
· 1
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We extend the finite depth interaction theory of Kagemoto & Yue (1986) to water of
infinite depth and bodies of arbitrary geometry. The sum over the discrete roots of the
dispersion equation in the finite depth theory becomes an integral in the infinite depth
theory. This means that the infinite dimensional diffraction transfer matrix in the finite
depth theory must be replaced by an integral operator. In the numerical solution of
the equations, this integral operator is approximated by a sum and a linear system of
equations is obtained. We also show how the calculations of the diffraction transfer matrix
for bodies of arbitrary geometry developed by Goo & Yoshida (1990) can be extended to
infinite depth, and how the diffraction transfer matrix for rotated bodies can be easily
calculated. This interaction theory is applied to the wave forcing of multiple ice floes
and a method to solve the full diffraction problem in this case is presented. Convergence
studies comparing the interaction method with the full diffraction calculations and the
finite and infinite depth interaction methods are carried out.

1. Introduction

The scattering of water waves by floating or submerged bodies is of wide practical im-
portance. Although the problem is non-linear, if the wave amplitude is sufficiently small,
the problem can be linearised. The linear problem is still the basis of the engineering
design of most off-shore structures and is the standard model of geophysical phenom-
ena such as the wave forcing of ice floes. While analytic solutions have been found for
simplified problems (especially for simple geometries or in two dimensions) the full three-
dimensional linear diffraction problem can only be solved by numerical methods involving
the discretisation of the body’s surface. The resulting linear system of equations has a
dimension equal to the number of unknowns used in the discretisation of the body.

If more than one body is present, all bodies scatter the incoming waves. Therefore, the
scattered wave from one body is incident upon all the others and, given that they are
not too far apart, this notably changes the total incident wave upon them. Therefore,
the diffraction calculation must be conducted for all bodies simultaneously. Since each
body must be discretised this can lead to a very large number of unknowns. However,
the scattered wavefield can be represented in an eigenfunction basis with a comparatively
small number of unknowns. If we can express the problem in this basis, using what is
known as an Interaction Theory, the number of unknowns can be much reduced, especially
if there is a large number of bodies.
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‡ Present address: Department of Mathematics, University of Auckland, New Zealand.
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The first interaction theory that was not based on an approximation was the interac-
tion theory developed by Kagemoto & Yue (1986). Kagemoto and Yue found an exact
algebraic method to solve the linear wave problem for vertically non-overlapping bod-
ies in water of finite depth. The only restriction of their theory was that the smallest
escribed circle for each body must not overlap any other body. The interaction of the
bodies was accounted for by taking the scattered wave of each body to be the incident
wave upon all other bodies (in addition to the ambient incident wave). Furthermore, since
the cylindrical eigenfunction expansions are local, these were mapped from one body to
another using Graf’s addition theorem for Bessel functions. Doing this for all bodies,
Kagemoto & Yue were able to solve for the coefficients of the scattered wavefields of all
bodies simultaneously. The only difficulty with this method was that the solutions of the
single diffraction problems had to be available in the cylindrical eigenfunction expansion
of an outgoing wave. Kagemoto & Yue therefore only solved for axisymmetric bodies be-
cause the single diffraction solution for axisymmetric bodies was available in the required
representation.

The extension of the Kagemoto and Yue scattering theory to bodies of arbitrary ge-
ometry was performed by Goo & Yoshida (1990) who found a general way to solve the
single diffraction problem in the required cylindrical eigenfunction representation. They
used a representation of the finite depth free surface Green’s function in the eigenfunc-
tion expansion of cylindrical outgoing waves centred at an arbitrary point of the water
surface (above the body’s mean centre position in this case). This Green’s function was
presented by Black (1975) and further investigated by Fenton (1978) who corrected some
statements about the Green’s function which Black had made. This Green’s function is
based on the cylindrical eigenfunction expansion of the finite depth free surface Green’s
function given by John (1950). The results of Goo & Yoshida were recently used by
Chakrabarti (2000) to solve for arrays of cylinders which can be divided into modules.

The development of the Kagemoto and Yue interaction theory was motivated by prob-
lems in off-shore engineering. However, the theory can also be applied to the geophysical
problem of wave scattering by ice floes. At the interface of the open and frozen ocean
an interfacial region known as the Marginal Ice Zone (MIZ) forms. The MIZ largely
controls the interaction of the open and frozen ocean, especially the interaction through
wave processors. This is because the MIZ consists of vast fields of ice floes whose size is
comparable to the dominant wavelength, which means that it strongly scatters incoming
waves. A method of solving for the wave response of a single ice floe of arbitrary geometry
in water of infinite depth was presented by Meylan (2002). The ice floe was modelled
as a floating, flexible thin plate and its motion was expanded in the free plate modes of
vibration. Converting the problem for the water into an integral equation and substitut-
ing the free modes, a system of equations for the coefficients in the modal expansion was
obtained. However, to understand wave propagation and scattering in the MIZ we need
to understand the way in which large numbers of interacting ice floes scatter waves. For
this reason, we require an interaction theory. While the Kagemoto and Yue interaction
theory could be used, their theory requires that the water depth is finite. While the
water depth in the Marginal Ice Zone varies, it is generally located far from shore above
the deep ocean. This means that the finite depth must be chosen large in order to be
able to apply their theory. Furthermore, when ocean waves propagate beneath an ice floe
the wavelength is increased so that it becomes more difficult to make the water depth
sufficiently deep that it may be approximated as infinite. For this reason, in this paper
we develop the equivalent interaction theory to Kagemoto and Yue’s in infinite depth.
Also, because of the complicated geometry of an ice floe, this interaction theory is for
bodies of arbitrary geometry.

In the first part of this paper Kagemoto and Yue’s interaction theory is extended to
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water of infinite depth. We represent the incident and scattered potentials in the cylin-
drical eigenfunction expansions and we use an analogous infinite depth Green’s function
to the one used by Goo & Yoshida (given by Peter & Meylan 2003). We show how the
infinite depth diffraction transfer matrices can be obtained with the use of this Green’s
function and we illustrate how the rotation of a body about its mean centre position in
the plane can be accounted for without recalculating the diffraction transfer matrix.

In the second part of the paper, using Meylan’s single floe result, the full diffraction
calculation for the motion and scattering from many interacting ice floes is calculated and
presented. For two square interacting ice floes the convergence of the method obtained
from the developed interaction theory is compared to the result of the full diffraction
calculation. The solutions of more than two interacting ice floes and of other shapes in
different arrangements are presented as well. We also compare the convergence of the
finite depth and infinite depth methods in deep water.

