact connected oriented S1-bordism between closed S1-
manifolds X and Y . Assume that for all subgroups H ⊂ S1 all components of codimen-
sion two of ZH are orientable and that the following holds

1. dimZ/S1 ≥ 6,

2. codimZS
1 ≥ 4,

3. There is a B-structure on Zmax, whose restriction to Ymax induces a two-equivalence
Ymax → B.

Then, if X admits an S1-invariant metric of positive scalar curvature which is normally
symmetric in codimension 2, then Y admits an S1-invariant metric of positive scalar
curvature which is normally symmetric in codimension 2 outside a tubular neighborhood
of Y S1

.

Proof. Let dimZ = n+ 1. The first step in the proof is to replace the bordism Z by a
B-bordism Z ′ between X and Y ′ such that

1. All codimension two strata in Z ′ meet Y ′.

2. Y can be constructed from Y ′ by resolving singular strata.

By (2) and Theorem 5.4 it is sufficient to construct a metric of positive scalar curvature
which is normally symmetric in codimension 2 on Y ′. The construction of Z ′ is as
follows. Let F be a codimension 2 singular stratum in Z which does not meet Y and
Ω ⊂ F an orbit. By the slice theorem there is a S1-invariant tubular neighborhood N
of Ω in Z which is S1-equivariantly diffeomorphic to

S1 ×H (Dn−2 ×D(W )).

Then we have ∂N = S1 ×H (Dn−2 × S(W ) ∪ Sn−3 ×D(W )). Let B ⊂ ∂N be a tubular
neighborhood of an orbit in S1×H (Dn−2×S(W )). Then B is equivariantly diffeomorphic
to S1 ×Dn−1. Since Zmax/S

1 is connected, there is an embedding

Ψ : S1 ×Dn−1 × [0, 1] →֒ Zmax,

such that

S1 ×Dn−1 × {0} ⊂ Ymax

S1 ×Dn−1 × {1} = B

S1 ×Dn−1×]0, 1[ ⊂ Z − (Y ∪N).

We set Z ′ = Z − (N ∪ im Ψ).
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As in the proof of Theorem 34 of [Han08] one sees that (1) and (2) hold. To be more
precise we have an equivariant diffeomorphism

Y ∼= (Y ′ − φ′(S1 ×H (Sn−3 ×D(W )))) ∪ φ(S1 × Sn−3 ×D2),

where φ′ : S1 ×H (Sn−3 × D(W )) → Y ′ and φ : S1 × Sn−3 × D2 → Y are equivariant
embeddings, such that imφ is contained in an equivariant coordinate chart of Y .

Since π2(B) is finitely generated as a Z[π1(B)]-module we can assume that im Ψ avoids
a finite set of embedded two-spheres which are mapped by the B-structure ν to the
generators of π2(B). Hence, we may assume that

ν ′∗ : π2(Y
′
max) → π2(B)

is still surjective.
But there might be a non-trivial linking sphere S1 ⊂ Y ′

max/S
1 of Σ/S1 ⊂ Y ′/S1 where

Σ ⊂ Y ′ is the singular stratum φ′(S1 ×H (Sn−3 × {0}). This problem can be dealt
with as in Hanke’s paper by attaching a 2-handle to Z which can be canceled by a
3-handle. Therefore the same argument as in Hanke’s paper leads to an isomorphism
π1(Y

′) → π1(B).
Now it follows from Lemma 5.7 and Theorem 15 of [Han08] (with the refinement of

Lemma 5.5), that Y ′ admits an invariant metric of positive scalar curvature which is
normally symmetric in codimension 2. Therefore it follows from Theorem 5.4 that Y
admits such a metric. �

Remark 5.10 Given the other conditions on Z from the above Theorem, the condition
codimZS

1 ≥ 4 cannot be relaxed. This can be seen as follows. Let Y be a free simply
connected S1-manifold, whose orbit space does not admit a metric of positive scalar
curvature. Then Y is necessarily spin and the S1-action is of even type. Let Z be the
trace of an equivariant surgery on an orbit inM , as in Lemma 3.1 of [Wie15]. Then Z is
a semi-free S1-manifold, not spin and has a codimension two fixed point component which
meets the boundary component X which is not equal to Y . By Theorem 2.4 of [Wie15], X
admits an invariant metric of positive scalar curvature. But Zmax is homotopy equivalent
to Y and therefore admits a Spin-structure. Therefore, by Remark 5.8, all assumptions
of Theorem 5.9 except the one about the codimension of the fixed point set are satisfied.

We have the following corollaries to Theorem 5.9:

Corollary 5.11 Let M be a Spin S1-manifold of dimension at least six with simply con-
nected maximal stratum and without fixed point components of codimension two. Then
M admits an invariant metric of positive scalar curvature which is normally symmetric
in codimension 2 if and only if M is equivariantly spin-bordant to a manifold M ′ which
admits such a metric and has no fixed point components of codimension two, such that
the bordism Z between M and M ′ does not have fixed point components of codimension
two.
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Proof. Let Z be an equivariant Spin cobordism between M and M ′ as above.

Then, by Remark 5.6, all codimension two strata of Z are orientable. Therefore the
corollary follows from Theorem 5.9. �

Corollary 5.12 Let M be a S1-manifold of dimension at least six with simply connected
non-spin maximal stratum and without fixed point components of codimension two such
that all singular strata of M are orientable. Then M admits an invariant metric of pos-
itive scalar curvature which is normally symmetric in codimension 2 if and only if there
is an equivariant bordism whose singular strata are orientable between M and a manifold
M ′ which admits such a metric and has no fixed point components of codimension two.

Proof. Let Z be a equivariant bordism between M and M ′. Then there might be
codimension two fixed point components in Z. But by assumption they do not meet
the boundary. Therefore we can cut them out of Z. This construction leads to a new
bordism Z ′ between M and M ′∐M1∐· · ·∐Mk, where the S1 acts freely on the Mi. After
attaching handles of codimension at least 3 to Z ′, we may assume that the Mi/S

1 are
simply connected and not spin. Since the Mi/S

1 are not spin, it follows from Theorem
C of [BB83] that there is an invariant metric of positive scalar curvature on each Mi.
Hence, the corollary follows from Theorem 5.9. �

Note that if the T -manifold M satisfies condition C, then for all closed subgroups
H ⊂ T the fixed point set MH is orientable.

Lemma 5.13 Let M be a S1
0-manifold, where S1

0 = S1, which satisfies condition C such
that there is a fixed point component F of codimension two. Then there is an invariant
metric of positive scalar curvature on M which is normally symmetric in codimension
two.

Proof. This follows from an inspection of the proof of Theorem 2.4 of [Wie15] and
Lemma 24 of [Han08]. We use the same notation as in the proof of Theorem 2.4 of
[Wie15].

Since M satisfies condition C, this also holds for the S1
0 ×S1

1 -manifold Z ×D2. Hence
it follows from Lemma 241 of [Han08] , that

∂(Z ×D2) = SF ×D2 ∪ Z × S1,

admits a S1
0 × S1

1 -invariant metric of positive scalar curvature which is normally sym-
metric in codimension two.

For H ( S1
0 , we have p−1(MH) = (∂(Z ×D2))H , where

p : ∂(Z ×D2) →M = ∂(Z ×D2)/ diag(S1
0 × S1

1)

1The proof of this lemma also holds for T -manifolds where T is a torus, instead of S1-manifolds.
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is the orbit map of the diag(S1
0 × S1

1)-action. Hence, it follows from the construction
in the proof of Theorem 2.2 of [Wie15] that M admits a S1

0 -invariant metric of positive
scalar curvature which is normally symmetric in codimension two. �

Using the above lemma we can prove the following theorem:

Theorem 5.14 Let M be a connected S1-manifold satisfying condition C, such that

π1(Mmax) = 0

and Mmax is not Spin. Moreover, let J ⊂ Ω∗
C,S1 be the ideal generated by connected

manifolds with non-trivial S1-actions. If dimM ≥ 6 and [M ] ∈ J2, then M admits an
S1-invariant metric of positive scalar curvature.

Proof. By Theorem 2.4 of [Wie15] we may assume that codimMS1 ≥ 4. Let Mi, Ni be
connected manifolds with non-trivial S1-action satisfying Condition C, such that

[M ] =
∑

i

[Mi ×Ni].

Since Ω1
C,S1 = 0, we may assume that dimMi, dimNi ≥ 2 for all i. Hence, by Lemma 3.1

of [Wie15] we may assume that all Mi and Ni have S1-fixed point components of codi-
mension two. Therefore by Lemma 5.13, we may assume that Mi × Ni admits an S1-
invariant metric of positive scalar curvature which is normally symmetric in codimension
two. Hence the theorem follows from Corollary 5.12. �

6. Normally symmetric metrics are generic

In this section we prove that under mild conditions on the isotropy groups of the singular
strata of codimension two in an S1-manifold M , any invariant metric g on M can be
deformed to a metric which is normally symmetric in codimension two.

The main result of this section is as follows:

Theorem 6.1 Let M be an orientable effective S1-manifold. Moreover, let g be an
invariant metric on M .
If there are no codimension two singular strata with isotropy group Z2, then there is an

invariant metric g′ on M which is C2-close to g and normally symmetric in codimension
two.

Proof. Let N ⊂ M be a codimension-two open singular stratum of M . Let U =
S1 ×H W × Rn−3 be a neighborhood of an orbit in N . Here W can be assumed to be
the standard one-dimensional complex representation of H ⊂ S1 because the S1-action
on M is effective.
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We pull back g to a metric g̃ on Ũ = S1×W ×Rn−3. This metric is S1×H-invariant.
Let

h : TŨ ⊗ TŨ → R

be the Taylor expansion of g̃ in directions tangent to W up to terms of degree two. Then
h might be thought of as an invariant function on

(S1 ×W × Rn−3) × (W × Rn−2) × (W × Rn−2),

which is linear in the copies of W ×Rn−2 and a polynomial of degree two in the first copy
of W . Therefore h can be identified with a map Rn−3 → ((S0W ∗ ⊕ S1W ∗ ⊕ S2W ∗) ⊗R

(W ∗ ⊕R Rn−2) ⊗R (W ∗ ⊕ Rn−2))H , where SiW ∗ denotes the i-th symmetric product of
W ∗. There are ai ∈ N, such that

(
(S0W ∗ ⊕ S1W ∗ ⊕ S2W ∗) ⊗R ((W ∗ ⊕ Rn−2)) ⊗R (W ∗ ⊕ Rn−2)

)H
⊗ C

⊂
(

(C⊕ (W ∗ ⊕W ) ⊕ (W ∗ ⊕W ) ⊗C (W ∗ ⊕W )) ⊗C ((W ∗ ⊕W ⊕ (n− 2)C)

⊗C (W ∗ ⊕W ⊕ (n− 2)C)
)H

=
(
W ∗⊗4 ⊕W⊗4 ⊕ a3(W

∗⊗3 ⊕W⊗3) ⊕ a2(W
∗⊗2 ⊕W⊗2)

⊕ a1(W
∗ ⊕W ) ⊕ a0C

)H

Moreover, for H of order greater than 4 and b ≤ 4, we have

(W⊗b)H = (W⊗b)S
1

(W ∗⊗b)H = (W ∗⊗b)S
1
.

Hence, it follows that h is invariant under the rotational action of S1 on W if the
order of H is greater than 4.

Now we can deform g̃ so that it coincides with h in a neighborhood of S1 × {0} ⊂ Ũ .
This metric induces a metric on U which is invariant under the rotational action of S1

on W .

Since N is orientable the rotational action on W extends to an action on a neighbor-
hood of N in M with fixed point set N . Therefore we can glue the metrics on different
neighborhoods of orbits in N . This implies the claim if there are no singular strata of
codimension two with isotropy group Zk, k ≤ 4.

Now assume that that there is a singular stratum of codimension two with isotropy
group Z3. Then we have to show that the projection h̄ of h to a3(W

∗⊗3⊕W⊗3) is trivial.
This projection is of the following form

h̄ = α1(u)zdzdz + β1(u)z̄dz̄dz̄ +
∑

j

(α2j(u)z2dzduj + β2j(u)z̄2dz̄duj).

Here z denotes the complex coordinates in W and u denotes the coordinates in S1×Rn−3.
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In polar coordinates z = reiϕ the above expression is equal to

h̄ = r(α1(u)ei3ϕ + β1(u)e−i3ϕ)drdr + r2i(α1(u)e3iϕ − β1(u)e−3iϕ)drdϕ

+
∑

j

r2(α2j(u)e3iϕ + β2j(u)e−3iϕ)drduj

− r3(α1(u)e3iϕ + β1(u)e−3iϕ)dϕdϕ+
∑

j

ir3(α2j(u)e3iϕ − β2j(u)e−3iϕ)dϕduj .

But by the generalized Gauss Lemma [Gra04, Section 2.4] we may assume that g is of
the form

drdr + h′(u, r, ϕ),

where h′(u, r, ϕ) is a metric on S1 × Rn−3 × S1
r . Here S1

r denotes the circle of radius r
in W .

Hence, we may assume that α1 = β1 = α2j = β2j = 0. Therefore the metric can be
deformed as in the first case.

The case of singular strata with isotropy group Z4 is similar and left to the reader.
�

If M is spin and the S1-action on M is of even type then there are no components of
MZ2 of codimension two in M . Therefore we get the following corollary to the above
theorem.

Corollary 6.2 Let M be a spin S1-manifold with an effective action of even type. Then
M admits an invariant metric of positive scalar curvature if and only if it admits an
invariant metric of positive scalar curvature which is normally symmetric in codimension
two.

7. An obstruction to invariant metrics of positive scalar

curvature

Before we prove existence results for invariant metrics of positive scalar curvature on
Spin-S1-manifolds, we introduce an obstruction to the existence of such metrics. Through-
out this section we only deal with Spin-S1-manifolds with actions of even type.

Assume that M is such a manifold and that there is no codimension two stratum in M
and M admits a metric of positive scalar curvature. Let N be a tubular neighborhood
of a minimal stratum MH . Then, since codimMH ≥ 4, there is an invariant metric of
positive scalar curvature on M1 = M−N which is scaled and a connection metric on the
boundary of M1, whose restriction to the fibers of ∂N →MH is given by a metric which
is constructed from the round metric on Sk by a certain deformation [GL80]. Moreover,
this metric on M1 is a product metric near the boundary.

We continue this construction in the same manner with M replaced by M1. Since
there are only finitely many orbit types in M after a finite number of steps we will reach
some Mk with a free S1-action, such that
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• Mk has a metric of positive scalar curvature,

• the restriction of this metric to a neighborhood of the boundary of Mk is a product
metric,

• the restriction of this metric to the boundary has positive scalar curvature,

• the restriction of this metric to an open stratum of ∂Mk is a connection metric
with fibers isometric to open subsets in deformed spheres.

By [BB83, Theorem C], there is a metric of positive scalar curvature on Mk/S
1.

Therefore the index of the Dirac-operator on Mk/S
1 vanishes.

If the invariant metric on M does not have positive scalar curvature, we still can
construct Mk and the metric on the boundary of Mk is still the same as in the above
construction. We still have an Dirac-operator on Mk/S

1. Its index is an invariant of
Mk/S

1 together with the metric on its boundary. We define ÂS1(M) to be the index of
this Dirac-operator. One easily sees that ÂS1(M) is an invariant of the equivariant spin
bordism type of M .

Now assume that M has strata of codimension two. Then by using the above con-
struction we get a manifold Mk which has only minimal strata of codimension two.
Moreover, there is a metric of positive scalar curvature on the boundary. This metric
on the boundary can be assumed to be normally symmetric in codimension two by the
discussion in section 6.

Now we can apply the following desingularization process to get a manifold Mk+1 with
boundary and without codimension two singular strata. It is similar to the desingular-
ization process in [Han08, Section 4].

Let N be a codimension two singular stratum in Mk. Then a neighborhood of N in Mk

is diffeomorphic to a fiber bundle E with fiber S1 ×H D(W ) and structure group S1 ×H

SO(W ) = S1 ×H S1
1 over N/S1. Here W is a one-dimensional unitary representation of

H which depends on N .

The boundary of this neighborhood ∂E is given by the principal S1 ×H S1
1 -bundle P

associated to E.

Now let S1
2 ⊂ S1 ×H S1

1 be a circle subgroup with S1 ∩ S1
2 = {1}. Denote by E′ the

S1 × D2-bundle P ×S1
2
D2 where S1

2 acts by rotation on D2. Then E′ has the same
boundary as E and we define

Mk+1 = (Mk − E) ∪P E′.

In this way we can construct a free S1-manifold with boundary Mk+1.

Note here that Mk+1 itself might depend on the choice of S1
2 . But its orbit space

Mk+1/S
1 does not depend on this choice.

Since the constructions in Section 4 of [Han08] are mainly local arguments, they also
hold in our desingularization process. This means that, if Mk admits a metric of positive
scalar curvature which is normally symmetric in codimension two, then Mk+1 also admits
such a metric.
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In any case we have a metric on Mk+1 whose restriction to the boundary has positive
scalar curvature. Therefore as in the first case we can define ÂS1(M) as the index of the
Dirac-operator on Mk+1/S

1. It vanishes if there is an invariant metric of positive scalar
curvature on M which is normally symmetric in codimension two. Moreover, one can
see that ÂS1(M) is an invariant of the equivariant spin bordism type of M .

For semi-free S1-manifolds M , ÂS1(M) coincides with the index obstruction to metrics
of positive scalar curvature defined by Lott [Lot00].

8. Invariant metrics of positive scalar curvature and a result of

Atiyah and Hirzebruch

Now we can complete the proofs of our existence results for invariant metrics of positive
scalar curvature. These are as follows:

Theorem 8.1 Let M be a connected effective S1-manifold of dimension at least six
which satisfies Condition C such that π1(Mmax) = 0 and Mmax is not Spin. Then the
equivariant connected sum of two copies of M admits an invariant metric of positive
scalar curvature.

Proof. By Theorem 2.4 of [Wie15], we may assume that there is no codimension
two fixed point component in M . Therefore, by Corollary 5.12, it is sufficient to show
that 2M is equivariantly bordant to a manifold M ′ which admits an invariant metric
of positive scalar curvature which is normally symmetric in codimension two such that
codimM ′S1 ≥ 4. By Theorem 2.2, there is an equivariant bordism Z which satisfies
Condition C between M and M ′ = M1 ∐ M2, where M1 is a semi-free S1-manifold
and M2 is a S1-manifold which admits an invariant metric of positive scalar curvature
which is normally symmetric in codimension two and codimM ′S1 ≥ 4. After attaching
S1-handles to Z we may assume that all components of M1 are simply connected and
not Spin.

Hence, the Theorem follows from Theorem 4.7 of [Wie15]. �

Now we turn to the proof of a similar result for Spin-manifolds.

Theorem 8.2 Let M be a spin S1-manifold with dimM ≥ 6, an effective S1-action of
odd type and π1(Mmax) = 0. Then there is a k ∈ N such that the equivariant connected
sum of 2k copies of M admits an invariant metric of positive scalar curvature which is
normally symmetric in codimension two.

Theorem 8.3 For a spin S1-manifold with dimM ≥ 6, an effective S1-action of even
type and π1(Mmax) = 0, we have ÂS1(M) = 0 if and only if there is a k ∈ N such that
the equivariant connected sum of 2k copies of M admits an invariant metric of positive
scalar curvature which is normally symmetric in codimension two.
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Proof. By Theorem 3.1 and Lemma 4.1, the connected sum of 2l copies of M is
equivariantly bordant to a union M1 ∐M2, where M1 is a semi-free simply connected
S1-manifold and M2 is a S1-manifold which admits an invariant metric of positive scalar
curvature which is normally symmetric in codimension two.

If the S1-action on M is of even type, we have ÂS1(M) = 2−lÂS1(M1/S
1). Now the

theorems follow from Theorems 4.7 and 4.11 of [Wie15]. �

As an application of our results we give a new proof of the following result of Atiyah
and Hirzebruch [AH70].

Theorem 8.4 ([AH70]) Let M be a spin manifold with a non-trivial action of S1.
Then Â(M) vanishes.

Proof. We may assume that dimM = 4k and that the S1-action is effective. Then
by Theorem 3.1 and Lemma 4.1, 2lM is equivariantly spin bordant to a union M1 ∐
M2, where M1 is simply connected and semi-free and M2 admits an invariant metric
of positive scalar curvature. By Theorems 4.7 and 4.11 of [Wie15], the obstruction
ÂS1(M1/S

1) that 2l
′

M1 admits an invariant metric of positive scalar curvature vanishes
by dimension reasons. Hence it follows that 2l+l

′

Â(M) = Â(2l
′

M1) + Â(2l
′

M2) = 0.
This implies Â(M) = 0. �

9. Rigidity of elliptic genera

In this section we give a proof of the rigidity of elliptic genera. At first we recall the
definition of an equivariant genus. We follow [Och88] for this definition.

A Λ-genus is a ring homomorphism ϕ : ΩSO
∗ → Λ where Λ is a C-algebra. For such a

homomorphism one denotes by

g(u) =
∑

i≥0

ϕ[CP 2i]

2i+ 1
u2i+1 ∈ Λ[[u]]

the logarithm of ϕ and by Φ ∈ H∗∗(BSO; Λ) the total Hirzebruch class associated to ϕ.
Φ is uniquely determined by the property that for the canonical line bundle γ over BS1,
Φ(L) is given by u

g−1(u)
.

Then for every oriented manifold M one has

ϕ[M ] = 〈Φ(TM), [M ]〉.

For a compact Lie group G, the G-equivariant genus ϕG associated to ϕ is defined as

ϕG[M ] = p∗Φ(TMG) ∈ H∗∗(BG; Λ).

Here M is a G-manifold, TMG is the Borel construction of the tangent bundle of M .
It is a vector bundle over the Borel construction MG of M . Moreover, p∗ denotes the
integration over the fiber in the fibration M →MG → BG.
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It follows from this definition that if H is a closed subgroup of G, then we have

ϕH [M ] = f∗ϕG[M ],

where f : BH → BG is the map induced by the inclusion H →֒ G.

Lemma 9.1 Let G = S1 and M be an oriented G-manifold. Then the equivariant genus
ϕG[M ] depends only on the G-equivariant bordism type of M .

Proof. It is sufficient to show that if M = ∂W is an equivariant boundary, then
ϕG[M ] = 0. Since the homology of BS1 = CP∞ is concentrated in even degrees and
generated by the fundamental classes of the natural inclusions ιn : CPn →֒ CP∞, n ≥ 0,
it is sufficient to show that

0 = 〈p∗Φ(TMG), [CPn]〉,
for all n. Now we have

〈p∗Φ(TMG), [CPn]〉 = 〈p∗Φ(TMG|CPn), [CPn]〉
= 〈Φ(TMG|CPn), [MG|CPn ]〉 = 0.

Here the first two equations follow from the properties of p∗. Moreover, the last equality
follows because MG|CPn bounds WG|CPn . This proves the lemma. �

A Λ-genus ϕ is called elliptic if there are δ, ǫ ∈ Λ such that its logarithm is given by

g(u) =

∫ u

0

dz√
1 − 2δz2 + ǫz4

.

We call an equivariant genus ϕS1 of an S1-manifoldM rigid, if ϕS1 [M ] ∈ H∗∗(BS1; Λ) =
Λ[[u]] is constant in u. The following has been proved by Ochanine [Och88].

Theorem 9.2 The elliptic genus of a semi-free Spin-S1-manifold is rigid.

In view of the above lemma and Theorem 1.1 it suffices to show the following lemma
to prove the rigidity of elliptic genera (Theorem 1.2). In an effective T -manifold the
codimension of the fixed point set is at least 2 dimT . The next lemma states that the
T -equivariant elliptic genus of an effective T -manifold is constant if the codimension of
all components of the fixed point set is minimal.

Lemma 9.3 Let M be an effective Spin-Tn-manifold, such that all fixed point compo-
nents have codimension 2n. Then the Tn-equivariant elliptic genera of M are rigid.

Proof. It suffices to consider the equivariant elliptic genus ϕTn(M) defined in Section
2.1 of Ochanine’s paper.

This is defined as follows: For a lattice W ⊂ C and a non-trivial homomorphism
r : W → Z2 there exists a unique meromorphic function x on C such that
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1. x is odd,

2. the poles of x are exactly the points in W ; they are all simple and the residues of
x in w ∈W is given by (−1)r(w),

3. for all w ∈W we have
x(u+ w) = (−1)r(w)x(u).

From this one defines a genus ϕ such that g(u)−1 is the Taylor expansion of 1/x in the
point u = 0.

With this definition, ϕTn [M ] can be identified with a meromorphic function on Cn.
Let F ⊂M be a fixed point component and λ1,F , . . . , λn,F : Zn → Z the weights of the

Tn-action on the normal bundle to F . Since the Tn-action is effective and codimF = 2n,
it follows that

(λ1,F , . . . , λn,F ) : Zn → Zn

is an isomorphism. In particular each λi,F is surjective.
As in the proof of Proposition 7 in Ochanine’s paper [Och88] one sees that the genus

ϕTn(M) is a polynomial in x ◦ λi,F,C and y ◦ λi,F,C, i = 1, . . . , n. Here F ⊂ MTn
is a

component of MTn
, and λi,F,C is the linear extension of λi,F to Cn. Moreover, y is the

derivative of x.
In particular, the poles of ϕTn(M) lie in the union of the following hyperplanes:

kerλi,F,C + z

with z ∈ Wn. Since the singular set of a meromorphic function on Cn is empty or
an analytic set of codimension one, we may assume that the singular set of ϕTn has a
non-empty open intersection with one of the hyperplanes above.

