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Abstract

We consider a reaction–diffusion problem in a porous medium, where the reaction causes a local increase or
decrease of volume of the solid matrix. For the homogenisation of the resulting system of equations, we employ
the method of homogenisation in domains with evolving microstructure. The functions describing the evolution
of the microstructure are related to the reaction–diffusion process.

Résumé

Homogénéisation d’un mécanisme du effritement chimique qui cause une évolution de la micro-
structure. On considère un problème de la réaction et la diffusion dans un milieu poreux, où la réaction cause
une augmentation ou une réduction du volume de la matrix solide. Par l’homogénéisation du système d’équations
résultants on emploie la méthode d’homogénéisation dans des domaines avec évolution de la micro-structure. Les
fonctions que décrivent l’évolution de la micro-structure ont relié au processus de la réaction et la diffusion.
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1. Introduction

We consider a reaction–diffusion problem involving two species in a porous medium Ω made up of pore
air Ωa, pore water Ωw and solid matrix Ωs. One species, A, diffuses through the pore air and dissolves in
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the pore water. Another species, B, is part of the solid matrix and dissolves into the pore water. The two
species may participate in a reaction of the form

A + B −→ C + . . . , (1)

where the reaction product C is of low solubility and (after precipitation) can hence be associated with
the solid matrix again. The special feature of the problem under consideration is that owing to different
molar densities of B and C, the reaction causes a local growing or shrinking of the solid matrix. In turn,
the pore air and pore water change. Therefore, the total volume occupied by the porous medium Ω is
time-independent while its parts, Ωa, Ωw and Ωs, may evolve owing to the conversion of B to C.

One particular application exhibiting these features is concrete carbonation, where the reactant A is
atmospheric carbon dioxide, which reacts with certain concrete constituents, mainly calcium hydroxide
(B). Calcium carbonate (C) is produced in this reaction, which causes a decrease of pH in the concrete
and an increase of volume of solid matrix since the calcium carbonate takes up more volume than the
calcium hydroxide. The drop in pH facilitates the corrosion of reinforcing steel bars and thus decreases
the service-life of the structure. More information about concrete carbonation can be found in [1,2,3],
e.g., and in [4,5] in the context of multi-scale approaches.

We present a coupled reaction–diffusion system modelling the concentration of A in the two evolving
domains occupied by pore air and pore water. Making use of the method of homogenisation in domains
with evolving microstructure presented in [6], we use periodic homogenisation techniques, cf. [7,8] e.g., to
find the macroscopic system of equations. In order to focus on the evolution induced by the reaction (1)
and to keep the problem similar to the abstract problem presented in [6], we assume the reaction rate to
be given and we do not explicitly consider the concentration of B or C. The problem under consideration
can be viewed as a starting point for more complex reaction scenarios including an unknown for the
concentration of B as well as non-linear concentration-dependent reaction rates, such as those considered
in [9].

2. The microscopic reaction–diffusion system

In order to upscale the problem using periodic homogenisation techniques, we employ the ideas of
homogenisation in domains with evolving microstructure described in [6], i.e. it is assumed that there
exists a reference configuration, which is ε-periodic. By this, we mean that there exists a reference cell
Y = (0, 1)N with Y = Za ∪ Zw ∪ Zs and Za ∩ Zw ∩ Zs = ∅, such that Ωi∗ = Ω ∩ int

⋃
k∈ZN ε(Z

i + k) is a
reference configuration of Ωi(t), i ∈ {a,w, s}.

For simplicity, the geometry at t = 0 is assumed to coincide with this reference configuration. Fur-
thermore, the evolution of the three parts of Ω can be described by orientation-preserving mappings
ψiε( · , t) : Ωiε → Ωi(t), i ∈ {a,w, s}, for each t ∈ S = (0, T ). Here, we have written Ωiε for Ωi(0) = Ωi∗ in
order to emphasise the ε-periodicity of the geometry. We define Ψi

ε = ∇ψiε and J iε = det Ψi
ε, i ∈ {a,w, s}.

For the sake of brevity, we write Γε = ∂Ωa
ε ∩ ∂Ωw

ε and Γws
ε = ∂Ωw

ε ∩ ∂Ωs
ε and we assume ∂Ωa

ε ∩ ∂Ωs
ε = ∅.

