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1. Introduction

SUMMARY

Accurate rainfall data are of prime importance for many environmental applications. To provide spatially
distributed rainfall data, point measurements are interpolated. However, in low density measurement
networks, the use of different interpolation methods may result in large differences and hence in devia-
tions from the actual spatial distribution of rainfall. Our study aims at analyzing different rainfall inter-
polation schemes with regard to their suitability to produce spatial rainfall estimates in a monsoon
dominated region with scarce rainfall measurements. The study was carried out in the meso-scale catch-
ment of the Mula and the Mutha Rivers (2036 km?) upstream of the city of Pune, India. Rainfall data from
16 rain gauges were spatially interpolated using seven different methods, including Thiessen polygons,
statistical, and geostatistical approaches. The two most suitable covariates for rainfall interpolation were
identified as (i) distance in wind direction from the main orographic barrier and as (ii) a 0.05° pattern of
mean annual rainfall derived from satellite data acquired by the Tropical Rainfall Measuring Mission
(TRMM). Consequently, these two covariates were used in the regression-based interpolation approaches.
The quality of the different methods was assessed using a two step validation approach: (i) Cross-valida-
tion was used to evaluate the capability to reproduce measured data. (ii) Spatially integrated interpola-
tion performance was assessed by using a hydrologic model to calculate runoff and compare modeled to
measured runoff. By this assessment, the regression-based methods showed the best performance. We
found that the choice of the covariate had a significant impact on precipitation and runoff amounts, as
well as on the temporal course of runoff events. Our results show, that the decision on the suitable
interpolation scheme should not only be based on the comparison with point measurements, but should
also take the representativeness of the given measurement network as well as of the interpolated spatial
rainfall distribution into account. The successful application of regression-based interpolation methods
using a high resolution TRMM pattern as covariate is very promising as it is transferable to other data
scarce regions.

(Di Piazza et al., 2011; Teegavarapu et al., 2009) to more complex
and computationally intensive approaches such as geostatistical

Accurate precipitation data are of prime importance for many
environmental studies, especially if related to water resources. At
small scales, the use of measurements from individual rain gauges
might be appropriate. However at larger scales, it is required to
draw special attention to the appropriate representation of the
spatial precipitation patterns, which are usually interpolated from
point measurements (Chaubey et al., 1999; Tabios and Salas, 1985;
Zhang and Srinivasan, 2009). A wide range of interpolation meth-
ods is available, ranging from simple techniques such as Thiessen
polygons (Thiessen, 1911) or inverse distance weighting schemes
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kriging (Buytaert et al., 2006; Zhang and Srinivasan, 2009). The
more complex approaches often use additional information from
static (e.g., elevation) or dynamic (e.g., rainfall radar) covariates
that are available as spatially distributed data sets.

In many regions of the world, precipitation measurements are
scarce and interpolation is not only more important, but also more
difficult (Croke et al., 2011). Since spatial patterns are often more
heterogeneous and pronounced at short time scales, an appropri-
ate interpolation scheme is particularly important at short time
scales such as daily or hourly precipitation. These short time steps
are usually required for distributed hydrologic modeling studies,
and model accuracy critically depends on these input data (Beven,
2001). Nevertheless in data scarce regions, the use of simple



approaches is very common (e.g., Croke et al., 2011; Ndomba et al.,
2008; Stehr et al., 2008). Especially with regard to daily values, the
application of more complex interpolation schemes is relatively
rare (e.g., Buytaert et al., 2006), although these may lead to sub-
stantial improvements in hydrologic model performance (Stehr
et al,, 2008). In general, complex methods are more commonly
used, when data availability is sufficient (Hattermann et al.,
2005; Ly et al,, 2011; Zhang and Srinivasan, 2009) or with coarser
time resolution (e.g., annual data, Basistha et al., 2008).

In case of coarse measurement networks, interpolation schemes
that include additional information from covariates are most
promising as they may (partly) compensate for the low network
density. Particularly for precipitation, covariates can substantially
improve the representation of spatial patterns (Verworn and
Haberlandt, 2011). Suitable and applicable covariates should be
available at a higher spatial resolution and be inexpensive to mea-
sure in comparison to the interpolated variable (Burrough and
McDonnell, 1998). A further requisite of a covariate is that it should
- to some extent — explain the interpolated variable. This charac-
teristic is typically given by a process that links the covariate to
the variable and is proven by a regression analysis based on the
available data. Traditionally, elevation or other parameters ex-
tracted from digital elevation models (DEMs) are used for rainfall
interpolation (Buytaert et al., 2006; Goovaerts, 2000; Kurtzman
et al.,, 2009; Lloyd, 2005; Verworn and Haberlandt, 2011). Satellite
products, especially from radar remote sensing, are increasingly
used as covariates, since they provide spatially detailed informa-
tion of rainfall distribution (Velasco-Forero et al., 2009; Verworn
and Haberlandt, 2011; Schiemann et al., 2011). Furthermore, inter-
polation methods that use remotely sensed observations can easily
be transferred to different regions, whereas other covariates (e.g.,
elevation; Lloyd, 2005) are often suitable only for a specific region
or time of the year, depending on local climatic conditions. The
spatially detailed information provided by satellite data is even
more valuable in the context of data scarce regions.

Another difficulty associated with applying interpolation
schemes in data scarce regions is the accuracy assessment. Usually
interpolation results are evaluated applying cross-validation tech-
niques (Hattermann et al., 2005; Lloyd, 2005). Unfortunately, the
accuracy of this validation method depends on the number and
the location of the gauges within the study area, which should be
representative of the distribution of rainfall in space. These criteria
are hardly met in case of a limited number of measurements, as
rain gauges are often found close to settlements to reduce mainte-
nance efforts. Additional more robust validation is often difficult to
achieve and is mostly of a qualitative nature, e.g., comparison and
analysis of interpolated rainfall patterns (Carrera-Herndndez and
Gaskin, 2007; Lloyd, 2005; Velasco-Forero et al., 2009). However,
a qualitative, manual assessment of interpolation techniques is
not feasible, if interpolation is carried out for a time series (e.g.,
on a daily time step). Furthermore, spatially integrated assessment
of interpolation accuracy would be highly favorable. Zhang and
Srinivasan (2009) include areal mean precipitation amounts into
the comparison of different interpolation methods. This approach
can be enhanced by the application of a hydrologic model. Such a
modeling approach not only provides temporally and spatially
integrating information in the sense of a water balance study, it
also provides a spatially integrating and temporally explicit per-
spective through the analysis of the modeled hydrograph. Thus, re-
sults of different precipitation interpolation schemes may be used
as inputs to hydrologic models to analyze their effect upon mod-
eled runoff. The approach of using a hydrologic model to assess
the performance of different interpolation schemes has previously
been used in several studies (e.g. Cole and Moore, 2008; Gourley
and Vieux, 2005; Heistermann and Kneis, 2011; Hwang et al,,
2012). This method is especially relevant in catchments that are
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dominated by heavy rainfall events, producing mostly direct runoff
and resulting in highly dynamic hydrographs, which allow for a
simple evaluation of the rainfall inputs.