SinceM is spin, the mod two reduction of
∑n

i=1 λi,F does not depend on the component
F . It follows from the defining equation (3) for x, that a non-empty open set in the
hyperplane kerλi,F,C is singular for ϕTn .

But the restriction of ϕTn to this hyperplane equals ϕTn−1 where Tn−1 is the codimen-
sion one subtorus of Tn which is defined by λi,F . Since ϕTn−1 is a meromorphic function
on Cn−1, it follows that the intersection of the singular set of ϕTn with kerλi,F can only
be open if it is empty. Therefore ϕTn does not have singular points. This implies that
it is constant. �

At the end we want to compare our proof of the rigidity of elliptic genera with the proof
of Bott–Taubes. The difference between our proof and the proof of Bott–Taubes is that
they prove that the equivariant universal elliptic genus of an Spin-S1-manifold M equals
some twisted elliptic genus of some auxiliary manifold M ′ by using the Lefschetz fixed
point formula. Using this fact they can show that the equivariant universal elliptic genus
of M does not have poles. Therefore it may be identified with a bounded holomorphic
function. Hence, it is constant.

We use the fact that we only have to prove the theorem for our generators of the
S1-equivariant spin bordism ring. For semi-free S1-manifolds this has been done by
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Ochanine [Och88], by using localization in equivariant cohomology and some elementary
complex analysis. The proof in the semi-free case is simpler than in the non-semi-free
case because one sees directly from the fixed point formula that the elliptic genus does
not have poles. Therefore one does not need the auxiliary manifolds in this case.

So, we only have to show that an S1-equivariant elliptic genus of a generalized Bott
manifold, which is spin, is constant. We do this by showing that the T -equivariant
elliptic genera of a generalized Bott manifold M2n are constant. The main new technical
observation in the proof of this fact is that Ochanine’s proof carries over to the situation
where the codimension of the T -fixed point set is minimal.
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Basel, second edition, 2004. With a preface by Vicente Miquel.

[Han08] Bernhard Hanke. Positive scalar curvature with symmetry. J. Reine Angew.
Math., 614:73–115, 2008.

[HT72] Akio Hattori and Hajime Taniguchi. Smooth S1-action and bordism. J. Math.
Soc. Japan, 24:701–731, 1972.

[HY76] Akio Hattori and Tomoyoshi Yoshida. Lifting compact group actions in fiber
bundles. Japan. J. Math. (N.S.), 2(1):13–25, 1976.

[Jos81] Vappala J. Joseph. Smooth actions of the circle group on exotic spheres. Pacific
J. Math., 95(2):323–336, 1981.

[Koc96] Stanley O. Kochman. Bordism, stable homotopy and Adams spectral sequences,
volume 7 of Fields Institute Monographs. American Mathematical Society,
Providence, RI, 1996.

[Kos70] Czes Kosniowski. Applications of the holomorphic Lefschetz formula. Bull.
London Math. Soc., 2:43–48, 1970.

[KU71] Katsuo Kawakubo and Fuichi Uchida. On the index of a semi-free S1-action.
J. Math. Soc. Japan, 23:351–355, 1971.

[KY83] Czes Kosniowski and Mahgoub Yahia. Unitary bordism of circle actions. Proc.
Edinburgh Math. Soc. (2), 26(1):97–105, 1983.

[Liu95] Kefeng Liu. On modular invariance and rigidity theorems. J. Differential
Geom., 41(2):343–396, 1995.

[Lot00] John Lott. Signatures and higher signatures of S1-quotients. Math. Ann.,
316(4):617–657, 2000.

[LY74] H. Blaine Lawson, Jr. and Shing Tung Yau. Scalar curvature, non-abelian
group actions, and the degree of symmetry of exotic spheres. Comment. Math.
Helv., 49:232–244, 1974.

[Och88] Serge Ochanine. Genres elliptiques équivariants. In Elliptic curves and modular
forms in algebraic topology (Princeton, NJ, 1986), volume 1326 of Lecture
Notes in Math., pages 107–122. Springer, Berlin, 1988.

[Oss70] Erich Ossa. Fixpunktfreie S1-Aktionen. Math. Ann., 186:45–52, 1970.

[RS94] Jonathan Rosenberg and Stephan Stolz. Manifolds of positive scalar curvature.
In Algebraic topology and its applications, volume 27 of Math. Sci. Res. Inst.
Publ., pages 241–267. Springer, New York, 1994.

[RW88] Jonathan Rosenberg and Shmuel Weinberger. Higher G-indices and applica-
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Part 2

Non-negative sectional curvature
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Torus manifolds and non-negative curvature

Michael Wiemeler

A torus manifold M is a 2n-dimensional orientable manifold with an ef-
fective action of an n-dimensional torus such that MT 6= ∅. In this paper we
discuss the classification of torus manifolds which admit an invariant metric
of non-negative curvature. If M is a simply connected torus manifold which
admits such a metric, then M is diffeomorphic to a quotient of a free linear
torus action on a product of spheres. We also classify rationally elliptic torus
manifolds M with Hodd(M ;Z) = 0 up homeomorphism.

1. Introduction

The study of non-negatively curved manifolds has a long history in geometry. In this
note we discuss the classification of these manifolds in the context of torus manifolds. A
torus manifold M is a 2n-dimensional closed orientable manifold with an effective action
of an n-dimensional torus T such that MT 6= ∅.

Recently Spindeler [Spi14] proved the Bott-conjecture for simply connected torus man-
ifolds. This conjecture implies that a non-negatively curved manifold is rationally elliptic.
Our first main result deals with rationally elliptic torus manifolds:

Theorem 1.1 (Theorem 4.1) Let M be a simply connected rationally elliptic torus
manifold with Hodd(M ;Z) = 0. Then M is homeomorphic to a quotient of a free linear
torus action on a product of spheres.

Our second main theorem is as follows.

Theorem 1.2 (Theorem 6.1) LetM be a simply connected non-negatively curved torus
manifold. Then M is equivariantly diffeomorphic to a quotient of a free linear torus ac-
tion on a product of spheres.

In the situation of the theorem the torus action on the quotient N/T ′ of a product of
spheres N =

∏
i<r S

2ni ×∏i≥r S
2ni+1 by a free linear action of a torus T ′ is defined as

follows. Let T be a maximal torus of
∏
i<r SO(2ni + 1)×∏i≥r SO(2ni + 2). Then there

is a natural linear action of T on N . Moreover, T ′ can be identified with a subtorus
of T . Therefore T/T ′ acts on N/T ′. If the dimension of T ′ is equal to the number of
odd-dimensional factors in the product N , then N/T ′ together with the action of T/T ′

is a torus manifold.
We also show that the fundamental group of a non-simply connected torus manifold

of dimension 2n with an invariant metric of non-negative curvature is isomorphic to Zk2
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with k ≤ n − 1. In particular, every such manifold is finitely covered by a manifold as
in Theorem 1.2.

Theorems 1.1 and 1.2 are already known in dimension four. As is well known a
simply connected rationally elliptic four-manifold is homeomorphic to S4, CP 2, S2×S2,
CP 2#CP 2 or CP 2#CP 2. Furthermore, a simply connected non-negatively curved four-
dimensional torus manifold is diffeomorphic to one of the manifolds in the above list (see
[GGS11], [SY94], [Kle90], [GW13]). Moreover, by [DJ91] or [GGK14], the T 2-actions on
these spaces are always equivalent to a torus action as described above.

We should note here that it has been shown by Grove and Searle [GS94] that a
simply connected torus manifold which admits an invariant metric of positive curvature
is diffeomorphic to a sphere or a complex projective space. Moreover, it has been shown
by Gurvich in his thesis [Gur08] that the orbit space of a rationally elliptic quasitoric
manifold is face-preserving homeomorphic to a product of simplices. This condition on
the orbit space is satisfied if and only if the quasitoric manifold is a quotient of a free
torus action on a product of odd-dimensional spheres.

In dimension six Theorem 1.1 follows from these results of Gurvich, the classifica-
tion of simply connected six dimensional torus manifolds with H3(M ;Z) = 0 given
by Kuroki [Kur13] and a characterization of the cohomology rings of simply connected
six-dimensional rationally elliptic manifolds given by Herrmann [Her14].

In [GS94] (2n + 1)-dimensional positively curved manifolds with isometric actions of
an (n + 1)-dimensional manifolds were also classified. We expect that a result similar
to Theorem 1.2 holds for isometric actions of n+ 1)-dimensional tori on non-negatively
curved 2n + 1-dimensional manifolds with one-dimensional orbits. We will discuss the
details of this in a subsequent paper.

We apply Theorem 1.1 to rigidity problems in toric topology. As a consequence we
get the following theorem:

Theorem 1.3 (Corollary 5.3) LetM be a simply connected torus manifold with H∗(M ;Z) ∼=
H∗(

∏
iCP

ni ;Z). Then M is homeomorphic to
∏
iCP

ni .

This theorem is a stronger version of a result of Petrie [Pet73] related to his conjecture
on circle actions on homotopy complex projective spaces. This conjecture states that if
f : M → CPn is a homotopy equivalence and S1 acts non-trivially on the manifold M ,
then f∗(p(CPn)) = p(M), where p(M) denotes the total Pontrjagin class of M . Petrie
showed that his conjecture holds if there is an action of an n-dimensional torus on M .
Moreover, the conjecture has been shown by Dessai and Wilking [DW04] for the case
that there is an effective action of a torus of dimension greater than n+1

4 on M . For
more results related to this conjecture see the references in [DW04].

The proof of Theorem 1.1 consists of two steps. In a first step we show that the
homeomorphism type of a simply connected torus manifold M , whose cohomology with
integer coefficients vanishes in odd degrees, depends only on the isomorphism type of the
face poset of M/T and the characteristic function of M . Then all possible face posets
of M/T under the condition that M is rationally elliptic are determined. By the first
step all such manifolds are homeomorphic to quotients of the moment angle complex

96



associated to these posets. As it turns out these moment angle complexes are products
of spheres.

The proof of Theorem 1.2 is based on the computations of the face posets from above.
With Spindeler’s results from [Spi14] one can see that all faces of M/T are diffeomorphic
after smoothing the corners to standard discs. When this is established, generalizations
of results from [Wie13] imply the theorem.

This paper is organized as follows. In Section 2 we discuss results of Masuda and Panov
about torus manifolds with vanishing odd degree cohomology. In Section 3 we introduce
a construction which simplifies the torus action on a torus manifold. In Sections 4, 5
and 6 we prove Theorems 1.1, 1.3 and 1.2, respectively. In the last Section 7 we discuss
non-simply connected non-negatively curved torus manifolds.

I would like to thank Wolfgang Spindeler for sharing his results from [Spi14]. I would
also like to thank Fernando Galaz-Garcia, Martin Kerin, Marco Radeschi and Wilderich
Tuschmann for comments on earlier versions of this paper. I would also like to thank the
anonymous referee for suggestions which helped to improve the exposition of the article.

2. Preliminaries

Before we prove our results, we review some results of Masuda and Panov [MP06] about
torus manifolds with vanishing odd degree cohomology.

They have shown that a smooth torus manifold M with Hodd(M ;Z) = 0 is locally
standard. This means that each point in M has an invariant neighborhood which is
weakly equivariantly homeomorphic to an open invariant subset of the standard Tn-
representation on Cn. Moreover, the orbit space is a nice manifold with corners such
that all faces of M/T are acyclic [MP06, Theorem 9.3]. Here a manifold with corners is
called nice if each of its codimension-k faces is contained in exactly k codimension-one
faces. A codimension-one face of M/T is also called a facet of M/T . Moreover, following
Masuda and Panov, we count M/T itself as a codimension-zero face of M/T .

The faces of M/T do not have to be contractible. But we show in Section 3 that the
action on M can be changed in such a way that all faces become contractible without
changing the face-poset of M/T . This new action might be non-smooth (see Remark
3.5). But it always admits a canonical model over a topological nice manifold with
corners as described below.

For a facet F of Q = M/T denote by λ(F ) the isotropy group of a generic point in
π−1(F ), where π : M → M/T is the orbit map. Then λ(F ) is a circle subgroup of T .
Let

MQ(λ) = Q× T/ ∼,
where two points (xi, ti) ∈ Q×T , i = 1, 2, are identified if and only if x1 = x2 and t1t

−1
2

is contained in the subtorus of T which is generated by the λ(F ) with x1 ∈ F . There is
a T -action on MQ(λ), induced by multiplication on the second factor in Q × T . Then,
by [MP06, Lemma 4.5], there is an equivariant homeomorphism

MQ(λ) →M.
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For every map λ : {facets of Q} → {one-dimensional subtori of T} such that T is
isomorphic to λ(F1) × · · · × λ(Fn), whenever the intersection of F1 ∩ · · · ∩ Fn is non-
empty, the model MQ(λ) is a manifold.

The canonical model is equivariantly homeomorphic to a quotient of a free torus action
on the moment angle complex ZQ associated to Q. Here ZQ is defined as follows:

ZQ = Q× TQ/ ∼ .

Here TQ is the torus S1
1×· · ·×S1

k , where k is the number of facets of Q. The equivalence
relation ∼ is defined as follows. Two points (qi, ti) ∈ Q×TQ are identified if q1 = q2 and
t1t

−1
2 ∈∏i∈S(q1)

S1
i , where S(q1) is the set of those facets of Q which contain q1.

The torus which acts freely on ZQ with quotient MQ(λ) is given by the kernel of a
homomorphism ψ : TQ → T , such that the restriction of ψ to S1

i induces an isomorphism
S1
i → λ(Fi).

Example 2.1 If Q = ∆n is an n-dimensional simplex, then TQ is an (n+1)-dimensional
torus. Moreover, ZQ is equivariantly homeomorphic to S2n+1 ⊂ Cn+1 with the standard
linear torus action.

Example 2.2 If Q = Σn is the orbit space of the standard linear torus action on S2n,
then TQ is n-dimensional. Moreover, ZQ is equivariantly homeomorphic to S2n ⊂ Cn⊕R
with the standard linear torus action.

Example 2.3 Let Q1 and Q2 be two nice manifolds with corners. If Q = Q1×Q2, then
TQ ∼= TQ1 × TQ2 and ZQ is equivariantly homeomorphic to ZQ1 × ZQ2.

Now assume that M is a torus manifold with Hodd(M ;Q) = 0. This condition is
always satisfied if M is rationally elliptic because χ(M) = χ(MT ) > 0. Then the torus
action on M might not be locally standard and M/T might not be a manifold with
corners. But M/T still has a face-structure induced by its stratification by connected
orbit types. It is defined as in [CS74]. A k-dimensional face is a component C of

MTn−k
/T such that the identity component of the isotropy group of a generic point in

C is equal to Tn−k, where Tn−k is a subtorus of codimension k in T . The faces of M/T
defined in this way have the following properties:

• It follows from localization in equivariant cohomology that the cohomology of every
MTn−k

is concentrated in even degrees. Therefore every component of MTn−k

contains a T -fixed point. This is equivalent to saying that each face of M/T
contains at least one vertex, i.e. a face of dimension zero.

• By an investigation of the local weights of the action, one sees that each face of
M/T of codimension k is contained in exactly k faces of codimension 1.

• The vertex-edge-graph of each face is connected. (see [CS74, Proposition 2.5])
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3. Simplifying torus actions

In this section we describe an operation on locally standard torus manifolds M which
simplifies the torus action on M . For this construction we need the following two lemmas.

Lemma 3.1 Let M be a topological n-manifold with H∗(M ;Z) ∼= H∗(Sn;Z). Then
there is a contractible compact (n + 1)-manifold X such that ∂X = M . Moreover, X
is unique up to homeomorphism relative M . In particular, every homeomorphism of M
extends to a homeomorphism of X.

Proof. For n ≤ 2, this follows from the classification of manifolds of dimension n. If
n = 3 then this follows from the proof of Corollary 9.3C and Corollary 11.1C of [FQ90].
For n ≥ 4 this follows from the proof of [FQ90, Corollary 11.1]. �

Lemma 3.2 Let Q1, Q2 be two nice manifolds with corners of the same dimension such
that all faces of Qi, i = 1, 2, are contractible. If there is an isomorphism of their face-
posets φ : P(Q1) → P(Q2), then there is a face-preserving homeomorphism f : Q1 → Q2,
such that, for each face F of Q1, f(F ) = φ(F ).

Proof. We construct f by induction on the n-skeleton of Q1. There is no problem to
define f on the 0-skeleton. Therefore assume that f is already defined on the (n − 1)-
skeleton.

Let F be a n-dimensional face of Q1. Then f restricts to an homeomorphism ∂F →
∂φ(F ). Because F and φ(F ) are contractible manifolds with boundary ∂F , f extends
to a homeomorphism F → φ(F ). This completes the proof. �

Now let Q be a nice manifold with corners and F a face of Q of positive codimension
which is a homology disc. Let X be a homology disc with ∂X = ∂F . Then X ∪∂F F is
a homology sphere and therefore bounds a contractible manifold Y . We equip Y with a
face structure such that the facets of Y are given by F and X and the lower dimensional
faces coincide with the faces of F in ∂F = F ∩ X. With this face-structure X and F
become nice manifolds with corners.

Let k = dimQ− dimF . Then define

SX,F = Y × ∆k−1 ∪X×∆k−1 X × ∆k.

Then F ′ = F × ∆k−1 is a facet of SX,F and we define

αX,F (Q) = Q− (F × ∆k) ∪F ′ SX,F .

Then αX,F (Q) is naturally a nice manifolds with corners.

Lemma 3.3 Let Q, F , X as above. If dimF ≥ 3 and all faces of Q of dimension
greater than dimF are contractible, then Q′ = αF,X(αX,F (Q)) and Q are face-preserving
homeomorphic.
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Proof. It is clear from the construction above that P(Q′) and P(Q) are isomorphic.
Moreover, the dimF -skeleta of Q and Q′ are face-preserving homeomorphic. Therefore,
by using Lemma 3.1, the statement follows by an induction as in the proof of Lemma 3.2.
�

If M is a locally standard torus manifold over Q, then we can construct a torus
manifold M ′ with orbit space αX,F (Q) as follows. Let T k act on Y ′ = ∂(Y × D2k)
(without the face-structure) by the standard action on the second factor. Choose an
isomorphism T ∼= T k × Tn−k which maps λ(F ) to the first factor T k. If Ḟ denotes F
with a small collar of its boundary removed, then a small neighborhood of π−1(Ḟ ) is
equivariantly homeomorphic to Ḟ × Tn−k ×D2k.

We define

βX,F (M) = M − (π−1(Ḟ ) ×D2k) ∪∂(Ḟ×D2k×Tn−k) (Y ′ − Ḟ ×D2k) × Tn−k.

Since Y ′ is the simply connected boundary of a contractible manifold, it is homeomor-
phic to a sphere. Moreover, if F is contractible, then Ḟ ×D2k is contractible with simply
connected boundary. Hence, it follows from Schoenflies’ Theorem that Ḟ ×D2k is a disc
and that we may assume that F × D2k is embedded in Y ′ as the upper hemisphere.
Therefore it follows that βX,F (M) is homeomorphic to M if F is contractible.

Theorem 3.4 Let M be a simply connected torus manifold with Hodd(M ;Z) = 0. Then
M is determined by (P(M/T ), λ) up to homeomorphism.

Proof. The first step is to simplify the action on M in such a way that all faces F of
M/T become contractible. Then the statement will follow from Lemma 3.2 and [MP06,
Lemma 4.5].

At first assume that dimM ≤ 6. Then because π1(M) = 0 all faces of M/T are
contractible. Therefore the theorem follows in this case.

Next assume that dimM ≥ 8. Because M is simply connected, M/T is contractible.
We simplify the torus action on M by using the operations βX,F applied by a downwards
induction on the dimension of F beginning with the codimension one faces. At first
assume that dimF ≥ 3 and that all faces of dimension greater than dimF are already
contractible. Let X be a contractible manifold with boundary ∂F . Then βF,X(βX,F (M))
is homeomorphic to βX,F (M). But by Lemma 3.3, αF,X(αX,F (M/T )) is face-preserving
homeomorphic to M/T . Therefore it follows that βF,X(βX,F (M)) is homeomorphic to
M . Hence, βX,F (M) is also homeomorphic to M .

If dimF ≤ 2, it follows from the classification of two- and one-dimensional manifolds
that there is nothing to do. �

Remark 3.5 Since not every three-dimensional homology sphere bounds a contractible
smooth manifold, the torus action on βX,F (M) might be non-smooth. Therefore with
our methods we cannot prove that the diffeomorphism type of M is determined by
(P(M/T ), λ).
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Using results of Masuda and Panov [MP06] and the author’s methods from [Wie12]
together with Theorem 3.4, one can prove the following partial generalization of Theorem
2.2 of [Wie12].

Theorem 3.6 Let M and M ′ be simply connected torus manifolds of dimension 2n
with H∗(M ;Z) and H∗(M ′;Z) generated in degree 2. Let m,m′ be the numbers of
characteristic submanifolds of M and M ′, respectively. Assume that m ≤ m′. Fur-
thermore, let u1, . . . , um ∈ H2(M) be the Poincaré-duals of the characteristic submani-
folds of M and u′1, . . . , u

′
m′ ∈ H2(M ′) the Poincaré-duals of the characteristic subman-

ifolds of M ′. If there is a ring isomorphism f : H∗(M) → H∗(M ′) and a permutation
σ : {1, . . . ,m′} → {1, . . . ,m′} with f(ui) = ±u′σ(i), for i = 1, . . . ,m, then M and M ′ are
homeomorphic.

Here a characteristic submanifold of a torus manifold is a codimension-two-submanifold
which is fixed by some circle-subgroup of the torus and contains a T -fixed point. Each
characteristic submanifold is the preimage of some facet of M/T under the orbit map.

In [Pet73] Petrie proved that if an n-dimensional torus acts on a homotopy complex
projective space M of real dimension 2n, then the Pontrjagin classes of M are standard.
In fact a much stronger statement holds.

Corollary 3.7 Let M be a torus manifold which is homotopy equivalent to CPn. Then
M is homeomorphic to CPn.

Proof. By Corollary 7.8 of [MP06], the cohomology ring of M can be computed from
the face-poset of the orbit space. In particular all the Poincaré duals of the characteristic
submanifolds of M are generators of H2(M ;Z). Now it follows from Theorem 3.6 that
M is homeomorphic to CPn. �

4. Rationally elliptic torus manifolds

In this section we prove the following theorem.

Theorem 4.1 LetM be a simply connected rationally elliptic torus manifold with Hodd(M ;Z) =
0. Then M is homeomorphic to a quotient of a free linear torus action on a product of
spheres.

Since the proof of this theorem is very long we give a short outline of its proof.
Sketch of proof. In a first step (Lemma 4.2) we will show that each two-dimensional

face of the orbit space of M contains at most four vertices. Then we will show in
Proposition 4.5 that a nice manifold with corners Q, whose two-dimensional faces contain
at most four vertices and all of whose faces are acyclic, is combinatorially equivalent to
a product

∏
i<r Σni ×∏i≥r ∆ni . Here Σn is the orbit space of the linear Tn-action on

S2n and ∆n is the n-dimensional simplex.
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When this is achieved Theorem 4.1 will follow from Theorem 3.4 and the structure
results described in Section 2.

The proof of Proposition 4.5 is by induction on the dimension ofQ. The case dimQ = 2
is obvious. Therefore we may assume that n = dimQ > 2.

We consider a facet F of Q. By the induction hypothesis we know that there is a
combinatorial equivalence

F ∼=
∏

i<r

Σni ×
∏

i≥r

∆ni . (1)

The facets Gk of Q which meet F intersect F in a disjoint union of facets of F . Since
the facets of F are all of the form

F̃ ×
∏

i0 6=i<r

Σni ×
∏

i0 6=i≥r

∆ni ,

where F̃ is a facet of the i0-th factor in the product (1).

Hence, it follows that each Gk “belongs” to a factor Γj(k) of the product (1). There
are seven cases of how the Gk which belong to the same factor can intersect. We call
four of these cases exceptional (these are the cases 1a, 1b, 2a and 3a in the list in the
proof of Proposition 4.5) and three of them generic (these are the cases 1c, 2b, 3b).

Depending on which cases occur we determine the combinatorial type of Q in Lemmas
4.6, 4.7, 4.8 and 4.9. With these Lemmas we complete the proof of Proposition 4.5.

The proofs of the above lemmas are again subdivided into several sublemmas. In
Sublemmas 4.10, 4.11, 4.12 and 4.13 we determine the combinatorial type of those facets
of Q which belong to a factor Γj0 where one of the exceptional cases occurs.

Then in Sublemma 4.14 we use this information and Lemma 4.4 to show that F has at
most one factor where one of the exceptional cases can appear. In Lemma 4.4 we show
that a certain poset is not the poset of a nice manifold with corners with only acyclic
faces.

Assuming that one of the exceptional cases appears at the factor Γj0 of F the combina-
torial types of the Gk which do not belong to Γj0 are then determined in Sublemma 4.15.
With the information gained in this sublemma together with the results from Sublemmas
4.10, 4.11, 4.12 and 4.13 we then can determine the combinatorial type of Q for the case
that at one factor of F one of the exceptional cases occurs. This completes the proofs
of Lemmas 4.6, 4.7 and 4.8.

