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Abstract

Several choices of scaling are investigated for a coupled system of parabolic
partial differential equations in a two-phase medium at the microscopic scale.
This system may be regarded as modelling a reaction–diffusion problem, the
Stokes problem of single-phase flow of a slightly compressible fluid or as a
heat conduction problem (with or without interfacial resistance), for exam-
ple. It is shown that, starting with the same problem on the microscopic scale,
different choices of scaling of the diffusion coefficients (resp. permeability or
conductivity) and the interfacial-exchange coefficient lead to different types of
macroscopic systems of equations. The characterisation of the limit problems
in terms of the scaling parameters constitutes a modelling tool because it al-
lows to determine the right type of limit problem. New macroscopic models,
not previously dealt with, arise and, for some scalings, classical macroscopic
models are recovered. Using the method of two-scale convergence, a unified
approach yielding rigorous proofs is given covering a very broad class of dif-
ferent scalings.

Keywords: Homogenization, reaction–diffusion equations, multiscale, bound-
ary value problems for parabolic systems, porous media

1 Introduction

In this paper, homogenisation of a coupled system of two partial differential equa-
tions is investigated, i.e. we are interested in obtaining the system of equations
describing the effective behaviour at the macroscopic scale. The specific setting is
such that we are looking at a two-phase medium (a porous medium or a two-phase
alloy, e.g.) made up of two distinct parts (solid matrix and voids, e.g.) and each
equation describes the behaviour of an unknown in one part of the medium. The
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two equations are coupled by an exchange across the internal boundary separating
the two parts. The system of equations we are considering can be used to model
different physical processes such as a reaction–diffusion problem, the Stokes problem
of single-phase flow of a slightly compressible fluid or as a heat conduction problem
(with or without interfacial resistance) amongst others.

The idea of periodic homogenisation is to assume the heterogeneous material to
be periodic with respect to a reference cell scaled by a (small) scale parameter. The
macroscopic limit problem is then obtained by letting this scale parameter tend to
zero. To a certain extent, the periodicity assumption can be relaxed (cf. [1, 2]) and
the reference cell may change with time (cf. [3]) but this is not the focus of this
work. Instead, the objective of this paper is to investigate the influence of different
choices of scaling of the coefficients of the partial differential equations with powers
of the scale parameter on the corresponding macroscopic limit problem. It turns
out that depending on the choice of these powers, different types of macroscopic
problems are obtained in the limit. Usually, it is somewhat up to the modelling
of the specific problem which choice (or range) of scaling exponents is appropriate
(cf. [4, 5, 6], e.g.). It can be motivated by a non-dimensionalisation (cf. [7, 2]) or by
geometric arguments (cf. [8], e.g.). Hence, the characterisation of the types of limit
problems depending on the scaling exponents an also be considered as a modelling
tool because it suggests which are the correct (i.e. process-adapted) macroscopic
problems.

To be more specific, we consider an open bounded material body Ω ⊂ Rn,
n ≥ 2, with Lipschitz-continuous boundary, which is a mixture of two different
phases. The part of Ω made up of the first material is denoted by Ωp while the
other part is labelled with Ωs. To fix ideas, Ω is assumed to be a porous medium
(motivating the superscripts p and s) although any two-phase composite material can
be imagined. It is assumed that Ω is periodic with respect to a scaled representative
cell Y = (0, 1)n, which contains a solid particle, Zs and void (pore) space Zp (each
being an open bounded domain with Lipschitz-continuous boundary), i.e. Ω is the
union of a finite amount of translated versions of εY . Then, Ωα

ε = Ω ∩ int
⋃
k εZ

α
k ,

α ∈ {p, s}, where the subscript k denotes translation of the set by k ∈ Zn and ε
indicates the ε-periodic geometry of the domain. It can be noted that Zs may or
may not be completely contained in Y so that Ωs

ε may either be connected or not.
However, Ωp

ε is assumed connected and, for n = 2, this implies that Ωs
ε may not be

connected. Moreover, we assume that the representative cell is periodic, by which
we mean that opposite faces of the cell are identical. The characteristic function of
Zα is denoted by χα : Y → {0, 1}, α ∈ {p, s}, and we write χαε (x) = χα(x/ε) where
χα has been extended periodically. The interface between Ωp

ε and Ωs
ε (internal to

Ω) is denoted by Γε and the considered time interval is labelled with S = (0, T ).
The idea of periodic homogenisation (cf. [9, 10], e.g.) is then to examine the limit
as ε approaches zero in order to obtain averaged problems defined in all of Ω which
are easier to treat numerically and give useful information about macroscopically
observable processes.

We consider the problem of diffusion (and reaction) of a species in the two parts
of the porous medium. Denoting its mass concentration by u, the diffusion and
reaction of the species in the pores and the solid matrix as well as an exchange
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between the two phases can be described by

∂tu
p
ε(x, t)−∇ · (εkDp

ε∇up
ε) = fp

ε , x ∈ Ωp
ε , t ∈ S,

∂tu
s
ε(x, t)−∇ · (εlDs

ε∇us
ε) = f s

ε , x ∈ Ωs
ε, t ∈ S,

(1a)

−(εkDp
ε∇up

ε) · νp
ε = (εlDs

ε∇us
ε) · νs

ε, x ∈ Γε, t ∈ S,
−(εkDp

ε∇up
ε) · νp

ε = εmaε(u
p
ε − us

ε), x ∈ Γε, t ∈ S.
(1b)

The scaling exponents k, l and m are real numbers and k, l ≥ 0. Owing to the
symmetry of the problem, we assume k < l if k 6= l without restriction of generality.
The values of the scaling exponents can be motivated by a non-dimensionalisation,
e.g. According to [7], the values of the numbers k, l and m are related to the charac-
teristic times of diffusion associated with up

ε and us
ε and the speed of the interfacial

exchange, respectively, as well as the characteristic macroscopic and microscopic
length scales.

Let

V(Ω) = L2(0, T ;W 1,2(Ω)), V (Ω) = {u ∈ V(Ω) | ∂tu ∈ L2(Ω× (0, T ))}, (2)

(u(t) | v(t))Ω =

∫
Ω

u(x, t)v(x, t) dx, (u | v)Ω,t =

∫ t

0

(u(t) | v(t))Ω dt, (3)

|u(t)|2Ω = (u(t) |u(t))Ω and |u|2Ω,t = (u |u)Ω,t. The (standard) weak form of problem
(1) reads as follows: Find (up

ε , u
s
ε) ∈ V(Ωp

ε) × V(Ωp
ε) such that (up

ε(0), us
ε(0)) =

(up
0, u

s
0) ∈ [L2(Ω)]2 and

(∂tu
p
ε(t) |φ(t))Ωp

ε
+ εk(Dp

ε (t)∇up
ε(t) | ∇φ(t))Ωp

ε

= (fp
ε (t) |φ(t))Ωp

ε
− εm(f ex

ε (t) |φ(t))Γε ,
(4a)

(∂tu
s
ε(t) |ψ(t))Ωs

ε
+ εl(Ds

ε(t)∇us
ε(t) | ∇ψ(t))Ωs

ε

= (f s
ε(t) |ψ(t))Ωs

ε
+ εm(f ex

ε (t) |ψ(t))Γε

(4b)

for all (φ, ψ) ∈ V(Ωp
ε)× V(Ωs

ε) and a.e. t ∈ S.
Depending on the choice of boundary conditions at the exterior boundary of Ω,

additional terms may appear in (4a) and (4b) or the space V needs to be chosen
slightly differently. Different reasonable options are possible, but as these do not
pose problems in the homogenisation process (other than of technical nature), they
are not explicitly included in the formulation of the problem. For simplicity, we
assume homogeneous Neumann conditions at all external boundaries.

