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Abstract

A new representation of the infinite depth free surface Green function in three di-
mensions is derived. This representation is in the eigenfunction expansion of an
outgoing wave centred at the source point of the Green function. Such a representa-
tion allows the calculation of the scattered potential in terms of the eigenfunctions
of an outgoing wave. Furthermore this new representation of the Green function
is found to compare favourably with existing representations in terms of its naive
numerical evaluation. We also show that the eigenfunction representation can be
retained in a new coordinate system which is not centred at the source point of the
Green function.
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1 Introduction

The scattering of water waves by a floating or submerged body or the radiation
of water waves by an oscillating structure are common problems to be solved
in ocean engineering. If the wave amplitudes are sufficiently small the solution
may be approximated by that of the linearised problem. The standard and
most general solution method for this linear boundary value problem is to
transform it into an integral equation over the wetted body surface. The wetted
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body surface is then discretised and the solution of the scattering or radiation
problem is found numerically. This transformation to an integral equation
requires a special Green function known as the free surface Green function.

Free surface Green functions have been known since the work of John [7] in
the middle of the last century. John derived a variety of representations of
the Green function in two and three dimensions but the work is best known
for a representation of the Green function for three-dimensional water of con-
stant finite depth. John expressed this Green function in the eigenfunctions
of an outgoing wave centred at the source point. While the finite depth Green
function can be used for all applications, it is well known that if the water is
sufficiently deep (which is often the case in practical applications) the water
depth may be approximated as infinite. This approximation has the advantage
of using Green functions which can be computed more rapidly.

While John [7] derived a Green function for infinite depth the first practi-
cal representation was given by Havelock [5]. However, Havelock’s represen-
tation was still numerically difficult because it required the integration of a
singular function. Based on Havelock’s work, Kim [9] was able to derive a
representation for the Green function in three dimensions for water of infinite
depth which only required the integration of a non-singular integrand. How-
ever, Kim’s representation included an uncommon special function, the Struve
function, which does not appear in most major commercial software products.
Furthermore, for certain parameters, the integrand in Kim’s representation is
very steep which complicates its numerical integration. None of these repre-
sentations expressed the three-dimensional infinite depth Green function as
an expansion in the eigenfunctions of an outgoing wave.

There has also been significant research on developing methods to very ef-
ficiently evaluate the free surface Green functions numerically, lead by the
demands of commercial software. Significant research in this area has been
performed by Newman [11] and Noblesse and co-workers [12,13]. Newman’s
method to evaluate the Green function was based on tables of approximating
polynomials while Noblesse’s method was based on using different expansions
in different regions. To the best of the authors’ knowledge no paper has ap-
peared in which the methods of Noblesse and Newman are compared. It should
also be noted that these methods, while quick to evaluate the Green function,
would be slow and difficult to implement, and hence be unsuitable for many
applications.

In some applications it is important that the scattered potential is given in
the eigenfunction expansion for outgoing waves, sometimes even in a fixed
coordinate system which is not centred at the source point. The calculation of
diffraction transfer matrices for bodies of arbitrary shape in Kagemoto & Yue’s
interaction theory [8], for example, requires the representation of the Green
function in the eigenfunction expansion where the coordinate system is fixed at



the mean centre position of the body. In finite depth, such a Green function
was derived by Black [2] and Fenton [3] based on John’s representation of
the Green function in the eigenfunction expansion. This Green function has
been used to calculate the diffraction transfer matrices for bodies of arbitrary
geometry by Goo & Yoshida [4]. In water of infinite depth, however, the lack of
an eigenfunction expansion of the Green function prohibited such calculations.

In this paper, the eigenfunction expansion of the infinite depth free surface
Green function in three dimensions is derived from the equivalent finite depth
Green function which was given by John. This new representation of the infi-
nite depth Green function, which is easy to evaluate because it only involves
common special functions and the integration of a non-singular integrand, is
compared numerically to some other known representations. This comparison
is for a naive implementation and does not consider any of the acceleration
methods of Newman or Noblesse. It is also illustrated how the eigenfunction
representation of the infinite depth Green function can be obtained in a coor-
dinate system which is not centred at the source point.