In order to keep things simple and to focus on the aspect of the evolution of the microstructure being
induced by the reaction, only the concentrations of A in Ωa

ε and Ωw
ε are modelled, which we denote by ua

ε

and uw
ε , respectively. Cf. eq. (2) in [6], the reaction–diffusion system in the reference description is thus

given by
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∂t(J
a
εu

a
ε)−∇ · (Ja

εΨa
ε
−1Da

εΨ
a
ε
−T∇ua

ε) = 0, x ∈ Ωa
ε, t ∈ S,

∂t(J
w
ε u

w
ε )−∇ · (εlJw

ε Ψw
ε
−1Dw

ε Ψw
ε
−T∇uw

ε ) = −rεf r
ε, x ∈ Ωw

ε , t ∈ S,
(2a)

−(Ja
εΨa

ε
−1Da

εΨ
a
ε
−T∇ua

ε) · νa
ε = (εlJw

ε Ψw
ε
−1Dw

ε Ψw
ε
−T∇uw

ε ) · νw
ε , x ∈ Γε, t ∈ S,

−(Ja
εΨa

ε
−1Da

εΨ
a
ε
−T∇ua

ε) · νa
ε = εaε‖Ψw

ε
−T νw

ε ‖Jw
ε (ua

ε − uw
ε ), x ∈ Γε, t ∈ S,

−(εlJw
ε Ψw

ε
−1Dw

ε Ψw
ε
−T∇uw

ε ) · νw
ε = 0, x ∈ Γws

ε , t ∈ S,
(2b)

together with boundary conditions at the exterior boundary as well as initial conditions. Compared to [6],
we have abandoned the hats to denote functions in the reference description and we only have evolution
of the domains due to deformation since we do not model concentrations in the solid matrix here.

The scaling factor εl associated with Dw
ε , l ∈ [0, 2], arises from a nondimensionalisation. It is related to

the characteristic macroscopic and microscopic lengths as well as the diffusion times. Similar consideration
motivate the scaling of the interfacial-exchange coefficient aε. More details on the influence and choice of
different scaling exponents can be found in [10,9]. We require Ωa

ε and, if l = 0, Ωw
ε to be connected.

The only functions associated with the evolution of the domains appearing in the system of equations in
the reference configuration (2) are Ψi

ε and J iε, i ∈ {a,w}. We want to relate these to the reaction–diffusion
process. The reaction (1) consumes a matrix constituent and produces another one. Therefore, we need
to model the evolution of the subdomains depending on the reaction. For this, recall that Ψi

ε relates the
length and orientation of a material fibre in the reference configuration to its length and orientation in
the current configuration and J iε describes the change of volume.

We consider the case where it is reasonable to assume that changes in geometry other than the volu-
metric changes do not have a large influence on the problem, i.e. we can assume Ψi

ε ≈ Id, i ∈ {a,w}, in the
system of equations (2). For example, this is the case if nearly isotropic diffusion is always to be expected.
Since it is reasonable to assume the water incompressible, we have Jw

ε ≡ 1 for all times. Therefore, we
are left with deriving an equation for Ja

ε . Because we need to relate the change of pore-air volume to the
reaction in the pore water, we only obtain a (non-local) relation of the averaged quantities.

We proceed with the derivation of an equation for Ja
ε . The dissolution of B and the precipitation of C

are assumed to be instantaneous in order to keep things simple. The reaction rate is given by a function
f r
ε(x, t), which is bounded independently of ε in L2(Ωw

ε ×S). We denote by f̃ r
ε(x, y, t) the unfolded version

of f r
ε , i.e. f̃ r

ε = Tε(f r
ε) where Tε is the periodic unfolding operator [11], and analogously J̃a

ε and J̃w
ε . In the

cell Y at the point x, the amount (i.e. mass) of constituent B being used up and of constituent C being
produced at time t is given by ∫

Zw

mBJ̃
w
ε f̃

r
ε dy and

∫
Zw

mCJ̃
w
ε f̃

r
ε dy, (3)

respectively, where mB and mC are the molar weights of B and C, respectively. Noting that J̃w
ε ≡ 1 and

that an increase of total volume of constituents B and C implies a decrease of volume of pore air, we have

d

dt

∫
Za

J̃a
ε dy = −|Za|Cm

∫
Zw

f̃ r
ε dy where Cm =

1

|Za|

(
mC

ρC
− mB

ρB

)
(4)

for each instant in time, where ρB and ρC are the densities of constituents B and C, respectively.
Since we do not expect the limit of Ja