For the coefficients of the system, we assume that their space variables can
each be split into a macroscopic and a microscopic one (often called slow and fast
component): We assume that there exist functions Dα = Dα(x, y, t), x ∈ Ωα

ε , y ∈
Zα, t ∈ S, bounded from above and away from zero and periodically extended in y,
such that Dα

ε = Dα(x, x/ε, t), α ∈ {p, s}, and, analogously, for aε and fαε , α ∈ {p, s}.
These function are extended to all of Ω by zero. We further assume

lim
ε→0
|Dα

ε (t)|2Ω = |Dα(t)|2Ω×Y , lim
ε→0

ε|aε(t)|2Γε = |a(t)|2Ω×Γ. (5)

At this point, it should be noted that several classical homogenisation problems
can be recovered from this system. For example, the distributed-microstructure
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model of [8] modelling the flow of a slightly compressible fluid in a fissured medium
is obtained for k = 0, l = 2, m = 0. The parallel-flow model for basically the
same physical application (the macromodel of which has been suggested by [11]) is
obtained for k = 0, l = 0, m = 1 (cf. [12] for the stationary case). The problem
of miscible displacement in a porous medium has been considered by [13] where
also a Robin-type transmission condition at the pore-matrix interface is assumed.
Here, the choice of scaling was k = 0, l = 2, m = 1. A similar problem was
also considered by [14], where the us

ε is a surface concentration on Γε. Numerous
other examples of special cases of problem (1) can be found in the literature where
convergence has been proven or the macroscopic equations where formally derived by
asymptotic expansion, cf. [1, 15, 16] and references given therein. We finally would
like to mention [17], where k = 0, m = 1 and an ordinary differential equation
for us

ε is assumed but the exchange term may be more general, that is monotone
or a maximal-monotone graph, and the work of [18], who considered the problem
with k = 0, l = 2, m = 1 and a rather general exchange term as well as certain
concentration-dependent reaction rates.

Moreover, similar problems have been investigated for varying choices of scal-
ing. A related problem is discussed in [19] where a matched boundary condition is
assumed at the pore-matrix interface and k = 0 is fixed but different choices of l
are distinguished. It must also be noted that in these considerations, Ωs

ε is assumed
disconnected. For k = l = 0 and varying m, similar problems have been studied
quite extensively. For example, [4] seem to be the first to examine different choices
of m by formal techniques. Most notably, [20] (rigorously) discuss the stationary
version of problem (1) with k = l = 0 varying m. It is also worth mentioning
[21] who examines (but does not rigorously prove) the case k = l = 0 for different
choices of m as well as [22], [23] and [24] who particularly investigate the case of Ωs

ε

being disconnected. Moreover, [25] rigorously treats the case where Ωp
ε and Ωs

ε are
separated by a (three-dimensional) layer and [6] discuss different choices of l and
m where k = 0 by formal techniques for a similar problem. Finally, in the mono-
graph [26], the influence of certain different scalings in porous-media-flow problems
is extensively discussed from a more applied point of view.

Therefore, the homogenisation results for (4) found in the literature are limited
to k = l = 0 and m arbitrary as well as k = 0, l = 2, m = 1. New scalings considered
in this work particularly include k ≥ 0, l > 0, and m arbitrary. The most interesting
new limit problems arise for k = 0, m = −1 and different values of l ≥ 0.

In what follows, the convergence of problem (4) is examined using two-scale
convergence yielding a unified and mathematically rigorous way of obtaining the as-
sociated macroscopic limit problems depending on the choice of scaling exponents.
First, the macroscopic limit problems associated with problem (4) are stated de-
pending on k, l and m in §2. Classical results found in the literature are recovered
and new macroscopic problems are obtained. In §3, a-priori estimates for the solu-
tions are proven and the convergence of the sequences of solutions is discussed in the
context of two-scale convergence. Classical results are briefly summarised, where the
distinction of Ωs

ε being connected or disconnected is of relevance, and new results
are presented concerning the two-scale convergence of the interfacial-exchange term.
In §4, these results are used to determine the limit problems (stated in §2).
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2 The macroscopic limit problems – summary of

the results

The macroscopic limit problems of problem (4) are now stated. We denote the limit
functions of up

ε and us
ε as ε → 0 by up and us, respectively. Obviously, different

choices of the scaling exponents k, l and m need to be distinguished. In §4, the
convergence is rigorously proven.

To simplify notation, the superscript α is introduced which, if not stated oth-
erwise, stands for p and s, i.e. statements about Dα apply to Dp and Ds, e.g.
Furthermore, when referring to uα, the scaling exponent is denoted by λ, i.e. λ = k
if α = p and λ = l if α = s. The limits of the right-hand sides, fαε , are denoted by
fα.

In order to be able to write the macroscopic limit equations in a simple way, two
factors are introduced:

θ(λ) =

{
1, λ = 0 or λ = 2,

0, 0 < λ < 2 or λ > 2,
, σα(m) =


−1, α = p, m = 1,

1, α = s, m = 1,

0, α ∈ {p, s}, m 6= 1.

(6)

It is useful to distinguish the cases m < 1 and m ≥ 1 as these correspond
to particularly different limit behaviours. It turns out that independently of the
choice of m, uα is independent of y if λ < 2. Moreover, the homogeneous Neumann
boundary conditions on the external boundary of Ω are recovered. This is also
formally true for the case that ∂Ωα

ε ∩ ∂Ω = ∅. After the statements of the limit
problems in §2.1 (for m < 1) and §2.2 (for m ≥ 1), a qualitative summary is given
in §2.3.

2.1 The case m < 1

We begin with the case m < 1. All of the following results, except for the special
case k = l = 0, seem to be new. For m < 1, it turns out that the limit functions
satisfy up(x, y, t) = us(x, y, t) for a.e. x ∈ Ω, y ∈ Γ, t ∈ S. It therefore makes sense
to define

u(x, y, t) = χp(y)up(x, y, t) + χs(y)us(x, y, t) (7)

and to look for the one equation satisfied by u. For ease of notation, we also define

f(x, y, t) = χp(y)fp(x, y, t) + χs(y)f s(x, y, t) (8)

and, analogously, D.
We require the solutions of the following cell problem: Let ςm,lj , j = 1, . . . , n, be

the Y -periodic solution of the cell problem

−∇y · (D(x, y, t)(∇yς
m,l
j (x, y, t) + ej)) = 0, y ∈ X, x ∈ Ω, t ∈ S, (9)
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where, if l = 0, X = Zp ∪ Zs subject to the following boundary conditions on Γ,

−Dα(∇y(ς
m,l
j )α + ej) · να = 0, if m > −1,

−Dα(∇y(ς
m,l
j )α + ej) · να + σα(1)a[(ςm,lj )p − (ςm,lj )s] = 0, if m = −1,

(ςm,lj )p − (ςm,lj )s = 0,

−Dp(∇y(ς
m,l
j )p + ej) · νp −Ds(∇y(ς

m,l
j )s + ej) · νs = 0,

}
if m < −1,

(10)

and, if l > 0, X = Zp subject to the following boundary conditions on Γ,

−Dp(∇yς
m,l
j + ej) · να = 0, if m > −1,

−Dp(∇yς
m,l
j + ej) · νp + a(ςm,lj + y · ∇u) = 0, if m = −1,

ςm,lj = 0, if m < −1.

(11)

This allows the definition of the tensors Pm,l = [pm,lij ]ij via

pm,lij (x, t) =

∫
Y

D(x, y, t)(δij + ∂yiς
m,l
j (x, y, t)) dy, (12)

Note that in the case l > 0 and m = −1, this tensor is dependent on ∇u.
The limit problems can now be stated (where an additional assumption is nec-

essary if k 6= l and m ≤ k − 1, cf. (40)):
If 0 ≤ k, l < 2, the macroscopic limit problem of problem (4) is given by

(∂tu(t) |φ(t))Ω + θ(k) (Pm,l(t)∇u(t) | ∇φ(t))Ω = (

∫
Y

f( · , y, t) dy |φ(t))Ω (13)

for all φ ∈ V(Ω) and a.e. t ∈ S.
If k, l ≥ 2, the macroscopic limit problem is given by

(∂tu(t) |ψ(t))Ω×Y + θ(k) (D(t)∇yu(t) | ∇yψ(t))Ω×Zp

+ θ(l) (D(t)∇yu(t) | ∇yψ(t))Ω×Zs = (f(t) |ψ(t))Ω×Y (14)

for all ψ ∈ W(Y ) and a.e. t ∈ S where ψp = ψs on Γ and, moreover, ψp = 0 on Γ
if k 6= l (this is the case if there is a diffusion term; if not, the corresponding test
function only has to be in L2(Ω× Zα × (0, T ))). The space W( · ) is defined as

W(Y ) = L2((0, T )× Ω;W 1,2
# (Y ))), (15)

where the subscript # denotes periodicity.
If k < 2 and l ≥ 2 and we have an additional estimate of the type (54) (cf. the
discussion in §4), the limit problem is given by

|Zp|(∂tup(t) |φ(t))Ω + θ(k) (Pm,l(t)∇up(t) | ∇φ(t))Ω

= −θ(l) (

∫
Γ

Ds( · , y, t)∇yu
s( · , y, t) · νs dσy |φ(t))Ω + (

∫
Zp

fp( · , y, t) dy |φ(t))Ω,

(16a)

(∂tu
s(t) |ψ(t))Ω×Zs + θ(l) (Ds(t)∇yu

s(t) | ∇yψ(t))Ω×Zs = (f s(t) |ψ(t))Ω×Zs (16b)

for all (φ, ψ) ∈ V ×W(Zs), where ψ = 0 on Γ, and a.e. t ∈ S, together with us = up

on Γ. Note that the tensor Pm,l only appears in the above equations if k = 0.
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2.2 The case m ≥ 1

If m ≥ 1, the limit functions up and us need to be considered separately. Therefore,
it suffices to discuss the limit problem associated with uα. The total limit problem
of (4) is then given by the respective equations for α = p and α = s. Classical
results from the literature are recovered for k = l = 0, m ≥ 1 as well as k = 0, l = 2,
m = 1, while new results are obtained for the other scalings, in particular for k ≥ 0,
0 < l < 2, m ≥ 1.