So we are left with the case where no exceptional case appears at the factors of F . For
this case we determine in Sublemma 4.16 the combinatorial types of the Gk. Moreover,
in Sublemma 4.17 we show that there is exactly one facet H of Q which does not meet F .
We determine the combinatorial type of H in the same sublemma. With the information
on the combinatorial types of all facets of Q we then can determine the combinatorial
type of Q. This completes the proof of Lemma 4.9. �

For the proof of Theorem 4.1 we need the following lemmas.
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Lemma 4.2 Let M be a torus manifold with Hodd(M ;Q) = 0. Assume that M admits
an invariant metric of non-negative sectional curvature or M is rationally elliptic. Then
each two-dimensional face of M/T contains at most four vertices.

Proof. At first note that, by localization in equivariant cohomology, the odd-degree
cohomology of all fixed point components of all subtori of T vanishes.

A two-dimensional face F is the image of a fixed point componentM1 of a codimension-
two subtorus of T under the orbit map. Therefore it follows from the classification
of four-dimensional T 2-manifolds given in [OR70] and [OR74] that the orbit space is
homeomorphic to a two-dimensional disk. If M admits an invariant metric of non-
negative sectional curvature, then the same holds for M1. Therefore it follows from the
argument in the proof of [GGS11, Lemma 4.1] that there are at most four vertices in F .

Now assume that M is rationally elliptic. Then, by [AP93, Corollary 3.3.11], the
minimal model M(M1) of M1 is elliptic. The number of vertices in F is equal to the
number of fixed points in M1. Since χ(MT

1 ) = χ(M1), it is also equal to the Euler-
characteristic of M1. By [FHT01, Theorem 32.6] and [FHT01, Theorem 32.10], we have

4 ≥ 2 dim Π2
ψ(M1) = 2b2(M1).

Here Π2
ψ(M1) denotes the second pseudo-dual rational homotopy group ofM1. Therefore,

χ(M1) ≤ 4 and there are at most four vertices in F . �

Remark 4.3 IfM is a rationally elliptic torus manifold, then we always have Hodd(M ;Q) =
0 since χ(M) = χ(MT ) > 0. Therefore Hodd(M ;Z) = 0 if and only if H∗(M ;Z) is
torsion-free.

Lemma 4.4 For n > 2, there is no n-dimensional nice manifold with corners whose
faces are all acyclic, such that each facet is combinatorially equivalent to an (n − 1)-
dimensional cube and the intersection of any two facets has two components.

Proof. Assume that there is such a manifold Q with corners. Then the boundary of Q
is a homology sphere. Moreover by applying the construction α from Section 3 to Q we
may assume that all faces of Q of codimension at least one are contractible.

Let Q′ = [−1, 1]n/Z2, where Z2 acts on [−1, 1]n by multiplication with −1 on each
factor. Then the boundary of Q′ is a real projective space of dimension n− 1.

Moreover, for each facet Fi of Q and each facet F ′
i of Q′ there is an isomorphism of

face posets P(Fi) → P(F ′
i ) such that Fi ∩ Fj is mapped to F ′

i ∩ F ′
j .

Since there are automorphisms of P(Fi) which interchange the two components of
Fi ∩ Fj and leave the other facets of Fi unchanged, we can glue these isomorphisms
together to get an isomorphism of face posets

P(Q) → P(Q′).

Since the faces of Q and Q′ of codimension at least one are contractible we obtain a
homeomorphism ∂Q → ∂Q′. This is a contradiction because ∂Q is a homology sphere
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and ∂Q′ a projective space. �

Proposition 4.5 Let Q be a nice manifold with only acyclic faces such that each two-
dimensional face of Q has at most four vertices. Then P(Q) is isomorphic to the face
poset of a product

∏
i Σni ×∏i ∆ni . Here Σm is the orbit space of the linear Tm-action

on S2m and ∆m is an m-dimensional simplex.

Proof. We prove this proposition by induction on the dimension of Q. If dimQ = 2,
there is nothing to show.

Therefore let us assume that dimQ > 2 and that all facets of Q are combinatorially
equivalent to a product of Σni ’s and ∆ni ’s.

Let F be a facet of Q, such that F is combinatorially equivalent to
∏
i Γi, where

Γi = Σni for i < r and Γi = ∆ni for i ≥ r. We fix this facet F for the rest of this section.
In the following we will denote Γ̃i = Σni−1 and Γ̄i = Σni+1 if i < r or Γ̃i = ∆ni−1 and

Γ̄i = ∆ni+1 if i ≥ r.
Each facet of Q which meets F intersects F in a union of facets of F . Since P(F ) ∼=

P(
∏
i Γi), the facets of F are of the form

Fj ×
∏

i 6=j

Γi,

where Fj is a facet of Γj . Therefore each facet Gk of Q which meets F “belongs” to a
factor Γj(k) of F , i.e.

F ∩Gk ∼=
∏

i 6=j(k)

Γi × F̃k,

where F̃k is a union of facets of the j(k)-th factor Γj(k) in F .
If dim Γj = 1, then Γj is combinatorially equivalent to an interval. Hence, it has two

facets which do not intersect. Therefore in this case there are at most two facets of Q
which belong to Γj . If there is exactly one such facet Gk, then the intersection F ∩Gk
has two components. Otherwise the intersections F ∩Gk are connected.

If Γj = Σnj with nj > 1, then Γj has exactly nj facets. These facets have pairwise
non-trivial intersections. Therefore F ∩ Gk is connected if j(k) = j. And there are
exactly nj facets of Q which belong to Γj .

If Γj = ∆nj with nj > 1, then Γj has exactly nj + 1 facets. These facets have pairwise
non-trivial intersections. Hence, F ∩ Gk is connected if j(k) = j and there are exactly
nj + 1 facets of Q which belong to Γj .

Therefore there are the following cases:

1. dim Γj = 1 and one of the following statements holds:

a) There is exactly one facet Gk which belongs to Γj .

b) There are exactly two facets Gk1 , Gk2 which belong to Γj and Gk1 ∩Gk2 6= ∅.

c) There are exactly two facets Gk1 , Gk2 which belong to Γj and Gk1 ∩Gk2 = ∅.
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2. Γj ∼= Σnj with nj > 1 and one of the following statements holds:

a) There are exactly nj facets Gk1 , . . . , Gknj
which belong to Γj and the union

of those components of
⋂nj

i=1Gki which meet F is connected.

b) There are exactly nj facets Gk1 , . . . , Gknj
which belong to Γj and the union

of those components of
⋂nj

i=1Gki which meet F is not connected.

3. Γj ∼= ∆nj with nj > 1 and one of the following statements holds:

a) There are exactly nj + 1 facets Gk1 , . . . , Gknj+1 which belong to Γj and
⋂nj+1
i=1 Gki 6= ∅.

b) There are exactly nj + 1 facets Gk1 , . . . , Gknj+1 which belong to Γj and
⋂nj+1
i=1 Gki = ∅.

The proof of the proposition will be completed by the following lemmas.

Lemma 4.6 If, in the above situation, there is a j0 such that

• Γj0
∼= Σnj0 with nj0 > 1 and the union of those components of

⋂
k; j(k)=j0

Gk which
meet F is connected, or

• Γj0
∼= ∆nj0 with nj0 > 1 and

⋂
k; j(k)=j0

Gk 6= ∅,

i.e., one of the cases 2a and 3a appears at Γj0, then there is an isomorphism of face
posets P(Q) → P(Γ̄j0 ×

∏
i 6=j0

Γi) which sends each Gk to a facet belonging to the j(k)-th

factor and F to a facet belonging to Γ̄j0.

Lemma 4.7 If, in the above situation, there is a j0 such that dim Γj0 = 1 and there is
exactly one facet Gk0 which belongs to Γj0, i.e., the case 1a appears at Γj0, then there
is an isomorphism of face posets P(Q) → P(Σ2 ×∏i 6=j0

Γi), which sends each Gk to a

facet belonging to the j(k)-th factor and F to a facet belonging to Σ2.

Lemma 4.8 If, in the above situation, there is a j0 such that dim Γj0 = 1 and there are
exactly two facets Gk0 and Gk′0 which belong to Γj0 and Gk0 ∩Gk′0 6= ∅, i.e., the case 1b

appears at Γj0, then there is an isomorphism of face posets P(Q) → P(∆2 ×∏i 6=j0
Γi)

which sends each Gk to a facet belonging to the j(k)-th factor and F to a facet belonging
to ∆2.

In particular, if one of the cases 1a, 1b, 2a and 3a appears at Γj0 , then at the other
Γj only the cases 1c, 2b and 3b can appear.

Lemma 4.9 If, in the above situation, at all factors Γj only the cases 1c, 2b and 3b
appear, then there is an isomorphism of face posets P(Q) → P(F × [0, 1]) which sends
each Gk to (Gk ∩ F ) × [0, 1] and F to F × {0}.

105



�

Now we prove by induction on the dimension of Q the lemmas from above. For
dimQ = 2, these lemmas are obvious. Therefore we may assume that n = dimQ > 2
and that all the lemmas are proved in dimensions less than n.

Sublemma 4.10 Assume that the case 2a appears at the factor Γj0 of F . Let Gk0 be a
facet of Q which belongs to Γj0. Then the following holds:

1. The facets of Gk0 are given by the components of the intersections Gk ∩ Gk0 and
F ∩Gk0.

2. Gk ∩Gk0 is connected if and only if F ∩Gk is connected.

3. There is a combinatorial equivalence

P(Gk0) → P(
∏

i

Γi),

such that F ∩Gk0 corresponds to a facet of the j0-th factor and the components of
Gk ∩Gk0 correspond to facets of the j(k)-th factor.

Proof. We consider the inclusion of F ∩ Gk0 →֒ Gk0 , where Gk0 is a facet of Q which
belongs to Γj0 . Then F ∩Gk0 is a facet of Gk0 and there is a combinatorial equivalence

F ∩Gk0 ∼= Σnj0
−1 ×

∏

i 6=j0

Γi

such that each component of Gk0 ∩Gk ∩ F corresponds to a facet of the j(k)-th factor.
Moreover, the facets of Gk0 which meet F ∩ Gk0 are given by those components of the
Gk ∩Gk0 which meet F . Since the case 2a appears at the factor Γj0 of F it follows that
there is only one component of

⋂
k; j(k)=j0

Gk =
⋂
k; j(k)=j0

(Gk ∩ Gk0) which meets F .

Therefore one of the cases 2a or 1a appears at the factor Σnj0
−1 of F ∩Gk0 .

Hence, it follows from the induction hypothesis that Gk0 is combinatorially equivalent
to
∏
i Γi in such a way that the component of Gk0 ∩Gk which meets F is mapped to a

facet which belongs to the j(k)-th factor and F ∩Gk0 is mapped to a facet which belongs
to the j0-th factor.

Since all facets of
∏
i Γi meet the facet which corresponds to F ∩ Gk0 it follows that

each facet of Gk0 is a component of some intersection Gk ∩Gk0 .
Moreover, Gk∩Gk0 is connected for all k with nj(k) > 1 because for these k the facets of

the factor Γj(k) of Gk0 have pairwise non-trivial intersections. If nj(k) = 1 and j(k) 6= j0,
then Gk∩Gk0 is disconnected if and only if Gk∩Gk0 ∩F is disconnected because F ∩Gk0
and the components of Gk ∩Gk0 are facets of different factors of Gk0

∼=
∏
i Γi. Since Gk

and Gk0 belong to different factors of F , it follows that this last statement is true if and
only if Gk ∩ F is disconnected. �
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Sublemma 4.11 Assume that the case 3a appears at the factor Γj0 of F . Let Gk0 be a
facet of Q which belongs to Γj0. Then the following holds:

1. The facets of Gk0 are given by the components of the intersections Gk ∩ Gk0 and
F ∩Gk0.

2. Gk ∩Gk0 is connected if and only if F ∩Gk is connected.

3. There is a combinatorial equivalence

P(Gk0) → P(
∏

i

Γi),

such that F ∩Gk0 corresponds to a facet of the j0-th factor and the components of
Gk ∩Gk0 correspond to facets of the j(k)-th factor.

Proof. We consider the inclusions of F ∩Gk0 →֒ Gk0 where Gk0 is a facet which belongs
to Γj0 . Then F ∩Gk0 is a facet of Gk0 and there is a combinatorial equivalence

F ∩Gk0 ∼= ∆nj0
−1 ×

∏

i 6=j0

Γi

such that each component of Gk0 ∩Gk ∩ F corresponds to a facet of the j(k)-th factor.

The facets of Gk0 which meet F ∩ Gk0 are given by the components Cki of Gk ∩
Gk0 which meet F . The induction hypothesis then implies that Gk0 is combinatorially
equivalent to one of the following spaces

1. ∆nj0 ×∏i 6=j0
Γi or

2. Γ̄j1 × Γ̃j0 ×
∏
i 6=j1,j0

Γi or

3. [0, 1] × Γ̃j0 ×
∏
i 6=j0

Γi

in such a way that the Cki with j(k) = j0 correspond to facets of the j0-th factor. In
particular, Gk ∩Gk0 = Ck1 is connected for all k with j(k) = j0.

Indeed, if nj0 > 2, then all facets of Γ̃j0 and Γj0 have pairwise non-trivial intersections.
Hence, Gk ∩Gk0 has only one component in this case.

If nj0 = 2, then Γ̃j0 has two facets. Moreover, the intersection of Gk0 with another
facet of Q which belongs to the factor Γj0 of F is a non-empty union of facets of Γ̃j0 .
Since besides Gk0 there are two other facets of Q which belong to Γj0 , these intersections
must be connected.

Since
⋂
k; j(k)=j0

(Gk ∩Gk0) =
⋂
k; j(k)=j0

Gk 6= ∅, it follows from the induction hypoth-
esis that we are in case 1. In this case an isomorphism of P(Gk0) → P(

∏
i Γi) is induced

by

F 7→ Hk0 Cki 7→ Hki,
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where Hk0 is a facet of the j0-th factor in the product and the other Hki are facets of
the j(k)-th factor in the product.

Since all facets of
∏
i Γi meet the facet which corresponds to F ∩Gk0 , it follows that

all facets of Gk0 are components of intersections Gk ∩Gk0 .

Moreover, Gk ∩ Gk0 = Ck1 is connected for all k with nj(k) > 1 because all facets
of these Γj(k) have pairwise non-trivial intersection. If nj(k) = 1 and j(k) 6= j0, then
Gk ∩Gk0 is disconnected if and only if Gk ∩ F is disconnected. This last statement can
be seen as in the proof of Sublemma 4.10. �

Sublemma 4.12 Assume that the case 1a appears at the factor Γj0 of F . Let Gk0 be
the facet of Q which belongs to Γj0. Then the following holds:

1. The facets of Gk0 are given by the components of the intersections Gk ∩ Gk0 and
F ∩Gk0.

2. Gk ∩Gk0 is connected if and only if F ∩Gk is connected.

3. There is a combinatorial equivalence

P(Gk0) → P(
∏

i

Γi),

such that F ∩Gk0 corresponds to a facet of the j0-th factor and the components of
Gk ∩Gk0 correspond to facets of the j(k)-th factor.

Proof. At first we describe the combinatorial type of Gk0 where Gk0 is the facet of Q
which belongs to Γj0 .

We consider the inclusion of a component C of F ∩Gk0 in Gk0 . Then C is a facet of
Gk0 and there is a combinatorial equivalence

C ∼=
∏

i 6=j0

Γi

such that each component of Gk0 ∩Gk ∩ C corresponds to a facet of the j(k)-th factor.

Then the facets of Gk0 which meet C are given by the components Cki of Gk ∩ Gk0
which meet C. It follows from the induction hypothesis that Gk0 is combinatorially
equivalent to one of the following spaces:

1. [0, 1] ×∏i 6=j0
Γi or

2. Σnj1
+1 ×∏i 6=j0,j1

Γi or

3. ∆nj1
+1 ×∏i 6=j0,j1

Γi,
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such that each Cki corresponds to a facet of the j(k)-th factor and C corresponds to a
facet of the first factor. By the condition 1a, there is a facet of Gk0 which does not meet
C. This facet is the other component of the intersection F ∩Gk0 . Hence, it follows that
we are in case 1.

In this case an isomorphism of P(Gk0) → P([0, 1] ×∏i 6=j0
Γi) is induced by

C 7→ Hk2 C ′ 7→ H ′
k2 Cki 7→ Hki for j(k) 6= j0,

where Hki is a facet of the j(k)-th factor in the product, Hk2 and H ′
k2

are the facets of
the j0-th factor [0, 1] of the product and C ′ is the other component of F ∩Gk0 .

Since all facets of
∏
i Γi except the facet corresponding to C ′ meet the facet corre-

sponding to C, it follows that all facets of Gk0 are components of intersections Gk ∩Gk0 .

As in the proof of Sublemma 4.10 one sees, moreover, that Gk∩Gk0 = Ck is connected
for all k with nj(k) > 1. If nj(k) = 1 and j(k) 6= j0, then Gk ∩Gk0 is disconnected if and
only if Gk ∩ F is disconnected. �

Sublemma 4.13 Assume that the case 1b appears at the factor Γj0 of F . Let Gk0 be a
facet of Q which belongs to Γj0. Then the following holds:

1. The facets of Gk0 are given by the components of the intersections Gk ∩ Gk0 and
F ∩Gk0.

2. Gk ∩Gk0 is connected if and only if F ∩Gk is connected.

3. There is a combinatorial equivalence

P(Gk0) → P(
∏

i

Γi),

such that F ∩Gk0 corresponds to a facet of the j0-th factor and the components of
Gk ∩Gk0 correspond to facets of the j(k)-th factor.

Proof. Let Gk0 and Gk′0 be the two facets of Q, which belong to Γj0 .

Then the intersection Gk0 ∩Gk′0 is non-empty. Therefore Gk0 has a facet which is not
equal to F ∩Gk0 or a component of Gk ∩Gk0 with j(k) 6= j0. Therefore, as in the proof
of Sublemma 4.12, one sees that Gk1 is combinatorially equivalent to [0, 1] ×∏i 6=j0

Γi.

The other statements of the Sublemma can be seen as in the proof of Sublemma 4.10.
�

Next we show that, if there is a factor Γj0 of F where one of the cases 1a, 1b, 2a or
3a occurs, then at the other factors of F only the cases 1c, 2b or 3b can occur.

Sublemma 4.14 There is at most one factor Γj0 of F , where one of the cases 1a, 1b,
2a or 3a appears.
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Proof. Assume that one of the cases 2a and 3a occurs at the factor Γj0 of F and one
of the cases 1a, 1b, 2a and 3a appears at another factor Γj1 of F . Then we consider the
intersection Gk0 ∩ Gk1 with j(k0) = j0 and j(k1) = j1. It follows from the description
of the combinatorial type of Gk0 given in the Sublemmas 4.10 and 4.11, that there is an
isomorphism of posets

P(C) → P(Γj0 × Γ̃j1 ×
∏

i 6=j0,j1

Γi),

where C is a component of Gk1 ∩Gk0 such that F ∩Gk0 ∩Gk1 and the Gk ∩Gk0 ∩Gk1 ,
j(k) = j0, correspond to the facets belonging to the factor Γj0 . Hence, it follows that
the intersection of Gk0 ∩Gk1 with

⋂
k; j(k)=j0

Gk is non-empty (or connected) if case 3a
(or 2a, respectively) appears at the factor Γj0 of F .

From the description of the combinatorial type of Gk1 given in Sublemmas 4.10, 4.11,
4.12 and 4.13 it follows that there is an isomorphism of posets

P(Gk0 ∩Gk1) → P(Γ̃j0 × Γj1 ×
∏

i 6=j0,j1

Γi),

such that the Gk ∩Gk0 ∩Gk1 , j(k) = j0, correspond to the facets belonging to the factor
Γ̃j0 . Hence, it follows that the intersection of Gk0∩Gk1 with

⋂
k; j(k)=j0

Gkj0 is empty (or

non-connected) if case 3a (or 2a, respectively) appears at the factor Γ̃j0 of F . Therefore
we have a contradiction.

Next assume that at one factor Γj0 of F the case 1a appears and at another factor Γj1
the case 1b appears. Then it follows from the description of the combinatorial type of
Gk0 given in Sublemma 4.12 that the intersection Gk0 ∩ Gk1 is connected. Here Gk0 is
the facet belonging to the factor Γj0 and Gk1 is a facet belonging to the factor Γj1 . But
the description of the combinatorial type of Gk1 given in Sublemma 4.13 implies that
this intersection is disconnected.

Next assume that the case 1b occurs at two factors Γj0 and Γj1 . Let Gk0 and Gk′0 be
the facets belonging to Γj0 . Moreover, let Gk1 be a facet of Q belonging to Γj1 . Then
it follows from the description of the combinatorial type of Gk0 given in Sublemma 4.13
that the intersection Gk0 ∩ Gk′0 ∩ Gk1 is non-empty. But from the description of the
combinatorial type of Gk1 it follows that this intersection is empty.

Last we show that the case 1a occurs at at most one factor of F . Assume that the
case 1a appears at the factors Γj with j < s and not at the factors Γj with j ≥ s. Then
for each j ≥ s choose nj facets Gkj1 , . . . , Gkjnj

of Q belonging to that factor. Consider

a component K of
⋂
j≥s

⋂nj

i=1Gkji which meets F . Since at none of the factors Γj ,
j ≥ s, the cases 1a or 2a appear, the intersection F ∩ K is connected. Therefore also
the intersections Gk ∩K, j(k) < s are connected by Sublemma 4.12.

By the description of the combinatorial type of the Gk given in Sublemma 4.12 the
intersections Gk ∩ K are combinatorially equivalent to cubes and have pairwise non-
connected intersection. Therefore it follows from Lemma 4.4, that K has dimension
two. Hence it follows that s is two, i.e. there is only one factor of F where the case 1a
appears.
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Therefore there is at most one factor Γj0 of F where one of the cases 1a, 1b, 2a and
3a appears. �

Sublemma 4.15 Assume that one of the cases 1a, 1b, 2a or 3a appears at the factor
Γj0 of F . Let Gk1 be a facet of Q which meets F and belongs to Γj1 with j1 6= j0. Then
the following holds:

1. The facets of Gk1 are given by the components of the intersections Gk ∩Gk1.

2. Gk1 ∩Gk is disconnected if and only if Γj1 = Σ2 and j(k) = j(k1) = j1.

3. There is a combinatorial equivalence

Gk1
∼= Γ̄j0 × Γ̃j1 ×

∏

i 6=j0,j1

Γi,

such that F ∩ Gk1 corresponds to a facet of the j0-th factor and the Gk ∩ Gk1
correspond to disjoint unions of facets of the j(k)-th factor.

Proof. We consider the inclusion F ∩Gk1 →֒ Gk1 . F ∩Gk1 is a facet of Gk1 and there
is a combinatorial equivalence

Gk1 ∩ F ∼= Γ̃j1 ×
∏

i 6=j1

Γi

such that each component of Gk ∩Gk1 ∩ F corresponds to a facet of the j(k)-th factor.
Moreover, the facets of Gk1 which meet Gk1 ∩ F are given by the components Cki of
Gk ∩Gk1 which meet Gk1 ∩ F .

If j(k) = j0, then Gk∩F and F ∩Gk1 are facets of different factors of F . Since Gk∩Gk0
and Gk0∩Gk1 are facets of different factors of Gk0

∼=
∏
i Γi and because F ∩Gk0 is a facet

of the j0-th factor of Gk0 , it follows from Sublemma 4.11 that
⋂
k; j(k)=j0

(Gk ∩Gk1) 6= ∅
if the case 3a appears at the factor Γj0 of F .

Furthermore, by the same argument
⋂
k; j(k)=j0

(Gk ∩Gk1) 6= ∅ is connected if the case
2a appears at the factor Γj0 of F . Here one uses Sublemma 4.10.

If the case 1a appears at the factor Γj0 one can argue as follows. It follows from the
description of the combinatorial type of Gk0 , j(k0) = j0, given in Sublemma 4.12 that
Gk0∩Gk1 is connected. Moreover, it follows from the same description that Gk0∩Gk1∩F
has two components.

Therefore the case 1a also appears at the factor Γj0 of Gk1 ∩ F .

If the case 1b appears at the factor Γj0 , then it follows from the combinatorial descrip-
tion of the Gk with j(k) = j0 given in Sublemma 4.13 that for these k the intersection of
Gk with Gk1 is connected. Moreover, the intersection

⋂
k; j(k)=j0

Gk ∩Gk1 is non-empty.
Therefore the case 1b appears at the factor Γj0 of Gk1 ∩ F .
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Hence, the case which appears for the factor Γj0 of F also appears at the factor Γj0
of Gk1 ∩ F . Therefore from the induction hypothesis we get an isomorphism of posets

P(Gk1) → P(Γ̄j0 × Γ̃j1 ×
∏

i 6=j0,j1

Σni ×
∏

i 6=j0j1

∆ni),

such that Gk1 ∩ F is mapped to a facet of the j0-th factor and Cki to a facet of the
j(k)-th factor. Here Cki is a compoenent of Gk ∩Gk1 .

Since all pairs of facets of Γ̄j0 have non-trivial intersection, all facets of Gk1 meet
Gk1 ∩ F . Moreover, it follows that Gk ∩ Gk1 is connected if j(k) 6= j1 or Γj1 6= Σ2.
Otherwise this intersection has two components.