ε as ε→ 0 to vary within one cell (and since we do not have any
more information), we define Ja

ε (x, t) to be the constant value determined by (4) in each cell. Hence, an
equation for Ja

ε is obtained: find Ja
ε : Ω× S → R such that

∂tJ
a
ε (x, t) = −Cm

∫
Zw

f̃ r
ε(x, y, t) dy, Ja

ε (0) ≡ 1. (5a)

The reaction–diffusion system (2) simplifies to
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∂t(J
a
εu

a
ε(x, t))−∇ · (Ja

εD
a
ε∇ua

ε) = 0, x ∈ Ωa
ε, t ∈ S,

∂tu
w
ε (x, t)−∇ · (εlDw

ε ∇uw
ε ) = −rεf r

ε , x ∈ Ωw
ε , t ∈ S,

(5b)

−(Ja
εD

a
ε∇ua

ε) · νa
ε = (εlDw

ε ∇uw
ε ) · νw

ε , x ∈ Γε, t ∈ S,
−(Ja

εD
a
ε∇ua

ε) · νa
ε = εaε(u

a
ε − uw

ε ), x ∈ Γε, t ∈ S,
−(εlDw

ε ∇uw
ε ) · νw

ε = 0, x ∈ Γws
ε , t ∈ S.

(5c)

Homogeneous Neumann boundary conditions are prescribed at the exterior boundary ∂Ω for simplicity
as well as initial conditions (ua(0), uw(0)) = (ua

0, u
w
0 ).

For a function u = u(x, t) ∈ L2(Ω× S), let |u(t)|Ω be the L2(Ω)-norm and |u|Ω,t be the L2(Ω× (0, t))-
norm. For the coefficients of the system, we assume that their space variables can each be split into a
macroscopic and a microscopic one (often called slow and fast component): For α ∈ {a,w}, it is assumed
that there exist functionsDα = Dα(x, y, t), x ∈ Ωαε , y ∈ Zα, t ∈ S, bounded from above and from below by
numbers Dα

max and Dα
min, respectively, and periodically extended in y, such that Dα

ε (x, t) = Dα(x, x/ε, t)
and analogously for aε and rε. We further assume the norm equalities

lim
ε→0
|Dα

ε (t)|2Ω = |Dα(t)|2Ω×Zα , lim
ε→0
|rε(t)|2Ω = |r(t)|2Ω×Zw , lim

ε→0
ε|aε(t)|2Γε = |a(t)|2Ω×Γ (6)

and rmin ≥ 0 and Dα
min, amin > 0 as well as ∂tD

α
ε , ∂taε bounded from above. If Cm > 0, f r

ε is also required
to be bounded in L∞(S;L2(Ωw

ε )).
Since the problem for Ja

ε is decoupled from the reaction–diffusion problem, it can be solved indepen-
dently beforehand. The reaction–diffusion system is not completely standard owing to the presence of Ja

ε

in the parabolic term. For the proof of existence of microsolutions, we make use of an abstract theory for
degenerate problems developed in [12]. This enables us to prove the following theorem.
Theorem 2.1 For given ε > 0, there exists a unique weak solution of problem (5). We have

Ja
ε (x, t) = 1− Cm

∫ t

0

∫
Zw

f r(x, y, s) dy ds, (7)

which satisfies
|Ja
ε (t)|2Ω ≤ C, |∂tJa

ε |2Ω,t ≤ C (8)

for a.e. t ∈ S. The functions (ua
ε, u

w
ε ) ∈ L2(0, T ;W 1,2(Ωa

ε))× L2(0, T ;W 1,2(Ωw
ε )) satisfy

|ua
ε(t)|Ωa

ε
+ |∇ua

ε|Ωa
ε,t

+ |uw
ε (t)|Ωw

ε
+ εl/2|∇uw

ε |Ωw
ε ,t

+ ε1/2|ua
ε − uw

ε |Γε,t ≤ C (9a)

for a.e. t ∈ S, where the constant C depends on T and the data but not on ε if ∂tJ
a
ε is non-negative or

bounded independently of ε in L∞(Ω× S).

3. Identification of the limit problems

For the examination of the convergence of the limit functions as ε→ 0 and for the identification of the
limit problems, two-scale convergence [13,14] and periodic unfolding [11] are used. We only present the
identification of the limit problem associated with the volume factor Ja

ε . The complete limit problem of
(5) is stated in the next section.