The solutions of two cell problems are required. Let ςαj , j = 1, . . . , n, be the
Y -periodic solution of the cell problem

−∇y · (Dα(x, y, t)(∇yς
α
j (x, y, t) + ej)) = 0, y ∈ Zα, x ∈ Ω, t ∈ S,

−Dα(x, y, t)(∇yς
α
j (x, y, t) + ej) · να = 0, y ∈ Γ, x ∈ Ω, t ∈ S.

(17)

This allows the definition of the tensors Pα = [pαij]ij via

pαij(x, t) =

∫
Zα
Dα(x, y, t)(δij + ∂yiς

α
j (x, y, t)) dy. (18)

In order to be able to write the macroscopic limit equations in a simple way, the
limit of the interfacial-exchange term is written as

f ex(x, y, t) = a(x, y, t)(up(x, y, t)− us(x, y, t)). (19)

The limit problems can now be stated where m > 1 is required if l > 2:
If 0 ≤ λ < 2, the limit function is of the form uα = uα(x, t) and the macroscopic
limit problem is given by

|Zα|(∂tuα(t) |φ(t))Ω + θ(λ) (Pα(t)∇uα(t) | ∇φ(t))Ω

= (

∫
Zα
fα( · , y, t) dy |φ(t))Ω + σα(m)(

∫
Γ

f ex( · , y, t) dσy |φ(t))Ω (20)

for all φ ∈ V(Ω) and a.e. t ∈ S.
If λ ≥ 2, the limit function is of the form uα = uα(x, y, t) and the macroscopic limit
problem is given by

(∂tu
α(t) |ψ(t))Ω×Zα + θ(λ) (Dα(t)∇yu

α(t) | ∇yψ(t))Ω×Zα

= (fα(t) |ψ(t))Ω×Zα + σα(m)(f ex(t) |ψ(t))Ω×Γ (21)

for all ψ ∈ W(Zα) and a.e. t ∈ S.

2.3 Qualitative summary

Qualitatively, we have the following limit behaviour depending on the scaling of the
diffusion term of the corresponding species:

• λ = 0: macroscopic diffusion.

• λ = 2: microscopic diffusion.
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• 0 < λ < 2 or λ > 2: no diffusion.

The limit behaviour of the interfacial-exchange term can be summarised as follows:

• m > 1: no interfacial exchange.

• m = 1: interfacial exchange is governed by a macroscopic volume term; no
microscopic interfacial exchange.

• −1 < m < 1: infinitely fast interfacial exchange on the macroscopic scale; no
microscopic interfacial exchange.

• m = −1: infinitely fast interfacial exchange on the macroscopic scale; micro-
scopic interfacial exchange.

• m < −1: infinitely fast interfacial exchange on both the macroscopic and the
microscopic scale.

3 Convergence of the micro-solutions

In this section, ε-independent a-priori estimates for the solutions of the microscopic
problems are obtained first. Then, the convergence of sequences satisfying such a-
priori estimates is generally discussed in the context of two-scale convergence. For
this purpose, some well-known results are summarised and formulated in the general
context considered here and new results required due to the broad range of choices
of parameters k, l and m are developed.

3.1 A-priori estimates

Theorem 3.1
For fixed 0 < ε ≤ 1, there exists a solution (up

ε , u
s
ε) ∈ V (Ωp

ε)×V (Ωs
ε) of problem (4)

such that

|up
ε(t)|Ωp

ε
+ εk/2|∇up

ε |Ωp
ε ,t + |us

ε(t)|Ωs
ε

+ εl/2|∇us
ε|Ωs

ε,t + εm/2|up
ε − us

ε|Γε,t ≤ C (22)

holds for a.e. t ∈ S, where the constant C depends on T and the data but not on ε.

Proof The existence of the solutions follows from standard arguments while the
proof of (22) can be obtained from the usual parabolic energy estimates. Care must
be taken in order to obtain the estimate for the boundary term. This can be achieved
by adding (4a) and (4b) and choosing the test function as

φ(x, t) =

{
up
ε(x, t), x ∈ Ωp

ε , t ∈ (0, T ),

us
ε(x, t), x ∈ Ωs

ε, t ∈ (0, T ),

Standard procedures then give the result. J
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3.2 Some preparations concerning two-scale convergence

The convergence of the sequences satisfying a-priori estimates of the type (22) is
now discussed in the general context of two-scale convergence. First, a few results
on two-scale convergence are cited for convenience and adapted and generalised to
the requirements in this context. For details concerning classical results we refer to
[27], [28], [29], [30], [31] and [32]. Then, some special results by [20] are extended
to the more general case considered here which are required for the examination of
the convergence of the interfacial-exchange term. For simplicity, we discuss the two-
scale convergence for sequences independent of time. Since time is only a parameter
with respect to two-scale convergence, this is no restriction (also cf. remark 3.10).

Definition 3.2 (Two-scale convergence)
A sequence of functions vε in L2(Ω) is said to two-scale converge to a limit function
v0(x, y) ∈ L2(Ω× Y ) iff

lim
ε→0

∫
Ω

vε(x)φ(x, x/ε) dx =

∫
Ω

∫
Y

v0(x, y)φ(x, y) dy dx (23)

for all φ ∈ C∞0 (Ω;C∞# (Y )) where the subscript # denotes periodicity. A sequence
of functions vε in L2(Γε) is said to two-scale converge to a limit function v0(x, y) ∈
L2(Ω× Γ) iff

lim
ε→0

ε

∫
Γε

vε(x)φ(x, x/ε) dσx =

∫
Ω

∫
Γ

v0(x, y)φ(x, y) dσy dx (24)

for all φ ∈ C∞0 (Ω;C∞# (Y )).

The following two theorems summarise some aspects of two-scale convergence of
bounded sequences in L2(Ωα

ε ) and W 1,2(Ωα
ε ), respectively. These are standard results

(cf. [27, 28, 29]) or minor variations of such, which can be obtained analogously
(cf. [2]). A special notation is introduced: For a function vα ∈ L2(Ωα

ε ), its zero
extension to Ω is denoted by ṽα. Clearly: ṽα ∈ L2(Ω).

We begin with the two-scale convergence of L2-bounded sequences.

Theorem 3.3
(a) Let vε be a bounded sequence in L2(Ω). Then, there exists a subsequence such

that vε two-scale converges to a limit function v0 ∈ L2(Ω × Y ). If vε is a
strongly-convergent sequence in L2(Ω), it converges to the same limit, which
is independent of y, in two-scale sense.

(b) If vε is a bounded sequence in L2(Ωα
ε ), the two-scale limit function of ṽε has

the form v0(x, y) = χα(y)v∗(x, y) with v∗ ∈ L2(Ω × Y ), i.e. v0(x, y) = 0 for
y ∈ Y \Zα.

(c) For a sequence vε in L2(Γε) satisfying the estimate

ε|vε|2Γε ≤ C, (25)
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there exists a two-scale limit v0 ∈ L2(Ω;L2(Γ)) such that vε two-scale converges
to v0 in the sense (24) and the following estimate holds

lim
ε→0

ε

∫
Γε

|vε(x)|2 dx ≥
∫

Ω

∫
Γ

|v0(x, y)|2 dσy dx. (26)

The two-scale convergence of W 1,2-bounded sequences is more complicated. Two
aspects are important in this context: the scaling exponent in (27) and the connect-
edness (or disconnectedness) of the domain. The proofs of the parts of the next
theorem are all similar (except for that of part (d) which can be found in [29]) and
can be obtained by minor modifications of proofs already found in the literature.
For example, the proof of part (a) for Ωα

ε connected, follows from theorem 4.6 in
[31]. This theorem is in fact formulated for the more general case of multi-scale
convergence and the proof for the special case of two-scale convergence is already
implicitly contained in the proof of theorem 2.9 of [28]. The proof of part (b) is also
implicitly contained in [28]. Since parts (a), (b) and (d) are very minor extensions of
well-known results, we only present the proof of parts (c) and (e), which we believe
to have not appeared previously, in detail.