Indeed, if j(k2) 6= j1, j0, then it follows from the description of the combinatorial type
of F that F ∩ Gk1 ∩ Gk2 = (F ∩ Gk1) ∩ (F ∩ Gk2) is connected. Because Gk2 and F
belong to different factors of Gk1 it follows that Gk2 ∩Gk1 is connected.

Next assume that j(k2) = j1 and dim Γj1 ≥ 3. Then all pairs of facets of Γ̃j1 have
non-trivial intersections. Therefore Gk2 ∩Gk1 is connected in this case.

Assume now that Γj1 = ∆2. Then besides Gk1 there are two other facets of Q which
belong to Γj1 . These two facets have non-trivial intersections with Gk1 . Moreover, the
components of these intersections are facets of the factor Γ̃j1 of Gk1 . Since Γ̃j1 has two
facets, the intersections Gk2 ∩Gk1 with j(k2) = j1 are connected.

Next assume that Γj1 = Σ2. Then besides Gk1 there is exactly one other facet Gk2 of
Q which belongs to Γj1 . Moreover, F ∩Gk2 ∩ Gk1 has two components. Since F ∩Gk1
and the components of Gk2 ∩ Gk1 are facets of different factors of Gk1 . It follows that
Gk2 ∩Gk1 has two components.

At last assume that dim Γj1 = 1. Then since F ∩Gk1 is connected. There is another
facet Gk2 of Q which belongs to Γj1 . Since F ∩Gk1 ∩Gk2 is empty and all facets of Gk1
meet F ∩Gk1 it follows that Gk1 ∩Gk2 is empty. �

Now we can prove the Lemmas 4.6, 4.7, and 4.8.
Proof of Lemmas 4.6, 4.7 and 4.8. For j 6= j0, let ñj = nj and ñj0 = nj0 + 1.

Moreover, let G0 = F and j(0) = j0. Let P =
∏
i<r Σñi ×∏i≥r ∆ñi . Denote by Hk the

facets of P . We have shown in Sublemmas 4.10, 4.11, 4.12, 4.13 and 4.15 that there are
isomorphisms of posets

P(Gk) → P(Hk)

such that (Gk ∩ Gk′) 7→ (Hk ∩ Hk′) where Hk and Hk′ are facets of the j(k)-th and
j(k′)-th factor of P , respectively.

If
⋂
k∈K Hk 6= ∅, then this intersection has 2m components, where m is the number

of j1’s with j1 < r and K ⊃ Ij1 = {k; j(k) = j1}. If K = Ij1 as above, then
⋂
k∈K Hk

has two components C1 and C2. Moreover, there is an automorphism of P(P ), which
interchanges C1 and C2 and fixes all faces of P not contained in C1 ∪ C2. Therefore,
after composing some of the isomorphisms P(Gk) → P(Hk) with these automorphisms
if necessary, we can extend these isomorphisms to an isomorphism

P(Q) → P(P ),
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with Gk 7→ Hk. This completes the proof of the lemmas. �

For the proof of Lemma 4.9 we need two more sublemmas.

Sublemma 4.16 Assume that we are in the situation of Lemma 4.9. Let Gk0 be a
facet of Q belonging to the factor Γj0 of F . Then there is a combinatorial equivalence
P(Gk0) → P((F ∩Gk0)× [0, 1]) which sends each Gk ∩Gk0 to (F ∩Gk0 ∩Gk)× [0, 1] and
F ∩Gk0 to (F ∩Gk0) × {0}.

Proof. We consider the inclusion F ∩Gk0 →֒ Gk0 . Then F ∩Gk0 is a facet of Gk0 and
there is a combinatorial equivalence

F ∩Gk0 ∼= Γ̃j0 ×
∏

i 6=j0

Γi

such that each component of Gk0 ∩Gk ∩ F corresponds to a facet of the j(k)-th factor.
The facets of Gk0 which meet F ∩Gk0 are given by the components of Gk0 ∩Gk which
meet F . We show that if one of the cases 1c, 2b and 3b appears at the factor Γj of F
then the same holds for the factor Γj of F ∩Gk0 . If one of the cases 1c and 3b appears
this is clear because ⋂

k; j(k)=j

(Gk ∩Gk0) ⊂
⋂

k; j(k)=j

Gk = ∅.

Therefore assume that case 2b occurs at Γj .
At first assume that j(k) = j0 and nj = 2. Then there is only one Gk which belongs to

Γj0 and is not equal to Gk0 . The intersection of Gk and Gk0 has two components which
meet F because Gk ∩Gk0 ∩ F has two components and the union of those components
of Gk ∩ Gk0 which meet F is disconnected. Therefore we have that case 1c appears at
the factor Γ̃j0 of F ∩Gk0 .

Next assume that j(k) = j 6= j0 or nj0 > 2. Then there is only one component Bk
of Gk0 ∩ Gk which meets F because Gk0 ∩ Gk ∩ F is connected. Clearly

⋂
k; j(k)=j Bk

is contained in
⋂
k; j(k)=j Gk ∩ Gk0 . By dimension reasons

⋂
k; j(k)=j Bk is a union of

components of
⋂
k; j(k)=j Gk∩Gk0 . In fact, the union of those components of

⋂
k; j(k)=j Bk

which meet F is equal to the union of those components of
⋂
k; j(k)=j Gk ∩ Gk0 which

meet F .
Since every component of

⋂
k; j(k)=j Gk∩F contains exactly one component of

⋂
k; j(k)=j Gk∩

Gk0 ∩ F , each component of
⋂
k; j(k)=j Gk which meets F contains a component of⋂

k; j(k)=j Bk which meets F . Because the union of those components of
⋂
k; j(k)=j Gk

which meet F is disconnected, the same holds for the union of those components of⋂
k; j(k)=j Bk which meet F . Hence, the case 2b appears at the factor Γj of F ∩Gk0 .
Therefore it follows from the induction hypotheses that there is an isomorphism of

posets P(Gk0) → P((F ∩Gk0) × [0, 1]), such that F is mapped to (F ∩Gk0) × {0} and
the component C of Gk0 ∩Gk which meets F is mapped to (F ∩C)× [0, 1]. In particular,
all components of Gk0 ∩Gk meet F . �
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Sublemma 4.17 In the situation of Lemma 4.9, there is exactly one facet H of Q which
does not meet F . Moreover, the following holds:

1. Under the isomorphism constructed in the previous sublemma, Gk0∩H corresponds
to (F ∩Gk0) × {1}.

2. P(H) ∼= P(F ).

Proof. Let Hk0 be the facet of Q which intersects Gk0 in the facet of Gk0 which
corresponds to (F ∩Gk0) × {1}. If q is a vertex of Gk0 corresponding to (p, 1), where p
is a vertex of F ∩Gk0 , then Hk0 is the facet of Q which is perpendicular to the edge of
Gk0 which corresponds to {p} × [0, 1]. We claim that all Hk0 are the same.

If j1 6= j2, then the intersection of Gk1 ∩ F and Gk2 ∩ F , where j(k1) = j1 and
j(k2) = j2, is non-empty. If j1 = j2 and dimGk1 ∩ F = dimGk2 ∩ F > 0, there is a Gk′

such that Gk′ ∩Gki ∩ F 6= ∅ for i = 1, 2. Hence, in these cases Hk1 = Hk2 because there
is a vertex in Gk1 ∩Gk2 ∩F . Since dimQ > 2, F cannot be an interval. Hence, it follows
that all Hk are equal, so that we can drop the indices. Since the vertex-edge-graph of H
is connected, every face of Q contains at least one vertex and each vertex is contained
in exactly n− 1 facets of H, it follows that the facets of H are given by the Gk ∩H.

Indeed, if there is another facet of H, then it contains a vertex v of H. Since the
vertex-edge-graph of H is connected, we may assume that v is connected by an edge to
a vertex v′ ∈ Gk ∩ H. It follows from the description of the combinatorial type of Gk
that v′ is contained in n− 1 facets of H of the form Gk′ ∩H. Therefore each edge which
meets v′ is contained in a facet of the form Gk′ ∩H. Hence, v ∈ Gk′ . Therefore it follows
from the description of the combinatorial type of Gk′ that all facets of H which contain
v are of the form Gk′′ ∩H. This is a contradiction to the assumption that v is contained
in a facet which is not of this form.

Therefore there is an isomorphism of posets φ : P(F ) → P(H), such that φ(CK∩F ) =
CK ∩H. Here CK is a component of the intersection

⋂
k∈K Gk. Since the vertex-edge-

graph of Q is connected, every face of Q contains at least one vertex and each vertex is
contained in exactly n facets, F , H, Gk is a complete list of facets of Q. �

Proof of Lemma 4.9. It follows from Sublemmas 4.16 and 4.17 that the face posets
of Q and F × [0, 1] are isomorphic. An isomorphism is given by

CK 7→ (CK ∩ F ) × [0, 1] (F ∩ CK) 7→ (F ∩ CK) × {0}
(H ∩ CK) 7→ (F ∩ CK) × {1}.

Here CK is a component of the intersection
⋂
k∈K Gk. Therefore the sublemma is proved.

�

Proof of Theorem 4.1. It follows from Lemmas 4.2 and 4.5 that M/T is combi-
natorially equivalent to P =

∏
i<r Σni ×∏i≥r ∆ni . Therefore, by Theorem 3.4, M is

homeomorphic to a torus manifold M ′ over P . The manifold M ′ can be constructed
as the model MP (λ), where λ is the characteristic map of M . Now M ′ is the quotient
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of a free torus action on the moment angle complex ZP associated to P . But ZP is
equivariantly homeomorphic to a product of spheres with linear torus action. Therefore
the theorem is proved. �

5. Applications to rigidity problems in toric topology

A torus manifold M is called quasitoric if it is locally standard and M/T is face-
preserving homeomorphic to a simple convex polytope. In toric topology there are
two notions of rigidity one for simple polytopes and one for quasitoric manifolds. These
are:

Definition 5.1 Let M be a quasitoric manifold over the polytope P .

• M is called rigid if any other quasitoric manifold N with H∗(N ;Z) ∼= H∗(M ;Z)
is homeomorphic to M .

• P is called rigid if any other simple polytope Q, such that it exists a quasitoric man-
ifold N over Q and a quasitoric manifold M ′ over P with H∗(N ;Z) ∼= H∗(M ′;Z),
is combinatorially equivalent to P .

It has been shown by Choi, Panov and Suh [CPS10] that a product of simplices
is a rigid polytope. As a consequence of Theorem 4.1 we have the following partial
generalization of their result.

Theorem 5.2 LetM1 andM2 be two simply connected torus manifolds with H∗(M1;Q) ∼=
H∗(M2;Q) and Hodd(Mi;Z) = 0. Assume that P(M1/T ) is isomorphic to P(

∏
i Σni ×∏

i ∆ni). Then the face posets of the orbit spaces of M1 and M2 are isomorphic.

Proof. By Theorem 3.4, M1 is homeomorphic to a quotient of a free linear torus action
on a product of spheres. Since the cohomology of such a quotient is intrinsically formal,
M1 and M2 are rationally homotopy equivalent and rationally elliptic.

Therefore both M1 and M2 are homeomorphic to quotients of free torus actions on
products of spheres Si, i = 1, 2, where the dimension of the acting torus Ti is equal to
the number of odd dimensional spheres in the product. Moreover, each factor in these
products has at least dimension 3. And each factor in Si corresponds to a factor of the
face-poset of Mi/T which is combinatorially equivalent to

∏
j Σnji ×∏j ∆nji . Therefore

we have

dimπ2(Mi) ⊗Q = dimTi dimπ2(Si) ⊗Q = 0

dimπj(Mi) ⊗Q = dimπj(Si) ⊗Q

for i = 1, 2 and j > 2. Since two products of spheres have the same rational homotopy
groups if and only if they have the same number of factors of each dimension, it follows

115



that the face posets of M1 and M2 are isomorphic. �

It is known that
∏
iCP

ni , is rigid among quasitoric manifolds (see [CS12] and the ref-
erences therein). The next corollary shows that

∏
iCP

ni is rigid among simply connected
torus manifolds.

Corollary 5.3 LetM be a simply connected torus manifold with H∗(M ;Z) ∼= H∗(
∏
iCP

ni ;Z).
Then M is homeomorphic to

∏
iCP

ni .

Proof. By Theorem 5.2, we know that P(M/T ) is isomorphic to P(
∏
i ∆ni). Denote

by λ the characteristic function of M . Then from a canonical model we can construct a
quasitoric manifold M1 over

∏
i ∆ni with characteristic function λ. By Theorem 3.4, M

and M1 are homeomorphic. Moreover, by Corollary 1.3 of [CS12], M1 is homeomorphic
to
∏
iCP

ni . Therefore the corollary follows. �

6. Non-negatively curved torus manifolds

In this section we prove the following:

Theorem 6.1 LetM be a simply connected non-negatively curved torus manifold. Then
M is equivariantly diffeomorphic to a quotient of a free linear torus action on a product
of spheres.

For the proof of this theorem we need the following result of Spindeler.

Theorem 6.2 ([Spi14, Theorem 3.28 and Lemma 3.30]) Let M be a closed non-
negatively curved fixed point homogeneous Riemannian manifold. Then for every maxi-
mal fixed point component F there exists a smooth invariant submanifold N ⊂ M such
that M decomposes as the union of the normal disc bundles of N and F :

M ∼= D(F ) ∪E D(N). (2)

Here E = ∂D(F ) ∼= ∂D(N). Further N is invariant under the group U = {f ∈
Iso(M); f(F ) = F}. Moreover, the decomposition (2) is U -equivariant with respect
to the natural action of U on D(F ), D(N) and M .

Here a Riemannian G-manifold is called fixed point homogeneous if there is a com-
ponent F of MG, such that, for every x ∈ F , G acts transitively on the normal sphere
S(Nx(F,M)). Such a component F is called maximal component of MG.

The above mentioned natural U -actions on the normal disc bundles are given by the
restrictions of the natural actions on the normal bundles given by differentiating the
original action on M .

Now let M be a torus manifold and F ⊂ M a characteristic submanifold. Then M
is naturally a fixed point homogeneous manifold with respect to the λ(F )-action on M .
Moreover, the torus T is contained in the group U from the above theorem. In this
situation we have the following lemma.
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Lemma 6.3 Let M be a simply connected torus manifold with an invariant metric of
non-negative curvature. ThenM is locally standard andM/T and all its faces are diffeo-
morphic (after-smoothing the corners) to standard discs Dk. Moreover, Hodd(M ;Z) = 0.

Proof. We prove this lemma by induction on the dimension of M . If 2n = dimM ≤ 2,
then this is obvious. Therefore assume that dimM ≥ 4 and that the lemma is proved
in all dimensions less than dimM .

By Theorem 6.2, we have a decomposition

M = D(N) ∪E D(F ),

where F is a characteristic submanifold of M and E the S1-bundle associated to the
normal bundle of F . Spindeler proved that codimN ≥ 2 and π1(F ) = 0 if M is simply
connected [Spi14, Lemma 3.29 and Theorem 3.35] (see also the proof of Lemma 7.1
below).

Since F is totally geodesic in M , it admits an invariant metric of non-negative curva-
ture.

It follows from the exact homotopy sequence for the fibration πF : E → F that π1(E)
is cyclic and generated by the inclusion of a fiber of πF .

The circle subgroup λ(F ) of T , which fixes F , acts freely on E by multiplication on the
fibers of πF . It follows from the exact homotopy sequence for the fibration πN : E → N ,
that π1(N) is generated by the curve

γ0 : S1 = λ(F ) → N, z 7→ zx0,

where x0 ∈ N is any base point of N .
Let x ∈ F be a T -fixed point. Then, since the T -action on M is effective, up to

an automorphism of T , the T -representation on the tangent space at x is given by the
standard representation on Cn. Therefore T decomposes as T ∼= (S1)n, where each S1-
factor acts non-trivially on exactly one factor of TxM ∼= Cn. It acts on this factor by
complex multiplication. Since λ(F ) acts trivially on TxF ⊂ TxM , λ(F ) is equal to one
of these S1-factors.

Let T ′ be the product of the other factors. Then the fiber of πF over x is a T -orbit of
type T/T ′.

Then there are two cases:

1. dimπN (π−1
F (x)) = 0

2. dimπN (π−1
F (x)) = 1

In the first case πN (π−1
F (x)) is a T -fixed point x̄1 in N . Because N is T -invariant,

it follows from an investigation of the T -representation Tx̄1M that N is a fixed point
component of some subtorus T ′′ of T with 2 dimT ′′ = codimN . Therefore N is a torus
manifold. Since N is totally geodesic in M it follows that the induced metric on N
has non-negative curvature. Moreover N is simply connected since γ0 is constant for
x0 = x̄1. Hence, it follows from the induction hypothesis that N is locally standard and
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N/T is diffeomorphic after smoothing the corners to a standard disc. Hence it follows
that the T -actions on D(N) and D(F ) are locally standard and

D(N)/T ∼= N/T × ∆k ∼= Dn,

D(F )/T ∼= F/T × I ∼= Dn.

Since E/T ∼= F/T is also diffeomorphic to a disc, it follows that M/T is diffeomorphic
to a standard disc. In particular, ∂M/T is connected.

Note that by the above arguments all characteristic submanifolds of M are simply
connected and admit an invariant metric of non-negative curvature. Therefore from the
induction hypothesis, we know that if a facet F̃ of M/T contains a vertex, then all
faces contained in F̃ are diffeomorphic after smoothing the corners to standard discs. In
particular each such face contains a vertex.

Since ∂M/T is connected, it follows that every facet F̃ of M/T contains a vertex.
Because each proper face of M/T is contained in a facet, it follows that all faces of M/T
are diffeomorphic to standard discs. By [MP06, Theorem 2], we have Hodd(M ;Z) = 0.
Hence, the lemma follows in this case.

In the second case πN (π−1
F (x))) is a one-dimensional orbit. Moreover, π−1

F (x) is an
orbit of type T/T ′. Since the T -action on M is effective and T ′ is a subtorus of T of
codimension one, it follows from dimension reasons and the slice theorem that there is
an invariant neighborhood of π−1

F (x) which is equivariantly diffeomorphic to

λ(F ) × Cn−1 × R, (3)

where Cn−1 is a faithful T ′-representation and R is a trivial representation. Since E has
an invariant collar in D(F ) and D(N), the R-factor is normal to E.

Since πN is a equivariant, πN (π−1
F (x))) is an orbit of type T/(H0 × T ′), where H0 is

a finite subgroup of λ(F ).
By an argument similar to the argument given above for π−1

F (x), πN (π−1
F (x))) has an

invariant neighborhood in M which is diffeomorphic to

λ(F ) ×H0 C
n−1 × R, (4)

where T ′ acts effectively on Cn−1 and the H0-action on Cn−1 × R commutes with the
T ′-action. Moreover, the factor R is normal to N because the R-factor in (3) is normal
to E and πN is an equivariant submersion.

The restriction of the tangent bundle of N to the orbit πN (π−1
F (x)) ∼= λ(F )/H0 is an

invariant subbundle of the restriction of the tangent bundle of M to this orbit. The
latter is isomorphic to λ(F ) ×H0 C

n−1 × R.
Because T ′ has dimension n− 1 and acts effectively on Cn−1, the invariant subvector

bundles of this bundle are all of the form

λ(F ) ×H0 C
k × Rl,

with 0 ≤ k ≤ n − 1 and l = 0, 1. Since the R-factor is normal to N and M has even
dimension, it follows that N has odd dimension.
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Claim: λ(F ) acts freely on N .

Assume that there is an H ⊂ λ(F ), H 6= {1}, such that H has a fixed point x2 ∈ N .
We may assume that H has order equal to a prime p. Then H acts freely on the fiber of
πN over x2. This fiber is diffeomorphic to S2k. Since 2 = χ(S2k) ≡ χ((S2k)H) mod p, it
follows that p = 2. In this case the restriction of E to the orbit λ(F )x2 is a non-orientable
sphere bundle. Hence N is not orientable. Therefore π1(N) has even order.

Let

γ1 : [0,
1

2
] → N, y 7→ exp(i2πy)x2.

Then γ0 is homotopic to 2γ1. Since π1(N) is cyclic and generated by γ0, it follows that

[γ0] = 2[γ1] = 2k[γ0],

for some k ∈ Z. Hence, 0 = (2k− 1)[γ0], which implies that π1(N) is of odd order. This
gives a contradiction. Therefore λ(F ) acts freely on N . In particular H0 is trivial.

Now it follows from (4), that N/λ(F ) is a torus manifold with π1(N/λ(F )) = 0.
Hence, N is orientable, because the stable tangent bundle of N is isomorphic to the
pullback of the stable tangent bundle of N/λ(F ). Moreover, by (4), N is a codimension-
one submanifold of a fixed point component N ′ of a subtorus T ′′ ⊂ T with 2 dimT ′′ =
codimN ′. The normal bundle of N ′ in M splits as a sum of complex line bundles.
Therefore N ′ is orientable and the normal bundle of N in N ′ is trivial. Hence, the
structure group of the normal bundle of N in M (and also of E → N) is given by T ′′.

Let T ′′′ be a complimentary subtorus of T to T ′′ with T ′′′ ⊃ λ(F ). The T -action on E
can be described as follows. T ′′ acts linearly on the sphere S2k with 2k = codimN − 1.
Let P be the principal T ′′-bundle associated to E → N . Then we have

E ∼= P ×T ′′ S2k.

The T ′′′-action on N lifts to an action on P . Together with the T ′′-action on S2k this
action induces the T -action on E.

Let H ⊂ T ′′′/λ(F ) be the isotropy group of some point y ∈ N/λ(F ). Then H acts on
the fiber of E/λ(F ) over y via a homomorphism φ : H → T ′′. This φ depends only on
the component of (N/λ(F ))H which contains y. Since H ′ = graphφ−1 ⊂ T ′′×T ′′′/λ(F )
acts trivially on the fiber of E/λ(F ) → N/λ(F ) over y, it follows that

codim(N/λ(F ))H = codim(E/λ(F ))H
′

and that H ′ is the isotropy group of generic points in the fiber over y. Since E/λ(F ) is
equivariantly diffeomorphic to F and F is locally standard by the induction hypothesis,
it follows that H is a torus and 2 dimH = codim(N/λ(F ))H . Therefore N/λ(F ) is
locally standard. Hence it follows that M is locally standard in a neighborhood of N .
Since M is also locally standard in a neighborhood of F , it follows that M is locally
standard everywhere.
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Now we have the following sequence of diffeomorphisms

Dn−1 ∼= F/T ∼= E/T = (E/T ′′)/T ′′′ = (P ×T ′′ (Σk))/T ′′′

= N/T ′′′ × Σk ∼= N/T ′′′ ×Dk.

Hence there is a diffeomorphism Dn ∼= N/T ′′′×Dk+1 ∼= N/T ′′′×Σk+1 ∼= D(N)/T . Now
the statement follows as in the first case. �

For the proof of Theorem 6.1 we need some more preparation.

Lemma 6.4 Let Q be a nice manifold with corners such that all faces of Q are diffeo-
morphic (after smoothing the corners) to standard discs. Then the diffeomorphism type
of Q is uniquely determined by P(Q).

Proof. This follows directly from results of Davis [Dav14, Theorem 4.2]. �

In analogy to line shellings for polytopes we define shellings for nice manifolds with
corners.

Definition 6.5 Let Q be a nice manifold with corners such that all faces of Q are
contractible. An ordering F1, . . . , Fs of the facets of Q is called a shelling if

1. F1 has a shelling.

2. For 1 < j ≤ s, Fj ∩
⋃j−1
i=1 Fi is the beginning of a shelling of Fj, i.e.

Fj ∩
j−1⋃

i=1

Fi = G1 ∪ · · · ∪Gr

for some shelling G1, . . . , Gr, . . . , Gt of Fj.

3. If j < s, then
⋃j
i=1 Fi is contractible.

Q is called shellable if it has a shelling.

Example 6.6 ∆n and Σn are shellable and any ordering of their facets is a shelling.
This follows by induction on the dimension n because the intersection of any facet Fj
with a facet Fi with i < j is a facet of Fj.

Lemma 6.7 Let Q1 and Q2 be two nice manifolds with corners such that all faces of
Q1 and Q2 are contractible. If F1, . . . , Fs and G1, . . . , Gr are shellings of Q1 and Q2,
respectively, then

F1 ×Q2, . . . , Fs−1 ×Q2, Q1 ×G1, . . . , Q1 ×Gr, Fs ×Q2

is a shelling of Q1 ×Q2.
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Proof. We prove this lemma by induction on the dimension of Q1 ×Q2. For dimQ1 ×
Q2 = 0 there is nothing to show. Therefore assume that dimQ1×Q2 > 0 and the lemma
is proved for all products Q̃1 × Q̃2 of dimension less than dimQ1 ×Q2.

1. It follows from the induction hypothesis that F1 ×Q2 has a shelling.

2. For j ≤ s− 1, we have

(Fj ×Q2) ∩
j−1⋃

i=1

(Fi ×Q2) = (Fj ∩
j−1⋃

i=1

Fi) ×Q2. (5)

Because
⋃j
i=1 Fi is contractible, Fj ∩

⋃j−1
i=1 Fi 6= ∂Fj is the beginning of a shelling

of Fj . By the induction hypothesis it follows that (5) is the beginning of a shelling
of Fj ×Q2.