2. The extension of Kagemoto and Yue’s interaction theory to bodies
of arbitrary shape in water of infinite depth

Kagemoto & Yue (1986) developed an interaction theory for vertically non-overlapping
axisymmetric structures in water of finite depth. While their theory was valid for bodies
of arbitrary geometry, they did not develop all the necessary details to apply the theory
to arbitrary bodies. The only requirements to apply this scattering theory is that the
bodies are vertically non-overlapping and that the smallest cylinder which completely
contains each body does not intersect with any other body. In this section we extend
their theory to bodies of arbitrary geometry in water of infinite depth. The extension of
Kagemoto & Yue’s finite depth interaction theory to bodies of arbitrary geometry was
accomplished by Goo & Yoshida (1990).

The interaction theory begins by representing the scattered potential of each body
in the cylindrical eigenfunction expansion. Furthermore, the incoming potential is also
represented in the cylindrical eigenfunction expansion. The operator which maps the
incoming and outgoing representation is called the diffraction transfer matrix and is
different for each body. Since these representations are local to each body, a mapping of
the eigenfunction representations between different bodies is required. This operator is
called the coordinate transformation matrix.

The cylindrical eigenfunction expansions are introduced before we derive a system of
equations for the coefficients of the scattered wavefields. Analogously to Kagemoto &
Yue (1986), we represent the scattered wavefield of each body as an incoming wave upon
all other bodies. The addition of the ambient incident wave yields the complete incident
potential and with the use of diffraction transfer matrices which relate the coefficients of
the incident potential to those of the scattered wavefield a system of equations for the
unknown coefficients of the scattered wavefields of all bodies is derived.

2.1. Eigenfunction expansion of the potential

The equations of motion for the water are derived from the linearised inviscid theory.
Under the assumption of irrotational motion the velocity vector field of the water can be
written as the gradient field of a scalar velocity potential Φ. Assuming that the motion
is time-harmonic with the radian frequency ω the velocity potential can be expressed as
the real part of a complex quantity,

Φ(y, t) = Re {φ(y)e−iωt}. (2.1)
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Figure 1. Plan view of the relation between two bodies.

To simplify notation, y = (x, y, z) always denotes a point in the water, which is assumed
infinitely deep, while x always denotes a point of the undisturbed water surface assumed
at z = 0.

The problem consists of N vertically non-overlapping bodies, denoted by ∆j , which
are sufficiently far apart that there is no intersection of the smallest cylinder which
contains each body with any other body. Each body is subject to an incident wavefield
which is incoming, responds to this wavefield and produces a scattered wave field which
is outgoing. Both the incident and scattered potential corresponding to these wavefields
can be represented in the cylindrical eigenfunction expansion valid outside of the escribed
cylinder of the body. Let (rj , θj , z) be the local cylindrical coordinates of the jth body,
∆j , j ∈ {1, . . . , N}, and α = ω2/g where g is the acceleration due to gravity. Figure 1
shows these coordinate systems for two bodies.

The scattered potential of body ∆j can be expanded in cylindrical eigenfunctions,

φS
j (rj , θj , z) = eαz

∞∑
ν=−∞

Aj0νH
(1)
ν (αrj)e

iνθj

+

∞∫
0

(
cos ηz +

α

η
sin ηz

) ∞∑
ν=−∞

Ajν(η)Kν(ηrj)e
iνθj dη,

(2.2)

where the coefficients Aj0ν for the propagating modes are discrete and the coefficients

Ajν(·) for the decaying modes are functions. H
(1)
ν and Kν are the Hankel function of the

first kind and the modified Bessel function of the second kind respectively, both of order
ν as defined in Abramowitz & Stegun (1964). The incident potential upon body ∆j can
be expanded in cylindrical eigenfunctions,

φI
j(rj , θj , z) = eαz

∞∑
µ=−∞

Dj
0µJµ(αrj)e

iµθj

+

∞∫
0

(
cos ηz +

α

η
sin ηz

) ∞∑
µ=−∞

Dj
µ(η)Iµ(ηrj)e

iµθj dη,

(2.3)

where the coefficients Dj
0µ for the propagating modes are discrete and the coefficients

Dj
µ(·) for the decaying modes are functions. Jµ and Iµ are the Bessel function and the

modified Bessel function respectively, both of the first kind and order µ. To simplify the
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notation, from now on ψ(z, η) denotes the vertical eigenfunctions corresponding to the
decaying modes,

ψ(z, η) = cos ηz + α/η sin ηz. (2.4)

2.2. The interaction in water of infinite depth

Following the ideas of Kagemoto & Yue (1986), a system of equations for the unknown
coefficients and coefficient functions of the scattered wavefields is developed. This system
of equations is based on transforming the scattered potential of ∆j into an incident
potential upon ∆l (j 6= l). Doing this for all bodies simultaneously, and relating the
incident and scattered potential for each body, a system of equations for the unknown
coefficients is developed.

The scattered potential φS
j of body ∆j needs to be represented in terms of the incident

potential φI
l upon ∆l, j 6= l. From figure 1 we can see that this can be accomplished by

using Graf’s addition theorem for Bessel functions given in Abramowitz & Stegun (1964,
eq. 9.1.79),

H(1)
ν (αrj)e

iν(θj−ϑjl) =

∞∑
µ=−∞

H
(1)
ν+µ(αRjl) Jµ(αrl)e

iµ(π−θl+ϑjl), j 6= l, (2.5a)

Kν(ηrj)e
iν(θj−ϑjl) =

∞∑
µ=−∞

Kν+µ(ηRjl) Iµ(ηrl)e
iµ(π−θl+ϑjl), j 6= l, (2.5b)

which is valid provided that rl < Rjl. This limitation only requires that the escribed
cylinder of each body ∆l does not enclose any other origin Oj (j 6= l). However, the
expansion of the scattered and incident potential in cylindrical eigenfunctions is only
valid outside the escribed cylinder of each body. Therefore the condition that the escribed
cylinder of each body ∆l does not enclose any other origin Oj (j 6= l) is superseded by
the more rigorous restriction that the escribed cylinder of each body may not contain
any other body. Making use of the equations (2.5) the scattered potential of ∆j can be
expressed in terms of the incident potential upon ∆l,

φS
j (rl, θl, z) = eαz

∞∑
ν=−∞

Aj0ν

∞∑
µ=−∞

H
(1)
ν−µ(αRjl)Jµ(αrl)e

iµθlei(ν−µ)ϑjl

+

∞∫
0

ψ(z, η)

∞∑
ν=−∞

Ajν(η)

∞∑
µ=−∞

(−1)µKν−µ(ηRjl)Iµ(ηrl)e
iµθlei(ν−µ)ϑjl dη

= eαz
∞∑

µ=−∞

[ ∞∑
ν=−∞

Aj0νH
(1)
ν−µ(αRjl)e

i(ν−µ)ϑjl

]
Jµ(αrl)e

iµθl

+

∞∫
0

ψ(z, η)

∞∑
µ=−∞

[ ∞∑
ν=−∞

Ajν(η)(−1)µKν−µ(ηRjl)e
i(ν−µ)ϑjl

]
Iµ(ηrl)e

iµθl dη.