Theorem 3.4
Let λ ≥ 0 be given and vε be a sequence of functions in W 1,2(Ωα

ε ) such that

|vε|L2(Ωαε ) + ελ/2|∇vε|L2(Ωαε ) ≤ C. (27)

Then, the following statements hold:

(a) If λ = 0, there exists v0 ∈ L2(Ω) and ξ0 ∈ L2(Ω × Y ) such that, up to a
subsequence,

ũε −→ χα(y)v(x) and ∇̃vε −→ χα(y)ξ0(x, y) (28)

in two-scale sense. If, moreover, Ωα
ε is connected, the limit function v0 belongs

to W 1,2(Ω) and the limit of the sequence of gradients has the form ξ0(x, y) =
∇xv0(x) +∇yv1(x, y) with v1 ∈ L2(Ω;W 1,2

# (Zα)/R).

(b) If λ = 2, there exists a two-scale limit v0 ∈ L2(Ω;W 1,2
# (Y )) such that, up to a

subsequence,

ṽε −→ χα(y)v0(x, y) and ε∇̃vε −→ χα(y)∇yv0(x, y). (29)

(c) If 0 < λ < 2, the conclusions from part (b) apply and, moreover, the limit
function v0 is independent of y. Also, up to a subsequence, the convergence

ελ/2∇̃vε −→ χα(y)∇yv1(x, y) (30)

holds in two-scale sense with v1 ∈ L2(Ω;W 1,2
# (Zα)/R).

(d) In any of the previous cases, the traces of vε on Γε two-scale converge on L2(Γε)
and (26) holds.
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(e) If λ > 2, there exists a two-scale limit v0 ∈ L2(Ω × Y ) such that, up to a
subsequence,

ṽε −→ χα(y)v0(x, y) and ελ/2∇̃vε −→ 0. (31)

Proof (a) If Ωα
ε is connected, theorem 4.6 in [31] yields the result. If Ωα

ε is
disconnected, however, only the first part of this proof can be carried out leading to
the reduced result.

(b) The proof can be obtained by the path described in the proof of proposition
1.14 in [28](which is stated for χα = 1 in Y ) but using part (b) instead of part (a)
of theorem 3.3.

(d) In any of the previous cases, i.e. (a), (b) and (c), the estimate (27) is satisfied
with λ = 2 (since ε ≤ 1). Thus, theorem 2.1 as well as propositions 2.5 and 2.6 in
[29] yield the result.

(c) The estimate (27) with λ < 2 particularly implies (27) with λ = 2. Therefore,
the conclusions from part (b) apply and we know from part (d) that the trace of vε
two-scale converges to the trace of the limit function on Γ. Moreover, the estimate
(27) with λ < 2 is in fact stronger than with λ = 2 and we also have the existence of a

limit function ξ0 ∈ L2(Ω×Y ) such that ελ/2∇̃vε two-scale converges to χα(y)ξ0(x, y).

Therefore, ε∇̃vε two-scale converges to zero. Moreover, for any vector-valued smooth
test function φ(x, y), integration by parts gives

ε

∫
Ωαε

∇vε(x) · φ(x, x/ε) dx = −ε
∫

Ωαε

vε(x)∇x · φ(x, x/ε) dx

−
∫

Ωαε

vε(x)∇y · φ(x, x/ε) dx+ ε

∫
Γε

vε(x)φ(x, x/ε) · ν dσx.

Passing to the limit in each term gives

0 = −
∫

Ω

∫
Zα
v0(x, y)∇y · φ(x, y) dy dx+

∫
Ω

∫
Γ

v0(x, y)φ(x, y) · ν dσy dx

and, by integration by parts,

0 =

∫
Ω

∫
Zα
∇yv0(x, y) · φ(x, y) dy dx

for all φ implying that v0 does not depend on y. Since ελ/2∇̃vε(x) is bounded, there
exists a limit function ξ0(x, y) ∈ [L2(Ω× Y )]n such that

lim
ε→0

∫
Ω

ελ/2∇̃vε(x) · ψ(x, x/ε) dx =

∫
Ω

∫
Y

ξ0(x, y) · ψ(x, y) dy dx

for all ψ ∈ [C∞0 (Ω;C∞# (Y ))]n equal to zero if y ∈ Y \Zα. Choosing ψ such that
∇y · ψ = 0, integration by parts on the left-hand side gives∫

Ω

∫
Y

ξ0(x, y) · ψ(x, y) dy dx = 0

for all divergence-free ψ. Therefore, ξ0 can be expressed as the gradient of a function
v1 ∈ L2(Ω;W 1,2

# (Zα)/R), ξ0 = ∇yu1.

11



(e) The same considerations as for part (b) can be carried out but with ξ0 being

the two-scale limit of ελ/2∇̃vε (instead of ε∇̃vε). The argument using integration
by parts then reads as∫

Ω

∫
Y

ξ0(x, y) · ψ(x, y) dy dx

= − lim
ε→0

ελ/2
∫

Ωαε

vε(x)
(
∇x · ψ(x, x/ε) + ε−1∇y · ψ(x, x/ε)

)
dx = 0

for all ψ, implying assertion (e). J

Now, some deeper results about the convergence of the traces on Γε need to
be obtained in order to allow the identification of the limit problems. For this
purpose, two technical lemmas are cited first, which allow the formulation of a
theorem describing the limit behaviour of the sequence of traces on Γε. This theorem
generalises theorem 3.2 of [20], which is stated for k = l = 0, to the case 0 ≤ k =
l < 2 and a corollary is added which discusses the behaviour if k 6= l. For ease of
notation, let the mean value of a function v ∈ L2(Y ) be denoted by m(v), i.e.

m(v) =

∫
Y

v(y) dy, (32)

and the function mapping vε ∈ L2(Ωε) to its mean value in each cell be denoted by
mε(vε) whose (constant) value in each Y k

ε is given by

mk
ε(vε) = ε−n

∫
εYk

vε(y) dy, (33)

where Ωε = Ω ∩ int
⋃
α Ωα

ε . Moreover, the function m∗ε(vε) = ((m∗ε(vε))p)p=1,...,n is,
constant in each cell, defined by

(m∗ε(vε))p = ε−1
[
mp(k)
ε (vε)−mk

ε(vε)
]

(34)

in each Y k
ε for all p ∈ {1, . . . , n}, where p(k) denotes the operator changing the pth

component of k, (k)p, into (k)p + 1, i.e. p(k) = k + ep. This is to be understood

such that m
p(k)
ε (vε) = 0 if Y

p(k)
ε ∩ Ω = ∅. Moreover, we write ∂p = ∂ep for ease of

notation.
For future reference, we cite the following two lemmas, the proofs of which can

be found in [20] (lemmas 3.2 and 3.4 in [20], respectively).

Lemma 3.5
(a) Let v be a function in L2(Y ) such that vα = v|

Zα
∈ W 1,2

# (Zα) for α ∈ {p, s}.
Then, there exists a positive constant C (only dependent on Y ) such that

|v −m(v)|2Y ≤ C
[
|∇vp|2Zp + |∇vs|2Zs + |vp − vs|2Γ

]
. (35)

(b) For a function vε in L2(Ωε) such that vαε = uε|Ωαε ∈ W
1,2(Ωα

ε ) for α ∈ {p, s},
there exists a positive constant C (only dependent on Ω) such that

|vε −mε(vε)|2Ωε ≤ C
[
ε2|∇vp

ε |2Ωp
ε

+ ε2|∇vs
ε|2Ωs

ε
+ ε|vp

ε − vs
ε|2Γε
]
. (36)
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Lemma 3.6
Denote Ω∗ε = Ω\Γε, Y ∗ = Y \Γ and Y ∗kε = Y k

ε ∩Ωε and let wε be a sequence in L2(Ω)
satisfying

(α) wε ∈ W 1,2(Y ∗kε ) for all k;

(β) for all p ∈ {1, . . . , n} there exists wpε such that ∂pw
p
ε ∈ L2(Ω∗ε), ∂pw

p
ε = ∂pwε

in every Y ∗kε and wpε |Ωp
ε
− wpε |Ωs

ε
= wε|

Ω
p
ε
− wε|Ωs

ε
on Γε;

(γ) |wε|Ω +
∑n

p=1|wpε |Ω +
∑

k|ε∇wε|Y ∗k
ε
≤ C.