2 The Green function

The standard solution method for the linear free surface water wave scattering
or radiation is to transform the problem into an integral equation using a Green
function. The integral equation, which is restricted to the immersed body
surface, is then solved. The Green function used in this method must satisfy
the free surface, sea floor, and radiation conditions as well as its Laplacian
being a delta function. This boundary value problem for the Green function
and the associated integral equation is briefly presented.

Let w denote the radian frequency of the ambient wave and o = w?/g where
g is the acceleration due to gravity. For simplification, x = (x,y, 2) and £ =
(a,b,c) always represent points in the water. Let D denote the lower three-
dimensional half-space in the infinite depth case and R? x (—d,0) in the case
of constant finite depth d. Let G: D x D — C be a Green function which
satisfies the boundary value problem
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in the case of infinite depth and
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in the case of constant finite depth d. A radiation condition, which may be
expressed as
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where k is the wavenumber and 72 = 22 + y2, must also be fulfilled to ensure
outgoing waves.

Denoting the immersed surface of the body with I', the integral equation for
the scattered potential (the potential with the ambient wave subtracted) is
then given by

S

700 = [0 5 050 - Glxi6) GO, xel. ()

In many situations equation (2) can be further simplified by the utilisation
of boundary conditions at the immersed surface. It is also possible to derive
related integral equations, for instance by expanding the scattered potential
as sources on the immersed surface.

Solutions for the free surface Green function given by equations (1) are well
known and have been given in many forms. Since this paper is concerned with
the Green function for infinite depth, the representations of the infinite depth
Green function is considered. Before presenting these Green functions the fol-
lowing notation must be introduced. Let (r,0,z) be cylindrical coordinates
such that

(x,y,2) — (1,0, 2),
r—a=rcosb,
y—b=rsinb,

z =2z,

and let Ry and R; denote the distance from the source point £ = (a,b,c)
and the distance from the mirror source point ¢ = (a,b, —c) respectively,
Ri=(rx—a)+(y—0*+(z—c)and R? = (z—a)*+ (y—b)?+(2+¢)*>. In
infinite depth, the Green function G, for r > 0, was given by Havelock [5] as

1
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where HO and K, denote the Hankel function of the first kind and the mod-
ified Bessel function of the second kind, both of order zero as defined in
Abramowitz € Stegun [1]. This Green function is referred to as Havelock’s
Green function. It should be noted that Havelock’s Green function can also
be written in the following closely related form,

Gbcg) = 5 e + o o
00 . 4
1 [ (n*—a?) cosn(z+c¢)+ 2nasinn(z + ¢)
K d
+ 972 O/ nz + a2 O(UT) n

[10]. An equivalent representation is due to Kim [9] for r > 0, although im-
plicitly given in the work of Havelock [5], and is given by
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where Jy and Y| are the Bessel functions of order zero of the first and second
kind and Hy is the Struve function of order zero. This Green function is
referred to as Kim’s Green function.

The choice of best representation for the Green function is generally deter-
mined by numerical considerations, specifically which Green function can be
calculated with the least number of floating point operations. As the Green
function depends on a number of parameters the choice of best Green func-
tion can vary but it is generally thought that Kim’s Green function is the
best numerically [6] for a naive implementation based on numerical integra-
tion. However, it should be noted as stated in the introduction, for the most
efficient numerical evaluation of the Green’s functions the methods of Noblesse
or Newman should be used.