Particularly in mountainous areas, spatial patterns are consis-
tently affected by topography and wind direction (Barros and
Lettenmaier, 1993; Barry, 1992). This is the case in the Western
Ghats, India, where topography and monsoon winds result in spa-
tially highly variable rainfall, which is largely determined by oro-
graphic lift and foehn effects. In a previous study carried out in
the meso-scale catchment of the Mula and the Mutha Rivers up-
stream of the city of Pune, India, precipitation input was identified
as a major source of error for runoff modeling (Wagner et al.,
2011).

The main objective of this paper is to analyze different rainfall
interpolation schemes with regard to their suitability to produce
spatial rainfall estimates on a daily time step in a monsoon domi-
nated region with scarce precipitation measurements. A special fo-
cus is set on the identification of an appropriate and transferable
covariate and on the validation of the interpolation schemes using
hydrologic modeling results and measured runoff.

2. Materials and methods
2.1. Study area

The meso-scale catchment of the Mula and the Mutha Rivers
(2036 km?) is located in the Western Ghats upstream of the city
of Pune (18.53°N, 73.85°E; Fig. 1). It is a sub-basin and source area
of the Krishna River, which drains towards the east and into the
Bay of Bengal. Its elevation ranges from 550 m in Pune up to
1300 m.a.s.l. on the top ridges in the Western Ghats. The catch-
ment has a tropical wet and dry climate, which is characterized

Fig. 1. Topography of the study area with the Mula-Mutha catchment and the
available rain gauges.
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by seasonal rainfall from June to October and low annual temper-
ature variations with an annual mean of 25 °C at the catchment
outlet in Pune. Annual rainfall amounts decrease from approxi-
mately 3500 mm in the western to 750 mm in the eastern part of
the catchment (Gadgil, 2002; Gunnell, 1997). Land use is domi-
nated by semi-natural vegetation, with forests (20.6%) mainly on
the higher elevations in the west, whereas shrubland (26.6%) and
grassland (22.8%) occupy lower elevations. Agriculture comprises
only 10.6% of the catchment and is mainly located in proximity
to rivers and to six large dams (5.8% of the catchment is covered
by water). Agriculture is dominated by small fields (<1 ha) with
rain-fed agriculture during the monsoon season and irrigation
during the dry season. Typically two crops per year are harvested.
Urban area (13%) is mainly found in the eastern part of the catch-
ment, where the city of Pune and its surrounding settlements are
situated (Wagner et al., 2011).

2.2. Precipitation data

Daily measurements of precipitation at 16 gauges within or
close to the catchment (Fig. 1) were provided by the Water
Resources Department Nashik and the Indian Meteorological
Department (IMD) Pune. Measurements are carried out with a
Symon’s rain gauge, which is the Indian standard gauge (Jain
et al., 2007). It measures rainfall at a height of 30 cm above ground
level. The surface area of the gauge is 200 cm?. The gauge is typi-
cally installed on a concrete foundation block (60 x 60 x 60 cm)
embedded in the ground. A fence (5.5 x 5.5 m) secures a minimum
distance to possibly measurement interfering objects like bushes.
Furthermore, such gauges should not be unduly exposed to wind
(Jain et al., 2007). Twenty-four hour rainfall sums are given for
each day at 8:30 a.m. Indian Standard Time. Ten of these gauges
are operated manually, whereas six are self-recording gauges. Five
of the latter only recorded data during the monsoon season. To
provide accurate daily precipitation data, the following processing
steps were applied: (i) quality control, (ii) filling of data gaps, (iii)
correction of systematic measurement errors, and (iv) analysis of
three different interpolation schemes.

2.2.1. Quality control, gap filling, and error correction

Daily precipitation measurements were available to this study
from all 16 rain gauges. The data was tested for consistency using
double mass curves (Searcy et al., 1960). Due to the higher
amounts of rainfall and larger number of rain days in the upper
catchment, gauges within the western part and gauges within
the eastern part were tested separately. The 73.7°E longitude was
used to divide the data set into gauges recording more (west) or
less (east) than 1500 mm mean annual rainfall. For both parts of
the catchment, one reliable rain gauge with a continuous data set
was chosen as reference. The gauge in Pune, which is maintained
by the IMD, is possibly one of the most reliable gauges in the catch-
ment, because its record covers the entire period from 1988 to
2008 and had only one missing value. Due to its central location
in the east, it was chosen as the reference gauge for the eastern
part of the catchment. For the western part, the central gauge in
Paud was used, as its record shows no missing value from 1988
to 2008. The cumulative sums of each of the other stations were
compared to their respective reference station on a daily basis. If
the double mass curves showed inconsistencies (e.g., steps or a
change in slope), the data were checked and questionable data
were marked as missing values (e.g., in some cases missing values
are given as 0 mm in the original data sheet). Apart from question-
able values some shifts in time were detected. Since inconsistent
double mass curves on a daily time step could also result from
other effects such as local thunderstorms, data were only cor-
rected, if there was clear evidence from other gauges (e.g., a time

shift was only corrected, if comparisons with all neighboring
gauges indicated the shift).

Thereafter, the missing values were filled using a regression-
based gap filling approach. The available data at the gauge with
data gaps was summed up for each year. Corresponding annual
precipitation sums were calculated for every gauge using the same
dates. On this basis, a linear regression was carried out to establish
a relationship between the station with the incomplete data and
each of the other stations. The slope of the regression was used
as a factor to estimate missing data at the incomplete station from
each of the other gauges. To identify the most suitable gauge to fill
the incomplete station, 120 randomly chosen precipitation days
(4 months) were estimated from each of the other rain gauges.
Subsequently the root mean square error (RMSE) was calculated
to evaluate the performance of each gauge. This procedure was re-
peated 10 times, providing a mean RMSE to identify the most suit-
able gauge. Filling was not applied, if measurements for a whole
year were missing. Thus, the derived precipitation data set consists
of 10 gauges with complete daily records from 1988 to 2008 and
six gauges with gaps that comprised one or more years.