Then, there exists a w ∈ L2(Ω;W 1,2
# (Y ∗)) such that, up to a subsequence, wε two-

scale converges to w, the sequence ξε defined by ξε = ε∇wε in each Y ∗kε two-scale
converges to ∇yw and (wε|

Ω
p
ε
−wε|Ωs

ε
) two-scale converges on Γε to (w|

Zp −w|Zs ) in

the sense (24).

Using the preceding two lemmas, the convergence of a sequence in L2(Ωε) such
that vαε = v|

Ωαε
∈ W 1,2(Ωα

ε ) for α ∈ {p, s} can be obtained where the scaling expo-
nents of the gradients in each part of Ωε are the same.

Proposition 3.7
Let 0 ≤ λ < 2 be given and vε be a sequence of functions in L2(Ωε) such that
vαε = v|

Ωαε
∈ W 1,2(Ωα

ε ) for α ∈ {p, s} such that

|vε|Ωε + ελ/2|∇vp
ε |Ωp

ε
+ ελ/2|∇vs

ε|Ωs
ε

+ ε(λ−1)/2|vp
ε − vs

ε|Γε ≤ C. (37)

Moreover, let the sequence wε defined by

wε = ελ/2−1(vε −mε(vε))− θ(λ)zε ·m∗ε(vε) (38)

with zε = x/ε − k + (1/2, . . . , 1/2)T in Y k
ε . Then, the sequences uε and ελ/2∇̃vαε

converge to the limit functions v0 and θ(λ)∇v0 +∇yv1 given in theorem 3.4 and the
following statements hold:

(a) The sequences wε and ξαε (as defined in lemma 3.6), up to subsequences, two-
scale converge to v1 ∈ L2(Ω × Y ) with vα1 = u1|Zα ∈ L2(Ω;W 1,2(Zα)/R) and
∇yv

α
1 for α ∈ {p, s}, respectively.

(b) The sequence ελ/2−1(vp
ε − vs

ε)|Γε two-scale converges to (vp
1 − vs

1)|
Γ

in the sense
(24).

Proof The idea of proof is to show that wε satisfies the requirements of lemma
3.6 and the limit function of wε is actually v1. Then, all conclusions directly follow
from lemma 3.6, especially part (b) since ελ/2−1(vp

ε − vs
ε)|Γε = (wp

ε −ws
ε)|Γε . In order

to apply lemma 3.6, the requirements (α), (β) and (γ) need to be verified where, in
particular, the functions wpε need to be chosen as

wpε = wε + θ(λ)
∑
q 6=p

(zε)q(m
∗
ε(vε))q.
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For λ = 0, the verification of the prerequisites of lemma 3.6 can be found in [20]
(cf. the proof of theorem 3.2). Therefore, only the case 0 < λ < 2 is presented here.

For λ 6= 0, points (α) and (β) of lemma 3.6 are clear. It therefore only remains
to be shown that the estimate from point (γ) is fulfilled. Applying lemma 3.5 to vε,
we obtain

|wε|2Ωε = ελ−2|vε −mε(vε)|2Ωε ≤ C
[
ελ|∇vp

ε |2Ωp
ε

+ ελ|∇vs
ε|2Ωs

ε
+ ελ−1|vp

ε − vs
ε|2Γε
]
≤ C,

where the last step follows from the prerequisite (37). Since, moreover, wpε = wε and
ε∇wε = ελ/2∇vε, assumption (γ) is satisfied. Noting that ε∇wε = ελ/2∇vε two-scale
converges to ∇yv1, the proof of part (a) of this theorem is also completed. J

Remark 3.8
Moreover, for λ = 0 it can be shown that, up to a subsequence, m∗ε(vε) converges to
∇v where v is the limit function of vε (lemma 3.3 in [20]). In the proof of proposition
3.7 it again becomes clear why for λ = 0, Ωα

ε needs to be connected (also cf. theorem
3.4): In this case, the functions wpε are defined in a way that requires the connectivity.

Corollary 3.9
Let 0 ≤ λ ≤ 2 and 0 ≤ k < l ≤ 2 be given and vε be a sequence of functions in
L2(Ωε) such that vαε = vε|Ωαε ∈ W

1,2(Ωα
ε ) for α ∈ {p, s} and

|vε|Ωε + εk/2|∇vp
ε |Ωp

ε
+ εl/2|∇vs

ε|Ωs
ε

+ ε(λ−1)/2|vp
ε − vs

ε|Γε ≤ C. (39)

If λ = k, let
ε(k−1)/2|vp

ε |Γε + ε(k−1)/2|vs
ε|Γε ≤ C (40)

additionally be satisfied. Then, the sequence ελ/2−1(vp
ε − vs

ε)|Γε two-scale converges
in the sense (24) and the limit is given by

(a) −vs
1|Γ, if λ = l,

(b) (vp
1 + θ(k)y · ∇v)|

Γ
, if λ = k.

Note that vs
1 = vs if l = 2.

Proof (a) Let λ = l > 0. It is easily seen in the proof of proposition 3.7 that
if the gradients in Ωp

ε satisfy a better estimate (i.e. with exponent k/2 in (37)),
the sequence ε∇wε = εl/2∇vε in the proof of proposition 3.7 two-scale converges
to zero in Zp and to ∇yv

s
1 in Zs. Therefore, it follows from proposition 3.7 that

εl/2−1(vp
ε − vs

ε)|Γε two-scale converges to −vs
1|Γ .

(b) Let λ = k and wε be defined as in proposition 3.7. The proof is given using
a bootstrap argument. In contrast to assumption (40), assume, for now, the weaker
estimate

ε(k−1)/2|vp
ε |Γε + ε(l−1)/2|vs

ε|Γε ≤ C.
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Notice that, in any case, wε does not meet the assumptions of lemma 3.6 as the
ε-power in front of the term |∇vs

ε|Ωs
ε

in the estimate (39) is not sufficient for (γ) to
hold. Therefore, denote by w̄ε and ŵε the functions defined as follows,

w̄ε =

{
εk/2−1(vp

ε −mε(vε)), x ∈ Ωp
ε ,

0, x ∈ Ωs
ε,

ŵε =

{
0, x ∈ Ωp

ε ,

εl/2−1(vs
ε −mε(vε)), x ∈ Ωs

ε.

Letting w̄pε = w̄ε, w̄ε satisfies the requirements of lemma 3.6 and ε∇w̄ε two-scale
converges as follows,

ε∇w̄ε =

{
εk/2∇vp

ε , x ∈ Ωp
ε ,

0, x ∈ Ωs
ε,
−→

{
∇yv

p
1 + θ(k)∇xv

p, x ∈ Ω, y ∈ Zp,

0, x ∈ Ω, y ∈ Zs.

Therefore, up to a constant,

w̄ε →

{
vp

1 + θ(k)y · ∇xv
p, x ∈ Ω, y ∈ Zp,

0, x ∈ Ω, y ∈ Zs.

Now, consider ŵε. Similarly as for w̄ε, it can be shown that

ŵε →

{
0, x ∈ Ω, y ∈ Zp,

vs
1, x ∈ Ω, y ∈ Zs.

in two-scale sense. Therefore,

εk/2−1(vp
ε − vs

ε)|Γε = (w̄p
ε − ε(k−l)/2ŵs

ε)|Γε .

It is known from the a-priori estimate that this term converges, as do w̄p
ε |Γε and ŵs

ε|Γε .
Therefore, ŵs

ε|Γε has to converge with order ε(l−k)/2 at least. Since prerequisite (40)
gives an even better estimate than what we have assumed so far, the term must
converge with order greater than ε(l−k)/2 and therefore, ε(k−l)/2w̄s

ε|Γε → 0 in two-
scale sense. Altogether, we have

εk/2−1(vp
ε − vs

ε)|Γε →
(
vp

1 + θ(k)y · ∇vp
)
|
Γ
. J

Remark 3.10
As discussed in the beginning of this subsection, it does not pose problems if the
sequence of functions depends on further variables, as time for example. Theorem 3.4
can be directly adapted to bounded sequences in L2(0, T ;W 1,2(Ω)). If, moreover, the
sequence of time derivatives is bounded in L2(Ω×S), the sequence of time derivatives
also converges and its limit is the time derivative of the limit of the original sequence.
If we only have the boundedness of the time derivatives in L2(0, T ; (W 1,2(Ω))′), the
limit passage can be carried out after integrating by parts with respect to time.
Another integration by parts in the corresponding limit term yields the expected
result. For details, we refer to [33], [30] and [34].
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4 Determination of the limit problems

Using the results from the previous section, the sequences of solutions of problem (4)
corresponding to a sequence of parameters ε approaching zero yield two-scale limits.
In this section, the limit problems satisfied by the limit of the sequences solutions
are identified depending on the choice of parameters. Explicitly, it is shown that
each limit actually satisfies the corresponding limit problem stated in §2. A closer
examination of the convergence of the interfacial-exchange term depending on m
(cf. lemma 4.1) motivates the separate treatment of the cases m ≥ 1 and m < 1.