The ambient incident wavefield φIn can also be expanded in the eigenfunctions corre-
sponding to the incident wavefield upon ∆l. A detailed illustration of how to accomplish
this is given later. Let DIn

l0µ denote the coefficients of this ambient incident wavefield

corresponding to the propagating modes and DIn
lµ(·) denote the coefficients functions cor-

responding to the decaying modes (which are identically zero) of the incoming eigenfunc-
tion expansion for ∆l. The total incident wavefield upon body ∆j can now be expressed
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as

φI
l(rl, θl, z) = φIn(rl, θl, z) +

N∑
j=1
j 6=l

φS
j (rl, θl, z)

= eαz
∞∑

µ=−∞

[
DIn
l0µ +

N∑
j=1
j 6=l

∞∑
ν=−∞

Aj0νH
(1)
ν−µ(αRjl)e

i(ν−µ)ϑjl

]
Jµ(αrl)e

iµθl

+

∞∫
0

ψ(z, η)

∞∑
µ=−∞

[
DIn
lµ(η) +

N∑
j=1
j 6=l

∞∑
ν=−∞

Ajν(η)(−1)µKν−µ(ηRjl)e
i(ν−µ)ϑjl

]
Iµ(ηrl)e

iµθl dη.

The coefficients of the total incident potential upon ∆l are therefore given by

Dl
0µ = DIn

l0µ +

N∑
j=1
j 6=l

∞∑
ν=−∞

Aj0νH
(1)
ν−µ(αRjl)e

i(ν−µ)ϑjl , (2.6a)

Dl
µ(η) = DIn

lµ(η) +

N∑
j=1
j 6=l

∞∑
ν=−∞

Ajν(η)(−1)µKν−µ(ηRjl)e
i(ν−µ)ϑjl . (2.6b)

In general, it is possible to relate the total incident and scattered partial waves for
any body through the diffraction characteristics of that body in isolation. There exist
diffraction transfer operators Bl that relate the coefficients of the incident and scattered
partial waves, such that

Al = Bl(Dl), l = 1, . . . , N, (2.7)

where Al are the scattered modes due to the incident modes Dl. In the case of a countable
number of modes, (i.e. when the depth is finite), Bl is an infinite dimensional matrix.
When the modes are functions of a continuous variable (i.e. infinite depth), Bl is the
kernel of an integral operator. For the propagating and the decaying modes respectively,
the scattered potential can be related by diffraction transfer operators acting in the
following ways,

Al0ν =

∞∑
µ=−∞

Bpp
lνµD

l
0µ +

∞∫
0

∞∑
µ=−∞

Bpd
lνµ(ξ)Dl

µ(ξ) dξ, (2.8a)

Alν(η) =

∞∑
µ=−∞

Bdp
lνµ(η)Dl

0µ +

∞∫
0

∞∑
µ=−∞

Bdd
lνµ(η; ξ)Dl

µ(ξ) dξ. (2.8b)

The superscripts p and d are used to distinguish between propagating and decaying
modes, the first superscript denotes the kind of scattered mode, the second one the kind
of incident mode. If the diffraction transfer operators are known (their calculation is
discussed later), the substitution of equations (2.6) into equations (2.8) give the required
equations to determine the coefficients and coefficient functions of the scattered wavefields
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of all bodies,

Al0n =

∞∑
µ=−∞

Bpp
lnµ

[
DIn
l0µ +

N∑
j=1
j 6=l

∞∑
ν=−∞

Aj0νH
(1)
ν−µ(αRjl)e

i(ν−µ)ϑjl

]

+

∞∫
0

∞∑
µ=−∞

Bpd
lnµ(ξ)

[
DIn
lµ(η) +

N∑
j=1
j 6=l

∞∑
ν=−∞

Ajν(η)(−1)µKν−µ(ηRjl)e
i(ν−µ)ϑjl

]
dξ,

(2.9a)

Aln(η) =

∞∑
µ=−∞

Bdp
lnµ(η)

[
DIn
l0µ +

N∑
j=1
j 6=l

∞∑
ν=−∞

Aj0νH
(1)
ν−µ(αRjl)e

i(ν−µ)ϑjl

]

+

∞∫
0

∞∑
µ=−∞

Bdd
lnµ(η; ξ)

[
DIn
lµ(η) +

N∑
j=1
j 6=l

∞∑
ν=−∞

Ajν(η)(−1)µKν−µ(ηRjl)e
i(ν−µ)ϑjl

]
dξ,

(2.9b)

n ∈ Z, l = 1, . . . , N . It has to be noted that all equations are coupled so that it is
necessary to solve for all scattered coefficients and coefficient functions simultaneously.

For numerical calculations, the infinite sums have to be truncated and the integrals
must be discretised. Implying a suitable truncation, the four different diffraction transfer
operators can be represented by matrices which can be assembled in a big matrix Bl,

Bl =

[
Bpp
l Bpd

l

Bdp
l Bdd

l

]
,

the infinite depth diffraction transfer matrix. Truncating the coefficients accordingly,
defining al to be the vector of the coefficients of the scattered potential of body ∆l, dIn

l

to be the vector of coefficients of the ambient wavefield, and making use of a coordinate
transformation matrix Tjl given by

(Tjl)pq = H
(1)
p−q(αRjl) ei(p−q)ϑjl (2.10a)

for the propagating modes, and

(Tjl)pq = (−1)qKp−q(ηRjl) ei(p−q)ϑjl (2.10b)

for the decaying modes, a linear system of equations for the unknown coefficients follows
from equations (2.9),

al = B̂l

(
dIn
l +

N∑
j=1
j 6=l

tTjl aj

)
, l = 1, . . . , N, (2.11)

where the left superscript t indicates transposition. The matrix B̂l denotes the infinite
depth diffraction transfer matrix Bl in which the elements associated with decaying
scattered modes have been multiplied with the appropriate integration weights depending
on the discretisation of the continuous variable.