Finally, to account for the systematic undercatch of precipita-
tion measurements due to wind loss, wetting loss, and evaporation
a correction method developed by Richter (1995) was applied. This
method that had been developed for the German measurement
network was chosen, since a specific method for India was not
available. It estimates precipitation errors based on precipitation
type and wind exposition (shielding) of the rain gauge. To account
for the precipitation character and rain gauge setup in the catch-
ment, we chose the coefficients for German summer rain and light
shielding (Richter, 1995). Depending on the rain gauge location,
the correction adds between 2.9% (106 mm mean annual rainfall)
and 7.4% (40 mm mean annual rainfall) to the measured rainfall
amounts.

2.3. Interpolation schemes

Seven different interpolation schemes (Table 1) that use data
from the Mula-Mutha catchment and its surroundings (Fig. 1)
were applied and compared. These interpolation schemes were
carried out on a 1 km? grid. Inputs for the hydrologic model were
derived from this grid by averaging the gridded rainfall values
for each sub-basin used in the model. Two sets of interpolation
schemes were tested: (i) univariate methods and (ii) regression-
based methods, which incorporate additional information from
covariates.

2.3.1. Univariate interpolation methods

As a reference, Thiessen polygons (Thiessen, 1911) were used.
Each grid point was assigned the value of the nearest rain gauge. This
simple approach balances the contributions of the nearest gauges
within each sub-basin and is therefore superior to simply using

Table 1
Spatial interpolation schemes for daily rainfall interpolation.

Method Interpolation scheme Covariate Abbreviation

1 Thiessen polygons - TH

2 Inverse distance weighting - IDW

3 Ordinary kriging - OK

4a Regression-inverse distance (a) X- RIDWx

weighting coordinate

4b (b) TRMM RIDWrrmm
pattern

5a Regression-kriging (a) X- RKx
coordinate

5b (b) TRMM RKrrvm
pattern




the nearest rain gauge, which is the standard method implemented
in the ArcSWAT model setup interface (Winchell et al., 2010).
Inverse distance weighting (IDW) is a widely used and easy to
implement interpolation method. The influence of the measured
point data z(x;) is weighted according to the distance do; from the
sampled point x; to the estimated point x,. Based on the optimal
cross-validation performance the exponent of one was chosen,
providing better estimates in this study than the frequently used
standard exponent of two (Heistermann and Kneis, 2011; Shepard,
1968). The weights 4; can hence be calculated as
-1
Jj=—0 1
S (1)
In our case we used a localized IDW approach that only takes
the values of the n gauges within a 30 km distance into account.
Thus the value at the interpolated location is estimated as
n

> i=1. (2)

i=1

n
Z(Xo) =Y Ji-2z(x;), where
i=1

Thirdly, an ordinary kriging scheme (OK) was evaluated. Analo-
gous to the IDW scheme, weights are calculated for every sampled
point, but in contrast to IDW, the weights /(i) are optimized based
on the information that is inherent in the measured data. The
weights are obtained by solving the system

n
> o)y (i, %) + ¢ = (X}, Xo) for all
i=1

3 oli) = 1. 3)
i=1

where y(x; x;) represents the value of the semivariogram function
for the distance between the points x; and x;, y(x;, Xo) is the value
for the distance between x; and the estimated location xo, and ¢ is
the Lagrange parameter. The semivariogram function is derived
by fitting a semivariogram model to the empirical semivariogram,
which can be calculated for all distances h by solving
n

TUh) = 55 (2050 20+ ) o)

Point estimates are calculated by using the optimized weights
Jo(i) instead of the IDW weights 4; in formula (2). Further theoret-
ical details on geostatistics are available in the literature (e.g.,
Wackernagel, 2003; Webster and Oliver, 2007).

Geostatistical methods are commonly used for spatial interpo-
lation of rainfall (Goovaerts, 2000; Zhang and Srinivasan, 2009).
However, to detect spatial autocorrelation, at least 100 measure-
ment locations (ideally 150) are required to supply a sufficient
number of data pairs, which is evidently needed to derive an
accurate empirical semivariogram (Webster and Oliver, 2007). Fur-
thermore, variogram analysis and fitting of variogram models is
very important and should be carried out manually, as it requires
considerable judgment and skill (Burrough and McDonnell,
1998). To meet these requirements, pooled semivariograms (Fiener
and Auerswald, 2009; Schuurmans et al., 2007; Voltz and Webster,
1990) for each month were used. These pooled semivariograms
were calculated from mean daily precipitation values for every
month in every year. The monthly values of the individual years
were treated as spatially independent measurements, resulting in
312 data sets per month (21 years = 16 stations — 24 years missing
at different stations) that give 1938 point pairs for every semivari-
ogram, which were grouped into 14 lag classes. A Matern semivari-
ogram model was fitted to these empirical semivariograms (Fig. 2).
This model is recommended for interpolation of spatial data (Stein,
1999) and includes as special case the Gaussian model, which Ly
et al. (2011) recommend for rainfall interpolation. On this basis,
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Fig. 2. Semivariogram and fitted Matern model for pooled July rainfall data (1988-
2008).

a local kriging approach was applied taking only stations within
a 30 km distance into account. Due to the small number of rain
days in dry season months, variograms of mean monthly rainfall
are not useful for interpolation of the rare rainfall events in this
period. Therefore, kriging was only applied from June to Septem-
ber, whereas IDW was used in the remaining months. All interpo-
lations and geostatistical analyses were carried out using the
statistical software GNU R, version 2.13.0 (R Development Core
Team, 2011) and the add-on package gstat (Pebesma, 2004).

2.3.2. Covariates for rainfall interpolation

The use of covariates can substantially improve interpolation
results. In principal, a spatially distributed variable is utilized to
estimate rainfall amounts. To identify appropriate, easily available
and spatially distributed covariates, a linear regression between
mean annual rainfall and the value of the covariates at the rain
gauges was carried out. Four covariates were taken into account:
(i) elevation, (ii) distance from the main orographic barrier in main
wind direction, (iii) X-coordinate, (iv) a pattern of mean annual
rainfall derived from satellite data acquired by the Tropical Rainfall
Measuring Mission (TRMM).