For 1 ≤ j ≤ r we have

(Q1×Gj)∩
(
s−1⋃

i=1

(Fi ×Q2) ∪
j−1⋃

i=1

(Q1 ×Gi)

)
=

s−1⋃

i=1

Fi×Gj∪
(
Q1 × (

j−1⋃

i=1

Gj ∩Gi)
)
.

(6)
Therefore it follows from the induction hypothesis that (6) is the beginning of a
shelling of Q1 ×Gj .

The intersection of Fs ×Q2 with

s−1⋃

i=1

(Fi ×Q2) ∪
r⋃

i=1

(Q1 ×Gi)

is the whole boundary of Fs ×Q2. Since by assumption there are shellings for Fs
and Q2, it follows from the induction hypothesis that it is a beginning of a shelling
for Fs ×Q2.

3. The verification that
⋃j
i=1 Fi×Q2 ∪

⋃j′

i=1Q1×Gi is contractible for j ≤ s− 1 and
j′ ≤ r is left to the reader.

�

It follows from the above lemma that
∏
i Σni ×∏i ∆ni is shellable. Now we can prove

the following lemma in the same way as Theorem 5.6 in [Wie13].

Lemma 6.8 Let M be a locally standard torus manifold over a shellable nice mani-
fold with corners Q. Then M is determined up to equivariant diffeomorphism by the
characteristic function λM .

Now we can prove Theorem 6.1.
Proof of Theorem 6.1. As in the proof of Theorem 4.1, it follows that (P(M/T ), λ)

is isomorphic to (P(M ′/T ), λ′), where M ′ is the quotient of a free linear torus action
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on a product of spheres. This quotient admits an invariant metric of non-negative
curvature and is simply connected. Therefore, by Lemmas 6.3, 6.4 and 6.8, M and M ′

are equivariantly diffeomorphic. �

7. Non-simply connected non-negatively curved torus manifolds

Now we discuss some results for non-simply connected non-negatively curved torus man-
ifolds.

Lemma 7.1 Let M be a 2n-dimensional torus manifold with an invariant metric of
non-negative sectional curvature. Then we have |π1(M)| = 2k for some 0 ≤ k ≤ n− 1.

Proof. We prove this lemma by induction on the dimension 2n of M . For n = 1 the
only 2n-dimensional torus manifold is S2. Therefore the lemma is true in this case.

Now assume that the lemma is true for all torus manifolds of dimension less than 2n.
Let M be a torus manifold of dimension 2n with a metric of non-negative curvature and
F a characteristic submanifold of M . Then by Theorem 6.2 we have a decomposition of
M as a union of two disk bundles:

M = D(N) ∪E D(F ).

Moreover, F is a torus manifold of dimension 2(n−1) which admits an invariant metric
of non-negative curvature. Therefore, by the induction hypothesis, we have |π1(F )| = 2k

with 0 ≤ k ≤ n− 2.
At first assume that codimN ≥ 3. Then it follows from the exact homotopy sequence

for the fibration E → N that π1(E) → π1(N) is an isomorphism. Hence, it follows from
Seifert–van Kampen’s theorem that π1(M) = π1(F ). So the claim follows in this case.

Next assume that codimN = 2. Let x ∈ F be a T -fixed point. Then with an argument
similar to that in the proof of Lemma 6.3, one sees that πN (π−1

F (x)) = {y} is a single
point. Here πN : E → N and πF : E → F denote the bundle projections.

Therefore y ∈ N is a T -fixed point. Hence, N is a characteristic submanifold of M .
Denote by λ(N) ⊂ T the circle subgroup of T which fixes N . Then we have an exact
sequence

π1(λ(N)) → π1(E) → π1(N) → 1.

Here the first map is induced by the inclusion of an λ(N)-orbit. Now it follows from
Seifert–van Kampen’s theorem, that π1(M) = π1(F )/〈π1(λ(N))〉. Here 〈π1(λ(N))〉
denotes the normal subgroup of π1(F ) which is generated by the image of the map
π1(λ(N)) → π1(F ) induced by the inclusion of a λ(N)-orbit. Since there are T -
fixed points in F , the λ(N)-orbits in F are null-homotopic. Therefore it follows that
π1(M) = π1(F ). Hence the claim follows in this case.

Now assume that codimN = 1. Then the map E → N is a two-fold covering. There-
fore we have an exact sequence

1 → π1(E) → π1(N) → Z2 → 1. (7)

122



In particular, π1(E) is a normal subgroup of π1(N).

Since codimF = 2, we get the following exact sequence from the exact homotopy
sequence for the fibration E → F

π1(λ(F )) → π1(E) → π1(F ) → 1.

Therefore it follows from Seifert–van Kampen’s theorem that

π1(M) = π1(N)/〈π1(λ(F ))〉.

Here 〈π1(λ(F ))〉 denotes the normal subgroup of π1(N) which is generated by the image
of the inclusion π1(λ(F )) → π1(E) → π1(N).

Since π1(E) ⊂ π1(N) is normal, we have 〈π1(λ(F ))〉 ⊂ π1(E). Therefore from (7) we
get the following exact sequence

1 → π1(E)/〈π1(λ(F ))〉 → π1(M) → Z2 → 1.

Since there is a surjection π1(F ) = π1(E)/π1(λ(F )) → π1(E)/〈π1(λ(F ))〉, the claim now
follows. �

As a corollary to Lemma 7.1 we get:

Corollary 7.2 Let M be a 2n-dimensional torus manifold which admits an invariant
metric of non-negative sectional curvature. Then the universal covering M̃ of M is
a simply connected torus manifold which admits an invariant metric of non-negative
curvature. Moreover, the action of the torus on M̃ commutes with the action of the deck
transformation group.

Proof. By Lemma 7.1, M̃ is a closed manifold. Since there are T -fixed points in M , the
principal orbits of the T -action on M are null-homotopic in M . Hence it follows that
the T -action lifts to an action on M̃ .

This action on M̃ has a fixed point and normalizes the deck transformation group G.
Since T is connected and G discrete it follows that the T - and G-actions on M̃ commute.

The metric on M lifts to an metric on M̃ which clearly has non-negative sectional
curvature and is invariant under the lifted torus action. Hence the claim follows. �

Now we can determine the isomorphism type of the fundamental group of a non-simply
connected non-negatively curved torus manifold.

Theorem 7.3 Let M be a non-negatively curved torus manifold of dimension 2n. Then
there is a 0 ≤ k ≤ n− 1, such that π1(M) = Zk2.

Proof. By Corollary 7.2, the universal covering M̃ of M is a torus manifold. Moreover,
the action of G = π1(M) on M̃ commutes with the action of the torus T on M̃ .
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Therefore it induces a G-action on P(M̃/T ). Moreover, for any g ∈ G and all faces F
of M̃/T , we have

λ(gF ) = λ(F ).

Hence, the intersection of gF and F is empty if gF 6= F .

Since P(M̃/T ) ∼= P(
∏
i<r Σni ×∏i≥r ∆ni) and all facets of Σni and ∆ni have non-

trivial intersection if ni ≥ 2, it follows that gF = F for all facets of M̃/T belonging to a
factor of dimension at least two. Moreover, the facets which belong to the other factors
are mapped to facets that belong to the same factor.

Since G acts freely on M̃T , the G-action on P(M̃/T ) is effective. Therefore G might be
identified with a subgroup of Aut(P(M̃/T )). This subgroup is contained in the subgroup
H of Aut(P(M̃/T )) which contains all automorphisms which leave all facets belonging
to factors of dimension greater or equal to two invariant and maps facets belonging to a
factor of dimension one to facets belonging to the same factor.

We will show that H is isomorphic to Zl+r−1
2 where l is the number of i ≥ r with

ni = 1. Using Lemma 7.1 one sees that this implies the theorem.

We define a homomorphism ψ : H → Zl+r−1
2 as follows.

At first assume that the factor Σni has dimension at least two. Then we set ψ(h)i = 0
if and only if h leaves all components of

⋂
j Fj invariant, where the intersection is taken

over all facets Fj of M̃/T belonging to the factor Σni . Note that this intersection has
two components.

Now assume that the factor Γi has dimension one. Then we set ψ(h)i = 0 if and only
if h leaves the two facets belonging to Γi invariant.

The homomorphism ψ has an obvious inverse φ : Zl+r−1
2 → H. It is defined as

follows. For a ∈ Zl+r−1
2 , φ(a) leaves all facets of M̃/T which do not belong to a factor

of dimension two invariant.

Now assume that the factor Σni has dimension at least two. Then φ(a) interchanges
the two components of

⋂
j Fj , where the intersection is taken over all facets belonging

to Σni , if and only if ai 6= 0. Otherwise it leaves these components invariant.

Now assume that the factor Γi has dimension one. Then φ(a) interchanges the two
facets belonging to Γi if and only if ai 6= 0. Otherwise it leaves these facets invariant. It
is easy to check that φ(a) defined as above extends to an automorphism of P(M̃/T ).

So we see that ψ is an isomorphism and the theorem is proved. �

We give an example to show that the bound on the order of the fundamental group
given in the above theorem is sharp.

Example 7.4 Let M̃ =
∏n
i=1 S

2 with the torus action induced by rotating each factor.
The product metric of the standard metrics on each factor is invariant under the action of
the torus and has non-negative curvature. On each factor there is an isometric involution
ι1 given by the antipodal map.

We define an action of Zn−1
2 on M̃ as follows. Let e1, . . . , en−1 a generating set of

Zn−1
2 . Then each ei acts on the i-th factor and (i+ 1)-st factor of M̃ by ι1 and trivially
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on the other factors. This defines a free orientation preserving action of Zn−1
2 which

commutes with the torus action.

Therefore M̃/Zn−1
2 is a torus manifold with an invariant metric of non-negative sec-

tional curvature and fundamental group Zn−1
2 .
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Positively curved GKM-manifolds

Oliver Goertsches and Michael Wiemeler

Let T be a torus of dimension ≥ k and M a T -manifold. M is a GKMk-
manifold if the action is equivariantly formal, has only isolated fixed points,
and any k weights of the isotropy representation in the fixed points are lin-
early independent.

In this paper we compute the cohomology rings with real and integer co-
efficients of GKM3- and GKM4-manifolds which admit invariant metrics of
positive sectional curvature.

1. Introduction

The classification of positively curved manifolds is a longstanding problem in Rieman-
nian geometry. So far only few examples of such manifolds are known. In dimension
greater than 24 all such examples are diffeomorphic to compact rank one symmetric
spaces (CROSSs). All examples admit non-trivial S1-actions and it is conjectured that
all positively curved manifolds admit a non-trivial S1-action. Based on this conjec-
ture several authors (see for example [GS94], [Wil03], [FR05], [AK13] and others) have
considered the above classification problem under the extra assumption that there is a
isometric circle or torus action. Usually a lower bound on the dimension of the acting
torus is assumed which grows with the dimension of the manifold.

In this paper we study positively curved manifolds M which admit an isometric torus
action of GKM-type [GKM98]. These actions have only finitely many fixed points (hence,
M is necessarily even-dimensional) and the union of all one-dimensional orbits is two-
dimensional. These assumptions on the strata of the action are stronger than what is
usually assumed, but our methods work for three- and four-dimensional tori, independent
of the dimension of M . In the appendix we observe that all known examples of positively
curved manifolds in even dimensions admit isometric GKM actions.

Our main result states that under a slightly more restrictive assumption on the strata
we can determine the real cohomology ring of M :

Theorem 1.1 Let M be a compact connected positively curved orientable Riemannian
manifold satisfying Hodd(M ;R) = 0.

1. Assume that M admits an isometric torus action of type GKM4, i.e., an action
with finitely many fixed points such that at each fixed point, any four weights of the
isotropy representation are linearly independent. Then M has the real cohomology
ring of S2n or CPn.
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2. Assume that M admits an isometric torus action of type GKM3, i.e., an action
with finitely many fixed points such that at each fixed point, any three weights of the
isotropy representation are linearly independent. Then M has the real cohomology
ring of a compact rank one symmetric space.

In both cases, the real Pontryagin classes of M are standard, i.e. there exists an isomor-
phism of rings f : H∗(M ;R) → H∗(K;R) which preserves Pontryagin classes, where K
is a compact rank one symmetric space.

As a corollary we get the following:

Corollary 1.2 Let M be a compact connected positively curved orientable Riemannian
manifold with Hodd(M ;R) = 0 which admits an isometric torus action of type GKM3

and an invariant almost complex structure. Then M has the real cohomology ring of a
complex projective space.

Under even stronger conditions on the weights of the isotropy representations (see
Section 6) we can also prove versions of the above theorem for cohomology with integer
coefficients. By combining these versions with results from rational homotopy theory we
can conclude that up to diffeomorphism there are only finitely many GKM manifolds
which admit invariant metrics of positive sectional curvature and satisfy these stronger
conditions, see Remark 6.5.

We also have a version of Theorem 1.1 for non-orientable manifolds (see Corollary 7.2).
This paper is organized as follows. In Section 2 we review the basics of GKM theory

and give the precise GKM condition. In Section 3 we give an outline of the proofs of
the main results. In Section 4 we describe the GKM graph of natural torus actions on
CROSSs. In Section 5 we prove our main results. In Sections 6 and 7 we discuss exten-
sions of our main results to cohomology with integer coefficients and to non-orientable
manifolds. In the appendix we describe the GKM graphs of natural torus actions on the
known nonsymmetric examples of positively curved manifolds.

Acknowledgements. We are grateful to Augustin-Liviu Mare for some explanations on
the octonionic flag manifold F4/ Spin(8), and the anonymous referees for careful reading
and various improvements resulting from their comments.

2. GKM theory

Throughout this paper, we consider an action of a compact torus T on a compact
differentiable manifold M , which we will always assume to be connected. Then its
equivariant cohomology is defined as

H∗
T (M ;R) = H∗(M ×T ET ;R),

where R is the coefficient ring and ET → BT the classifying bundle of T . For the
moment we will consider only the real numbers as coefficient ring and thus omit the
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coefficients from the notation, but we will also consider the case of the integers in Section
6 below. The equivariant cohomology H∗

T (M) has, via the projection M ×T ET → BT ,
the natural structure of an H∗(BT ) = S(t∗)-algebra.

We say that the T -action is equivariantly formal if H∗
T (M) is a free H∗(BT )-module.

For such actions, the ordinary (de Rham) cohomology ring of M can be computed
from the equivariant cohomology algebra because of the following well-known statement
[AP93, Theorem 3.10.4 and Corollary 4.2.3]: If the T -action onM is equivariantly formal,
then the natural map H∗

T (M) → H∗(M) is surjective and induces a ring isomorphism

H∗
T (M)/(H>0(BT )) ∼= H∗(M).

For torus actions with only finitely many fixed points this condition is also equivalent
to the fact that Hodd(M) = 0. In this case it follows that the number of fixed points of
the torus action, which is equal to the Euler characteristic of M , is given by the total
dimension of H∗(M).

The Borel localization theorem [AP93, Corollary 3.1.8] implies that the canonical
restriction map

H∗
T (M) −→ H∗

T (MT )

has as kernel the H∗(BT )-torsion submodule of H∗
T (M); hence, for equivariantly formal

actions, this map is injective, and one can try to compute H∗
T (M) by understanding its

image in H∗
T (MT ).

The Chang-Skjelbred Lemma [CS74, Lemma 2.3] describes this image in terms of the
one-skeleton

M1 = {p ∈M | dimT · p ≤ 1}.
of the action: if the T -action is equivariantly formal, then the sequence

0 −→ H∗
T (M) −→ H∗

T (MT ) −→ H∗
T (M1,M

T )

is exact, where the last arrow is the boundary operator of the long exact sequence of the
pair (M1,M

T ). Thus, the image of H∗
T (M) → H∗

T (MT ) is the same as the image of the
restriction map H∗

T (M1) → H∗
T (MT ).

GKM theory, named after Goresky, Kottwitz and MacPherson [GKM98], now poses
additional conditions on the action in order to simplify the structure of the one-skeleton
of the action. We assume first of all that the action has only finitely many fixed points.
Then at each fixed point p ∈ M the isotropy representation decomposes into its weight
spaces

TpM =
n⊕

i=1

Vi,

corresponding to weights αi : t → R which are well-defined up to multiplication by −1.

Definition 2.1 We say that the action is GKMk, k ≥ 2, if it is equivariantly formal,
has only finitely many fixed points, and at each fixed point p any k weights of the isotropy
representation are linearly independent.

129



For k = 2 one obtains the usual GKM conditions. If M is a GKMk-manifold with
respect to some action of a torus T and T ′ ⊂ T is a subtorus of codimension < k, then
the condition on the weights implies that every component of its fixed point set MT ′

is
of dimension at most 2k. In particular, for T ′ of codimension one, each component is
either a point or a two-dimensional T -manifold with fixed points. Hence, it can only be
either S2 or RP 2, with RP 2 occurring only if M is non-orientable.

Consider first the case that M is orientable, i.e., that the one-skeleton M1 is a union
of two-spheres. Then the GKM graph ΓM of the action is by definition the graph with
one vertex for each fixed point, and one edge connecting two vertices for each two-sphere
in M1 containing the corresponding fixed points. We label the edge with the isotropy
weight of the associated two-sphere.

In the non-orientable case, the graph encodes the possible presence of RP 2’s in the
one-skeleton via edges that connect a vertex corresponding to the unique fixed point
contained in the RP 2 with an auxiliary vertex representing the exceptional orbit; in
[GM14] these vertices are drawn as stars. However, in our situation of a torus action
these edges have no impact on the equivariant cohomology at all, so we could as well
leave them out from the graph without losing any cohomological information.

Summarizing, one obtains the following description of the equivariant cohomology
algebra of an action of type GKM ([GKM98, Theorem 7.2]; the non-orientable case is
an easy generalization, see [GM14, Section 3]):

Theorem 2.2 Consider an action of a torus T on a compact manifoldM of type GKM2,
with fixed points p1, . . . , pn. Then, via the natural restriction map

H∗
T (M) −→ H∗

T (MT ) =

n⊕

i=1

S(t∗),

the equivariant cohomology algebra H∗
T (M) is isomorphic to the set of tuples (fi), with

the property that if the vertices i and j in the associated GKM graph are joined by an
edge with label α ∈ t∗, then fi|kerα = fj |kerα.

If M is of class GKM3, the two-skeleton M2 = {p ∈ M | dimT · p ≤ 2} of M is a
union of four-dimensional T -invariant submanifolds. The T -action induces on each of
these submanifolds an effective action of a two-dimensional torus. We call a subgraph
of ΓM which corresponds to the intersection of M1 with one of these four-dimensional
manifolds a two-dimensional face of ΓM . It is easy to see that for each pair (e1, e2) of
edges of ΓM emanating from the same vertex v there is exactly one two-dimensional face
of ΓM which contains e1 and e2.

For a 2m-dimensional GKM manifold M with fixed points p1, . . . , pn the restriction
of the total equivariant (real) Pontryagin class pT (M) of M to MT is given by

n∑

i=1

m∏

j=1

(1 + α2
ij) ∈

n⊕

i=1

S(t∗), (1)

where the αij are the weights of the T -representation TpiM at pi ∈ MT (see for exam-
ple [Kaw91, Lemma 6.10] and [MS74, Corollary 15.5]). Since the restriction H∗

T (M) →
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H∗
T (MT ) is injective, it follows that the equivariant Pontryagin classes of M are deter-

mined by the GKM graph of M .

3. Strategy of the proof

Let us indicate here the strategy of the proof of Theorem 1.1 and Corollary 1.2. In
Section 4 we will determine all possible GKM graphs of torus actions on compact rank
one symmetric spaces. Then in Section 5 we will show that under the given assumptions
the GKM graph necessarily coincides with one of these, say of an action on a CROSS N .
Therefore by the GKM-description of equivariant cohomology we have an isomorphism of
H∗(BT )-algebras H∗

T (M) ∼= H∗
T (N). Since H∗(M) ∼= H∗

T (M)/(H>0(BT )) and similarly
for N , it follows that H∗(M) ∼= H∗(N). The remark about the Pontryagin classes follows
because pT (M) is mapped to p(M) by the natural map H∗

T (M) → H∗(M) and pT (M)
is determined by the GKM graph of M by (1).

4. Torus actions on compact rank one symmetric spaces

Let M be an even-dimensional compact simply-connected symmetric space of rank one,
i.e., either S2n, CPn, HPn or OP 2. In the following we describe certain GKM actions on
these manifolds and determine their GKM graphs, including their labeling with weights.

4.1. The spheres

Let αi : T → S1, i = 1, . . . , n be characters of the torus T . Denote by Vαi the T -
representation

T × C → C (t, z) 7→ αi(t)z.

Here and in the rest of Section 4 we will denote the weight of this representation, i.e.,
the linear form dαi ∈ t∗, again by αi.

Assume that for any j1, j2 ∈ {1, . . . , n}, j1 6= j2, αj1 and αj2 are linearly independent.
Then the restriction of the T -action to the unit sphere of Vα1 ⊕ · · · ⊕ Vαn ⊕ R defines
a GKM2 action of T on S2n. This action has 2 fixed points v1, v2 corresponding to the
two points in the intersection of the sphere with the R-summand. These two vertices
are joined in the GKM graph of S2n by exactly n edges. Moreover, the weights of these
edges are given by the ±αi.

Thus, any labeling of ΓS2n with pairwise linearly independent weights is realized by a
GKM action on S2n.

Figure 1: GKM graph of S6
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4.2. The complex projective spaces

Let αi : T → S1, i = 0, . . . , n, be characters of the torus T . Denote by Vαi the T -
representation

T × C → C (t, z) 7→ αi(t)z.

Assume that, if n > 1, for any pairwise distinct i, j1, j2 ∈ {0, . . . , n}, αj1−αi and αj2−αi
are linearly independent. If n = 1 assume that α1 6= α0. Then the projectivization of
Vα0 ⊕ · · · ⊕ Vαn defines a GKM action of T on CPn. This action has n+ 1 fixed points
v0, . . . , vn corresponding to the weight spaces of the above T -representation. The GKM
graph of this action is a complete graph on these fixed points. Moreover, the weight of
the edge from vi to vj is given by ±(αi − αj).

Figure 2: GKM graph of CP 3

In particular, in this type of example an arbitrary set of non-zero pairwise linearly in-
dependent weights γ1, . . . , γn, such that, if for any pairwise distinct i, j1, j2 ∈ {1, . . . , n},
γj1 − γi and γj2 − γi are linearly independent, can occur as labels of the edges adjacent
to v0.

4.3. The hyperbolic projective spaces

Let αi : T → S1, i = 0, . . . , n, be characters of the torus T . Denote by Vαi the
quaternionic T -representation

T ×H → H (t, q) 7→ αi(t)q.

Assume that, if n > 1, for any pairwise distinct i, j1, j2 ∈ {0, . . . , n}, αj1 ± αi and
αj2 ±αi are linearly independent. If n = 1 assume that α0 +α1 and α0−α1 are linearly
independent. Because the action of T on Vα0 ⊕ · · · ⊕ Vαn = Hn+1 commutes with the
action of H∗ given by multiplication from the right, we get a GKM action of T on
HPn = (Hn+1 \ {0})/H∗. This action has n+ 1 fixed points v0, . . . , vn corresponding to
the weight spaces of the above T -representation. In the GKM graph of this action any
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two fixed points are joined by exactly two edges. Moreover, the weights of the edges
from vi to vj are given by ±(αi − αj) and ±(αi + αj).

Figure 3: GKM graph of HP 3

Note that in this case, the set of weights at the edges adjacent to, say, v0, is not
arbitrary. Indeed, the weights corresponding to the two edges connecting v0 with vi add
up (after choosing the right signs) to 2α0, independent of i.

4.4. The Cayley plane

The Cayley plane OP 2 can be defined as the homogeneous space F4/ Spin(9). This is a
homogeneous space of the form G/K satisfying rankG = rankK. For a homogeneous
space G/K of this type, let T ⊂ K be a maximal torus and consider the T -action on
G/K by left multiplication. It is known that this action is equivariantly formal and is
of type GKM2 [GHZ06]. The GKM graph of an action of this type can be described
completely in terms of the root systems ∆G and ∆K of G and K, see [GHZ06, Theorem
2.4]: first of all, the set of fixed points of the action is given by the quotient of Weyl groups
WG/WK . At the origin eK, the tangent space of G/K is K-equivariantly isomorphic
to the quotient g/k, which implies that the weights of the isotropy representation at
eK are given by those roots of G which are not roots of K. Moreover, two vertices
corresponding to elements wWK and w′WK of WG/WK are on a common edge if and
only if wWK = σαw

′WK for some α ∈ ∆G \ ∆K , where σα denotes the reflection at α.

Remark 4.1 Of course, also the other compact rank one symmetric spaces are homo-
geneous spaces of this type, and we could have used the results of [GHZ06] to describe
the GKM graphs of the torus actions on these spaces as well.

Because dimH∗(OP 2) = 3, the action of a maximal torus T ⊂ Spin(9) has exactly
three fixed points, which correspond to three vertices in the associated GKM graph.
Since dimOP 2 = 16, from each vertex emerge eight edges. Because of the WF4-action
on the graph which is transitive on the vertices, it follows that any two vertices are
connected by four edges.
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Figure 4: GKM graph of OP 2

The root system of F4 is described explicitly in [Kna02, Proposition 2.87]: Consider
R4, equipped with the standard inner product and standard basis e1, . . . , e4,

∆F4 =





±ei
±ei ± ej for i 6= j
1
2(±e1 ± e2 ± e3 ± e4).