Choosing the test function as ϕJ(x, y, t) with ϕJ ∈ L2(Ω × Y × S) in the weak form of (5a) and
integrating over Y , we obtain∫ T

0

∫
Ω

∫
Y

Tε(∂tJa
ε )(x, t)ϕJ(x, y, t) dy dxdt

= −Cm

∫ T

0

∫
Ω

∫
Y

∫
Zw

Tε(f r
ε)(x, z, t) dz ϕJ(x, y, t) dy dxdt, (10)
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where we have used the fact that Ja
ε is constant in each cell and, therefore, ∂tJ

a
ε = Tε(∂tJa

ε ) is independent
of y. Since the sequences are independent of y, the limit equation as ε→ 0 is given by∫ T

0

∫
Ω

∂tJ
a(x, t)

∫
Y

ϕJ(x, y, t) dy dxdt = −Cm

∫ T

0

∫
Ω

∫
Zw

f r(x, z, t) dz

∫
Y

ϕJ(x, y, t) dy dxdt. (11)

Owing to the equivalence of convergences, these are also the two-scale limits and, moreover, it suffices to
take ϕJ independent of y. Therefore,∫ T

0

∫
Ω

∂tJ
a(x, t)ϕJ(x, t) dxdt = −Cm

∫ T

0

∫
Ω

∫
Zw

f r(x, y, t) dy ϕJ(x, t) dxdt (12)

for all ϕJ ∈ L2(Ω× S).

4. The macroscopic limit problem

We state the macroscopic limit problem of (5) as ε → 0, where the limit functions of Ja
ε , ua

ε and
uw
ε are denoted by Ja, ua and uw, respectively. We define a generic cell problem: Let the functions ςαj ,
j = 1, . . . , N , be the Y -periodic solution of the cell problem

−∇y · (A(x, y, t)(∇yςαj (x, y, t) + ej)) = 0, y ∈ Zα, x ∈ Ω, t ∈ S, (13)

with homogeneous Neumann conditions at all interior boundaries, the weak form of which is given by

(A(x, · , t)(∇yςαj (x, · , t) + ej) | ∇yφ)Zα = 0 (14)

for all Y -periodic test functions φ. The vector ej is the jth unit vector in N -dimensional Euclidean space.
Writing δij for the Kronecker delta, the ςαj are used to define the tensor Pα = [pαij ]ij as

pαij(x, t) =

∫
Za

A(x, y, t)(δij + ∂yiς
α
j (x, y, t)) dy. (15)

We will specify A and α to our needs below.
The limit problem for Ja is given by

∂tJ
a(x, t) = −Cm

∫
Zw

f r dy, x ∈ Ω, t ∈ S, (16)

with initial condition Ja(0) = 1. The limit equation for ua states

∂t(J
aua(x, t))−∇ · (P a∇ua) = −

∫
Γ

a(ua − uw) dσy, x ∈ Ω, t ∈ S, (17)

with homogeneneous Neumann conditions at ∂Ω and initial condition ua(0) = ua
0, where P a is the tensor

defined by (15) with A = JaDa and α = a.
The limit equation for uw depends on the particular choice of the scaling exponent l. If l < 2, the limit

equation is given by

∂tu
w(x, t)− δ0l∇ · (Pw∇uw) = −

∫
Zw

rf r dy +

∫
Γ

a(ua − uw) dσy, x ∈ Ω, t ∈ S, (18)

where Pw is defined by (15) with A = Dw and α = w. If l = 2, the limit problem is given by

∂tu
w(x, y, t)−∇y · (Dw∇yuw) = −rf r, x ∈ Ω, y ∈ Zw, t ∈ S, (19)

−Dw∇yuw · νw = a(ua − uw), x ∈ Ω, y ∈ Γ, t ∈ S, (20)

−Dw∇yuw · νw = 0, x ∈ Ω, y ∈ Γws, t ∈ S. (21)

For all choices of l, homogeneous Neumann conditions apply at the exterior boundaries and uw(0) = uw
0 .
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Thus, the limit problem consists of one ordinary differential equation for the macroscopic pore-air
volume factor Ja(x, t) coupled to a reaction–diffusion problem for the concentrations ua and and uw,
where we have ua = ua(x, t) as well as uw = uw(x, t) if l < 2 and uw = uw(x, y, t) if l = 2.
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