Elevation is commonly used as a covariate for precipitation (e.g.,
Buytaert et al., 2006; Goovaerts, 2000; Kurtzman et al., 2009;
Lloyd, 2005; Verworn and Haberlandt, 2011), but in our case there
was no significant correlation between rainfall and elevation data
(Table 2). The distance in the main south-west (SW) wind direction
from the main orographic barrier in the region, the Western Ghats
escarpment, provides a high coefficient of determination. The
escarpment marks the sharp decline from the Western Ghats

Table 2
Capability of different covariates to represent mean annual rainfall data, as indicated
by the coefficient of determination (R?) and the p-value.

Covariate R? Significance
Elevation 0.07 p=0.32
Distance from the Western Ghats escarpment 0.84 p<0.001

in main wind direction (SW)
X-coordinate 0.92 p <0.001
TRMM pattern 0.83 p<0.001
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Fig. 3. Proportionality of the distance in main wind direction (Dyy) and the distance
in east-west direction (Dyx) from the Western Ghats escarpment for any location P
in the catchment.

mountain range to the coastal plain, which also constitutes the
western boundary of the catchment (Fig. 1). Due to the general
north-south direction of the Western Ghats escarpment, the dis-
tance from the escarpment (in east-west direction) is proportional
to the distance in wind direction from the escarpment (Fig. 3) for
any location in the catchment and all western wind directions.
Thus, this east-west-distance, which can be expressed by the
UTM X-coordinate, represents the downwind fetch and conse-
quently, the west to east decline of precipitation starting from
the escarpment. Since the X-coordinate is valid for all western
wind directions, it is superior to the distance from the escarpment
in SW wind direction. This becomes obvious in the higher coeffi-
cient of determination (Table 2). An additional advantage of this
covariate is its simplicity of calculation. However, spatial transfer-
ability of this covariate to different regions is obviously limited.
A pattern of mean annual rainfall was derived from the Precip-
itation Radar (PR) instrument of the Tropical Rainfall Measuring
Mission (TRMM). The TRMM product 2A25 provides a near-surface
rainfall rate estimated from the precipitation radar at a 4.3 km res-
olution. All available observations between 1998 and 2008 were
used and remapped to 0.05° resolution by the Earth System Science
Interdisciplinary Center, University of Maryland and NASA/God-
dard Space Flight Center. The PR system is stable and accurate en-
ough to allow for quantitative radar reflectivity (Kummerow et al.,
2000). Due to the orbital period of the TRMM satellite, the number
of observations has an effect on uncertainty of the derived annual
rainfall pattern. However, Kidd and McGregor (2007) demon-
strated the use of seasonal rainfall patterns acquired from a shorter
period (8 years) of PR observations in a study on Hawaii. In our
study area, the TRMM product clearly underestimates precipitation
by 17-61% (RMSE = 1044 mm) when compared to the measured
mean annual precipitation sums. However, the correlation of the
pattern with the measured data is high (R? = 0.83; Table 2). It can
therefore be concluded that although the amounts are not valid
without further calibration using regional measurements, the spa-
tial pattern is a valid covariate for precipitation interpolation. For

further analysis, the two most promising covariates (X-coordinate
and TRMM pattern) were chosen to be used for interpolation.

2.3.3. Regression-based interpolation methods

Two regression-based methods, a statistical and a geostatistical
method, were tested using the two covariates, one at a time (Ta-
ble 1). For both methods, a regression equation for the covariate
was used to estimate rainfall amounts. This regression equation
between rainfall and the covariate was calculated for every wet
day using the mean precipitation value of a period of 3 days before
and after the interpolation day. A wet day was defined when at
least one gauge recorded precipitation on this day. The significance
of the regression was tested for every day at the 10% significance
level. In case of the X-coordinate, we additionally tested if the cor-
relation was negative, because only negative correlation expressed
a decline of rainfall from west to east. If these criteria were met
(Fig. 4), the regression was used to estimate the mean precipitation
for every grid point. In addition, daily residuals for every rain gauge
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were calculated by subtracting the regression rainfall from the
measured rainfall. It is worth noting that the TRMM pattern can
be used more frequently (4% more days) than the X-coordinate, if
the described criteria are applied. Typically the criteria were met
within the rainy season, whereas in the dry season, the local con-
vective rainfall events led to a non-significant relationship with
the covariates (Fig. 4). If the criteria were not met, a local IDW ap-
proach using the gauges within a 30 km distance was applied. In
case of a valid regression, values at every grid point were calcu-
lated by adding the explained variance, which is given by the
regression, to the unexplained variance, which is expressed by
the interpolated residuals. Negative estimates were set to 0 mm
rainfall. Either an IDW or a kriging scheme was used to interpolate
the residuals. The IDW method can be referred to as regression-in-
verse distance weighting approach (RIDW) and has previously
been applied using elevation as a covariate (e.g., Mauser and Bach,
2009). A local IDW approach using the gauges within a 30 km dis-
tance and an optimized exponent of one was used to interpolate
the residuals.

As an alternative to the IDW interpolation scheme, a pooled or-
dinary kriging approach was applied to the residuals. A mean
monthly residual was calculated from the daily residuals for every
month in every year. These values were pooled to derive residual
variograms for every month. A Matern semivariogram model was
fitted to these empirical variograms. On the basis of the fitted
semivariogram, a local (30 km distance) ordinary kriging approach
was applied. Valid variograms were only derived for the rainy sea-
son, so that IDW (30 km distance, exponent = 1) was used for inter-
polation in dry season. Finally, by adding the interpolated residuals
to the mean daily rainfall values, calculated from the regression
equation, a rainfall estimate was derived for every grid point.

This linear regression-kriging (subsequently referred to as RK)
results in the same predictions given the same input parameters
as kriging with external drift (Hengl et al., 2007). Both methods al-
low for incorporation of an external variable that is linearly corre-
lated to the predicted variable (Webster and Oliver, 2007). RK
separates regression calculation and residual interpolation and is
therefore more flexible, allowing in this case, the combination of
day specific regression equations with kriging based on a monthly
pooled residual semivariogram.

2.4. Hydrologic model

In this study, the Soil and Water Assessment Tool (SWAT; Ar-
nold et al., 1998) was used to assess the impact of different rainfall
interpolation methods on runoff. The SWAT model has proven its
capability to model water fluxes also in regions with limited data
availability (Ndomba et al., 2008; Stehr et al., 2008). In a preceding
study, it was adapted to the Mula-Mutha catchment (Wagner
et al,, 2011). Thus in the following, we will only present a brief
summary of data inputs and model parameterization.