The root system of Spin(9) is contained in ∆F4 as the subroot system

∆Spin(9) =

{
±ei
±ei ± ej for i 6= j,

see [Ada96, p. 55].

Now we can determine the labeling of the GKM graph of OP 2 from the fact that the
labeling of the graph is invariant under the action of WF4 on the graph.

More precisely, if α and β are weights in ∆F4 \ ∆Spin(9), then the reflection σαβ of β
at α is ±β if and only if the number of minus signs in α and β coincide modulo two, and
if the number of signs is not congruent modulo two, then σαβ is one of the roots ±ei.
(See also the proof of Proposition 2.87 in [Kna02] for a description of the action of the
Weyl group of F4 on ∆F4 .) This implies that if v0, v1, v2 are the vertices of ΓOP 2 , then
the weights at the edges between two of them, say v0 and v1, are given (up to sign) by

1

2
(−e1 − ei +

∑

j 6=i,1

ej) (i = 2, 3, 4) and
1

2

4∑

j=1

ej ,

the weights at the edges between v0 and v2 are given (up to sign) by

1

2
(−ei +

∑

j 6=i

ej) (i = 1, . . . , 4),

and the weights at the edges between v1 and v2 are given by ±e1, . . . ,±e4.
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Remark 4.2 The examples given in this section show that every simply connected com-
pact symmetric space of rank one admits a torus action of type GKM3. Note that in
order to check whether an action of a torus T ⊂ K on a homogeneous space G/K with
rankG = rankK is GKM3, we only need to check the 3-independence of the weights in
one of the fixed points: the 3-independence in the other fixed points then follows from
the W (G)-action on the GKM graph which is transitive on the vertices.

Moreover, one sees that there are actions on these spaces for which all weights appear-
ing in the GKM graph of the action are primitive vectors in the weight lattice of T . To
see this just take the αi in the construction of the actions on S2n, CPn and HPn to be
primitive vectors and pairwise linear independent. For the action on OP 2 one sees that
the weights are primitive vectors in the weight lattice of a maximal torus of F4, because
this lattice is generated by the roots of F4.

5. The GKM graphs of positively curved manifolds

In this section we determine the GKM graphs of positively curved GKM3- and GKM4-
manifolds. The key observation is the following lemma.

Lemma 5.1 Let M be an orientable GKM3-manifold with an invariant metric of pos-
itive sectional curvature. Then all two dimensional faces of the GKM graph ΓM of M
have two or three vertices.

Proof. A two-dimensional face of ΓM is the GKM graph of a four-dimensional invariant
submanifold N of M on which a two-dimensional torus acts effectively. N is a fixed
point component of the action of some subtorus T ′ ⊂ T . Therefore it is totally geodesic
in M and the induced metric has positive sectional curvature. The classification results
of four-dimensional T 2-manifolds with positive sectional curvature given in [GS94] imply
that N is diffeomorphic to S4 or CP 2. As the Euler characteristic of these manifolds is
at most 3, the claim follows. �

LetM be a positively curved GKM3-manifold andN ⊂M a four-dimensional invariant
submanifold corresponding to a two-dimensional face of ΓM which is a triangle. Then
N is equivariantly diffeomorphic to CP 2 equipped with one of the actions described in
Section 4.2. [OR70, Theorem 4.3], [Mel82, Theorem 2]. Let α and β denote the weights
at two of the three edges in ΓN . Note that these weights are determined up to sign.
Then the weight at the third edge of ΓN = ΓCP 2 is given by ±α± β.

Lemma 5.2 An orientable GKM4-manifold with an invariant metric of positive sec-
tional curvature has the same GKM graph as a torus action on S2n or CPn.

Proof. For three distinct vertices v1, v2, v3 in ΓM we denote by Kij the set of edges
between vi and vj . Then each pair (e1, e2) ∈ K12 ×K13 spans a two-dimensional face of
ΓM . By Lemma 5.1, the vertices of this face are exactly v1, v2 and v3. We denote the
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unique edge contained in this face which connects v2 and v3 by φ(e1, e2); in this way we
obtain a map φ : K12 ×K13 → K23.

If α1, α2 are the weights at e1 and e2, respectively, then the weight at φ(e1, e2) is given
by ±α1±α2. Therefore if (e′1, e

′
2) ∈ K12×K13 is another pair with φ(e′1, e

′
2) = φ(e1, e2),

then we get the relation:
±α1 ± α2 = ±α′

1 ± α′
2.

This contradicts the 4-independence of the weights at v1. We have thus shown that φ is
injective, i.e., #K12 · #K13 ≤ #K23. But this relation holds also for any permutation
of v1, v2 and v3, hence if one #Kij > 1, the other two Kij must be empty. It follows
that no edge of ΓM is contained at the same time in a two-dimensional face with three
vertices and another two-dimensional face with two vertices.

Now the GKM-graph of a GKM3-manifold, all of whose two-dimensional faces are
biangles, is ΓS2n , the graph with two vertices and n edges. The GKM-graph of a GKM3-
manifold, all of whose two-dimensional faces are triangles, is the complete graph ΓCPn

on n+ 1 vertices.
As argued in Subsection 4.1, any labeling of ΓS2n with pairwise linearly independent

weights is realized by a torus action on S2n. For ΓCPn , the statement that the weights
are those of a torus action on CPn will be shown in Lemma 5.3 below (for later use
already for GKM3-actions). �

Lemma 5.3 Consider a GKM3-manifold M with the GKM graph ΓCPn. Then the in-
duced labeling of the GKM graph is the same as that of a torus action on CPn.

Proof. Let v0, . . . , vn be the vertices of the GKM graph, and γij the weight of the edge
between vi and vj (which is determined up to sign). By the considerations in Subsection
4.2 we only have to show that we can choose the signs in such a way that γij = γ0i−γ0j .
We can assume without loss of generality that

γ1i = γ01 − γ0i

for all i, and that
γij = γ0i ± γ0j .

This implies
γij = γ0i ± γ0j = γ01 − γ1i ± (γ01 − γ1j),

but on the other hand γij is also a linear combination of γ1i and γ1j . Hence, the 3-
independence shows that γij = γ0i − γ0j . �

As explained in Section 3, the first part of Theorem 1.1 follows from Lemma 5.2. The
second part will follow from the following sequence of lemmas.

Lemma 5.4 Let M be an orientable GKM3-manifold with an invariant metric of posi-
tive sectional curvature. Then ΓM is equal to a graph which is constructed from a simplex
by replacing each edge by k edges, k ∈ N.
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Remark 5.5 Note that all the GKM graphs listed in Section 4 arise in this way. The
graph of S2n, for example, is obtained from the 1-simplex.

Proof. Assume that ΓM has at least three vertices, i.e., is not a single point and not ΓS2n .
Then the statement of the lemma follows as soon as we can show that for every choice
of vertices v1, v2, v3 in a two-dimensional face of ΓM we have #K12 = #K13 = #K23.

But for that it is sufficient to show that #K12 ≤ #K23, by the symmetry of the
statement. For f ∈ K13, consider the map ψ : K12 → K23, e2 7→ φ(e2, f), where
φ : K12 ×K13 → K23 is the map defined in Lemma 5.2, sending two edges to the unique
third edge in the two-dimensional face spanned by them. Now if ψ(e1) = ψ(e2), then
(ψ(e1), f) and (ψ(e2), f) span the same triangle in ΓM . Therefore we must have e1 = e2
in this case, i.e., ψ is injective, which shows that #K12 ≤ #K23. �

The following lemma implies Corollary 1.2.

Lemma 5.6 A GKM3-manifold with an invariant metric of positive sectional curvature
and an invariant almost complex structure has the same GKM graph as CPn.

Proof. If there is an almost complex structure on a GKM-manifold N , one can modify
the definition of the GKM graph so that it contains information about the complex struc-
ture (see for example [GZ00, Section 1]). In this case the weights of the T -representations
TxN , x ∈ NT , have a preferred sign. We label the oriented edges emanating from x ∈ ΓN
by the weights of the representation TxM . For an oriented edge e denote by α(e) the
weight at e. Then we have α(ē) = −α(e), where ē denotes e equipped with the inverse
orientation.

Now assume that N is four-dimensional and let v1, v2 be two vertices in ΓN joined by
an edge e, denote by e1 and e2 the other oriented edges emanating from v1 and v2, then
we must have α(e1) = α(e2) mod α(e).

From these two properties we get a contradiction if we assume that ΓN has only two
vertices and two edges.

Therefore there is no biangle in ΓM . Now, by Lemma 5.4, the claim follows. �

Remark 5.7 As pointed out by one of the referees, one can also prove the above lemma
as follows. If M admits an invariant almost complex structure, then all components of
MT ′

for any subtorus T ′ ⊂ T admit almost complex structures. A two-dimensional face
F of ΓM is the GKM graph of such a fixed point component N . F is a biangle if and
only if N is diffeomorphic to S4. But S4 does not admit any almost complex structure.
Hence, there are no biangles in ΓM . Therefore the lemma follows as in the above proof.

Lemma 5.8 Let M be an orientable GKM3-manifold with an invariant metric of posi-
tive sectional curvature. Then ΓM is equal to ΓS2n or a graph which is constructed from
a simplex by replacing each edge by k edges, k = 1, 2, 4.
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Proof. Assume that ΓM is not ΓS2n . Then there is a triangle v1, v2, v3 in ΓM . Denote
by αi the weights of the edges between v1 and v2, by βi the weights of the edges between
v1 and v3, by γi the weights of the edges between v2 and v3.

Since the weights are only determined up to sign we may assume that

γi = α1 − βi = ǫijαj + δijβσj(i) (2)

with ǫij , δij ∈ {±1} and permutations σj , where σ1 = Id.

Sublemma 5.9 For i 6= j the permutations σ−1
j ◦σi are all of order two. Moreover, they

do not have fixed points; in other words, for each l, the map j 7→ σj(l) is a permutation
as well.

Proof of Sublemma 5.9. Fix i 6= j; we consider the permutation σ−1
j ◦ σi and want to

show that it is of order 2 without fixed points.
To show that it has no fixed points assume σi(l) = σj(l) for some l. Then (2) applied

twice gives
ǫliαi + δliβσi(l) = γl = ǫljαj + δljβσj(l),

a contradiction to the 3-independence. Therefore there are no fixed points.
Fix a number A, and let B = σ−1

j ◦ σi(A), i.e. σi(A) = σj(B). We have

γA = ǫAiαi + δAiβσi(A) = ǫAjαj + δAjβσj(A) (3)

and
γB = ǫBiαi + δBiβσi(B) = ǫBjαj + δBjβσj(B). (4)

Then the term ǫBiγA − ǫAiγB is equal to the following two expressions:

ǫBiγA − ǫAiγB = ǫBiδAiβσi(A) − ǫAiδBiβσi(B)

= (ǫBiǫAj − ǫAiǫBj)αj + ǫBiδAjβσj(A) − ǫAiδBjβσj(B).
(5)

Assume that ǫBiǫAj = −ǫAiǫBj . Then ǫBiγA + ǫAiγB is equal to the following:

ǫBiγA + ǫAiγB = ǫBiδAjβσj(A) + ǫAiδBjβσj(B). (6)

By adding and subtracting equations (6) and (5) we get

2ǫBiγA = ǫBiδAjβσj(A) + ǫAiδBjβσj(B) + ǫBiδAiβσi(A) − ǫAiδBiβσi(B) (7)

and
2ǫAiγB = ǫBiδAjβσj(A) + ǫAiδBjβσj(B) − ǫBiδAiβσi(A) + ǫAiδBiβσi(B). (8)

Since βσi(A) = βσj(B), γA or γB is a linear combination of βσj(A) and βσi(B). This
gives a contradiction to the 3-independence of the weights. Hence our assumption is
wrong; and we have ǫBiǫAj = ǫAiǫBj . Therefore it follows from equation (5) and the
3-independence that σj(A) = σi(B). This shows that σ−1

j ◦ σi has order two. �
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In particular, the sublemma shows that all the σj = σ−1
1 ◦ σj , for j 6= 1, are of order

two. Again by the sublemma, they also commute because

σj ◦ σi = σ−1
j ◦ σi = (σ−1

j ◦ σi)−1 = σ−1
i ◦ σj = σi ◦ σj .

Let G be the subgroup of the permutation group generated by the σj . Then we have an
epimorphism Zk−1

2 → G. Since the σ−1
j ◦ σi do not have fixed points, G acts transitively

on {1, . . . , k}. Therefore we have {1, . . . , k} ∼= Zk−1
2 /H for a subgroup H of Zk−1

2 . In
particular k is a power of two.

Let i ∈ {1, . . . , k}.

Sublemma 5.10 For j > 1 we have δij = 1 and ǫσj(i)j = ǫij, i.e.,

γi = ǫijαj + βσj(i) γσj(i) = ǫijαj + βi.

Proof of Sublemma 5.10. From the above relation (2) it follows that

α1 = γi + βi = ǫijαj + δijβσj(i) + βi

α1 = γσj(i) + βσj(i) = ǫσj(i)jαj + δσj(i)jβi + βσj(i).

Now the three-independence of the weights implies that we have δij = 1 and ǫσj(i)j = ǫij .
�

Sublemma 5.11 For j > 2 we have ǫσj(i)2 = −ǫi2.

Proof of Sublemma 5.11. From Sublemma 5.10 it follows that

ǫi2α2 = γσ2(i) − βi = ǫσ2(i)jαj + βσj◦σ2(i) − βi

ǫσj(i)2α2 = γσj(i) − βσj◦σ2(i) = ǫijαj + βi − βσj◦σ2(i).

Now the three-independence of the weights implies that ǫi2 = −ǫσj(i)2. �

Because we know that k is a power of two, if k > 2, then k ≥ 4, so we may choose
j > j′ > 2. Then, by applying Sublemma 5.11 twice, we have

ǫσj(σj′(i))2 = −ǫσj′(i)2 = ǫi2.

Since, by Sublemma 5.9, there is a j′′ such that σj′′(i) = σj ◦ σj′(i) and σj ◦ σj′ does not
have fixed points, it follows, again by Sublemma 5.11, that j′′ = 2. Because this holds
for each i, it follows that σ2 = σj ◦ σj′ . Hence it follows that k ≤ 4. This proves the
lemma. �

Lemma 5.12 If we have k = 4 in the situation of Lemma 5.8, then ΓM is a triangle
with each edge replaced by four edges.
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Proof. Assume that ΓM is a higher dimensional simplex. Then there are four vertices
v0, . . . , v3 in ΓM . Denote by αi the weights at the edges between v0 and v1, by βi the
weights at the edges between v0 and v2, by γi the weights at the edges between v0 and
v3.

By Sublemma 5.10 we may assume that the weights at the edges between v1 and v2
are given by

α1 − βi = ±α2 + βσ(i) (9)

and that the weights at the edges between v1 and v3 are given by

α1 − γi = ǫiα2 + γσ′(i), (10)

for some permutations σ, σ′ and ǫi ∈ {±1}.
At first we show that we may assume that the weights at the eges between v2 and v3

are given by β1− γi. Since these weights are determined only up to sign we may assume
that there are cj ∈ {±1} such that these weights are given by

β1 + cjγj .

Hence, for each j = 1, . . . , 4 there are a, b ∈ {±1} and i ∈ {1, . . . , 4} such that

α1 − β1 = a(α1 − γi) + b(β1 + cjγj). (11)

At first assume that i 6= j. By 3-independence at v0 we have a = −1 and b = 1. Then
we have

(α1 − γj) − (β1 − γj) = −(α1 − γi) + (β1 + cjγj).

We get a contradiction to 3-independence at v3 if cj = −1. Hence, we must have cj = 1.
By Sublemma 5.10 there is a k ∈ {1, . . . , 4} such that

α1 − γi = ±αk + γj .

Therefore we get
2α1 − 2β1 = γi + γj = α1 ∓ αk.

This is a contradiction to the 3-independence at v0.
Therefore we have i = j. In this case it follows from 3-independence at v0 and

Equation (11) that a = 1 and b = cj = −1. Therefore, by Sublemma 5.10, the weights
at the edges between v2 and v3 are given by

β1 − γi = δiβ2 + γσ′′(i), (12)

where σ′′ is a permutation and δi ∈ {±1}. Note that by Sublemma 5.11 not all δi are
equal.

We may assume that σ(1) = 2. Then we have, using Equations (9), (11), (10) and
(12), that

±α2 + β2 = α1 − β1 = (α1 − γi) − (β1 − γi)

= (ǫiα2 + γσ′(i)) − (δiβ2 + γσ′′(i)).
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Let m be the order of σ′−1σ′′. Then we have:

m(±α2 + β2) =

m−1∑

l=0

((ǫ(σ′−1σ′′)l(i)α2 + γσ′(σ′−1σ′′)l(i))

− (δ(σ′−1σ′′)l(i)β2 + γσ′′(σ′−1σ′′)l(i)))

=
m−1∑

l=0

(ǫ(σ′−1σ′′)l(i)α2 − δ(σ′−1σ′′)l(i)β2).

Therefore it follows that δi = −1 for all i, a contradiction to the fact that not all δi are
equal. �

We have shown that the GKM graph of an isometric GKM3-action on a positively
curved manifold is either ΓS2n , ΓCPn , ΓHPn or ΓOP 2 . To complete the proof of Theorem
1.1 we need to show that the induced labeling of the GKM graph is one of those described
in Section 4. For ΓS2n there is nothing to show, and for ΓCPn we already proved this in
Lemma 5.3. Let us consider now ΓHPn .

Lemma 5.13 Consider an orientable GKM3-manifold M with GKM graph ΓHPn. Then
the induced labeling of the GKM graph is the same as that of a torus action on HPn.

Proof. Let v0, v1, . . . , vm be the vertices of ΓM , and denote by γij , γ
′
ij the weights

at the edges between vi and vj . These weights are well-defined up to sign, and up to
permutation of γij and γ′ij . We can choose γ0k, γ1k, γ

′
1k and γ′01 in such a way that for

all j > 1 we have (with Sublemma 5.10 in mind)

γ1j = γ0j − γ01 = ǫjγ
′
0j + γ′01

γ′1j = γ0j − γ′01 = ǫjγ
′
0j + γ01

for some signs ǫj . Then we fix the sign of γ′0j , j > 1, such that ǫj = −1. It follows that
γ01 + γ′01 = γ0j + γ′0j for all j > 1, hence

γ0i + γ′0i = γ0j + γ′0j (13)

for all i, j > 1. We define

α0 =
1

2
(γ01 + γ′01), αj =

1

2
(γ0j − γ′0j) (j > 1)

so that

γ0j = α0 + αj and γ′0j = α0 − αj .

We have to show that we can choose γij and γ′ij (i, j > 1) in such a way that γij = αi+αj
and γ′ij = αi − αj .
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For that we choose them such that

γij = γ0j + ηijγ
′
0i = ±γ′0j ± γ0i (14)

γ′ij = −γ0j + η′ijγ0i = ±γ′0j ± γ′0i (15)

for some signs ηij , η
′
ij . Subtracting (13) from (14) would give a contradiction to 3-

independence if ηij = 1; hence ηij = −1. Similarly, adding (13) to (15) shows η′ij = 1.
It thus follows (using (13) and (14))

αi + αj =
1

2
(γ0i − γ′0i + γ0j − γ′0j) = γ0j − γ′0i = γij

and

αi − αj =
1

2
(γ0i − γ′0i − γ0j + γ′0j) = −γ0j + γ0i = γ′ij

as desired. �

And finally we consider ΓOP 2 .

Lemma 5.14 Consider an orientable GKM3-action with GKM graph ΓOP 2. Then the
induced labeling of the GKM graph is the same as that of a torus action on OP 2.

Proof. Let v0, v1, v2 be the vertices of ΓM . Denote by αi the weights at the edges
between v0 and v1, by βi the weights at the edges between v1 and v2, and by γi the
weights at the edges between v2 and v0.

Then by Sublemmas 5.9, 5.10 and 5.11, we may assume that the following relations
hold:

γ1 = α1 − β1 = α2 + β2 (16)

γ2 = α1 − β2 = α2 + β1 (17)

γ3 = α1 − β3 = −α2 + β4 (18)

γ4 = α1 − β4 = −α2 + β3 (19)

By adding equations (17) and (18) we get that

α1 =
1

2
(β1 + β2 + β3 + β4).

Hence, the γi are of the form 1
2(−βi+

∑
j 6=i βj). By Sublemma 5.10 we may assume that

γ1 = α1 − β1 = α2 + β2 = α3 + β3 = α4 + β4.

Thus, for i > 1,

αi =
1

2
(−β1 − βi +

∑

j 6=i,1

βj).

This proves the lemma. �
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6. Integer coefficients

In this section we prove a version of our main theorem for integer coefficients. To do so
we have to generalize some of the results from Section 2 to integer coefficients.

The two ingredients we need for our theorem to hold are that the ordinary cohomology
is encoded in the equivariant cohomology, i.e., that

H∗
T (M ;Z) −→ H∗(M ;Z) (20)

is surjective, and that the equivariant cohomology algebra is encoded in the combina-
torics of the one-skeleton M1, i.e., that a Chang-Skjelbred Lemma holds. This can be
seen to be true only under additional assumptions on the isotropy groups of the action,
see [FP11, Corollary 2.2]: if for all p /∈M1 the isotropy group Tp is contained in a proper
subtorus of T , and H∗

T (M ;Z) is a free module over H∗(BT ), then

0 −→ H∗
T (M ;Z) −→ H∗

T (MT ;Z) −→ H∗
T (M1,M

T ;Z)

is exact.
Because the fixed point set is always finite and M is orientable in our situation, freeness

of H∗
T (M ;Z) is equivalent to Hodd(M ;Z) = 0 by [MP06, Lemma 2.1]. Moreover, under

the assumption that Hodd(M ;Z) = 0, (20) is surjective: this follows either from the
proof of [MP06, Lemma 2.1] or via the fact that in this situation the Leray spectral
sequence collapses.

Moreover, since H∗
T (MT ;Z) → H∗

T (MT ;R) is injective the formula (1) also holds for
the equivariant (integer) Pontryagin classes of M .

Denote by Z∗
t ⊂ t∗ the weight lattice of the torus T . Then we call two weights α, β ∈ Z∗

t

coprime if there are primitive elements of Z∗
t , α

′, β′, and a, b ∈ Z such that α = aα′ and
β = bβ′ and a and b are coprime. Note that, if α 6= 0, a and α′ are uniquely determined
up to sign by α.

Lemma 6.1 If, for an orientable GKM manifold with vanishing odd-degree integer co-
homology, at each fixed point any two weights are coprime, then the Chang-Skjelbred
Lemma holds for integer coefficients.

Proof. Let p be a prime and denote by G the maximal Z/pZ-torus in T . By [FP11,
Theorem 2.1], it is sufficient to show that MG is contained in M1.

At first note that by an iterated application of [Bre72, Theorem VII.2.2, p. 376], we
have that dimHodd(MG;Z/pZ) ≤ dimHodd(M ;Z/pZ) = 0. Therefore every component
of MG is a T -invariant submanifold with non-trivial Euler characteristic. As the Euler
characteristic always equals the Euler characteristic of the fixed point set, it follows that
in all these components there is a T -fixed point x.

Now consider the T -representation TxM . Then Tx(MG) = (TxM)G is an invariant
subrepresentation and therefore a direct sum of weight spaces Vα. Let q ∈ Z and α′ ∈ Z∗

t

a primitive element such that α = qα′. Then Vα is fixed by G if and only if p divides
q. Since by assumption the weights at x are coprime, it follows that TxM

G contains at
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most one weight space. Thus, the component of MG which contains x is contained in a
two-dimensional sphere fixed by a corank-one torus T ′ of T . Hence MG is contained in
M1. �

Remark 6.2 As pointed out to us by one of the referees, Lemma 6.1 was conjectured
for Hamiltonian torus actions of GKM type on symplectic manifolds by Tolman and
Weitsman [TW99]. This conjecture has been shown in [Sch01] by Schmid under the
assumption that all weights of the GKM graph are primitive vectors in Z∗

t .

Theorem 6.3 Let M be a positively curved orientable manifold with Hodd(M ;Z) = 0
which admits an isometric torus action with finitely many fixed points such that

• At each fixed point any three weights of the isotropy representation are linearly
independent and

• At each fixed point any two weights are coprime.

Then M has the integer cohomology ring of a CROSS. Moreover, the total Pontryagin
class of M is standard, i.e. there is a CROSS K and an isomorphism of rings f :
H∗(M ;Z) → H∗(K;Z) such that f(p(M)) = p(K).

Proof. By Lemma 6.1, we have a GKM description of the equivariant cohomology of M
with integer coefficients. Therefore the statement follows as in the proof of the second
part of Theorem 1.1. �

Remark 6.4 If M is simply-connected and has the integer cohomology of CPn, then M
is already homotopy equivalent to CPn: choose a map f : M → K(Z, 2) = CP∞ such
that the pullback of a generator of H2(CP∞;Z) generates H2(M ;Z). This map can be
deformed to a map which takes values in the 2n-skeleton of CP∞, which is CPn, and
this deformed map is then the desired homotopy equivalence.

Remark 6.5 By [AP93, Corollary 2.7.9], a simply connected manifold which has the
same rational cohomology as a compact rank one symmetric space is formal in the sense
of rational homotopy theory. Therefore it follows from [KT91, Theorem 2.2] which
is a generalization of [Sul77, Theorem 12.5] that up to diffeomorphism there are only
finitely many simply connected integer cohomology KPn’s, K = C,H,O, with standard
Pontryagin classes of dimension greater than four. Thus there are only finitely many
diffeomorphism types of simply connected GKM3-manifolds as in Theorem 6.3.

