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1 Introduction

We consider the problem of a vertical elastic plate
which forms the boundary of a semi-infinite two-
dimensional region of fluid. This is considered as
a simple model of wave interaction with elastic-
walled tanks. We calculate the solution in the
time domain by an expansion in the solutions for
a single frequency. The single-frequency solution
is found from a double eigenfunction expansion
in the eigenfunctions of the elastic plate and the
eigenfunctions for water of constant depth. The
solution in the time domain is then written in an
expansion over the single-frequency solutions us-
ing a generalised eigenfunction expansion. This
method requires a special inner product in which
the linear evolution operator in the time domain
is unitary. The method differs substantially from
other time-dependent methods such as time step-
ping or the so called memory-effect method. The
generalised eigenfunction method goes back to
the work of Povzner (1953) and has been recently
used in the context of water waves by Hazard
& Lenoir (2002); Hazard & Loret (2007). The
problem and method presented here is similar to
that developed by Hazard & Meylan (2008) for
the floating elastic plate, except for a modifica-
tion required by the fact that the present prob-
lem is semi-infinite, as well as for the obvious
difference in formulation. As well, the proof of
self-adjointness is more complicated in the situ-
ation considered here. It is worth noting that
all integrals arising in the solution of the single-
frequency case have been calculated analytically
so no numerical integration is required.

2 Problem formulation

The problem consists of a semi-infinite domain
−h < z < 0 and −∞ < x < 0, where z = 0
represents the free surface Γf and where there is
an elastic plate Γp at x = 0 extending from −h

to H with H ≥ 0. The plate is assumed to be
governed by the Bernoulli–Euler plate equation
subject to fixed boundary conditions at the bot-
tom and fixed or free conditions at the top. Thus,
we have the infinite set of modes wn(z) which sat-
isfy the equation ∂4

zwn = λ4
nwn and the boundary

conditions at the ends of the plates, which we dis-
cuss in §4. This gives us the following expression
for the displacement of the plate W (z, t):

W (z, t) =
∞∑

n=0

αn(t)wn(z).

2.1 Governing equations

We consider the linear problem in non-
dimensional form, where the spatial variables
have been scaled with respect to a length pa-
rameter L and the time variable with respect to√
L/g, where g is the acceleration due to gravity.
The mathematical description of the problem

is as follows. We use the water acceleration po-
tential Ψ(x, z, t), which satisfies

−∆Ψ = 0, − h < z < 0, (1)

∂nΨ = 0, z = −h, (2)

where n is the outward unit normal. The kine-
matic condition at the free surface is

∂2
t ζ = ∂nΨ, z = 0, (3)

where ζ(x, t) is the displacement of the water sur-
face. The dynamic condition is

ζ + Ψ = 0, z = 0. (4)

The plate is governed by the plate equation.
There is a force on the wetted surface of the plate
from the water (given by p = −Ψ) while there is
no force above the free water surface. The gov-
erning equation thus reads

γ∂2
tW + β∂4

zW =

{
0, z > 0,

−Ψ, z ≤ 0,
(5)



subject to edge conditions discussed in §4. For
convenience, we write χ for the characteristic
function of the wetted plate, i.e. χ(z) = 1 for
z < 0 and χ(z) = 0 for z ≥ 0.

At x = 0 we have to match the plate displace-
ment with the pressure and with the kinematic
condition. The equations coupling the water ac-
celeration potential and the plate displacement
are therefore

−χΨ = γ
∞∑

n=0

∂2
t αnwn + β

∞∑
n=0

λ4
nαnwn (6)

and, along the wetted plate surface,

∞∑
n=0

∂2
t αnwn = ∂nΨ. (7)

For z < 0, we combine the last two equations to
give

−Ψ− γ∂nΨ = β
∞∑

n=0

λ4
nαnwn.

The system is completed by initial conditions
at t = 0 prescribing free surface and plate dis-
placement and velocity.

3 Harmonic time dependence

We assume that the acceleration potential and
the surface displacement are time harmonic with
radian frequency ω. E.g. we have Ψ(x, z, t) =
Re {ψ(x, z)e−iωt} with a complex potential ψ.