2.3. Calculation of the diffraction transfer matrix for bodies of arbitrary geometry

Before we can apply the interaction theory we require the diffraction transfer matrices
Bj which relate the incident and the scattered potential for a body ∆j in isolation. The
elements of the diffraction transfer matrix, (Bj)pq, are the coefficients of the pth partial
wave of the scattered potential due to a single unit-amplitude incident wave of mode q
upon ∆j .
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While Kagemoto & Yue’s interaction theory was valid for bodies of arbitrary shape,
they did not explain how to actually obtain the diffraction transfer matrices for bod-
ies which did not have an axisymmetric geometry. This step was performed by Goo &
Yoshida (1990) who came up with an explicit method to calculate the diffraction transfer
matrices for bodies of arbitrary geometry in the case of finite depth. Utilising a Green’s
function they used the standard method of transforming the single diffraction boundary-
value problem to an integral equation for the source strength distribution function over
the immersed surface of the body. However, the representation of the scattered potential
which is obtained using this method is not automatically given in the cylindrical eigen-
function expansion. To obtain such cylindrical eigenfunction expansions of the potential
Goo & Yoshida (1990) used the representation of the free surface finite depth Green’s
function given by Black (1975) and Fenton (1978). Black and Fenton’s representation of
the Green’s function was based on applying Graf’s addition theorem to the eigenfunc-
tion representation of the free surface finite depth Green’s function given by John (1950).
Their representation allowed the scattered potential to be represented in the eigenfunc-
tion expansion with the cylindrical coordinate system fixed at the point of the water
surface above the mean centre position of the body.

It should be noted that, instead of using the source strength distribution function, it
is also possible to consider an integral equation for the total potential and calculate the
elements of the diffraction transfer matrix from the solution of this integral equation. An
outline of this method for water of finite depth is given by Kashiwagi (2000). We present
here a derivation of the diffraction transfer matrices for the case infinite depth based on a
solution for the source strength distribution function. However, an equivalent derivation
would be possible based on the solution for the total velocity potential.

To calculate the diffraction transfer matrix in infinite depth, we require the represen-
tation of the infinite depth free surface Green’s function in cylindrical eigenfunctions,

G(r, θ, z; s, ϕ, c) =
iα

2
eα(z+c)

∞∑
ν=−∞

H(1)
ν (αr)Jν(αs)eiν(θ−ϕ)

+
1

π2

∞∫
0

ψ(z, η)
η2

η2 + α2
ψ(c, η)

∞∑
ν=−∞

Kν(ηr)Iν(ηs)eiν(θ−ϕ) dη,

(2.12)

r > s, given by Peter & Meylan (2003).

We assume that we have represented the scattered potential in terms of the source
strength distribution ςj so that the scattered potential can be written as

φS
j (y) =

∫
Γj

G(y, ζ) ςj(ζ) dσζ , y ∈ D, (2.13)

where D is the volume occupied by the water and Γj is the immersed surface of body ∆j .
The source strength distribution function ςj can be found by solving an integral equation.
The integral equation is described in Wehausen & Laitone (1960) and numerical methods
for its solution are outlined in Sarpkaya & Isaacson (1981). Substituting the eigenfunction
expansion of the Green’s function (2.12) into (2.13), the scattered potential can be written
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as

φS
j (rj , θj , z) = eαz

∞∑
ν=−∞

[
iα

2

∫
Γj

eαcJν(αs)e−iνϕςj(ζ) dσζ

]
H(1)
ν (αrj)e

iνθj

+

∞∫
0

ψ(z, η)

∞∑
ν=−∞

[
1

π2

η2

η2 + α2

∫
Γj

ψ(c, η)Iν(ηs)e−iνϕςj(ζ) dσζ

]
Kν(ηrj)e

iνθj dη,

where ζ = (s, ϕ, c) and r > s. This restriction implies that the eigenfunction expansion
is only valid outside the escribed cylinder of the body.

The columns of the diffraction transfer matrix are the coefficients of the eigenfunction
expansion of the scattered wavefield due to the different incident modes of unit-amplitude.
The elements of the diffraction transfer matrix of a body of arbitrary shape are therefore
given by

(Bj)pq =
iα

2

∫
Γj

eαcJp(αs)e
−ipϕςjq (ζ) dσζ (2.14a)

and

(Bj)pq =
1

π2

η2

η2 + α2

∫
Γj

ψ(c, η)Ip(ηs)e
−ipϕςjq (ζ) dσζ (2.14b)

for the propagating and the decaying modes respectively, where ςjq (ζ) is the source
strength distribution due to an incident potential of mode q of the form

φI
q(s, ϕ, c) = eαcH(1)

q (αs)eiqϕ (2.15a)

for the propagating modes, and

φI
q(s, ϕ, c) = ψ(c, η)Kq(ηs)e

iqϕ (2.15b)

for the decaying modes.

2.4. The diffraction transfer matrix of rotated bodies

For a non-axisymmetric body, a rotation about the mean centre position in the (x, y)-
plane results in a different diffraction transfer matrix. We show how the diffraction trans-
fer matrix of a body rotated by an angle β can be easily calculated from the diffraction
transfer matrix of the non-rotated body. The rotation of the body influences the form
of the elements of the diffraction transfer matrices in two ways. Firstly, the angular de-
pendence in the integral over the immersed surface of the body is altered and, secondly,
the source strength distribution function is different if the body is rotated. However, the
source strength distribution function of the rotated body can be obtained by calculat-
ing the response of the non-rotated body due to rotated incident potentials. It is shown
that the additional angular dependence can be easily factored out of the elements of the
diffraction transfer matrix.

The additional angular dependence caused by the rotation of the incident potential
can be factored out of the normal derivative of the incident potential such that

∂φI
qβ

∂n
=
∂φI

q

∂n
eiqβ ,

where φI
qβ is the rotated incident potential. Since the integral equation for the determina-

tion of the source strength distribution function is linear, the source strength distribution
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function due to the rotated incident potential is thus just given by

ςjqβ = ςjq eiqβ .

This is also the source strength distribution function of the rotated body due to the
standard incident modes.

The elements of the diffraction transfer matrix Bj are given by equations (2.14). Keep-
ing in mind that the body is rotated by the angle β, the elements of the diffraction transfer
matrix of the rotated body are given by

(Bβ
j )pq =

iα

2

∫
Γj

eαcJp(αs)e
−ip(ϕ+β)ςjqβ(ζ) dσζ , (2.16a)

and

(Bβ
j )pq =

1

π2

η2

η2 + α2

∫
Γj

ψ(c, η)Ip(ηs)e
−ip(ϕ+β)ςjqβ(ζ) dσζ , (2.16b)

for the propagating and decaying modes respectively.
Thus the additional angular dependence caused by the rotation of the body can be

factored out of the elements of the diffraction transfer matrix. The elements of the diffrac-
tion transfer matrix corresponding to the body rotated by the angle β, Bβ

j , are given
by

(Bβ
j )pq = (Bj)pq ei(q−p)β . (2.17)

As before, (B)pq is understood to be the element of B which corresponds to the coefficient
of the pth scattered mode due to a unit-amplitude incident wave of mode q. Equation
(2.17) applies to propagating and decaying modes likewise.