With the a-priori estimates for the sequences of solutions given by theorem 3.1,
the convergence of the functions uαε and ελ∇uαε follows directly from theorems 3.3,
3.4 and by remark 3.10. From theorem 3.4, propostion 3.7 and corollary 3.9, some
more information about the interfacial-exchange term can be obtained. For ease of
notation, we write

f ex
1 (x, y, t) = a(x, y, t)(up

1(x, y, t)− us
1(x, y, t)) (41)

and we also refer to the definition of f ex (cf. (19)). If k 6= l and m ≤ k − 1, we
assume that (40) is satisfied.

Lemma 4.1
There exists a limit function ξex ∈ L2(0, T ;L2(Ω×Y )) such that the scaled interfacial-
exchange term given by εµf ex

ε (x, t) two-scale converges to{
ξex, if µ = (m− 1)/2,

0, if µ > (m− 1)/2,
(42)

in two-scale sense (cf. (24)). For some cases, the limit function can be further
specified:

(a) If k, l ≤ 2 and m = 1, the limit function is given by ξex = f ex.

(b) If k = l < 2 and m = k − 1, the limit function is given by ξex = f ex
1 .

(c) If k 6= l, the limit function is given by ξex = a(up
1 + θ(k)y · ∇u) if m = k − 1

and by ξex = −aus
1 if m = l − 1.

Moreover, for m < 1, f ex
ε (x, t) converges to zero, implying, if k, l ≤ 2, up(x, y, t) =

us(x, y, t) for a.e. x ∈ Ω, y ∈ Γ, t ∈ S.

Proof By theorem 3.1 the norm of the difference in the interfacial-exchange term
is bounded in the following way,

ε(m−1)/2
√
ε|up

ε − us
ε|Γε,t ≤ C (†)

for a.e. t ∈ S. Therefore, theorem 3.4 (d) yields the existence of a limit function
ξex ∈ L2(0, T ;L2(Ω× Y )) such that

lim
ε→0

ε

∫
S

∫
Γε

ε(m−1)/2 a(x, x/ε, t)(up
ε(x, t)− us

ε(x, t))φ(x, x/ε, t) dσx dt

=

∫
S

∫
Ω×Γ

a(x, y, t)ξex(x, y, t)φ(x, y, t) dσy dx dt
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for all smooth φ. This implies that for µ = (m − 1)/2, εµf ex
ε two-scale converges

(in the sense (24)) to some limit function ξex, which, by theorem 3.4, is given by
ξex = a(up − us) if k, l ≤ 2 and m = 1. For µ > (m − 1)/2, it is clear that εµf ex

ε

two-scale converges to zero. Assertions (b) and (c), follow from proposition 3.7 and
corollary 3.9.

For m < 1, it especially follows from (†)
ε|up

ε − us
ε|2Γε,T ≤ ε1−mC ≤ C

(since ε ≤ 1), which, by theorem 3.4 (d), yields

|ξex|2Ω×Γ,T ≤ lim
ε→0

ε|up
ε − us

ε|2Γε,T ≤ lim
ε→0

ε1−mC.

Passing to the limit yields the second assertion for the limit of the interfacial-
exchange term. J

Remark 4.2
Note that from theorem 3.4 and lemma 4.1 it directly follows that if m < 1 and one
of the diffusion scaling exponents is smaller than 2, i.e. 0 ≤ k < 2 or 0 ≤ l < 2, both
limit functions are constant with respect to the microvariable y on Γ.

4.1 The case m ≥ 1

If m ≥ 1, two equations appear in the macroscopic limit. It is therefore sufficient to
investigate the limit problem of one of the unknowns, of uα, say. Since the traces on
Γε need to converge in order to be able to relate the limit of the interfacial-exchange
term to the limit of the solutions, m > 1 is required if l > 2 (cf. theorem 3.4).

Proposition 4.3
Let m ≥ 1. For λ = 0 and Ωα

ε connected, the limit function uα associated with the
sequence of solutions uαε satisfies the weak macromodel equation (20).

Proof Integration of the weak micromodel equation (4) for uαε with respect to
the time variable and choosing the test function to be of the form

φ(x, y, t) = φ0(x, t) + εφ1(x, x/ε, t)

with (φ0, φ1) ∈ C∞0 (S;C∞(Ω))× C∞0 (S;C∞(Ω;C∞# (Y ))) gives

0 =

∫
S×Ω

∂tu
α
ε (x, t)χα(x/ε)[φ0(x, t) + εφ1(x, x/ε, t)] dx dt

+

∫
S×Ω

Dα(x, x/ε, t)∇xu
α
ε (x, t)χα(x/ε)

× [∇xφ0(x, t) + ε∇xφ1(x, x/ε, t) +∇yφ1(x, x/ε, t)] dx dt

−
∫
S×Ω

fαε (x, t)χα(x/ε)[φ0(x, t) + εφ1(x, x/ε, t)] dx dt

− σα(1) ε

∫
S×Γε

εm−1f ex
ε (x, t)[φ0(y, t) + εφ1(x, x/ε, t)] dσx dt.

(†)
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Note that the test function is from a slightly larger space than the spaces used in §3.
The arguments for the admissibility of these types of test functions can be found in
[28] or [32]. The limit as ε tends to zero is now determined. The functions uα and
uα1 appearing in this proof are always understood as the limit functions provided by
theorem 3.4.

The limits of the four terms in (†) can be computed individually. For the first
term, remark 3.10 is applicable while we make use of (5) for the limit passage in the
second term (the fact that the limit of the product is equal to the product of the
limits follows from theorem 1.8 in [28]). For the third term, the assumption on fα

is used (cf. the beginning of §3). The fourth part can be treated using the results
from lemma 4.1. Putting everything together,

0 = |Zα|
∫
S×Ω

∂tu
α(x, t)φ0(x, t) dx dt

+

∫
S×Ω

∫
Zα
Dα(x, y, t)(∇xu

α(x, t) +∇yu
α
1 (x, y, t))

× [∇xφ0(x, t) +∇yφ1(x, y, t)] dy dx dt

−
∫
S×Ω

∫
Zα
fα(x, y, t) dy φ0(x, t) dx dt

− σα(m)

∫
S×Ω

∫
Γ

f ex(x, y, t) dσy φ0(x, t) dx dt

for all (φ0, φ1) is obtained. Choosing φ0 ≡ 0 yields∫
S×Ω

∫
Zα
Dα(x, y, t)(∇xu

α(x, t) +∇yu
α
1 (x, y, t))∇yφ1(x, y, t) dy dx dt = 0

for all φ1 ∈ C∞0 (S;C∞(Ω;C∞# (Y ))). Assuming uα1 =
∑n

j=1 ∂xju
α(x, t) ςαj (x, y, t), the

equation is satisfied if ςαj is the solution of the cell problem (17) because

0 =

∫
S×Ω

∫
Zα
Dα(x, y, t)

×
[ n∑
j=1

∂xju
α(x, t)∇yς

α
j (x, y, t)∇yφ1(x, y, t) +∇xu

α(x, t)∇yφ1(x, y, t)
]

dy dx dt

=

∫
S×Ω

∫
Zα
Dα(x, y, t)

×
[
−

n∑
j=1

∂xju
α(x, t)ej∇yφ1(x, y, t) +∇xu

α(x, t)∇yφ1(x, y, t)
]

dy dx dt,

which is obviously true for all φ1. On the other hand, if ςαj is the solution of the cell
problem (17), the equation is satisfied if uα1 =

∑n
j=1 ∂xju

α(x, t) ςαj (x, y, t).
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Choosing φ1 ≡ 0 gives

0 = |Zα|
∫
S×Ω

∂tu
α(x, t)φ0(x, t) dx dt

+

∫
S×Ω

∫
Zα
Dα(x, y, t)(∇xu

α(x, t) +∇yu
α
1 (x, y, t))∇xφ0(x, t) dy dx dt

−
∫
S×Ω

∫
Zα
fα(x, y, t) dy φ0(x, t) dx dt

− σα(m)

∫
S×Ω

∫
Γ

f ex(x, y, t) dσy φ0(x, t) dx dt

for all φ0 ∈ C∞0 (S;C∞(Ω)). Using uα1 =
∑n

j=1 ∂xju
α(x, t) ςαj (x, y, t), the second term

can be rewritten,∫
S×Ω

∫
Zα
Dα(x, y, t)(∇xu

α(x, t) +∇yu
α
1 (x, y, t))∇xφ0(x, t) dy dx dt

=

∫
S×Ω

n∑
j,k=1

∫
Zα
Dα(x, y, t)(δjk + ∂ykς

α
j (x, y, t)) dy ∂xju

α(x, t)∂xkφ0(x, t) dx dt

=

∫
S×Ω

Pα(x, t)∇xu
α(x, t)∇xφ0(x, t) dx dt,

where the tensor Pα is defined in (18). Thus,

|Zα|
∫
S×Ω

∂tu
α(x, t)φ0(x, t) dx dt+

∫
S×Ω

Pα(x, t)∇xu
α(x, t)∇xφ0(x, t) dx dt

=

∫
S×Ω

∫
Zα
fα(x, y, t) dy φ0(x, t) dx dt+σα(m)

∫
S×Ω

∫
Γ

f ex(x, y, t) dσy φ0(x, t) dx dt

for all φ0 ∈ C∞0 (S;C∞(Ω)). J

Proposition 4.4
Let λ > 0 and m ≥ 1. The limit function uα associated with the sequence of
solutions uαε satisfies the weak macromodel equation (20).