A digital elevation model (DEM) with a spatial resolution of
30 m was derived from ASTER satellite data. This DEM was cor-
rected using a regression with elevation data from topographic
maps. The spatial distribution of soils was taken from the digital
Soil Map of the World (FAO, 2003). Soil parameterization was
partly adapted from a modeling study of the region by Immerzeel
et al. (2008), and partly taken from the FAO (2003) database. The
land use map was derived from a satellite image taken by LISS-III
on the Indian satellite IRS-P6 (Wagner et al., 2011). Crop rotations
as well as irrigation schemes were set up for arable land (rice 4.7%,
sugarcane 0.7%, mixed cropland 5.3% of the catchment area) to ac-
count for the two main cropping seasons in the region. Addition-
ally, the forest growth module was modified to represent the
local conditions. For the six major dams in the catchment, a man-
agement scheme was developed, which is based on general man-
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agement rules allowing for water storage in the rainy season and
water release in the dry season (Wagner et al., 2011). At the Mulshi
and Khadakwasla dams, water is abstracted for energy, irrigation,
and water supply purposes. This is incorporated into the model
based on a monthly abstraction rate, which is estimated using
downstream river gauge measurements. If dams are filled up to
95% of the storage capacity, the abstraction rate is increased to al-
low for an efficient use of the available water.

Temperature, humidity, solar radiation, and wind speed data
were only available at the IMD weather station in Pune (ID
430630, 18.53°N, 73.85°E, 559 m.a.s.l.). Missing temperature val-
ues (n =9 days) were filled using the value of similar days in terms
of rain, minimum or maximum temperature, and solar radiation in
the same month. Missing humidity (n = 6) and missing wind speed
values (n = 10) were filled linearly, by averaging the values of the
previous and the following day. On 1269 days, solar radiation val-
ues were missing. However, for most of these days some hourly
values were available. These were used to fill the hourly data gaps
with the hourly observations from a day in the same month with a
similar course of solar radiation. The majority of daily missing val-
ues (n=1101) were filled with the help of this procedure. The
remaining 168 missing values were filled using the value of a sim-
ilar day in terms of rain, temperature, and humidity in the same
month.

To account for temperature differences within the catchment,
temperature values were adjusted for every sub-basin using adia-
batic temperature gradients (0.98 °C/100 m on a dry day, 0.44 °C/
100 m on a wet day; Weischet, 1995). The two humidity measure-
ments per day in Pune (8:30 am and 5:30 pm) were linearly inter-
polated to obtain an hourly course of humidity. Mean daily
humidity was derived from this hourly course. Relative humidity
was calculated for every sub-basin using the sub-basin specific
temperature values and the daily specific humidity values mea-
sured in Pune. Solar radiation and wind speed from Pune are used
for the whole catchment.

Daily discharge data for model validation was only available
during rainy seasons between 2001 and 2007. The runoff measure-
ments were quality checked. Values were removed, if the runoff re-
cord showed exactly the same value for 3days in a row.
Furthermore, a questionable peak runoff value was found for gauge
G1 on 29 and 30 July 2006. For both days, about the same extreme
runoff was recorded. This runoff value could not be explained by
the measured precipitation. Eliminating the runoff record on 30
July and shifting the runoff measurements 1 day backward be-
tween 31 July and 19 September led to a removal of the observed
systematic lag between modeled and measured runoff peaks.

The catchment model bases its calculations on 25 sub-basins,
which are subdivided into 882 hydrological response units (HRUs).
It was run for 21 years from 1988 to 2008, but only 20 years were
used for analysis allowing for a 1 year model spin-up phase. To
not implicitly correct errors in precipitation measurements with
model parameters that were derived from a specific model calibra-
tion procedure, we chose default model parameters or we selected
the parameters based upon the literature for the given site condi-
tions (e.g. soil parameterization). The values and sources of the
parameters that are usually used for calibration in SWAT are pro-
vided in the appendix (Table A1). This parameterization procedure
has been successfully applied in other studies, where SWAT input
parameters were estimated without calibration from readily avail-
able GIS databases (e.g., Fontaine et al., 2002; Srinivasan et al.,
2010; Zhang et al., 2008). Under similar (Indian) conditions, SWAT
showed generally good performances without much calibration
(Gosain et al. (2005) only adjusted the low flow (groundwater) com-
ponent of river runoff). A preceding model application using the
same methodology but a different rainfall input was already rela-
tively successful in the study area (Nash-Sutcliffe efficiencies of
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0.68 (G1) and 0.58 (G4) at the river gauges that are less affected by
dam management; Wagner et al., 2011). Hence, the model was not
calibrated with measured runoff data since the focus is set on obvi-
ous differences between measured and modeled hydrographs
resulting from different rainfall inputs. Four model runs were per-
formed using the different precipitation inputs derived from the
regression-based interpolation methods with the X-coordinate
(R[DWX, RKx) and the TRMM pattern (RIDWTRMm, RKTRMM) as
covariate.

2.5. Validation

The interpolation schemes were validated in two steps:

(i) A cross-validation was carried out by estimating the daily time
series for the entire period from 1988 to 2008 at one gauge by
using all other rain gauges. To evaluate the goodness-of-fit, we cal-
culated root mean square error (RMSE), Nash-Sutcliffe efficiency
(NSE; Nash and Sutcliffe, 1970), and percentage bias (PBIAS; Mor-
iasi et al., 2007). The NSE is defined as

n

> (0 —My)?
NSE=1--2 (5)

and PBIAS is computed in the following way:

n

> (0 = Mj)

PBIAS=100 =L (6)

Yo
i=1

where 0; is the ith observation, M; is the ith predicted value, O is the
mean of the observed values, and n is the total number of observa-
tions.

Performances of the different interpolation schemes were
ranked for each gauge and hence a mean ranking of each approach
was derived by averaging the ranking for all individual gauges.
Thus, the best interpolation methods were identified.
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Fig. 5. Location of river gauges and reservoirs in the Mula-Mutha catchment.

(ii) For many environmental applications (such as hydrologic mod-
eling studies) closing the mass balance is of critical importance and
reproducing meaningful spatial patterns of rainfall is more impor-
tant than reproducing point measurements accurately. Therefore,
the best approaches identified by cross-validation were compared
at the sub-catchment level to assess spatially integrated differ-
ences in rainfall and runoff. SWAT was used to evaluate the effects
of the different interpolation inputs on the water balance and on
runoff dynamics. This validation technique allows for an assess-
ment of the spatially integrated effects of rainfall. It is focused on
the two sub-catchments (G1 and G4; Fig. 5) that are less affected
by dam management.