2.5. Representation of the ambient wavefield in the eigenfunction representation

In Cartesian coordinates centred at the origin, the ambient wavefield is given by

φIn(x, y, z) = A
g

ω
eiα(x cosχ+y sinχ)+αz,

where A is the amplitude (in displacement) and χ is the angle between the x-axis and
the direction in which the wavefield travels. The interaction theory requires that the
ambient wavefield, which is incident upon all bodies, is represented in the eigenfunction
expansion of an incoming wave in the local coordinates of the body. The ambient wave
can be represented in an eigenfunction expansion centred at the origin as

φIn(x, y, z) = A
g

ω
eαz

∞∑
µ=−∞

eiµ(π/2−θ+χ)Jµ(αr)

(Linton & McIver 2001, p. 169). Since the local coordinates of the bodies are centred at
their mean centre positions Ol = (Olx, O

l
y), a phase factor has to be defined which ac-

counts for the position from the origin. Including this phase factor the ambient wavefield
at the lth body is given by

φIn(rl, θl, z) = A
g

ω
eiα(Ol

x cosχ+Ol
x sinχ) eαz

∞∑
µ=−∞

eiµ(π/2−χ)Jµ(αrl)e
iµθl .

2.6. Solving the resulting system of equations

After the coefficient vector of the ambient incident wavefield, the diffraction transfer
matrices and the coordinate transformation matrices have been calculated, the system
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of equations (2.11), has to be solved. This system can be represented by the following
matrix equation,

a1

a2

...

aN


=



B̂1d
In
1

B̂2d
In
2

...

B̂NdIn
N


+



0 B̂1
tT21 B̂1

tT31 . . . B̂1
tTN1

B̂2
tT12 0 B̂2

tT32 . . . B̂2
tTN2

0
...

. . .
...

B̂N
tT1N . . . 0





a1

a2

...

aN


,

where 0 denotes the zero-matrix which is of the same dimension as B̂j , say n. This matrix
equation can be easily transformed into a classical (N n)-dimensional linear system of
equations.

3. Finite Depth Interaction Theory

We compare the performance of the infinite depth interaction theory with the equiv-
alent theory for finite depth. As we have stated previously, the finite depth theory was
developed by Kagemoto & Yue (1986) and extended to bodies of arbitrary geometry by
Goo & Yoshida (1990). We briefly present this theory in our notation and the comparisons
are made in a later section.

In water of constant finite depth d, the scattered potential of a body ∆j can be ex-
panded in cylindrical eigenfunctions,

φS
j (rj , θj , z) =

cosh k(z + d)

cosh kd

∞∑
ν=−∞

Aj0νH
(1)
ν (krj)e

iνθj

+

∞∑
m=1

cos km(z + d)

cos kd

∞∑
ν=−∞

AjmνKν(kmrj)e
iνθj ,

(3.1)

with discrete coefficients Ajmν . The positive wavenumber k is related to α by the disper-
sion relation

α = k tanh kd, (3.2)

and the values of km, m > 0, are given as positive real roots of the dispersion relation

α+ km tan kmd = 0. (3.3)

The incident potential upon body ∆j can be also be expanded in cylindrical eigenfunc-
tions,

φI
j(rj , θj , z) =

cosh k(z + d)

cosh kd

∞∑
µ=−∞

Dj
0µJµ(krj)e

iµθj

+

∞∑
m=1

cos km(z + d)

cos kd

∞∑
µ=−∞

Dj
mµIµ(kmrj)e

iµθj ,

(3.4)

with discrete coefficients Dj
mµ. A system of equations for the coefficients of the scattered

wavefields for the bodies are derived in an analogous way to the infinite depth case. The
derivation is simpler because all the coefficients are discrete and the diffraction transfer
operator can be represented by an infinite dimensional matrix. Truncating the infinite
dimensional matrix as well as the coefficient vectors appropriately, the resulting system
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of equations is given by

al = Bl

(
dIn
l +

N∑
j=1
j 6=l

tTjl aj

)
, l = 1, . . . , N, (3.5)

where al is the coefficient vector of the scattered wave, dIn
l is the coefficient vector of

the ambient incident wave, Bl is the diffraction transfer matrix of ∆l and Tjl is the
coordinate transformation matrix analogous to (2.10).

The calculation of the diffraction transfer matrices is also similar to the infinite depth
case. The finite depth Green’s function

G(r, θ, z; s, ϕ, c)

=
i

2

α2 − k2

d(α2 − k2)− α
cosh k(z + d) cosh k(c+ d)

∞∑
ν=−∞

H(1)
ν (kr)Jν(ks)eiν(θ−ϕ)

+
1

π

∞∑
m=1

k2
m + α2

d(k2
m + α2)− α

cos km(z + d) cos km(c+ d)

∞∑
ν=−∞

Kν(kmr)Iν(kms)e
iν(θ−ϕ),

(3.6)

given by Black (1975) and Fenton (1978), needs to be used instead of the infinite depth
Green’s function (2.12). The elements of Bj are therefore given by

(Bj)pq =
i

2

(α2 − k2) cosh2 kd

d(α2 − k2)− α

∫
Γj

cosh k(c+ d)Jp(αs)e
−ipϕςjq (ζ) dσζ (3.7a)

and

(Bj)pq =
1

π

(k2
m + α2) cos2 kmd

d(k2
m + α2)− α

∫
Γj

cos km(c+ d)Ip(ηs)e
−ipϕςjq (ζ) dσζ (3.7b)

for the propagating and the decaying modes respectively, where ςjq (ζ) is the source
strength distribution due to an incident potential of mode q of the form

φI
q(s, ϕ, c) =

cosh km(c+ d)

cosh kd
H(1)
q (ks)eiqϕ (3.8a)

for the propagating modes, and

φI
q(s, ϕ, c) =

cos km(c+ d)

cos kd
Kq(kms)e

iqϕ (3.8b)

for the decaying modes.

4. Wave forcing of an ice floe of arbitrary geometry

The interaction theory which has been developed so far has been for arbitrary bodies.
No assumption has been made about the body geometry or its equations of motion.
However, we now use this interaction theory to make calculations for the specific case of
ice floes. Ice floes form in vast fields consisting of hundreds if not thousands of individual
floes and furthermore most ice floe fields occur in the deep ocean. For this reason they
are ideally suited to the application of the scattering theory we have just developed.
Furthermore, the presence of the ice lengthens the wavelength making it more difficult
to determine how deep the water must be to be approximately infinite.
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4.1. Mathematical model for ice floes

We briefly describe the mathematical model which is used to describe ice floes. A more
detailed account can be found in Squire et al. (1995). We assume that the ice floe is
sufficiently thin that we may apply the shallow draft approximation, which essentially
applies the boundary conditions underneath the floe at the water surface. The ice floe is
modelled as a thin plate rather than a rigid body since the floe flexure is significant owing
to the ice floe geometry. This model has been applied to a single ice floe by Meylan (2002).
Assuming the ice floe is in contact with the water surface at all times, its displacement
W is that of the water surface and W is required to satisfy the linear plate equation in
the area occupied by the ice floe ∆. In analogy to (2.1), w denotes the time-independent
surface displacement (with the same radian frequency as the water velocity potential due
to linearity) and the plate equation becomes

D∇4w − ω2 ρ∆ hw = iω ρφ− ρ g w, x ∈ ∆, (4.1)

with the density of the water ρ, the modulus of rigidity of the ice floe D, its density
ρ∆ and its thickness h. The right-hand-side of (4.1) arises from the linearised Bernoulli
equation. It needs to be recalled that x always denotes a point of the undisturbed water
surface. Free edge boundary conditions apply, namely

∂2w

∂n2
+ ν

∂2w

∂s2
= 0 and

∂3w

∂n3
+ (2− ν)

∂3w

∂n∂s2
= 0, x ∈ ∂∆, (4.2)

where n and s denote the normal and tangential directions on ∂∆ (where they exist)
respectively and ν is Poisson’s ratio.