7. Non-orientable GKM-manifolds

In this section we prove an extension of Theorem 1.1 to non-orientable GKM3-manifolds.
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Lemma 7.1 If M2n is a non-orientable GKM3-manifold with an invariant metric of
positive curvature, then the GKM graph of M coincides with the GKM graph of a linear
torus action on RP 2n, i.e., it has only a single vertex.

Proof. Denote by M̃ the orientable double cover of M . Then the torus action on M
lifts to a torus action on M̃ . With this lifted action M̃ is a GKM3-manifold: Indeed, it
is obvious that the torus action on M̃ has isolated fixed points. Moreover, the isotropy
representation at a fixed point x ∈ M̃ is isomorphic to the isotropy representation at
p(x) where p : M̃ →M is the covering map. Therefore the 3-independence of the weights
of TxM̃ follows.

Now we show that Hodd(M̃ ;R) = 0 which is equivalent to equivariant formality of the
torus action on M̃ . Since the torus action on M is equivariantly formal and has only
finitely many fixed points, we have Hodd(M ;R) = 0. M is the quotient of a free Z2-
action on M̃ . Therefore, by [Bre72, Chapter III],H∗(M ;R) is isomorphic to H∗(M̃ ;R)Z2 .
Hence, it follows that Z2 acts on Hodd(M̃ ;R) and H2n(M̃ ;R) by multiplication with
−1. Now assume that Hodd(M̃ ;R) 6= 0. Then, by Poincaré duality, there are α1, α2 ∈
Hodd(M̃ ;R) such that 0 6= α1α2 ∈ H2n(M̃ ;R). But this is a contradiction to the
description of the Z2-action given above. Therefore we must have Hodd(M̃ ;R) = 0.

The one-skeleton of the action on M̃ is a double covering of the one-skeleton of the
action on M . Therefore ΓM is a quotient of a Z2-action on ΓM̃ which is free on the
vertices. By the results in Section 5, ΓM̃ is one of the graphs described in Section
4. It is easy to see that if ΓM̃ is not ΓS2n , then every vertex of ΓM is contained in
an edge which contains two vertices and an edge which contains only one vertex. But
this is impossible. Indeed, the only non-orientable T 2-manifold in dimension four, which
admits an invariant metric of positive sectional curvature is RP 4 [GS94]. Therefore there
is no two-dimensional face of ΓM which contains an edge which connects two vertices
and an edge which contains only a single vertex. Hence, ΓM̃ must be isomorphic to ΓS2n .
In this case there is only a single vertex in ΓM . This implies that ΓM = ΓRP 2n .

Therefore the lemma is proved. �

From the above lemma we get immediately the following corollary.

Corollary 7.2 Let M be a compact positively curved non-orientable Riemannian man-
ifold with Hodd(M ;R) = 0 which admits an isometric torus action of type GKM3. Then
H∗(M ;R) = H0(M ;R) = R.

A. GKM actions on the nonsymmetric examples

Apart from the compact rank one symmetric spaces, the only known examples of even-
dimensional positively curved manifolds are the homogeneous spaces SU(3)/T 2, Sp(3)/ Sp(1)3

and F4/ Spin(8) [Wal72], and the biquotient SU(3)//T 2 [Esc84]. Because these examples
do not have the rational cohomology of a compact rank one symmetric space, Theorem
1.1 implies that they do not admit an isometric action of type GKM3, but we will see
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in this section that all of them admit an isometric action of type GKM2, and we will
determine their GKM graphs.

The homogeneous examples admit a GKM2-action by the general results of [GHZ06]:
for any homogeneous space of the form G/H, where G and H are Lie groups of equal
rank, the action of a maximal torus in H (or G) is of type GKM2. Let us first determine
the GKM graphs of the three homogeneous examples above.

A.1. SU(3)/T 2

This example was considered in [GHZ06], Section 5.3, where it was shown that the GKM
graph of the T 2-isotropy action is the bipartite graph K3,3. Let us provide a slightly

Figure 5: GKM graph of SU(3)/T 2 and SU(3)//T 2

different argument which will turn out to be generalizable to the other two homogeneous
examples. The homogeneous space SU(3)/T 2 admits a homogeneous fibration

S2 −→ SU(3)/T 2 −→ CP 2,

which implies that the GKM graph in question projects onto the GKM graph of CP 2

(a triangle), with fibers the GKM graph of S2 (a line). Now by [GHZ06], Theorem 2.4,
the vertices of the graph are in one-to-one correspondence with the elements of the Weyl
group W (SU(3)) of SU(3), which is the symmetric group S3. Moreover, by the same
theorem, two vertices are not joined by an edge if the corresponding elements w,w′ in
the Weyl group satisfy the condition that w−1w′ is not of order two. Thus, two vertices
are not joined by an edge if they correspond to elements of W (SU(3)) = S3 whose orders
are congruent modulo 2. This leaves K3,3 as the only possibility for the graph.

A.2. Sp(3)/ Sp(1)3

Consider the GKM2-action on Sp(3)/ Sp(1)3 of a maximal torus T 3 ⊂ Sp(1)3. This
homogeneous space admits a homogeneous fibration

S4 −→ Sp(3)/ Sp(1)3 −→ HP 2,
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so the graph projects to a triangle with each edge doubled, with biangles as fibers.
The vertices are in one-to-one correspondence to elements of the Weyl group quotient
W (Sp(3))/W (Sp(1)3), and because the Weyl group of Sp(1)3, Z3

2, is normal in the Weyl
group Z3

2 ⋊S3 of Sp(3), with quotient S3, similar considerations as above hold true. We
conclude that the GKM graph is the bipartite graph K3,3, with each edge doubled.

Figure 6: GKM graph of Sp(3)/ Sp(1)3

A.3. F4/ Spin(8)

Also this example admits a homogeneous fibration:

S8 −→ F4/ Spin(8) −→ OP 2

which implies that the GKM graph projects onto a triangle with each edge replaced by
four edges, with fibers the graph with two vertices and four edges. Again, the Weyl group
of Spin(8) is normal in the Weyl group of F4, with quotient S3, see [Ada96], Theorem
14.2. The GKM graph is therefore K3,3, with each edge replaced by four edges.

A.4. SU(3)//T 2

Finally, we consider the biquotient SU(3)//T 2. It is the quotient of SU(3) by the free
T 2-action given by

(t, w) · g = diag(t, w, tw) · g · diag(1, 1, t−2w−2).

We denote the projection SU(3) → SU(3)//T 2 by g 7→ [g]. This manifold admits an
action of a two-dimensional torus by

(a, b) · [g] = [diag(a, a, a−2) · g · diag(b, b−1, 1)]

The six fixed points of the action are given by the elements [g], where g ∈ SU(3) is a
matrix that has (maybe after multiplying with −1) as column vectors a permutation
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Figure 7: GKM graph of F4/ Spin(8)

of the standard basis vectors e1, e2, e3. This action is of type GKM2; two fixed points
[g1], [g2], with gi as above, are connected by a two-dimensional isotropy submanifold

if and only if g1 and g2 have one identical column. For example,






1 0 0
0 1 0
0 0 1




 and


−




1 0 0
0 0 1
0 1 0




 are joined by the projection of the T 2-invariant submanifold S(U(1) ×

U(2)) = {



a 0 0
0 b c
0 d e


 ∈ SU(3)} of SU(3) to SU(3)//T 2.

It follows that the GKM graph of SU(3)//T 2 is again the bipartite graph K3,3: the

vertices corresponding to the elements




1 0 0
0 1 0
0 0 1


,




0 1 0
0 0 1
1 0 0


 and




0 0 1
1 0 0
0 1 0


 are pair-

wise not connected, and also not the vertices corresponding to −




1 0 0
0 0 1
0 1 0


, −




0 1 0
1 0 0
0 0 1




and −




0 0 1
0 1 0
1 0 0


.
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Moduli spaces of invariant metrics of positive scalar

curvature on quasitoric manifolds

Michael Wiemeler
∗

We show that the higher homotopy groups of the moduli space of torus-
invariant positive scalar curvature metrics on certain quasitoric manifolds are
non-trivial.

1. Introduction

In recent years it became fashionable to study the homotopy groups of the space of Rie-
mannian metrics of positive scalar curvature on a given closed, connected manifold and
its moduli space, see for example the papers [BHSW10], [HSS14], [BERW14], [Wal14],
[Wal13], [Wal11], [Wra16] and the book [TW15]. As far as the moduli space is concerned
these results are usually only for the so-called observer moduli space of positive scalar
curvature metrics, not for the naive moduli space.

The definition of the naive and the observer moduli space are as follows. The diffeo-
morphism group of a manifold M acts by pullback on the space of metrics of positive
scalar curvature on M . The naive moduli space of metrics of positive scalar curvature
on M is the orbit space of this action.

The observer moduli space of metrics is the orbit space of the action of a certain
subgroup of the diffeomorphism group, the so-called observer diffeomorphism group.
It consists out of those diffeomorphisms ϕ, which fix some point x0 ∈ M and whose
differential Dx0ϕ : Tx0M → Tx0M at x0 is the identity.

This group does not contain any compact Lie subgroup and therefore acts freely on
the space of metrics on M . Hence, the observer moduli space can be treated from a
homotopy theoretic view point more easily than the naive moduli space.

In this paper we deal with the equivariant version of the above problem: We assume
that there is a torus T acting effectively on the manifold and that all our metrics are
invariant under this torus action. To be more specific we study invariant metrics on
so-called torus manifolds and quasitoric manifolds.

A torus manifold is a 2n-dimensional manifold with a smooth effective action of an
n-dimensional torus such that there are torus fixed points in the manifold. Such a
manifold is called locally standard if it is locally weakly equivariantly diffeomorphic to
the standard representation of T = (S1)n on Cn. If M is locally standard, then the orbit
space of the T -action on M is naturally a manifold with corners. M is called quasitoric
if it is locally standard and M/T is diffeomorphic to a simple convex polytope.

∗The research for this paper was supported by DFG grant HA 3160/6-1.
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In this paper we use the following notations: Let M be a compact manifold. For a
compact connected Lie subgroup G of Diff(M) we denote by

• R(M,G) the space of G-invariant metrics on M

• R+(M,G) the space of G-invariant metrics of positive scalar curvature on M .

• D(M,G) = NDiff(M)(G)/G the normalizer of G in Diff(M) modulo G.

• M(M,G) = R(M,G)/D(M,G)

• M+(M,G) = R+(M,G)/D(M,G).

With this notation our main result is as follows:

Theorem 1.1 (Theorem 4.2) There are quasitoric manifoldsM of dimension 2n such
that for 0 < k < n

6 − 7, n odd and k ≡ 0 mod 4, πk(M+)⊗Q is non-trivial, where M+

is some component of M+(M ;Tn).

Note that M+(M ;Tn) is the analogue of the naive moduli space of metrics of positive
scalar curvature in the equivariant situation and not the analogue of the observer moduli
space for which so far most results have been proven.

Moreover, we think that the above theorem is the first step to understand the topol-
ogy of the full naive moduli space of metrics of positive scalar curvature on quasitoric
manifolds. This is because this moduli space is stratified by the rank of the isometry
groups of metrics on M . The above theorem is a non-triviality result for the homotopy
type of a minimal stratum of M+(M ; {Id}). If one also has non-triviality results for all
higher strata, one might expect non-triviality results for the full moduli space.

2. The action of D(M,T ) on R(M,T ) for M a torus manifold

In this section we describe the action of D(M,T ) on R(M,T ) where M is a torus
manifold. We give sufficient criteria for the rational homotopy groups of M(M,T ) to
be isomorphic to the rational homotopy groups of the classifying space of D(M,T ).

Lemma 2.1 Let M be a closed manifold. If T is a maximal torus in Diff(M), then the
isotropy groups of the natural D(M,T )-action on R(M,T ) are finite.

Proof. The isotropy group of the D(M,T )-action of an element g ∈ R(M,T ) is the
normalizer W of the torus T in the isometry group K of g modulo T . Since M is compact
K is a compact Lie group. Moreover, because T is a maximal torus of K, W is the Weyl
group of K which is a finite group. Therefore the statement follows. �

For each torus manifold M there is a natural stratification of the orbit space M/T by
the identity components of the isotropy groups of the orbits. That is, the open strata of
M/T are given by the connected components of

(M/T )H = {Tx ∈M/T ; (Tx)0 = H}
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for connected closed subgroups H of T . We call the closure of an open stratum a closed
stratum. The closed strata are naturally ordered by inclusion. We denote by P the
poset of closed strata of M/T .

There is a natural map

λ : P → {closed connected subgroups of T}

such that λ((M/T )H) = H. We call (P, λ) the characteristic pair of M .

An automorphism of (P, λ) is a pair (f, g) such that f is an automorphism of the poset
P and g is an automorphism of the torus T so that λ(f(x)) = g(λ(x)) for all x ∈ P.
The automorphisms of (P, λ) naturally form a group Aut(P, λ).

There is a natural action of D(M,T ) on M/T which preserves the above stratification.
Therefore D(M,T ) acts by automorphisms on the characteristic pair (P, λ).

Lemma 2.2 Let M be a torus manifold. Then there is a finite index subgroup G of
D(M,T ) which acts freely on R(M,T ). To be more precise, G is the kernel of the
natural homomorphism D(M,T ) → Aut(P, λ) ⊂ Aut(P) × Aut(T ), where (P, λ) is the
characteristic pair associated to M .

Proof. Denote by (P, λ) the labeled face poset of M/T .

At first we show that Aut(P, λ) is a finite group. To see this note that Aut(P) is finite
because P is finite. Moreover, the natural map Aut(P, λ) → Aut(P) has finite kernel,
because T is generated by the image of λ (see [Wie14, Section 2] for details).

Let G be the kernel of the natural map D(M,T ) → Aut(P, λ). Then G has finite
index since Aut(P, λ) is a finite group.

Let T ⊂ H ⊂ G̃ be a compact Lie group which fixes some metric g ∈ R(M), where
G̃ is the preimage of G in NDiff(M)(T ). Then each element of H fixes every x ∈ MT

and commutes with T . Hence, the differential of the H-action on TxM gives an injective
homomorphism H → O(2n). Since T is identified with a maximal torus of O(2n) under
this map, it follows that the centralizer of T in O(2n) is T itself. Hence it follows that
H = T . Therefore G = G̃/T acts freely on R(M,T ). �

Definition 2.3 A 2n-dimensional quasitoric manifold M is a locally standard torus
manifold, such that M/T is diffeomorphic to a simple convex n-dimensional polytope P .
We denote by π : M → P the orbit map.

Lemma 2.4 For M a quasitoric manifold, the group of T -equivariant diffeomorphisms
of M is naturally isomorphic to C∞(M/T, T )⋊Diff(M/T, λ) as topological groups. Here
Diff(M/T, λ) denotes the group of those diffeomorphisms of M/T , which leave λ invari-
ant.

In particular the group G of the previous lemma is homotopy equivalent to the group
of all diffeomorphisms of M/T , which leave all faces of M/T invariant.
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Proof. First we show that the kernel of the natural map ϕ : DiffT (M) → Diff(M/T, λ) is
isomorphic to C∞(M/T, T ). Since T is abelian, there is a natural map from C∞(M/T, T )
to the kernel of ϕ given by f 7→ F , where F (x) = f(Tx)x for x ∈M .

We show that this map is a homeomorphism. To do so let F ∈ kerϕ. Then F leaves
all T -invariant subsets of M invariant. Since M is quasitoric, there is a covering of M
by open invariant subsets U1, . . . , Uk which are weakly equivariantly diffeomorphic to Cn

with the standard T -action.
The restriction of F to Uj ∼= Cn is of the form

F (z1, . . . , zn) = (z1f1(z1, . . . , zn), . . . , znfn(z1, . . . , zn)),

where (z1, . . . , zn) ∈ Cn and fk(z1, . . . , zn) ∈ S1 for k = 1, . . . , n depends only on
(|z1|2, . . . , |zn|2).

We have to show that fk is smooth for all k.
Smoothness in points with zk 6= 0 follows from the smoothness of F . We show that

fk is also smooth in points with zk = 0.
Since F is smooth, we have for (z1, . . . , zn) ∈ Cn,

zkfk(z1, . . . , zn) = Fk(z1, . . . , zn) =

∫ 1

0
(DzkFk(z1, . . . , zk−1, zkt, zk+1, . . . , zn))(zk) dt,

where

(DzkFk(z1, . . . , zn))(z) =

(
∂Fk
∂xk

(z1, . . . , zn),
∂Fk
∂yk

(z1, . . . , zn)

)
(x, y)t

with zl = xl + iyl for l = 1, . . . , n and z = x+ iy, xl, x, yl, y ∈ R.
Since F is T -equivariant, it follows that

zkfk(z1, . . . , zn) =

∫ 1

0
(DzkFk(z1, . . . , zk−1, zkt, zk+1, . . . , zn))(zk) dt

=

∫ 1

0
zk(DzkFk(z1, . . . , zk−1,

|zk|
zk

zkt, zk+1, . . . , zn))(1) dt

= zk

∫ 1

0
(DzkFk(z1, . . . , zk−1, |zk|t, zk+1, . . . , zn))(1) dt.

Since F is T -equivariant, it follows that t 7→ (DzkFk(z1, . . . , zk−1, t, zk+1, . . . , zn))(1),
t ∈ R, is an even function. Therefore the integrand in the last integral depends smoothly
on (z1, . . . , zn) and fk is smooth everywhere. Because fk is T -invariant, it induces a
smooth map on the orbit space.

Hence it is sufficient to show that there is a section to ϕ.
There is a canonical model M = ((M/T ) × T )/ ∼, where (x, t) ∼ (x′, t′) if and only

if x = x′ and t′t−1 ∈ λ(x). Therefore every diffeomorphism f of M/T , which leave
λ-invariant, lifts to a homeomorphism of M given by f × Id. One can show (see [GP13,
Lemma 2.3]), that this homeomorphism is actually a diffeomorphism. Therefore we have
a section of ϕ and the first statement follows.
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The second statement follows because H = C∞(M/T, T )/T is contractible because
M/T is contractible. �

Lemma 2.5 If in the situation of Lemma 2.2 M is quasitoric and the natural homo-
morphism Aut(P, λ) → Aut(P) is trivial, then πk(M(M,T ))⊗Q ∼= πk(BD(M,T ))⊗Q
for k > 1.

Proof. Since G acts freely and properly on R(M,T ), it follows from Ebin’s slice theorem
[Ebi70] (see also [Bou75]) that R(M,T ) → R(M,T )/G is a locally trivial fiber bundle.
Because R(M,T ) is contractible, R(M,T )/G is weakly homotopy equivalent to BG.

Let H be as in the proof of the previous lemma. Then H is contractible. Hence it
follows that R(M,T ) and R(M,T )/H are weakly homotopy equivalent.

It follows from Ebin’s slice theorem that allH-orbits in R(M,T ) are closed. Since there
is a D(M,T )-invariant metric on R(M,T ), it follows that R(M,T )/H is metriziable.
Hence, R(M,T )/H is paracompact and completely regular.

The D(M,T )-invariant metric on R(M,T ) can be constructed as follows. Ebin con-
structs in his paper a sequence of Hilbert manifolds Rs, s ∈ N, such that R(M, {Id}) =⋂
s∈NRs. On each Rs he constructs a Diff(M)-invariant Riemannian structure. This

structure induces a Diff(M)-invariant metric ds on Rs. The restrictions of all these
metrics ds to R(M, {Id}) together induce the C∞-topology on R(M, {Id}). Therefore
the metric

d(x, y) =
∑

s∈N

min{ds(x, y), 2−s}

is Diff(M)-invariant and induces the C∞-topology on R(M, {Id}).

Since Aut(P, λ) → Aut(P) is trivial, there is a splitting ψ : Aut(P, λ) → D(M,T ).
Here an element τ = (g, f) ∈ Aut(P, λ) acts on M = ((M/T ) × T )/ ∼ as identity on
the first factor and by f ∈ Aut(T ) on the second. To see that this is a diffeomorphism
of M , we note that there are invariant charts U ⊂ M which are weakly equivariantly
diffeomorphic to Cn such that U ∩ ((M/T ) × (Z2)

n))/ ∼ is mapped to Rn ⊂ Cn. For a
construction of such charts see [GP13, Section 2]. The action of τ in this chart is given
by complex conjugation on some of the factors of Cn.

Note that H and G are normalized by imψ. Moreover, imψ commutes with G/H in
D(M,T )/H.

Since H1 = 〈T, imψ〉 is a compact Lie subgroup of Diff(M), there is an H1-invariant
metric on M .

Therefore it follows from [Bre72, Chapter II.6] that R(M,T )/H/ imψ is simply con-
nected. Moreover, by [Bre72, Theorem III.7.2], one sees that R(M,T )/H/ imψ is ratio-
nally acyclic.

Hence, by the Whitehead theorem, all rational homotopy groups of R(M,T )/H/ imψ
vanish.

By Lemma 2.2, we know that the identity components of G and D(M,T ) are the same.
Therefore the higher homotopy groups of BG and BD(M,T ) are naturally isomorphic.
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Therefore, by Lemma 2.4 and Ebin’s slice theorem, it now suffices to show that G/H
acts freely on R(M,T )/H/ imψ.

Let g ∈ R(M,T ), h1 ∈ G, h2 ∈ H such that h1g = τh2g with τ ∈ imψ. Then we have

τ−1h1g = τ−1τh2g = h2g.

Since the isotropy group of g in D(M,T ) is finite, it follows that τ−1h1 has finite order
in D(M,T )/H.

In particular, h1 induces a diffeomorphism of finite order m on M/T which leaves all
faces of M/T invariant because τ induces the identity on this space. Since the principal
isotropy group of a Zm-action on a manifold with boundary is equal to the principal
isotropy group of the restricted action on the boundary, it follows by induction on the
dimension of the faces of M/T that the diffeomorphism induced by h1 on M/T is trivial.
This means that h1 is contained in H and the lemma is proved. �

Example 2.6 We give an example of quasitoric manifolds satisfying the assumptions
of the previous lemma.
Let M0 be the projectivization of a sum of n − 1 complex line bundles E0, . . . , En−2

over CP 1, such that c1(E0) = 0 and the first Chern classes of the other bundles are non-
trivial, not equal to one and pairwise distinct. Then M0 is a generalized Bott manifold
and in particular a quasitoric manifold over I ×∆n−2, where I is the interval and ∆n−2

denotes an n− 2-dimensional simplex.
Let M1 = CP 1 ×M0 and M2 the blow up of M1 at a single point. The orbit space of

M1 is I × I × ∆n−2. The orbit space of M2 is the orbit space of M1 with a vertex cut
off.
The combinatorial types of the facets of M2/T are given as in table 1 below. Since

the combinatorial types of facets in the lines in this table are pairwise distinct, it follows
that the lines in the table are invariant under the action of Aut(P, λ). Therefore the
facets in the first two lines are fixed by the action of this group. The facets in lines 3
and 4 are fixed, because in each of these lines there appears one facet F with λ(F ) =
{(z, 1, . . . , 1) ∈ Tn; z ∈ S1} but the values of λ on the other facets are distinct.
Finally the facets F1, . . . , Fn−2 in the last line are fixed, by all (f, g) ∈ Aut(P, λ)

because g must permute the subgroups λ(F1), . . . , λ(Fn−2), which are the coordinate sub-
groups in {(1, 1)} × (S1)n−2, and must also fix the subgroups λ(F ′) with F ′ from line
3.
Note that depending on the choices of the bundles E0, . . . , En−2, M2 can be spin or

non-spin.

3. The homotopy groups of D(M,T ) for M a quasitoric

manifold

In this section we show that, for quasitoric manifolds of dimension 2n, n odd, the rational
homotopy groups of D(M,T ) are non-trivial in certain degrees.
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combinatorial type (α1, . . . , αn)

1 ∆n−1 (1, . . . , 1)

1 I × I × ∆n−3 (0, 0, 1, . . . , 1)

2 I × ∆n−2 (1, 0, 0, . . . , 0)
(0, 1, k1, . . . , kn−2)
with ki pairwise distinct and non-zero

2 I × ∆n−2 with vertex cut off (1, 0, 0, . . . , 0)
(0, 1, 0, . . . , 0)

n− 2 I × I × ∆n−3 with vertex cut off (0, 0, 0, . . . , 0, 1, 0, . . . , 0)

Table 1: The combinatorial types of the facets of M2/T . In the first column the numbers
of facets of these type are given. In the last column the values of λ(F ) =
{(zα1 , . . . , zαn) ∈ Tn; z ∈ S1} are given.

Now let M be a quasitoric manifold with orbit polytope P .
Let Dn →֒ P be an embedding into the interior of P such that K = P −Dn is a collar

of P . Then we have a decomposition

M = (Dn × Tn) ∪ π−1(K) = (Dn × Tn) ∪N.

From this decomposition we get a homomorphism ψ : Diff(Dn, ∂Dn) → D(M,Tn) by
letting a diffeomorphism of Dn act on M in the natural way on Dn and by the identity
on Tn and N .

Note that the natural map Diff(Dn, ∂Dn) → Diff(P ) factors through ψ.

Lemma 3.1 For 0 < k < n
6 − 8, n odd and k ≡ −1 mod 4. The natural map

πk(Diff(Dn, ∂Dn)) ⊗Q → πk(Diff(P )) ⊗Q

is injective and non-trivial. In particular ψ induces an injective non-trivial homomor-
phism on these homotopy groups.