3. Results

In general, the interpolation schemes that used covariates out-
performed the univariate methods. This is indicated by RMSE,
NSE, and PBIAS for the different interpolation schemes and the
rankings based on cross-validation using these goodness-of-fit
indicators (Table 3). Among the regression-based methods, regres-
sion-kriging (RK) and regression-inverse distance weighting
(RIDW) showed a similar performance. Comparing the covariates,
the use of the X-coordinate led to slightly better results than the
use of the TRMM pattern as a covariate.

This ranking is also reflected by the performance at the individ-
ual gauges as indicated by the NSE (Fig. 6). Except for one station,
Thiessen polygons (TH) show the weakest performance, including
negative values for three stations. Thiessen polygons typically
show reasonable performance for gauges, where the nearby gauge
is representative for the estimated gauge (e.g., Kumbheri and Mul-
shi). If this is not the case, Thiessen polygons do not perform as
well as the other methods (e.g., Paud). Ordinary pooled kriging
(OK) and IDW perform quite similar with varying performances
from gauge to gauge, but significantly better than the Thiessen
polygons and slightly worse than the schemes that use covariates.
These four regression-based methods often perform similarly. The
mean RMSE (Table 3) usually reflects the ranking at the gauges.
However, performance varies from one gauge to another. The
worst interpolation performance was found at the most eastern
gauge Wagholi. As TH and OK show a negative NSE here, it can
be concluded that the nearest gauges are not representative for
this gauge. The regression-based approaches perform better at this
site as they do not rely as much on neighboring gauges, but use
information from the covariate. Depending on the chosen good-
ness-of-fit indicator, the performance of IDW (RMSE; Table 3)
and OK (PBIAS; Table 3) is sometimes slightly better than the least
best regression-based interpolation method. However taking all
indicators into consideration, the regression-based methods show
a better performance than the univariate approaches. RK and RIDW
can be rated similarly good, as it depends on the rain gauge (Fig. 6)
and on the chosen indicator (Table 3) as to which regression-based
interpolation method performs best.

For further analysis, the focus is set on the regression-based
methods using the two different covariates. Based upon the
cross-validation, the incorporation of the X-coordinate led to the
best interpolation results (Table 3). However, the TRMM data pro-
vide spatial patterns that reflect the mean annual distribution of
precipitation and incorporate more spatial detail (e.g., orographic
rainfall at mountain ridges) than the X-coordinate that expresses
the general decrease of rainfall with distance from the Western
Ghats escarpment.

Despite the small differences of the cross-validation results ob-
tained with the two covariates shown in Table 3, the integrative ef-
fect of the chosen covariate is quite obvious at the catchment scale
(Table 4), when comparing modeled and measured runoff for two
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Table 3
Cross-validation performance and ranking of different interpolation schemes based on root mean square error (RMSE), Nash-Sutcliffe efficiency (NSE), and percentage bias
(PBIAS).
Interpolation Range Mean Rank of Range NSE Median Mean Rank of mean Range Mean Rank of mean
scheme RMSE RMSE mean NSE rank of rank of NSE absolute absolute absolute PBIAS
(mm) (mm) RMSE NSE PBIAS (%) PBIAS (%)
Thiessen polygons 6.7-20.1 123 7 —-0.49-0.68 0.26 6.9 7 15.4-41.9 28.0 7
IDW 5.5-19.2 10.1 4 -0.16-0.73 0.57 4.1 5 5.1-53.7 24.0 6
OK 5.6-19.4 10.2 6 -0.17-0.71 0.56 43 6 5.6-41.6 19.3 4
RIDWx 5.4-18.1 9.7 1 0.02-0.75 0.60 1.7 1 1.5-41.6 14.8 2
RIDWrtrnvm 5.6-18.3 10.0 3 —0.04-0.73 0.58 3.0 3 2.0-69.1 19.8 5
RKx 5.4-18.1 9.8 2 0.01-0.75 0.60 1.9 2 2.0-42.7 14.7 1
RKtrmm 5.6-18.4 10.1 5 —0.04-0.72 0.58 3.6 4 1.3-60.0 18.0 3
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Fig. 6. Interpolation performance at the rain gauges as indicated by the Nash-Sutcliffe efficiency (NSE): Univariate methods above and regression-based methods below.

Table 4
Model performance as indicated by Nash-Sutcliffe efficiency (NSE) and percentage
bias (PBIAS) in two sub-catchments using differently interpolated rainfall inputs.

Catchment G1 G4

Interpolation scheme NSE PBIAS NSE PBIAS
RIDWx 0.59 -29.5 0.61 429
RIDWrrnmm 0.73 7.6 0.65 25.6
RKx 0.61 -285 0.62 404
RKtrmm 0.68 4.0 0.67 244

different sub-catchments (G1 and G4). The performance of the
interpolation methods was evaluated using the available daily dis-
charge data during rainy seasons between 2001 and 2007 (Wagner
et al,, 2011). This evaluation was restricted to sub-catchments G1
and G4, since the measured runoff at gauge G2 and G3 strongly de-
pends upon the management of the upstream dams. Highest NSE
and lowest PBIAS values were found when using TRMM data as
covariate (Table 4), because TRMM based interpolation led to less
precipitation in catchment G1 and to more precipitation in G4
compared to the results using the X-coordinate (Table 5). The more
favorable NSE and PBIAS indicate that interpolation methods using

remotely sensed patterns provide better results with respect to
modeled runoff.

The TRMM based methods produce 8.8% and 9.0% (RIDW:
196 mm, RK: 199 mm) higher mean annual precipitation at the
catchment scale when compared to the results obtained by using
the X-coordinate. For the Mula-Mutha catchment the higher

Table 5
Modeled water balance components for the Mula-Mutha catchment and two sub-
catchments based on different interpolation schemes.