Non-dimensional variables (denoted with an overbar) are introduced,

(x̄, ȳ, z̄) =
1

a
(x, y, z), w̄ =

w

a
, ᾱ = aα, ω̄ = ω

√
a

g
and φ̄ =

φ

a
√
ag
, (4.3)

where a is a length parameter associated with the floe. In non-dimensional variables, the
equation for the ice floe (4.1) reduces to

β∇4w̄ − ᾱγw̄ = i
√
ᾱφ̄− w̄, x̄ ∈ ∆̄ (4.4)

with

β =
D

gρa4
and γ =

ρ∆h

ρa
.

The constants β and γ represent the stiffness and the mass of the plate respectively. For
convenience, the overbars are dropped and non-dimensional variables are assumed in the
sequel.

The standard boundary-value problem applies to the water. The water velocity poten-
tial must satisfy the boundary value problem

∇2φ = 0, y ∈ D, (4.5a)

∂φ

∂z
= αφ, x 6∈ ∆, (4.5b)

sup
y∈D
|φ| <∞. (4.5c)

The linearised kinematic boundary condition is applied under the ice floe,

∂φ

∂z
= −i

√
αw, x ∈ ∆, (4.5d)
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and the Sommerfeld radiation condition

lim
r̃→∞

√
r̃
( ∂
∂r̃
− ik

)
(φ− φIn) = 0, (4.5e)

where r̃2 = x2 + y2 and k is the wavenumber is imposed.
Since the numerical convergence is compared to the finite depth theory later, a formu-

lation for the finite depth problem is required. However, the differences to the infinite
depth formulation are few. For water of constant finite depth d, the volume occupied by
the water changes, the vertical dimension being reduced to (−d, 0), (still denoted by D),
and the depth condition (4.5c) is replaced by the bed condition,

∂φ

∂z
= 0, y ∈ D, z = −d. (4.6)

In water of finite depth, the positive real wavenumber k is related to the radian frequency
by the dispersion relations (3.2).

4.2. The wavelength under the ice floe

For the case of a floating thin plate of shallow draft, which we have used here to model ice
floes, waves can propagate under the plate. These waves can be understood by considering
an infinite sheet of ice and they satisfy a complex dispersion relation given by Fox &
Squire (1994). In non-dimensional form it states

κ∗ tanκ∗d = − α

βκ∗4 − γα+ 1
,

where κ∗ is the wavenumber under the plate. The purely imaginary roots of this dispersion
relation correspond to the propagating modes and their absolute value is given as the
positive root of

κ tanhκd =
α

βκ4 − γα+ 1
.

For realistic values of the parameters, the effect of the plate is to make κ smaller than k
(the open water wavenumber), which increases the wavelength. The effect of the increased
wavelength is to increase the depth at which the water may be approximated as infinite.

4.3. Transformation into an integral equation

The problem for the water is converted to an integral equation in the following way. Let
G be the three-dimensional free surface Green’s function for water of infinite depth. The
Green’s function allows the representation of the scattered water velocity potential in
the standard way,

φS(y) =

∫
Γ

(
φS(ζ)

∂G

∂nζ
(y; ζ)−G(y; ζ)

∂φS

∂nζ
(ζ)

)
dσζ , y ∈ D. (4.7)

In the case of a shallow draft, the fact that the Green’s function is symmetric and therefore
satisfies the free surface boundary condition with respect to the second variable as well
can be used to drastically simplify (4.7). Due to the linearity of the problem the ambient
incident potential can just be added to the equation to obtain the total water velocity
potential, φ = φI+φS. Limiting the result to the water surface leaves the integral equation
for the water velocity potential under the ice floe,

φ(x) = φI(x) +

∫
∆

G(x; ξ)
(
αφ(ξ) + i

√
αw(ξ)

)
dσξ, x ∈ ∆. (4.8)
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Since the surface displacement of the ice floe appears in this integral equation, it is
coupled with the plate equation (4.4). A method of solution is discussed in detail by
Meylan (2002) but a short outline is given. The surface displacement of the ice floe is
expanded into its modes of vibration by calculating the eigenfunctions and eigenvalues
of the biharmonic operator. The integral equation for the potential is then solved for
every eigenfunction which gives a corresponding potential to each eigenfunction. The
expansion in the eigenfunctions simplifies the biharmonic equation and, by using the
orthogonality of the eigenfunctions, a system of equations for the unknown coefficients
of the eigenfunction expansion is obtained.

4.4. The coupled ice floe - water equations

Since the operator ∇4, subject to the free edge boundary conditions, is self-adjoint a thin
plate must possess a set of modes wk which satisfy the free boundary conditions and the
eigenvalue equation

∇4wk = λkw
k.

The modes which correspond to different eigenvalues λk are orthogonal and the eigen-
values are positive and real. While the plate always has repeated eigenvalues, orthogonal
modes can still be found and the modes can be normalised. We therefore assume that
the modes are orthonormal, i.e.∫

∆

wj(ξ)wk(ξ) dσξ = δjk,

where δjk is the Kronecker delta. The eigenvalues λk have the property that λk →∞ as
k → ∞ and we order the modes by increasing eigenvalue. These modes can be used to
expand any function over the wetted surface of the ice floe ∆.

We expand the displacement of the floe in a finite number of modes M , i.e.

w(x) =

M∑
k=1

ckw
k(x). (4.9)

¿From the linearity of (4.8) the potential can be written in the form

φ(x) = φ0(x) +

M∑
k=1

ckφ
k(x), (4.10)

where φ0 and φk respectively satisfy the integral equations

φ0(x) = φI(x) +

∫
∆

αG(x; ξ)φ0(ξ)dσξ (4.11a)

and

φk(x) =

∫
∆

G(x; ξ)
(
αφk(ξ) + i

√
αwk(ξ)

)
dσξ. (4.11b)

The potential φ0 represents the potential due to the incoming wave assuming that the
displacement of the ice floe is zero. The potential φk represents the potential which is
generated by the plate vibrating with the kth mode in the absence of any input wave
forcing.