The most important representation of the finite depth free surface Green func-
tion is the eigenfunction expansion given by John [7],

1 a2 — k‘2 (1)
G(x;€) = > (o — 10— cosh k(z + d) cosh k(c+ d) Hy' (kr)
1 > k.Q + 042 (6)

+ = > 02 +a?)d—a o8 ky, (2 + d) cos kp,(c + d) Ko(knr),

valid for » > 0. This is required in the derivation of our new representation
for the infinite depth Green function. The positive wavenumber k is related
to the radian frequency w by

a = ktanh kd, (7)



and the values of k,,, m > 0, are given as positive real roots of the dispersion
relation

a+ ky tank,,d = 0. (8)

This representation for the finite depth Green function is an eigenfunction
expansion with the terms coshk(z + d)Hél)(kr) and cos k,,(z + d) Ko(kpr)
being the eigenfunctions as can be seen if separation of variables is applied
in cylindrical coordinates. Such separation of variables is widely used, for
example it is the basis of all the methods which exploit axisymmetry. Also,
the eigenfunction expansion has the property that it is, roughly speaking, the
best basis in which to represent the scattered potential. This property is used
in a number of methods, most notably the scattering theory of Kagemoto &
Yue [8]. Furthermore, the eigenfunction expansion of the Green function is
required to represent the scattered potential in the cylindrical eigenfunctions.

It should be noted that the finite depth Green function is considerably more
complicated than the infinite depth Green function and it is therefore always
preferable to use the infinite depth representation if it is appropriate.

3 Derivation of the eigenfunction representation of the infinite
depth Green function

In this section we derive a representation of the infinite depth Green function
in the eigenfunction expansion of the potential for outgoing waves. In the case
of infinite depth the decaying eigenvalues (which in finite depth are given by
the discrete roots of equation (8)) are given as elements of a continuous line.
This does not pose any problems to the eigenfunction expansion and simply
requires that the sum is replaced by an integral. The eigenfunction expansion
for the scattered potential is given by

*(r,0,2) = e S AYHD (ar)e"”
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where the coefficients for the propagating modes A% are discrete and the coef-
ficients for the decaying modes A, (+) are functions. Havelock’s representation
for the Green function (3) and the representation given in equation (4) are
similar to the eigenfunction expansion except for the 1/R-terms.

An eigenfunction representation for the infinite depth Green function is de-
rived by letting the depth tend to infinity in the finite depth Green function
(in the eigenfunction representation) (6). At first, the term which represents



the propagating modes is considered,

1 a? — k2
2 (a? = k?)d — «

cosh k(z + d) cosh k(c + d) H{" (kr). (10)

The limit as the depth tends to infinity can be taken by making use of the
dispersion relation (7), and the hyperbolic function relationships [1],

k

«
tanh kd = E = cosh kd = im
This result can be used to rewrite the hyperbolic cosines,

k*  coshk(z + d) cosh k(c + d)
k? —a?  coshkd cosh kd

cosh k(z +d) coshk(c+d) =

Expanding the quotients,

cosh k(z + d)

coshid cosh kz + tanh kd sinh kz,

the term for the propagating modes (10) can be written as

i k?

5 —aldta (cosh kz+tanh kd sinh kz)(cosh kc+tanh kd sinh kc)Hél) (kr).

Noting that limg o tanh(d) = 1 and keeping in mind the dispersion relation
(7) as well as cosh z + sinh z = e*, the limit of the term for the propagating
modes is given by

@ ateo) Hél)(ozr).
Unsurprisingly, this is the same as the term for the propagating modes in

equations (3) and (4) since these terms were already given in the eigenfunction
representation.