Sub- Interpolation  Precipitation Runoff Evapotranspiration
catchment scheme (mm) (mm) (mm)
Mula-Mutha  RIDWx 2215 1421 731
RIDWrrMm 2410 1573 734
RKx 2221 1427 731
RKrrvm 2420 1585 734
G1 RIDWx 2312 1631 776
RIDW1rmMm 1934 1261 767
RKx 2308 1625 776
RKrrvm 1972 1297 766
G4 RIDWx 2630 1972 629
RIDWrrMm 3046 2386 635
RKx 2680 2021 630
RKrrvm 3065 2405 635
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Fig. 7. Differences in monthly rainfall for sub-catchment G1 using different
covariates for interpolation: (A) Regression-inverse distance weighting (RIDW)
and (B) regression-kriging (RK). Rainy and dry season are shown as black and gray
dots, respectively.

rainfall amounts lead to 10.7% and 11.1% (RIDW: 152 mm, RK:
158 mm) higher runoff and only slightly higher evapotranspira-
tion. As has to be expected, the effects of using different covariates
are even more pronounced at the sub-catchment scale (Table 5).
In the following paragraphs a more detailed analysis with fo-
cus on shorter time scales is presented for sub-catchment G1.
Differences between the interpolation methods are more pro-
nounced at shorter time scales. Monthly rainfall differences be-
tween RIDWrrym and RIDWy in G1 range from —301 mm to
+3mm and from -245mm to +3mm for the RK methods
(Fig. 7). These monthly differences in sub-catchment G1 generally
showed maximum values (>150 mm) in July and August. The
resulting differences in runoff dynamics are exemplarily analyzed
for monsoon season 2006. This season was chosen since the
summed monthly differences for July and August 2006 (RIDW:
444 mm, RK: 421 mm) are largest within the validation period.
The course of the hydrograph of the RIDW and RK methods for

the same covariate is nearly identical during this period (X-coor-
dinate: 0.999 NSE, 0.03% PBIAS; TRMM pattern: 0.987 NSE,
—1.09% PBIAS). Thus, the visual analysis shown in Fig. 8 is re-
stricted to comparing the two RK methods. Generally, the higher
rainfall amounts of RKy lead to higher runoff peaks in the respec-
tive hydrographs (e.g., 12 and 23 July; Fig. 8). The peaks mostly
occur at the same time for both model runs, but may also differ
by 1day (e.g., 15/16 August; Fig. 8). The primarily small differ-
ences in June and July add up, so that full storage capacity of
the upstream dam is reached at different dates. Hence, once the
full storage capacity of the dam is reached, the dampening effect
of the dam with respect to runoff peaks ceases to exist. If the full
storage capacity is reached at different dates in the models, pro-
nounced differences in runoff may follow (e.g., higher runoff
amounts from 30 July to 2 August; Fig. 8). This indicates that dif-
ferent interpolation schemes can make an important difference
for runoff dynamics.

Comparing the modeled hydrographs to the measured runoff
showed more favorable results using the RKrryuv interpolation
(Fig. 8). Particularly during the high flow period between mid July
and mid August, the course of the measured runoff is well repro-
duced by the RKtgmy model. In the early monsoon season before
full storage capacity of the dam is reached, both model runs show
peaks on 30 June and 6 July that are not represented in the obser-
vations. On these dates, the western rain gauges show high
amounts of rainfall whereas the eastern gauges show little
amounts. Possibly the western gauges were given too much influ-
ence in the interpolation on these days. On the other hand, the
dampening effect of the dam might be too low in the model. Once
the dam is filled, the dampening effect of the dam with respect to
the hydrograph is negligible. Hence, the following period is most
reliable for comparison of modeled and measured runoff. The poor
match in the late monsoon period after mid August may result
from dam management impacts that were not represented by
the assumed dam management in the model. In contrast to
RKtrmm, the RKy interpolation fails to match the dates of the mea-
sured peaks in runoff (e.g., peaks on 6, 10, and 16 August; Fig. 8).
The modeled peaks occur either 1 day too early or 1 day too late
compared to the measured runoff. Furthermore, the integral be-
tween measured and modeled hydrograph shows a large overesti-
mation of runoff by the RKy driven model. This result is underlined
by PBIAS, which indicates an overestimation of 28.5% for the whole
validation period for RKy. Similarly PBIAS for RKtgyv Shows only a
small underestimation of 4.0%, which matches well with the gener-
ally small integral between measured and RKygyy modeled runoff
in monsoon season 2006. The comparison of runoff dynamics sup-
ports the finding that the TRMM pattern is the more suitable covar-
iate to reproduce runoff dynamics.

4. Discussion

The improvement of the interpolation results by using addi-
tional information from a covariate (Verworn and Haberlandt,
2011) is very clear in this study, as the regression-based methods
outperformed the univariate methods (Table 3 and Fig. 6). This is
in agreement with other findings, where external drift kriging
(being a modified form of regression kriging) was found to be
one of the best interpolation schemes (Goovaerts, 2000; Zhang
and Srinivasan, 2009). Pooled semivariograms for rainfall interpo-
lation were previously used only on an event basis (Fiener and
Auerswald, 2009; Schuurmans et al., 2007). Our results show that
this method can successfully be transferred to monthly pooling,
which makes kriging applicable in situations of scarce data avail-
ability. However, the superiority of geostatistical methods was
not as obvious as in other studies (Buytaert et al., 2006; Goovaerts,
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Fig. 8. Modeled and measured runoff at gauge G1, the storage volume of the upstream Pawana dam, and rainfall differences in sub-catchment G1 for regression-kriging
rainfall interpolation with covariates TRMM pattern and X-coordinate during the 2006 rainy season.

2000; Ly et al., 2011). Two reasons may contribute to this result: (i)
In case of the univariate methods the autocorrelation decreases al-
most linearly with increasing distance (Fig. 2). Thus IDW with an
exponent of one is very similar to the applied OK approach. (ii)
In case of the regression-based methods the main part of the rain-
fall estimate is determined by the covariate, giving less influence to
the interpolation of the residuals. A major advantage of the IDW
method is that it can be used at any time step. Whereas kriging re-
quires a sufficient amount of data to produce a reliable semivario-
gram, which in our case was achieved by using pooled variograms
for every month.

DEM parameters such as elevation are commonly used for rain-
fall interpolation (Buytaert et al., 2006; Goovaerts, 2000; Lloyd,
2005; Verworn and Haberlandt, 2011). However, a relation be-
tween rainfall and elevation could not be found here. If high eleva-
tion rainfall measurements are missing or large scale processes
dominate the small scale orographic rainfall effects, a relation
may not be derived from the data. This is often the case, especially
in data scarce regions. In this study, one reason for a missing rela-
tion between rainfall and elevation is that the elevation difference
of the highest (Katraj Tunnel, 895 m) and the lowest gauge (Pune,
559 m) is not proportionally reflected in the rainfall difference of
these gauges. Thus, the mean annual rainfall difference (187 mm)
represented by these gauges is small in comparison to the differ-
ences in mean annual rainfall, which range up to 3160 mm in the
study area. The dominating effect on rainfall distribution is not ele-
vation but distance in wind direction from the Western Ghats
escarpment (Table 2), which is expressed by the X-coordinate. As
the escarpment is the main orographic barrier, the study area lies
in the rain shadow of the escarpment. Hence, the potential amount
of rainfall at higher mountain ranges to the east of the escarpment
(Fig. 1) is limited by the amount of rain that occurred at the escarp-
ment and other westward barriers. The combination of the domi-
nating south-west monsoon and the north-south exposition of
the Western Ghats escarpment clearly leads to the west to east de-

cline of rainfall and consequently no rainfall dependence on eleva-
tion can be detected in the study area.