We substitute equations (4.9) and (4.10) into equation (4.4) to obtain

β

M∑
k=1

λkckw
k − αγ

M∑
k=1

ckw
k = i

√
α
(
φ0 +

M∑
k=1

ckφ
k
)
−

M∑
k=1

ckw
k. (4.12)
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To solve equation (4.12) we multiply by wj and integrate over the plate (i.e. we take the
inner product with respect to wj) taking into account the orthogonality of the modes wj

and obtain

βλkck + (1− αγ) ck =

∫
∆

i
√
α
(
φ0(ξ) +

N∑
j=1

cjφ
j(ξ)

)
wk(ξ) dσξ, (4.13)

which is a matrix equation in ck.
Equation (4.13) cannot be solved without determining the modes of vibration of the

thin plate wk (along with the associated eigenvalues λk) and solving the integral equations
(4.11). We use the finite element method to determine the modes of vibration (Zienkiewicz
& Taylor 1989) and the integral equations (4.11) are solved by a constant panel method
(Sarpkaya & Isaacson 1981). The same set of nodes is used for the finite element method
and to define the panels for the integral equation.

4.5. Full diffraction calculation for multiple ice floes

The interaction theory is a method to allow more rapid solutions to problems involv-
ing multiple bodies. The principle advantage is that the potential is represented in the
cylindrical eigenfunctions and therefore fewer unknowns are required. However, every
problem which can be solved by the interaction theory can also be solved by applying
the full diffraction theory and solving an integral equation over the wetted surface of
all the bodies. In this section we briefly show how this extension can be performed for
the ice floe situation. The full diffraction calculation is used to check the performance
and convergence of our interaction theory. Also, because the interaction theory is only
valid when the escribed cylinder for each ice floe does not contain any other floe, the full
diffraction calculation is required for a very dense arrangement of ice floes.

We can solve the full diffraction problem for multiple ice floes by the following exten-
sion. The displacement of the jth floe is expanded in a finite number of modes Mj (since
the number of modes may not necessarily be the same), i.e.

wj (x) =

Mj∑
k=1

cjkw
k
j (x). (4.14)

¿From the linearity of (4.8) the potential can be written in the form

φ(x) = φ0(x) +

N∑
n=1

Mn∑
k=1

cnkφ
k
n(x), (4.15)

where φ0 and φkj respectively satisfy the integral equations

φ0
j (x) = φI(x) +

N∑
n=1

∫
∆n

αG(x; ξ)φ0
j (ξ) dσξ (4.16a)

and

φkj (x) =

N∑
n=1

∫
∆n

G(x; ξ)
(
αφkj (ξ) + i

√
αwkj (ξ)

)
dσξ. (4.16b)

The potential φ0
j represents the potential due the incoming wave assuming that the

displacement of the ice floe is zero, φkj represents the potential which is generated by the
jth plate vibrating with the kth mode in the absence of any input wave forcing. It should
be noted that φkj (x) is, in general, non-zero for x ∈ ∆n (since the vibration of the jth
plate results in potential under the nth plate).
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We substitute equations (4.14) and (4.15) into equation (4.4) to obtain

βj

Mj∑
k=1

λjkcjkw
k
j − αγj

Mj∑
k=1

cjkw
k
j = i

√
α
(
φ0
j +

N∑
n=1

Mn∑
k=1

cnkφ
k
n

)
−

Mn∑
k=1

cjkw
k
j . (4.17)

To solve equation (4.17) we multiply by wlj and integrate over the plate (as before) taking

into account the orthogonality of the modes wlj and obtain

βjλjkcjk +
(
1− αγj

)
cjk =

∫
∆j

i
√
α
(
φ0(ξ) +

N∑
n=1

Mn∑
l=1

cnlφ
l
n(ξ)

)
wlj(ξ) dσξ, (4.18)

which holds for all j = 1, . . . , N and therefore gives a matrix equation for cjk.

5. Numerical Results

In this section we present some calculations using the interaction theory in finite and
infinite depth and the full diffraction method in finite and infinite depth. These are based
on calculations for ice floes. We begin with some convergence tests which aim to compare
the various methods. It needs to be noted that this comparison is only of numerical
nature since the interactions methods as well as the full diffraction calculations are exact
in an analytical sense. However, numerical calculations require truncations which affect
the different methods in different ways. Especially the dependence on these truncations
is investigated.

5.1. Convergence Test

We present some convergence tests that aim to compare the performance of the inter-
action theory with the full diffraction calculations and to compare the performance of
the finite and infinite depth interaction methods in deep water. The comparisons are
conducted for the case of two square ice floes in three different arrangements. In the full
diffraction calculation the ice floes are discretised in 24× 24 = 576 elements. For the full
diffraction calculation the resulting linear system of equations to be solved is therefore
1152. As is seen, once the diffraction transfer matrix has been calculated (and saved),
the dimension of the linear system of equations to be solved in the interaction method is
considerably smaller. It is given by twice the dimension of the diffraction transfer matrix.
The most challenging situation for the interaction theory is when the bodies are close
together. For this reason we choose the distance such that the escribed circles of the two
ice floes just overlap. It must be recalled that the interaction theory is valid as long as
the escribed cylinder of a body does not intersect with any other body.

Both ice floes have non-dimensionalised stiffness β = 0.02, mass γ = 0.02 and Poisson’s
ratio is chosen as ν = 0.3333. The wavelength of the ambient incident wave is λ = 2. Each
ice floe has side length 2. The ambient wavefield is of unit amplitude and propagates in
the x-direction. Three different arrangements are chosen to compare the results of the
finite depth interaction method in deep water and the infinite depth interaction method
with the corresponding full diffraction calculations. In the first arrangement the second
ice floe is located behind the first, in the second arrangement it is located beside, and
the third arrangement it is both beside and behind. The exact positions of the ice floes
are given in table 1.

Figure 2 shows the solutions corresponding to the three arrangements in the case of
water of infinite depth. To illustrate the effect on the water in the vicinity of the ice floes,
the water displacement is also shown. It is interesting to note that the ice floe in front is
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arrangement O1 O2

1 (−1.4, 0) (1.4, 0)
2 (0,−1.4) (0, 1.4)
3 (−1.4,−0.6) (1.4, 0.6)

Table 1. Positions of the ice floes in the different arrangements.

barely influenced by the floe behind while the motion of the floe behind is quite different
from its motion in the absence of the floe in front.

To compare the results, a measure of the error from the full diffraction calculation is
used. We calculate the full diffraction solution with a sufficient number of points so that
we may use it to approximate the exact solution.