Proof. We have exact sequences

1 → Diff(Dn, ∂Dn) → D̃iff(P ) → Diff(K),

where D̃iff(P ) is the group of diffeomorphisms of P which preserve K, and

1 → Diff(K, ∂Dn) → Diff(K) → Diff(∂Dn).

Note that D̃iff(P ) is weakly homotopy equivalent to Diff(P ), by the uniqueness of
collars of P up to isotopy. Moreover, the images of the right-hand maps in the above
sequences have finite index.

In the first sequence this is because the group of those diffeomorphisms of a sphere
which extend to diffeomorphisms of the disc has finite index in all diffeomorphisms of
the sphere.
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For the second sequence one can argue as follows to see that Diff(K) → Diff(∂Dn) is
surjective. Since K is homeomorphic to ∂Dn × I and every diffeomorphism ϕ of ∂Dn is
isotopic to a diffeomorphism of ∂Dn which is the identity on some big embedded disc
Dn−1 ⊂ ∂Dn, ϕ can be extend to a homeomorphism φ of K which satisfies:

There is a facet F of P such that:

• φ is a diffeomorphism on ∂Dn × [0, 12 ] ∪ F̊ × [0, 1].

• φ is the identity on a neighborhood of (∂P − F̊ ) × [12 , 1].

Hence φ is a diffeomorphism of K.
Therefore we get exact sequences of rational homotopy groups

πk+1(Diff(P )) ⊗Q → πk+1(Diff(K)) ⊗Q → πk(Diff(Dn, ∂Dn) ⊗Q → πk(Diff(P )) ⊗Q

and

πk+1(Diff(K, ∂Dn)) ⊗Q → πk+1(Diff(K)) ⊗Q → πk+1(Diff(∂Dn)) ⊗Q.

By Farrell and Hsiang [FH78], we have πk+1(Diff(∂Dn)) ⊗Q = 0.
Moreover every family of diffeomorphisms ofK which lies in the image of πk+1(K, ∂D

n)
extends to a family of diffeomorphisms of P , by defining the extension to be the identity
on Dn.

Therefore the map πk+1(Diff(K)) ⊗ Q → πk(Diff(Dn, ∂Dn) ⊗ Q is the zero map and
the claim follows from Farrell and Hsiang [FH78]. �

4. πk(M+) is non-trivial

In this section we show that πk(M+(M,T )) is non-trivial for manifolds as in Example
2.6.

To do so, we need the following theorem which is an equivariant version of Theorem
2.13 of [Wal11].

Theorem 4.1 Let G be a compact Lie group. Let X be a smooth compact G-manifold of
dimension n and B a compact space. Let B = {gb ∈ R+(X,G) : b ∈ B} be a continuous
family of invariant metrics of positive scalar curvature. Moreover, let ι : G×H (S(V ) ×
D1(W )) → X be an equivariant embedding, with H ⊂ G compact, V,W orthogonal
H-representations with dimG− dimH + dimV + dimW = n+ 1 and dimW > 2.
Finally let gG/H be any G-invariant metric on G/H and gV be any H-invariant metric

on S(V ).
Then, for some 1 > δ > 0, there is a continuous map

B → R+(X,G)

b 7→ gbstd

satisfying
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1. Each metric gbstd makes the map G×H (S(V )×Dδ(W )) → (G/H, gG/H) into a Rie-
mannian submersion. Each fiber of this map is isometric to (S(V )×Dδ(W ), gV +
gtor), where gtor denotes a torpedo metric on Dδ(W ). Moreover gbstd is the original
metric outside a slightly bigger neighborhood of G×H (S(V ) × {0}).

2. The the original map B → R+(X,G) is homotopic to the new map.

The proof of this theorem is a direct generalization of the proof of Theorem 2.13 of
[Wal11] using the methods of the proof of Theorem 2 in [Han08]. Therefore we leave it
to the reader.

Let E be the total space of a Hatcher disc bundle [Goe01] over Sk and fiber Dn with
structure group Diff(Dn, ∂Dn), that is a disc bundle over Sk such that its classifying
map Sk → BDiff(Dn, ∂Dn) represents a non-trivial element in πk(BDiff(Dn, ∂Dn)).

Moreover, let
F = (E × Tn) ∪ (Sk ×N)

with N as in the previous section. Let M1 ⊂ N be a characteristic submanifold and
denote by M̃1 a small equivariant tubular neighborhood of M1. Then F is a bundle over
Sk with fiber the quasitoric manifold M and structure group Diff(Dn, ∂Dn). Note that
F has a natural fiberwise Tn-action.

By Theorem 2.9 of [BHSW10], we have a metric on E with fiberwise positive scalar
curvature. Together with an invariant metric of non-negative scalar curvature on Tn ×
D2 we get from this metric an invariant metric g on ∂(E × Tn × D2) with fiberwise
positive scalar curvature, i.e. the restriction to any fiber of the bundle has positive
scalar curvature.

On (N − M̃1) × D2, there is an equivariant Morse function without critical orbits
of coindex less than three. The global minimum of this Morse function is attained on
(∂N) × D2. Using this Morse function and Theorem 4.1 we get a fiberwise invariant
metric of positive scalar curvature on ∂((F − (Sk × M̃1)) ×D2).

Indeed, using the Morse function, we get an equivariant handle decomposition of
(N−M̃1)×D2, without handles of codimension less than three. Moreover, the restriction
of the bundle ∂(E × Tn × D2) → Sk to (∂E) × Tn × D2 is trivialized by assumption.
So the restriction of g to the fibers of this bundle gives a compact family of invariant
metrics of positive scalar curvature on (∂N) ×D2. Therefore, by Theorem 4.1, we can
do equivariant surgery on (∂N)×D2 to get a fiberwise invariant metric of positive scalar
curvature on ∂((F − (Sk × M̃1)) ×D2).

Note that Berard Bergery’s result [BB83] on the existence of a metric of positive scalar
curvature on the orbit space of a free torus action, generalizes directly to a family version.
This is because Berard Bergery shows that if g is an invariant metric of positive scalar
curvature on a free S1-manifold M , then f2/ dimM−2 · g∗ has positive scalar curvature,
where g∗ is the quotient metric of g and f is the length of the S1-orbits in M . This
construction clearly generalizes to families of metrics. Moreover the metrics on the orbit
space will be invariant under under every Lie group action which is induced on M/S1

from an action on M which commutes with S1 and leaves the metrics on M invariant
(see [Wie16, Theorem 2.2] for the case of a single metric).
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Moreover, note that F is the orbit space of the free action of the diagonal in λ(M1)×S1

on ∂((F − (Sk × M̃1))×D2), where S1 is the circle group which acts by rotation on D2.
Hence, with the remarks from above one gets an invariant metric of fiberwise positive

scalar curvature on F in the same way as in the case of a single metric (see [Wie16,
Proof of Theorem 2.4] for details).

This metric defines an element γ in πk(M+(M,T )) ⊗Q. The image of γ in

πk(M(M,T )) ⊗Q ∼= πk(BD(M,T )) ⊗Q

is represented by the classifying map for our Hatcher bundle E.
Therefore it follows from the lemmas in the previous two sections, that γ is non-trivial

if M is as in example 2.6 because the classifying map of a Hatcher bundle represents a
non-trivial element in the homotopy groups of BDiff(Dn, ∂Dn).

Therefore we have proved the following theorem:

Theorem 4.2 Let M be a quasitoric manifold of dimension 2n as in example 2.6. Then
for 0 < k < n

6 − 7, n odd and k ≡ 0 mod 4, πk(M+) ⊗ Q is non-trivial, where M+ is
some component of M+(M ;Tn).
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On moduli spaces of positive scalar curvature

metrics on certain manifolds

Michael Wiemeler
∗

We show that the homotopy groups of moduli spaces of positive scalar
curvature metrics on certain simply connected spin manifolds are non-trivial.

1. Introduction

In recent years a lot of work was devoted on the study of spaces R+(M) of Riemannian
metrics of positive scalar curvature on a given spin manifold M . Here we only want to
mention the works [BERW14] and [HSS14].

The first work relates the study of the homotopy type of these spaces to certain infinite
loop spaces. It is shown in this paper that infinitely many homotopy groups of these
spaces are non-trivial.

In the second work it was shown that in degrees d much smaller than the dimension n
of the manifold M there are classes in the homotopy groups πd(R+(M)), which descend
to non-trivial classes in the homotopy groups of the observer moduli space of positive
scalar curvature metrics on M , if M fulfills some technical condition.

In this note we combine the results and methods of the above mentioned papers to
prove the following theorem.

Theorem 1.1 Let M be a closed spin manifold of dimension n ≥ 6 which admits a
metric of positive scalar curvature. If k = 4s−n−1 > 2n, s ∈ Z and g0 ∈ R+(M), then

πk(R+(M), g0) ⊗Q → πk(M+
observer(M), g0) ⊗Q

has non-trivial image.

If moreover, there is no non-trivial orientation-preserving action of a finite group on
M , then

πk(R+(M), g0) ⊗Q → πk(M+
0 (M), g0) ⊗Q

has non-trivial image.

Here M+
0 (M) = R+(M)/Diff0(M) denotes the moduli space of metrics of positive

scalar curvature with respect to the group Diff0(M) of orientation-preserving diffeomor-
phisms of M .

∗The research for this work was supported by DFG-Grant HA 3160/6-1.
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Examples of manifolds on which no finite group acts non-trivially and orientation-
preserving have been given by Puppe [Pup95]. These examples are simply connected spin
manifolds of dimension six. Therefore they admit metrics of positive scalar curvature.

Moreover, we show the following result:

Theorem 1.2 Let n > 1. Then in the image of the map

π1(R+(S4n−2)) → π1(M+
0 (S4n−2))

there are elements of infinite order.

As far as we know, these are the first examples of elements in the fundamental group
of the space of positive scalar curvature metrics which decent to elements of infinite
order in the fundamental group of M+

0 (S4n−2). Note that, by [Wal14], π1(R+(S4n−2))
is abelian. The space R+(S2) is known to be contractible [RS01]. Hence, the above
theorem is false for n = 1.

This note is structured as follows. In the next Section 2 we proof Theorem 1.1.
In Section 3 we recall some transversality results in the context of infinite dimensional
manifolds. Then in Section 4 we recall Ebin’s slice theorem and some of its consequences.
In the Section 5 we give the proof of Theorem 1.2. Finally in Section 6 we show that our
methods are not fine enough to deal with the moduli space of positive scalar curvature
metrics with respect to the full diffeomorphism group.

2. The proof of Theorem 1.1

Our proof of Theorem 1.1 is based on the following result:

Theorem 2.1 ([BERW14, Theorem A]) Let M be a closed spin manifold of dimen-
sion n ≥ 6. If k = 4s− n− 1 ≥ 0 and g0 ∈ R+(M), then the map

Ak ⊗Q : πk(R+(M), g0) ⊗Q → Q

is surjective.

Here Ak denotes the secondary index invariant for metrics of positive scalar curvature
metrics. There are two definitions for this invariant one is by Hitchin [Hit74], the other
is by Gromov and Lawson [GL83].

As shown in [Ebe14], these two definitions lead to the same invariant. This is impor-
tant for our work because we use results of [BERW14], where mainly the first definition
is used, and of [HSS14], where the definition of Gromov and Lawson is used.

We also need the following definition from [HSS14]:

Definition 2.2 LetM be an oriented closed smooth manifold. We callM a Â-multiplicative
fiber in degree k if for every oriented fiber bundle M → E → Sk+1 we have Â(E) = 0.

For Â-multiplicative manifolds the following is known:
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Theorem 2.3 Let M be a closed spin manifold and k ≥ 2. If M is a Â-multiplicative
fiber in degree k, then the following holds:

1. The map Ak ⊗Q from above factors through πk(M+
observer(M), g0) ⊗Q.

2. If there is no non-trivial smooth orientation-preserving action of a finite group on
M then Ak ⊗Q factors through πk(M+

0 (M), g0) ⊗Q.

Proof. The first statement is proved in [HSS14, Section 2]. The proof of the second
statement is similar. Since there is no non-trivial orientation-preserving smooth action
of a finite group on M the isometry group of any Riemannian metric on M contains at
most one orientation-reversing involution and the identity. Therefore the group Diff0(M)
of orientation-preserving diffeomorphisms acts freely on R+(M).

In particular, there is an exact sequence

πk(Diff0(M)) ⊗Q → πk(R+(M)) ⊗Q → πk(M+
0 ) ⊗Q

Since M is an Â-multiplicative fiber in degree k it follows from the arguments in
[HSS14, Section 2] that Ak ⊗ Q vanishes on the image of πk(Diff0(M)) ⊗ Q. Therefore
the theorem follows. �

Our Theorem 1.1 now follows from the above two theorems and the following lemma.

Lemma 2.4 LetM be a closed oriented smooth manifold of dimension n ≥ 1. If k > 2n,
then M is a Â-multiplicative fiber in degree k.

Proof. Let M → E → Sk+1 be a smooth oriented fiber bundle. The tangent bundle
of E is isomorphic to p∗(TSk+1) ⊕ V where V is the bundle along the fiber. Since
TSk+1 is stably trivial, it follows that TE and V are stably isomorphic. Therefore the
Pontrjagin classes of E are concentrated in degrees smaller or equal to 2n. Moreover,
since n < k, it follows from an inspection of the Serre spectral sequence for the fibration
that Hj(E;Q) = 0 for n < j < k + 1. Because of 2n < k the Pontrjagin classes of E
are concentrated in degrees smaller or equal to n. Moreover it follows that all products
of these classes of degree greater than n must vanish. In particular all the Pontrjagin
numbers of E vanish and the theorem is proved. �

3. Transversality

In this section we start to collect the necessary material for the proof of Theorem 1.2.
We need the following transversality result for maps into infinite dimensional manifolds.

Lemma 3.1 Let F be a topological vector space and p : F → Rn+1 a continuous linear
surjective map and U ⊂ F an open neighborhood of zero.
If f : Dn → F is a continuous map and K1, . . . ,Km ⊂ Dn are compact such that there

are open U1, . . . , Um ⊂ U with f(Ki) ⊂ Ui, then there is a continuous map f ′ : Dn → U ,
such that
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1. f ′(Dn
1/2) ⊂ U − {0},

2. there is a homotopy ht from f to f ′, such that ht(Ki) ⊂ Ui for all t and i and
ht|∂Dn = f |∂Dn.

Proof. The existence of p guarantees that F is isomorphic as a topological vector
space to Rn+1 × F ′ for some closed subvector space F ′ ⊂ F . Therefore the Lemma
follows from the finite dimensional case F = Rn+1. This case follows from transversality
considerations. �

Remark 3.2 If there is a continuous scalar product on an infinite dimensional topolog-
ical vector space, then there is always a map p as above. One can take the orthogonal
projection onto some n+ 1-dimensional subvector space.

4. Consequences of Ebin’s slice theorem

Ebin [Ebi70] showed the following theorem:

Theorem 4.1 Let R be the space of Riemannian metrics on a closed manifold M ,
g ∈ R.
Then there is a neighborhood N of g, which is homeomorphic to an open subset of V ×

E, where V is a neighborhood of Id ∈ Diff(M)/ Iso(g) and E is an infinite dimensional
Iso(g)-representation.

Moreover he gives a description of the Diff(M)-action on V × E.
From the proof of this theorem it follows that E is isomorphic as a topological vector

space to EIso(g)×F , where F is a Iso(g)-invariant closed subspace of E. Moreover, there
is a continuous scalar product on E so that the remark of the previous section applies
to E and F . Note that Bourguignon [Bou75, Proposition III.20] has shown that F is
infinite dimensional if Iso(g) is non-trivial.

Furthermore, it follows that the minimal stratum in N is given by V × EIso(g). In
particular, maps from finite dimensional manifolds to N can be made transverse to the
minimal stratum.

For g′ ∈ N , Iso(g′) is conjugated in Diff(M) to a subgroup of Iso(g).
If γ : I → N/Diff(M) = E/ Iso(g) is a path, then this path can be lifted to a path in

N (see [Bre72, Chapter II.6]).
Denote by M the moduli space of all Riemannian metrics on the closed manifold M

and by Mm,k the moduli space of Riemannian metrics on M with dim Iso(g) < m or
(dim Iso(g) = m and | Iso(g)/ Iso(g)0| ≤ k).

Then we have:

1. M is locally homeomorphic to orbit spaces of infinite dimensional representations
of compact Lie groups. We call the charts which correspond to these local models
“Ebin charts”, denoted by E/G.
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2. Mm,k−1 ⊂ Mm,k ⊂ M is open.

Since Sn and Dn+1 are compact for all n ∈ N the following statements follow from
the second point above.

3. πn(Mm,0) = limk πn(Mm−1,k)

4. πn(M) = limm πn(Mm,0)

5. ker(πn(Mm,k) → πn(Mm+1,0)) = limj ker(πn(Mm,k) → πn(Mm,j))

6. ker(πn(Mm,0) → πn(M)) = limj ker(πn(Mm,0) → πn(Mj,0))

7. similar statements hold for homology groups.

5. The proof of Theorem 1.2

In the following R, M, etc. can be defined as in the previous section, or as Diff(M)-
invariant open subspaces.

Lemma 5.1 The map π1(Mm,k−1) → π1(Mm,k) is surjective.

Proof. Let γ : I → Mm,k with γ(0) = γ(1) ∈ Mm,k−1.
Then there are finitely many intervals [aj , bj ] ⊂]0, 1[, so that γ([aj , bj ]) is contained in

an Ebin chart and γ−1(Mm,k −Mm,k−1) ⊂
⋃
j [aj , bj ].

The path γ|[aj ,bj ] can be lifted to a path in an Ebin slice E. There it can be made
transversal to the minimal stratum. Since the complement of the minimal stratum in
an Ebin chart is connected, γ is homotopic to a closed curve in Mm,k−1. �

Lemma 5.2 The kernel of the map π1(Mm,k−1) → π1(Mm,k) is generated by torsion
elements.

Proof. Let γ : I → Mm,k−1 be a closed curve and λ : I × I → Mm,k a null homotopy
of γ.

Then there are finitely many discs D2
1, . . . , D

2
j ⊂ I × I − ∂(I × I) with piecewise

C1-boundary, such that:

1. λ−1(Mm,k −Mm,k−1) ⊂
⋃
i(D

2
i − ∂D2

i )

2. λ(D2
i ) is contained in an Ebin chart.

Without loss of generality we may assume, that there is a curve σ : I → I × I from
the base point to the boundary of D2

k such that σ(t) 6∈ ⋃D2
i for t 6= 1.

Cutting I × I along σ leads to a homotopy from γ to λ(σ ∗ ∂D2
k ∗ σ−1).

Now we can lift λ(∂D2
k) to a curve in an Ebin slice and make it transversal to the

minimal stratum. This leads to a homotopy λ′ : I × I → Mm,k from γ to λ(σ ∗ ∂(D2
k)

′ ∗
σ−1) with
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1. λ′(∂(I × I)) ⊂ Mm,k−1

2. λ′−1(Mm,k −Mm,k−1) is contained in k − 1 discs as above.

By induction we see that γ is homotopic in Mm,k−1 to

σ1 ∗ ∂D2
1 ∗ σ−1

1 ∗ σ2 ∗ ∂D2
2 · · · ∗ σ−1

k .

Therefore it suffices to show that closed curves δ which are contained in an Ebin chart
are torsion elements.

To do so, lift δ to an Ebin slice. Let δ′ be the lift of δ. Let G be the compact Lie
group which acts on this slice. Then there is a g ∈ G, such that gδ′(0) = δ′(1). Let k be
the order of the class of g in G/G0.

Then

δ′ ∗ gδ′ ∗ · · · ∗ gk−1δ′

is a lift of δk, which ends and starts in the same component of Gδ′(0). Therefore δk

can be lifted to a closed curve in the Ebin slice. Since the complement of the minimal
stratum in the Ebin slice is contractible, it follows that δ is torsion. �

Corollary 5.3 The kernel of H1(M0,1) → H1(M) is torsion.

Proof. It follows from the two lemmas above that the kernels of the mapsH1(Mm,k−1) →
H1(Mm,k) are torsion.

To see this note that H1(Mm,k) = π1(Mm,k)/Cm,k, where Cm,k denotes the commu-
tator subgroup.

Let γ ∈ π1(Mm,k−1) such that [γ] = 0 ∈ H1(Mm,k). We have to show that γ is
contained in a normal subgroup of π1(Mm,k−1) which is generated by torsion elements
and Cm,k−1. Since [γ] = 0 ∈ H1(Mm,k), we have γ ∈ Cm,k ⊂ π1(Mm,k). Because
Cm,k−1 → Cm,k is surjective by the first lemma, it follows from the second lemma that
up to torsion elements γ is contained in Cm,k−1. This proves the claim.

The next step is to show that the kernels ofH1(M0,1) → H1(M1,0) andH1(Mm−1,0) →
H1(Mm,0) are torsion. This follows from 5 and 7 in the previous section, by taking the
limit.

Therefore the statement follows from 6 and 7 in the previous section, by taking the
limit. �

Corollary 5.4 Let n > 1. Then in the image of the map

π1(R+(S4n−2)) → π1(M+
0 (S4n−2))

there are elements of infinite order.
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Proof. It follows from transversality considerations that π1(R+
0,1) → π1(R+) is an

isomorphism. Using Theorem 2.1 one sees as in the proof of Theorem 2.3 that there are
elements of infinite order in the image of the map π1(R+

0,1(S
4n−2)) → π1(M+

0,1(S
4n−2)),

whose image in H1 has infinite order. Therefore the statement follows from the above
corollary. �

6. Remarks on orientation-reversing isometries

In this section, we show that the index difference Ak ⊗Q cannot be used to detect non-
trivial elements in πk(M+(M)) ⊗ Q if there is an orientation-reversing diffeomorphism
ϕ of finite order in Diff(M) which leaves some metric g0 of positive scalar curvature
invariant. Here M+(M) denotes the moduli space of positive scalar curvature metrics
on the spin manifold M with respect to the full diffeomorphism group of M .

To be more precise we have the following theorem.

Theorem 6.1 Let M , ϕ and g0 as above. Assume H1(M ;Z2) = 0. Then any element
in the image of the map πk(R+, g0) ⊗ Q → πk(M+, g0) ⊗ Q can be represented by an
element g′ ∈ πk(R+, g0) ⊗Q with Ak(g

′) = 0, k ≥ 2.

Proof. Let m be the order of ϕ and ζ a primitive m-th root of unity. We first prove
the theorem with Q replaced by Q[ζ] and will then indicate how the theorem follows.

Since g0 is fixed by the action of ϕ on R+, there is a natural induced action of ϕ on
πk(R+, g0)⊗Q[ζ]. This Q[ζ]-vector space decomposes as a direct sum of the eigenspaces
of ϕ∗.

To see this note that, for v ∈ πk(R+, g0) ⊗Q[ζ],

Wv = 〈ϕl∗(v); l ∈ Z〉

is a finite dimensional ϕ∗-invariant subvector space of πk(R+, g0) ⊗Q[ζ] because ϕ has
finite order. Since the minimal polynomial of the restriction of ϕ∗ to Wv (a divisor of
Xm − 1), splits over Q[ζ] as a product of linear factors each appearing with multiplicity
one, ϕ∗|Wv is diagonizable. Because v ∈Wv, it follows that v is the sum of eigenvectors
of ϕ∗.

The kernel of the natural map πk(R+, g0) ⊗ Q[ζ] → πk(M+, g0) ⊗ Q[ζ] contains all
eigenspaces of ϕ∗ except the one corresponding to the eigenvalue 1. This is because, for
g′ ∈ πk(R+) ⊗Q[ζ], g′ − ϕ∗g

′ is clearly contained in this kernel.
Therefore it suffices to show that Ak ⊗ Q[ζ] vanishes on this eigenspace. To see this

we note that for g′ ∈ πk(R+, g0) we have

Ak(g
′) = −Ak(ϕ∗g

′) (6.1)

by the Gromov-Lawson definition of the index difference and the fact that ϕ is an
orientation-reversing isometry of g0. Note here that since H1(M ;Z2) = 0 there is a
unique spin structure on M . Therefore ϕ : M → −M is spin preserving.
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To get the statement of the theorem with coefficients in Q and not in Q[ζ], note that
the Galois group H of the field extension Q[ζ]|Q is finite and acts with fixed point set
πk(R+, g0)⊗Q on πk(R+, g0)⊗Q[ζ]. Therefore, if g′ ∈ πk(R+, g0)⊗Q[ζ] with Ak(g

′) = 0
and [g′] ∈ πk(M+, g0) ⊗Q, we have

Ak(
1

|H|
∑

h∈H

h(g′)) =
1

|H|
∑

h∈H

h(Ak(g
′)) = 0,

1

|H|
∑

h∈H

h(g′) ∈ πk(R+, g0) ⊗Q

and

[
1

|H|
∑

h∈H

h(g′)] =
1

|H|
∑

h∈H

h([g′]) = [g′] ∈ πk(M+, g0) ⊗Q.

Hence, the theorem is proved. �

The examples of Puppe mentioned in the introduction have orientation-reversing in-
volutions. Therefore with our methods one can not do better than in our Theorem 1.1.
But we also want to mention that many positively curved manifolds such as spheres
and complex projective spaces of odd complex dimensions admit orientation-reversing
isometric involutions.
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