Now the term for the decaying modes from equation (6),

1 & k2—|—a
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is considered. The cosine terms are expanded as
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and the dispersion relation (8) is used. Since
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it follows from the trigonometric relations for the angles and sides of a triangle
that the sine and cosine are given by

sin k,,d = +— 2 and cos kpnd = F o

JE2 4 a? Jk2 a2
Substituting this into the expansion of the cosine terms gives
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Using the asymptotic expansion of k,,, k,, ~ (m — %)g, m > 0, for large ad
and writing h = 7/d, the term for the decaying modes becomes

1 ki, + o? (mh)? — a?
m h _ N7
92 m% 72 +a) -2 (cosm (z—c¢)+ (b T o2 cosmh(z + ¢)
2amh
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where M is the set of odd multiples of 1/2, M := {m— 1/2 ’ m e ]N>0}. This is
a Riemann sum and therefore the limit as h tends to zero (which is equivalent
to d tending to infinity) is

2 2

17 -« 200 .
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The Green function in infinite depth is therefore given by

1o 1 n
G(x;§) = gea(erc)H(gl)(ocr) + ﬁ/ (cos n(z —c)
) ) 0 ) (11)
. o ‘
:]72 e cosn(z +c)+ 772 +777a2 sinn(z + c))KO(nr) dn.

However, the objective was to represent the Green function in the eigenfunc-
tion expansion given in equation (9). For this reason, the terms depending on z
and ¢ have to be written as a product of each other. This can be accomplished



by the following calculation,

2 2
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The eigenfunction expansion of the three-dimensional free surface Green func-
tion is therefore given by

G(x;€) = O‘(Z+C)H +7r2 / (COS nz + — sin 772>
; (12

X — K d
. (cos ne +2 7 sin 770) o(nr)dn.

4 Numerical calculation of the infinite depth Green function

The eigenfunction expansion of the Green function was derived for theoretical
purposes but it also has some numerical advantages over the existing repre-
sentations. In this section the numerical properties of the Green function in
eigenfunction representation are investigated and comparisons are made to the
existing representations of the Green function. These comparisons are only for
a naive implementation in which the integrals are directly calculated.

Examining the representations of the Green function given by equations (3),
(4), (5) and (12) it can be seen that the numerically difficult parts of the Green



functions are given by the following terms

a?cosn(z + ¢) — nasinn(z + c)

Ko(nr) dn, 13a
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The other parts of the Green functions can be evaluated easily and are avail-
able in most modern software packages, with the exception of the Struve
function which appears in Kim’s representation. Although the difficulty in
the Struve function is ignored in the following comparison, it should be noted
that the presence of this function imposes programming difficulties, since the
Struve function is not standard, as well as requiring numerical effort.

The disadvantage of the first two representations is that the integrand is sin-
gular at zero. The numerical evaluation of the integrals is therefore rather
expensive. Hearn [6] showed that the evaluation of Kim’s Green function (the
numerically difficult part of which is given by equation (13c)) is in general
much easier than that of Havelock’s Green function (the numerically difficult
part of which is given by equation (13a) or equation (13b)) since it only in-
volves the integration of a non-singular integrand and the evaluation of the
Struve function. This numerical advantage was especially true in common ap-
plications such as ship-wave calculations.

The eigenfunction representation of the Green function does not involve any
uncommon special function and the integrand of the numerically difficult term
(equation (13d)) is non-singular over the integration interval. While the inter-
val of integration is infinite, the fast decay of the modified Bessel function of
the second kind causes the integrand to decay quickly for large argument and
the integral therefore only needs to be calculated for a small interval.

Figure 1 shows the integrands of the different terms in equations (13). In
all plots, the remaining variables are chosen to be o« = 7w, ¢ = —1, 2z = —1
and r = 1. Plots (c¢) and (d), which correspond to Kim’s representation and
the eigenfunction expansion, are numerically much easier to integrate because
they do not have a singularity at zero.