E2 =

∫
∆

∣∣wi(x)− wf (x)
∣∣2 dx

1/2

,

where wi and wf are the solutions of the interaction method and the corresponding full
diffraction calculation respectively. It would also be possible to compare other errors, the
maximum difference of the solutions for example, but the results are very similar.

It is worth noting that the finite depth interaction method only converges up to a
certain depth if used with the eigenfunction expansion of the finite depth Green’s function
(3.6). This is because of the factor α2 − k2 in the term of propagating modes of the
Green’s function. The Green’s function can be rewritten by making use of the dispersion
relation (3.2) (as suggested by Linton & McIver 2001, p. 26, for example) and the depth
restriction of the finite depth interaction method for bodies of arbitrary geometry can be
circumvented.

The truncation parameters for the interaction methods are now considered for both
finite and infinite depth. The number of propagating modes and angular decaying compo-
nents are free parameters in both methods. In finite depth, the number of decaying roots
of the dispersion relation needs to be chosen while in infinite depth the discretisation of
a continuous variable must be selected. In the infinite depth case we are free to choose
the number of points as well as the points themselves. In water of finite depth, the depth
can also be considered a free parameter as long as it is chosen large enough to account
for deep water.

Truncating the infinite sums in the eigenfunction expansion of the outgoing water ve-
locity potential for infinite depth with truncation parameters TH and TK and discretising
the integration by defining a set of nodes, 0 ≤ η1 < . . . < ηm < . . . < η

TR
, with weights

hm, the potential for infinite depth can be approximated by

φ(r, θ, z) = eαz
TH∑

ν=−TH

A0νH
(1)
ν (αr)eiνθ

+

TR∑
m=1

hm ψ(z, ηm)

TK∑
ν=−TK

Aν(ηm)Kν(ηmr)e
iνθ.

(5.1)

In the following, the integration weights are chosen to be hm = 1/2 (ηm+1 − ηm−1),
m = 2, . . . , TR − 1 and h1 = η2 − η1 as well as h

TR
= η

TR
− η

TR−1
, which corresponds to

the mid-point quadrature rule. Different quadrature rules such as Gaussian quadrature
could be considered. Although in general this would lead to better results, the mid-
point rule allows a clever choice of the discretisation points so that the convergence with
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Figure 2. Surface displacement of the ice floes and the water in their vicinity,
arrangements 1, 2 and 3.
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TR discretisation of η

1 { 2.1 }
2 { 1.2, 2.7 }
3 { 0.8, 1.8, 3.0 }
4 { 0.4, 1.4, 2.2, 3.2 }
5 { 0.2, 1.0, 1.8, 3.0, 4.6 }

Table 2. The different discretisations used in the convergence tests.

Gaussian quadrature is no better. In finite depth, the analogous truncation leads to

φ(r, θ, z) =
cosh k(z + d)

cosh kd

TH∑
ν=−TH

A0νH
(1)
ν (kr)eiνθ

+

TR∑
m=1

cos km(z + d)

cos kmd

TK∑
ν=−TK

AmνKν(kmr)e
iνθ.

(5.2)

In both cases, the dimension of the diffraction transfer matrix, B, is given by 2TH + 1 +
TR (2TK + 1).

Since the choice of the number of propagating modes and angular decaying components
affects the finite and infinite depth methods in similar ways, the dependence on these
parameters is not further presented. Thorough convergence tests have shown that in the
settings investigated here, it is sufficient to choose TH to be 11 and TK to be 5. Further
increasing these parameter values does not result in smaller errors (as compared to the
full diffraction calculation with 576 elements per floe). We now compare the convergence
of the infinite depth and the finite depth methods if TH and TK are fixed (with the
previously mentioned values) and TR is varied. To be able to compare the results, the
discretisation of the continuous variable is always the same for fixed TR and these are
shown in table 2. It should be noted that if only one node is used the integration weight
is chosen to be 1.

Figures 3, 4 and 5 show the convergence for arrangement 1, arrangement 2 and ar-
rangement 3, respectively, for the infinite depth method and the finite depth method
with depth 2 (plot (a)) and depth 4 (plot (b)). Since the ice floes are located beside
each other in arrangement 2 the average errors are the same for both floes. As can be
seen from figures 3, 4 and 5 the convergence of the infinite depth method is similar to
that of the finite depth method. Used with depth 2, the convergence of the finite depth
method is generally better than that of the infinite depth method while used with depth
4, the infinite depth method achieves the better results. Tests with other depths show
that the performance of the finite depth method decreases with increasing water depth
as expected. In general, since the wavelength is 2, a depth of d = 2 should approximate
infinite depth and hence there is no advantage to using the infinite depth theory. How-
ever, as mentioned previously, for certain situations such as ice floes it is not necessarily
true that d = 2 approximates infinite depth.

5.2. Multiple ice floe results

We now present results for multiple ice floes of different geometries and in different
arrangements on water of infinite depth. We choose the floe arrangements arbitrarily,
since there are no known special ice floe arrangements, such as those that give rise to
resonances in the infinite limit. In all plots, the wavelength λ has been chosen to be 2,
the stiffness β and the mass γ of the ice floes to be 0.02 and Poisson’s ratio ν is 0.3333.
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Figure 3. Development of the errors as TR is increased in arrangement 1.
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Figure 4. Development of the errors as TR is increased in arrangement 2.
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Figure 5. Development of the errors as TR is increased in arrangement 3.

The ambient wavefield of amplitude 1 propagates in the positive direction of the x-axis,
thus it travels from left to right in the plots.

Figure 6 shows the displacements of multiple interacting ice floes of different shapes
and in different arrangements. Since square elements have been used to represent the
floes, non-rectangular geometries are approximated. All ice floes have an area of 4 and
the escribing circles do not intersect with any of the other ice floes. The plots show the
displacement of the ice floes at time t = 0.
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Figure 6. Surface displacement of interacting ice floes of different geometries.

6. Summary

The finite depth interaction theory developed by Kagemoto & Yue (1986) has been
extended to water of infinite depth. Furthermore, using the eigenfunction expansion of the
infinite depth free surface Green’s function, we have been able to calculate the diffraction
transfer matrices for bodies of arbitrary geometry. We have also shown how the diffraction
transfer matrices can be calculated efficiently for different orientations of the body.

The convergence of the infinite and finite depth interaction methods are similar. How-
ever the performance of the finite depth method decreases as the water depth is increased.
Since the presence of a floating body can change the depth at which the water can be
approximated as infinitely deep, we recommend the infinite depth method in very deep
water. Furthermore, the single body diffraction solutions are easier to compute when
the depth is approximated as infinite. Finally, we also note that it may be possible to
further improve the infinite depth method presented here by a better discretisation of
the continuous variable.
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