Proof The proof can be obtained analogously to that of propostion 4.3. For
λ < 2, the test function needs to be chosen as

φ(x, t) = φ0(x, t) + ε1−λ/2φ1(x, x/ε, t)

with (φ0, φ1) ∈ C∞0 (S;C∞(Ω))× C∞0 (S;C∞(Ω;C∞# (Y ))) while, for λ ≥ 2, φ(x, t) =
φ1(x, x/ε, t) is the appropriate test function. J

4.2 The case m < 1

The case m < 1 is now considered. Note that in this case, if one of the diffusion
scaling exponents is smaller than two, both limit functions are constant with respect
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to the microvariable y on Γ (cf. remark 4.2). A general consideration is made first
which is then specified depending on the scaling exponents k, l and m.

Consider again the space V∗ = {uε ∈ L2(0, T ;L2(Ω)) |uε|Ωαε ∈ V(Ωα
ε )}. Addition

of equations (4a) and (4b) gives

(∂tu
p
ε(t) |φ(t))Ωp

ε
+ (∂tu

s
ε(t) |φ(t))Ωs

ε
+ εk(Dp

ε (t)∇up
ε(t) | ∇φ(t))Ωp

ε

+ εl(Ds
ε(t)∇us

ε(t) | ∇φ(t))Ωs
ε

+ εm(f ex
ε (t) |φ|

Ω
p
ε
(t)− φ|

Ωs
ε
(t))Γε

= (fp
ε (t) |φ(t))Ωp

ε
+ (f s

ε(t) |φ(t))Ωs
ε

(43)

for all φ ∈ V∗ a.e. in (0, T ). Choosing the test function as

φ(x, t) =

{
Θ(k)(φ0(x, t) + ε1−k/2φp(x, x/ε, t)) + (1−Θ(k))φp(x, x/ε, t), x ∈ Ωp

ε ,

Θ(l)(φ0(x, t) + ε1−l/2φs(x, x/ε, t)) + (1−Θ(l))φs(x, x/ε, t), x ∈ Ωs
ε,

(44)
with φ0 ∈ C∞0 (S;C∞(Ω)), φα ∈ C∞0 (S;C∞(Ω;C∞# (Zα))) and

Θ(λ) =

{
1, 0 ≤ λ < 2,

0, λ ≥ 2,
(45)

gives∫
S×Ωp

ε

∂tu
p
ε(x, t)

[
Θ(k)φ0(x, t) + ε1−k/2φp(x, x/ε, t)

]
dx dt

+

∫
S×Ωs

ε

∂tu
s
ε(x, t)

[
Θ(l)φ0(x, t) + ε1−l/2φs(x, x/ε, t)

]
dx dt

+

∫
S×Ωp

ε

Dp(x, x/ε, t)εk/2∇up
ε(x, t)

×
[
εk/2Θ(k)∇xφ

0(x, t) + ε∇xφ
p(x, x/ε, t) +∇yφ

p(x, x/ε, t)
]

dx dt

+

∫
S×Ωs

ε

Ds(x, x/ε, t)εl/2∇us
ε(x, t)

×
[
εl/2Θ(l)∇xφ

0(x, t) + ε∇xφ
s(x, x/ε, t) +∇yφ

s(x, x/ε, t)
]

dx dt

+ ε

∫
S×Γε

εm−1f ex
ε (x, t)(Θ(k)−Θ(l))φ0(x, t) dσx dt

+ ε

∫
S×Γε

f ex
ε (x, t)

[
εm−k/2φp(x, x/ε, t)− εm−l/2φs(x, x/ε, t)

]
dσx dt

−
∫
S×Ωp

ε

fp
ε (x, t)

[
Θ(k)φ0(x, t) + ε1−k/2φp(x, x/ε, t)

]
dx dt

−
∫
S×Ωs

ε

f s
ε(x, t)

[
Θ(l)φ0(x, t) + ε1−l/2φs(x, x/ε, t)

]
dx dt = 0

(46)

for all φ0, φp and φs if k, l ≤ 2 (Otherwise, a simpler system is obtained which is
contained implicitly in the subsequent proofs). The limit of each term can now be
taken separately making use of the results from §3.
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The only terms requiring some special attention are the interfacial-exchange
terms. We first consider the second interfacial exchange term in (46).

If k = l, the interfacial-exchange term reads

ε

∫
S×Γε

εm−k/2f ex
ε (x, t)

[
φp(x, x/ε, t)− φs(x, x/ε, t)

]
dσx dt. (47)

From lemma 4.1 it follows that this term converges to zero if m− k/2 > (m− 1)/2,
i.e. m > k − 1, and to∫

S×Ω

∫
Γ

f ex
1 (x, y, t)

[
φp(x, y, t)− φs(x, y, t)

]
dσy dx dt (48)

if m = k − 1. For m < k − 1, the term does not converge and therefore, φp = φs on
Γ needs to be chosen.

If k 6= l, the interfacial-exchange term can be written as

ε

∫
S×Γε

εm−k/2f ex
ε (x, t)φp(x, x/ε, t) dσx dt− ε

∫
S×Γε

εm−l/2f ex
ε (x, t)φs(x, x/ε, t) dσx dt.

(49)
The same arguments as above yield that each term goes to zero if m > λ− 1 and to

−σα(λ−m)

∫
S×Ω

∫
Γ

ξex(x, y, t)φα(x, y, t) dσy dx dt (50)

if m = λ − 1. If λ = l, ξex = aus
1 while if λ = k, ξex = a(up

1 + θ(k)y · ∇u). For
m < λ− 1, the respective term does not converge and therefore, φα = 0 on Γ needs
to be chosen.

Moreover, if k < 2 and l ≥ 2, we also have the term

ε

∫
S×Γε

εm−1f ex
ε (x, t)φ0(x, t) dσx dt. (51)

The limit of this term cannot be taken straightforwardly since the estimate on the
interfacial-exchange term is not sufficient. Nevertheless, we can apply the boundary
condition to obtain

ε

∫
S×Γε

εl−1Ds
ε(x, t)∇us

ε(x, t) · νs
εφ

0(x, t) dσx dt. (52)

For l = 2, assuming that εDs
ε∇us

ε(x, t) ·νs
ε two-scale converges to Ds∇yu

s(x, y, t) ·νs,
the limit of this term is given by∫

S×Ω

∫
Γ

Ds(x, y, t)∇yu
s(x, y, t) · νs dσy φ

0(x, t) dx dt. (53)

For this, it suffices if we have an estimate of the form

|εl−1∇us
ε|2Ωs

ε,t
+ ε2|εl−1∆us

ε|2Ωs
ε,t
≤ C. (54)

Noting that l = 2 here, such an estimate is obtainable if the right-hand side, i.e. f s
ε ,

is sufficiently regular.
Having in mind the above results, the limit problems can be determined. We

also refer to definitions (7) and (8).
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Proposition 4.5
Let m < 1 and k = 0. Moreover, let Ωs

ε be connected if l = 0. Then, the respective
macroscopic models from §2 are the limit problems of problem (4).

Proof We only consider the case k = 0, the proof for k > 0 can be obtained by
the same techniques (see [2]). Since m < 1, lemma 4.1 gives that the limit functions
are equal a.e. on Ω× Γ. Moreover, it is a-priori known that up does not depend on
y and if l < 2, neither does us. Now, three cases need to be distinguished. Either
l = 0, 0 < l < 2 or l ≥ 2.