Since Kim’s representation is numerically much better than Havelock’s rep-
resentation, the eigenfunction expansion is numerically compared to Kim’s
representation more thoroughly. At first, a few qualitative remarks comparing

10
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Fig. 1. The graphs of the integrands in equations (13) for a = m, ¢ = =1, z = —1
and r = 1. Plot (a) corresponds to equation (13a) etc.

the two methods are made before quantitative results are presented. As can be
seen from equations (13c¢) and (13d), interchanging the values of z and ¢ makes
no difference in the calculation. If the absolute values of z and ¢ become large,
the integrand of the eigenfunction representation starts to oscillate more while
the integration interval in Kim’s representation becomes larger which results
in the need to integrate a steeper function (since z, ¢ < 0 always). An increase
in the radial coordinate, r, smoothes the integrand in the eigenfunction repre-
sentation since it accelerates the decay of the Bessel function but barely affects
the integration in Kim’s representation. A change in the wavenumber (since
a = k for infinite depth) barely changes the integrand in the eigenfunction
representation but dramatically alters the integrand in Kim’s representation
because it changes its steepness.

Table 1 compares the required function evaluations when integrating the inte-
grands from Kim’s representation in equation (13c) and the eigenfunction rep-
resentation in equation (13d) with the adaptive Simpson quadrature provided
by MATLAB. The interval of integration in the eigenfunction representation is
from zero until the point at which the integrand is strictly less than 107°. For
the cases illustrated in table 1 this upper value for the interval of integration

11



Tolerance | Kim’s repr. eigenfunction repr. | Kim’s repr. eigenfunction repr.

a=m,c=—-1,z=-1,r=1 a=mc=—-1,z=-1/2,r=1
1072 13 5 9 5
1074 37 25 25 21
1076 89 61 53 53

a=mc=—-1,z=-1,r=1/2 a=m,c=—-1,2=-1,r=2

1072 13 17 13 5
1074 41 37 33 17
10-6 93 117 89 41
a=7r/2,c=—-1,z=-1,r=1 | a=21,c=-1,z=-1,r=1
1072 5 5 57 5
1074 17 21 133 17
1076 33 65 365 73
Table 1

The number of function evaluations when numerically integrating the integrands
from Kim'’s representation (equation (13c)) and the eigenfunction expansion (equa-
tion (13d)).

is between 6 and 26.

The results in table 1 show that the number of function evaluations required
by Kim’s representation is generally greater, often by a considerable amount,
than the number required by the eigenfunction representation. In the only
cases where Kim’s representation performs better (o« = 7/2, ¢ = —1, z =
-1, r=1landa=m ¢c= -1, 2z = =1, r = 1/2) it only does so by a
small amount. Of course these results do not form a definitive test that the
eigenfunction representation is better since ways to optimise the integration
have not been investigated or the different costs in evaluating the integrands
have not been taken into account. However, these results, especially because
the cost of evaluating the Struve function which Kim’s representation requires
has not been considered, do indicate that the eigenfunction representation does
perform well numerically in comparison to Kim’s representation.

5 The eigenfunction representation of the Green function in a co-
ordinate system with a different origin

As explained previously, a representation of the infinite depth Green function
as an expansion in eigenfunctions has been obtained. In this expansion the

12



origin of the circular coordinate systems was at the water surface above the
source point. In most cases this does not pose any problems, but in some
applications, for example in the calculation of diffraction transfer matrices
as required in the application of Kagemoto & Yue’s interaction theory [8] for
bodies of arbitrary shapes, it is necessary to represent the potential in terms of
a coordinate system with a fixed origin. This can be accomplished using Graf’s
addition theorem for Bessel and Hankel functions. In finite depth, this has been
done by Black [2] and Fenton [3] and used for Kagemoto & Yue’s interaction
theory by Goo & Yoshida [4]. In infinite depth however, this representation
of the Green function in an eigenfunction expansion with fixed origin has not
been possible because of the lack of a representation of the Green function in
the eigenfunction expansion with the coordinate system centred at the water
surface above the source point. Using the previously derived Green function,
the eigenfunction representation for a fixed coordinate system is developed
here.