At the free surface, condition (3) simplifies
and we can combine it with equation (4) to give
the single free-surface condition

αψ = ∂zψ, z = 0, (8)

where α = ω2.
The acceleration potential takes the form

ψ(x, z) = Af0(z)e−k0x +
∞∑

m=0

cmfm(z)ekmx, (9)

where the first term is due to the ambient inci-
dent potential of amplitude A and the coefficients
cm are of the scattered wavefield only. The func-
tions

fm(z) =
cos km(z + h)

cos kmh

are the vertical eigenfunctions. The numbers km,
m ≥ 1, are given as positive real roots of the
dispersion relation

α + km tan kmh = 0. (10)

The positive wavenumber k is related to α by the
dispersion relation

α = k tanh kh. (11)

For ease of notation, we write k0 = −ik. Note
that k0 is a (purely imaginary) root of (10).
Moreover, we have∫ 0

−h

fm(z)fn(z) dz = δmnNm,

where Nm is given by

Nm =
1

2

cos kmh sin kmh+ kmh

km cos2 kmh
.

Using (9) at x = 0 in (6) and making use of
the orthogonality of the wk we arrive at

− A
∫ 0

−h

wkf0 dz −
∞∑

m=0

cm

∫ 0

−h

wkfm dz

= (−γω2 + βλ4
k)αk. (12)

The second equation can be obtained in the same
way from (7),

− ω2

∞∑
n=0

αn

∫ 0

−h

wnfl dz

= −k0N0Aδl0 + klNlcl. (13)

Solving (13) for cl and substituting into (12), the
coefficients cl can be eliminated. Simple manip-
ulations lead to

∞∑
m=0

ω2

kmNm

∞∑
n=0

αn

∫ 0

−h

wnfm dz

∫ 0

−h

wkfm dz

= (−γω2 + βλ4
k)αk + 2A

∫ 0

−h

wkf0 dz (14)

as the determining system of equations for the
unknown coefficients αk. The coefficients cl can
easily be calculated from (13) once the αk are
known.

4 The eigenfunctions of the plate

The eigenfunctions of the bi-harmonic operator
subject to fixed boundary conditions at the bot-
tom of the plate, i.e.

wk(−h) = 0, w′k(−h) = 0, (15)

are generally given as

wk(z) = C2(cosλk(z + h)− coshλk(z + h))

+ C4(sinλk(z + h)− sinhλk(z + h)). (16)



4.1 Fixed plate top

If the plate is also fixed at z = H, we have

wk(H) = 0, w′k(H) = 0

in addition to (15). Using this in (16), we obtain

C4 = C2
sinλk(H + h) + sinhλk(H + h)

cosλk(H + h)− coshλk(H + h)
.

We choose C2 such that wk has unit norm.
The determining equation for the eigenvalues

turns out to be given by

cosλk(H + h) coshλk(H + h) = 1.

4.2 Free plate top

If the plate is free to move at z = H, we have

w′′k(H) = 0, w′′′k (H) = 0

in addition to (15). Hence,

C4 = C2
sinλk(H + h)− sinhλk(H + h)

cosλk(H + h) + coshλk(H + h)
.

Again, C2 is chosen such that wk has unit norm.
In this case, the determining equation for the

eigenvalues is found to be given by

cosλk(H + h) coshλk(H + h) = −1.

5 Time-dependent problem

We want to use the time-harmonic solutions for
fixed frequencies to construct the solution for ar-
bitrary given initial surface and plate displace-
ment and velocity. This is quite simple if the
plate is at rest initially and the incident wave is
far away from the plate (cf. §5.1). For the general
case, we develop a spectral theory in §5.2.

5.1 Far away incident wave

Assuming that the initial surface velocity is zero
and the surface displacement is given by f(x), we
calculate its wavenumber components by

f̂(k) =
1√
2π

∫
R

f(x)e−ikx dx.

If the wave is sufficiently far away from the plate
initially, the time-dependent water acceleration
potential Ψ is given by the Fourier-type integral,

Ψ(x, z, t) =
1√
2π

∫
R

f̂(k)ψ̂(x, z, k)e−iω(k)t dk,

(17)

where ψ̂(x, z, k) is the acceleration potential cal-
culated for a time-harmonic incident wave of unit
amplitude and wavenumber k. Note that the ra-
dian frequency ω is related to the wavenumber
k by the dispersion relation (11). The surface
displacement ζ(x, t) can be calculated from the
potential via relation (4). Since ψ̂(x, z,−k) =
¯̂
ψ(x, z, k), expression (17) can be simplified,

Ψ(x, z, t) =
2√
2π
Re

[∫ ∞
0

f̂(k)ψ̂(x, z, k)e−iω(k)t dk

]
.

5.2 Spectral formulation

We want to write the equations of motion in the
form of an abstract wave equation. We introduce
a two component system

∂2
t

(
ζ
W

)
=

( A11 A12

A21 A22

)(
ζ
W

)
.