In the first case, i.e. l = 0, the limit problem simplifies to∫
S×Ω

∂tu(x, t)φ0(x, t) dx dt

+

∫
S×Ω

∫
Zp

Dp(x, y, t)
[
∇xu(x, t) +∇yu

p
1(x, y, t)

][
∇xφ

0(x, t) +∇yφ
p(x, y, t)

]
dx dt

+

∫
S×Ω

∫
Zs

Ds(x, y, t)
[
∇xu(x, t) +∇yu

s
1(x, y, t)

][
∇xφ

0(x, t) +∇yφ
s(x, y, t)

]
dx dt

+ lim
ε→0

ε

∫
S×Γε

εmf ex
ε (x, t)

[
φp(x, x/ε, t)− φs(x, x/ε, t)

]
dσx dt

=

∫
S×Ω

∫
Y

f(x, y, t) dy φ0(x, t) dx dt.

The limit of the interfacial-exchange term is zero if m > −1,∫
S×Ω

∫
Γ

f ex
1 (x, y, t)

[
φp(x, y, t)− φs(x, y, t)

]
dσy dx dt

if m = −1, and φp = φs on Γ needs to be demanded if m < −1. The usual arguments
give that the equation with φ0 = 0 is satisfied if u1 =

∑n
j=1 ∂xju(x, t)ςm,0j (x, y, t),

where ςm,0j is the solution of the cell problem (9) (note that if m < −1, the space
of test functions in the cell problem needs to be restricted to functions satisfying
φp = φs on Γ). Therefore, the limit problem is given by∫

S×Ω

∂tu(x, t)φ0(x, t) dx dt+

∫
S×Ω

Pm,0(x, t)∇xu(x, t)∇xφ
0(x, t) dx dt

=

∫
S×Ω

∫
Y

f(x, y, t) dy φ0(x, t) dx dt

for all smooth φ0 where the tensor Pm,0 is given by (12).
In the case 0 < l < 2, the limit problem simplifies to∫

S×Ω

∫
Y

∂tu(x, t) dy φ0(x, t) dx dt

+

∫
S×Ω

∫
Zp

Dp(x, y, t)
[
∇xu

p(x, t) +∇yu
p
1(x, y, t)

][
∇xφ

0(x, t) +∇yφ
p(x, y, t)

]
dx dt

+

∫
S×Ω

∫
Zs

Ds(x, y, t)∇yu
s
1(x, y, t)∇yφ

s(x, y, t) dx dt
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+ lim
ε→0

ε

∫
S×Γε

f ex
ε (x, t)

[
εmφp(x, x/ε, t)− εm−l/2φs(x, x/ε, t)

]
dσx dt

=

∫
S×Ω

∫
Y

f(x, y, t) dy φ0(x, t) dx dt.

If m > l − 1 (> k − 1 = −1), the limit of the interfacial-exchange term is zero. If
m = l − 1 (> k − 1 = −1), the limit of the interfacial-exchange term is given by

−σs(l −m)

∫
S×Ω

∫
Γ

a(x, y, t)us
1(x, y, t)φs(x, y, t) dσy dx dt.

Choosing φ0 = φp = 0,∫
S×Ω

∫
Zs

Ds(x, y, t)∇yu
s
1(x, y, t)∇yφ

s(x, y, t) dx dt

= σs(l −m)

∫
S×Ω

∫
Γ

a(x, y, t)us
1(x, y, t)φs(x, y, t) dσy dx dt

holds for all smooth φs. If m < l − 1, φs = 0 on Γ has to be satisfied and it needs
to be distinguished if m = −1 which gives∫

S×Ω

∫
Γ

a(x, y, t)(up
1(x, y, t) + y · ∇xu(x, t))φp(x, y, t) dσy dx dt

as the limit and m < −1, which also lets the interfacial-exchange term vanish but
requires φp = 0 on Γ. Choosing φ0 = φs = 0 leaves∫

S×Ω

∫
Zp

Dp(x, y, t)
[
∇xu(x, t) +∇yu

p
1(x, y, t)

]
∇yφ

p(x, y, t) dx dt

= σp(m+ 2)

∫
S×Ω

∫
Γ

(up
1(x, y, t) + y · ∇xu(x, t))φp(x, y, t) dσy dx dt

for all φp. Choosing φp = 0, using the information just obtained and doing the usual
calculation in the elliptic term, the limit problem reads∫

S×Ω

∂tu(x, t)φ0(x, t) dx dt+

∫
S×Ω

Pm,l(x, t)∇xu(x, t)∇xφ0(x, t) dx dt

=

∫
S×Ω

∫
Y

f(x, y, t) dy φ0(x, t) dx dt.

In the third case, i.e. l ≥ 2, the limit problem is given by∫
S×Ω

∫
Zp

∂tu
p(x, t) dy φ0(x, t) dx dt+

∫
S×Ω

∫
Zs

∂tu
s(x, y, t)φs(x, y, t) dy dx dt

+

∫
S×Ω

∫
Zp

Dp(x, y, t)
[
∇xu

p(x, t) +∇yu
p
1(x, y, t)

][
∇xφ

0(x, t) +∇yφ
p(x, y, t)

]
dx dt

+ θ(l)

∫
S×Ω

∫
Zs

Ds(x, y, t)∇yu
s(x, y, t)∇yφ

s(x, y, t) dy dx dt
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+ lim
ε→0

ε

∫
S×Γε

εm−1f ex
ε (x, t)φ0(x, t) dσx dt

+ lim
ε→0

ε

∫
S×Γε

f ex
ε (x, t)

[
εmφp(x, x/ε, t)− εm−1φs(x, x/ε, t)

]
dσx dt

=

∫
S×Ω

∫
Zp

fp(x, y, t) dy φ0(x, t) dx dt+

∫
S×Ω

∫
Zs

f s(x, y, t)φs(x, y, t) dy dx dt.

Again, the limit of the interfacial-exchange term needs to be identified. For the term
tested with φ0, we apply the boundary condition and assume that we can pass to
the limit. Since m < 1, the part tested with φs does not converge which is why
φs = 0 on Γ needs to be demanded. The part tested with φp converges to zero if
m > −1, to∫

S×Ω

∫
Γ

a(x, y, t)(up
1(x, y, t) + y · ∇u(x, t))φp(x, y, t) dσy dx dt

if m = −1 and φp = 0 on Γ needs to be demanded if m < −1. Identifying the
problem for φ0 = φs = 0 in the usual way, the limit problem reads∫

S×Ω

∫
Zp

∂tu
p(x, t) dy φ0(x, t) dx dt+

∫
S×Ω

∫
Zs

∂tu
s(x, t)φs(x, y, t) dy dx dt

+

∫
S×Ω

Pm,l(x, t)∇xu
p(x, t)∇xφ

0(x, t) dx dt

+ θ(l)

∫
S×Ω

∫
Γ

Ds(x, y, t)∇yu
s(x, y, t) · νs dσy φ

0(x, t) dx dt

+ θ(l)

∫
S×Ω

∫
Zs

Ds(x, y, t)∇yu
s(x, y, t)∇yφ

s(x, y, t) dy dx dt

=

∫
S×Ω

∫
Zp

fp(x, y, t) dy φ0(x, t) dx dt+

∫
S×Ω

∫
Zs

f s(x, y, t)φs(x, y, t) dy dx dt.

Choosing φ0 = 0,∫
S×Ω

∫
Zs

∂tu
s(x, y, t)φs(x, y, t) dy dx dt

+ θ(l)

∫
S×Ω

∫
Zs

Ds(x, y, t)∇yu
s(x, y, t)∇yφ

s(x, y, t) dy dx dt

=

∫
S×Ω

∫
Zs

f s(x, y, t)φs(x, y, t) dy dx dt

for all φs with φs = 0 on Γ is obtained. Choosing φs = 0,∫
S×Ω

∫
Zp

∂tu
p(x, t) dy φ0(x, t) dx dt+

∫
S×Ω

P l,m(x, t)∇xu
p(x, t)∇xφ

0(x, t) dx dt

= −θ(l)
∫
S×Ω

∫
Γ

Ds(x, y, t)∇yu
s(x, y, t) · νs dσy φ

0(x, t) dx dt

+

∫
S×Ω

∫
Zp

fp(x, y, t) dy φ0(x, t) dx dt

for all smooth φ0 is obtained. J
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We have thus proved the following theorem:

Theorem 4.6
The limit functions up and us associated with the sequences of solutions up

ε and us
ε

of the microscopic problem (4) satisfy the macroscopic limit problems stated in §2.
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