From now on, the cylindrical coordinate system (r, 0, z) is assumed fixed at
some point of the undisturbed water surface. The potential due to a source
point s whose coordinates in the cylindrical coordinate system are (s, ¢, c) is
to be represented at a point r whose coordinates are (r,6, z). So far only an
eigenfunction representation of the potential in a coordinate system centred
at s has been obtained. Figure 2 shows a two-dimensional view of this setting
with the z-dependence not shown.

P

Fig. 2. Plan view of the coordinate systems with a point source at s = (s, ¢, ¢).

X

The basis of the transformation is Graf’s addition theorem for Bessel functions
which is given in Abramowitz €& Stegun [1]. It can be applied to yield the
following identities

HM(oF) = Y HY(ar)J,(as)e @), (14a)
Ko(ni) = > K, ()L, (ns)e""=%), (14b)
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for r > s and

(1) Z Hl )eil/((?—w)7 (14c)
Z Ky(ns)]l,(nr)ei”(a_“"), (14d)

for s > r where I, is the modified Bessel function of the first kind of order v.

The application of equations (14) to the eigenfunction representation of the
Green function, equation (12), gives the potential due to a source point at

= (s,¢,¢),

G(Tﬁ’ Z58,9, C) =
. . 2 Jy(as) o0
E a(z+c) H,, (Oﬂ’) v / < o )
2" V:Z_oo{ Dlas)dar) J T L + sin
2 [o¢]
. ( = (”T)fu(ns)}
X —————| cosnc + — sin nc) { 7]‘
n? + a? 1 ,,Zoo (ns)jy (nr)

(15)

The upper terms in the curly brackets need to be used when r > s, the
lower ones when s > r. For s > r the source potential is therefore given in
the eigenfunction expansion for incoming waves, for » > s it is given in the
eigenfunction expansion for outgoing waves. The expansion for outgoing waves
is applied in scattering or radiation problems where the coordinate system
must be centred at the mean centre position of the body.

6 Summary

A representation of the free surface Green function for infinite depth in the
eigenfunctions of an outgoing wave has been derived. The new representation
of the Green function has a number of advantages over existing representa-
tions. It does not involve any uncommon special functions or the integration
of a singular integrand. The infinite interval of integration does not cause
difficulties because of the fast decay of the integrand. For a naive implemen-
tation in which the integral is calculated directly the new representation of
the Green function is found to compare favourably to the representation due
to Kim. The new representation of the Green function in eigenfunctions can
also be transformed to a coordinate system which is not centred at the source
point of the Green function while still retaining the eigenfunction expansion.
This transformation is required in certain applications, for example in the
calculation of the diffraction transfer matrices for bodies of arbitrary shape.
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7 Notation

I'  the immersed surface of a floating or submerged body
the lower three-dimensional half-space in the infinite depth case
and R? x (—d,0) in the finite depth case

X a point in the water, x = (z,y, z) (Cartesian coordinates)

r  a point in the water, r = (1,0, z) (cylindrical coordinates)

¢  a point source in the water, £ = (a, b, ¢) (Cartesian coordinates)

s a point source in the water, s = (s, ¢, ¢) (cylindrical coordinates)

#°>  the time-independent scattered water velocity potential,

3(x,y, 2, t) = Re {¢°(x,y, 2)e ™"}

Q

a Green function

J,  Bessel function of the first kind and of integer order v
Y,  Bessel function of the second kind and of integer order v
I,  modified Bessel function of the first kind and of integer order v
K, modified Bessel function of the second kind and of
integer order v
H(Y  Hankel function of the first kind and of integer order v

H, Struve function of order zero

i the imaginary unit, i = v/—1

d  the water depth

g  the acceleration due to gravity
w  the radian frequency

k  the wavenumber

a  a=uwl/g

k.,  roots of the dispersion relation, equation (8)
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A% coefficients of the propagating modes of the water velocity

potential in eigenfunction expansion

A,(+) coefficient functions of the decaying modes of the water velocity

potential in eigenmode expansion
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