The operators Aij are mapping in the follow-
ing way: A11 : ζ 7→ Ψn|Γf , A12 : W 7→ Ψn|Γf ,
A21 : ζ 7→ ∂2

tW |Γp and A22 : W 7→ ∂2
tW |Γp In

all cases, Ψ is the solution of the boundary-value
problem

−∆Ψ = 0, − h < z < 0,

∂zΨ = 0, z = −h,

and the boundary conditions are given by:
free surface wetted plate

Aj1 Ψ = −ζ Ψ = −γΨn

Aj2 Ψ = 0 Ψ = −γΨn − β∂4
zW

For A2j the potential at the wetted plate fur-
ther needs to be mapped to the acceleration of
the full plate. For A21, we have to use

γ∂2
tW = −χΨ,

while for A22, we require

γ∂2
tW = −β∂4

zW − χΨ,

each subject to the edge conditions.
The operator

A =

( A11 A12

A21 A22

)
is self-adjoint in its domain equipped with the
inner product〈(

ζ
W

)
,

(
ζ ′

W ′

)〉
A

= 〈ζ, ζ ′〉Γf +β〈∂2
zW,∂

2
zW

′〉Γp .



It has a continuous spectrum: (−∞, 0]. The
corresponding generalised eigenfunctions are just
the single-frequency solutions

(
ζ̂(x, k), ŵ(z, k)

)
.

We have〈(
ζ̂( · , k)
ŵ( · , k)

)
,

(
ζ̂( · , κ)
ŵ( · , κ)

)〉
A

= 2πδ(k − κ).

We also know that(
ζ(x, t)
W (z, t)

)
=

1√
2π

∫ ∞
0

f1(k)

(
ζ̂(x, k)
ŵ(z, k)

)
e−iω(k)t

+ f2(k)

(
ζ̂(x, k)
ŵ(z, k)

)
eiω(k)t dk. (18)

Thus, denoting the initial displacement of the
free surface and the plate by ζ0 and w0, resp.,
we obtain(

ζ0(x)
w0(z)

)
=

1√
2π

∫ ∞
0

f1(k)

(
ζ̂(x, k)
ŵ(z, k)

)
+ f2(k)

(
ζ̂(x, k)
ŵ(z, k)

)
dk

and we find that

〈ζ0, ζ̂( · , κ)〉Γf + β〈∂2
zw0, ∂

2
z ŵ( · , κ)〉Γp

=

〈(
ζ0

w0

)
,

(
ζ̂( · , κ)
ŵ( ·, κ)

)〉
A

=
√

2π(f1(κ)+f2(κ)).

Hence,∫
Γf

ζ0(x)
¯̂
ζ(x, κ) dx+ β

∫
Γp

∂2
zw0(z)∂2

z
¯̂w(z, κ) dz

=
√

2π(f1(κ) + f2(κ)).

and, similarly,∫
Γf

ζ ′0(x)
¯̂
ζ(x, κ) dx+ β

∫
Γp

∂2
zw
′
0(z)∂2

z
¯̂w(z, κ) dz

= i
√

2πω(κ)(−f1(κ) + f2(κ)).

are obtained, which determine the functions f1

and f2 in the representation (18).

6 An example

Consider the problem where the free surface is
initially at rest and the plate is bent, i.e. w0 is
non-zero and ζ ′0 = 0, w′0 = 0 and ζ0 = 0. This
gives f1 = f2 = f say, and

f(κ) =
1

2
√

2π
β

∫
Γp

∂2
zw0(z)∂2

z
¯̂w(z, κ) dz.

For w0(z) =
∑∞

n=0 α
0
nwn(z), we have

f(κ) =
1

2
√

2π
β
∞∑

n=0

α0
nλ

4
n

¯̂α(κ). (19)

We choose d = 1, H = 0, β = γ = 0.01 and
α0

n = −0.5 δ0n and present results for the fixed
and free plate top in figures 1 and 2, resp. It can
be observed that the free plate creates a wave
travelling away from the plate but the system
comes to rest quickly in the vicinity of the plate.
For the fixed plate, however, a mode is excited
which is sustained for a long time. This can also
be seen as a sharp peak at the corresponding
wavenumber in the function f(κ) given by (19).
A closer investigation of this phenomenon is cur-
rently being undertaken.
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Fig. 1: Time evolution of the free surface
displacement at x = −4 for plate with fixed top.
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Fig. 2: Time evolution of the free surface
displacement at x = −4 for plate with free top.