An alternative to DEM parameters are satellite measurements of
rainfall patterns. For this reason satellite data is increasingly used
for rainfall interpolation (Velasco-Forero et al., 2009; Verworn and
Haberlandt, 2011; Schiemann et al., 2011). The results show that
the annual rainfall pattern that was derived from TRMM precipita-
tion radar is a useful covariate. Within the geographic range of 38°S
to 38°N TRMM provides a spatial precipitation pattern, which is an
alternative to empirical covariates. Its spatial detail (0.05° grid)
makes it superior to empirical covariates such as the X-coordinate,
which might show a higher correlation with the data, but fail to
provide a spatially accurate estimate. Compared to the X-coordi-
nate, the TRMM pattern shows a larger spatial variability, which
results in some areas in more and in other areas in less rainfall.
However, the TRMM based methods provide in any case a better
closure of the water balance, as the spatially integrated compari-
son with measured data shows.

Cross-validation is a widely used and useful technique for the
evaluation of interpolation results (Hattermann et al., 2005; Lloyd,
2005). However, with a limited number of values, results are sub-
ject to bias that originates from the distribution of the gauges. If
this distribution is not representative of the spatial distribution
of rainfall, bias is introduced (Heistermann and Kneis, 2011). Par-
ticularly in low density measurement networks, interpolation
may lead to a large bias, unless these networks were designed with
regard to interpolation needs (Cheng et al., 2008). In our study,
cross-validation indicated only small differences between RKrryvm
and RKy (RMSE of 10.1 mm and 9.8 mm, Table 3), whereas the spa-
tially integrated assessment showed pronounced differences in the
catchment’s mean annual rainfall (2420 mm and 2221 mm, Ta-
ble 5), in monthly rainfall on the sub-catchment scale (Fig. 7),
and in runoff dynamics (Fig. 8). While the cross-validation result
indicated that RKy and RIDWy are the best interpolation technique,
the spatially integrated assessment using the SWAT model showed
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that RKgmm and RIDWryv are the better interpolation schemes.
One reason for this might be the relatively small number of 16 rain
gauges. Cross-validation indicated that the interpolation schemes
perform similarly at the rain gauge locations. The differences that
are exposed by comparing the model based spatially integrated re-
sults are due to the different spatial detail provided by the two
covariates. The TRMM pattern with its 0.05° resolution was able
to reproduce local rainfall effects (e.g., due to topography) better
as compared to using the X-coordinate as covariate. It can be as-
sumed that a denser rain gauge network (covering also mountain
ridges) that better reflects local rainfall effects would probably lead
to a decrease of the cross-validation performance of RKyx and
RIDWy. In data scarce regions with a high spatial variability in rain-
fall (such as mountainous areas), cross-validation results should be
interpreted with care and should be backed up with a spatially
integrated assessment of interpolation quality.

The spatially integrative effect of different interpolation meth-
ods can be assessed with hydrologic models, as they spatially inte-
grate precipitation to produce runoff. Hydrographs allow for an
evaluation of the interpolated rainfall integrating space and time.
However, the approach critically relies on the quality of the model,
which needs to accurately represent the catchment’s hydrologic
response (Heistermann and Kneis, 2011), and on the quality of
the measured runoff data. The model should not require much cal-
ibration, as calibration might compensate for possibly wrong rain-
fall input (Heistermann and Kneis, 2011; Strauch et al., 2012). The
SWAT model parameters were selected based upon literature val-
ues (e.g., soil parameters after Immerzeel et al., 2008), or regional
knowledge (e.g., definition of dam management, forest phenology).
Otherwise default values were used. The model was not calibrated
to observed rainfall-runoff events. Thus, we are confident that the
obtained results are not compromised by compensatory effects
arising from model calibration. Particularly in consolidated rock
catchments such as the Mula-Mutha catchment with its fast sys-
tem response to precipitation inputs, differences in model re-
sponse can thus be attributed to the spatial patterns and
accuracy of the applied interpolation schemes.

The application of this approach has so far been limited to mod-
eling studies (e.g., Cole and Moore, 2008; Gourley and Vieux, 2005;
Heistermann and Kneis, 2011; Hwang et al., 2012). However, the
presented results show that it is a suitable method to evaluate
interpolation performance. Model based spatial assessment of
interpolation accuracy enhances commonly used validation meth-
ods and provides reliable results that are particularly valuable in
data-scarce regions.

5. Conclusions

In this study, seven interpolation schemes were carried out to
provide rainfall data on a daily time step using 16 rain gauges.
The different methods were evaluated using a two step validation
approach incorporating cross-validation as well as spatially inte-
grated assessment of interpolation performance with the help of
a hydrologic model.

Our analysis indicates that precipitation interpolation ap-
proaches using appropriate covariates perform best. The two
regression-based methods (RIDW and RK) performed similarly
well. Since RIDW is less complex than RK, it might be favorable if
a quick and straight forward interpolation method is required.
Even though its use for interpolation might become more evident
in other studies, the additional information that is provided by
semivariograms is valuable for analyzing the spatial distribution
of rainfall. Monthly pooling is a feasible method to assess autocor-
relation of rainfall in data-scarce regions and hence can be used for
geostatistical interpolation schemes.

Best interpolation results were obtained using (i) the X-coordi-
nate that represents the distance from the Western Ghats escarp-
ment as climatic dominant structure and (ii) the spatial pattern
of annual rainfall derived from remotely sensed TRMM precipita-
tion radar. Although the differences in interpolation performance
judged by cross-validation were small, relatively large differences
in catchment rainfall were recognized for the two best performing
interpolation schemes. These differences were even more pro-
nounced focusing on a smaller spatial (sub-catchment) and a smal-
ler time (monthly) scale. A spatially integrated analysis based on
rainfall-runoff modeling and its comparison with measured dis-
charge helped to identify the TRMM pattern as a more suitable
covariate. Regardless of the sub-catchment, modeled runoff based
on the interpolation methods that used the TRMM pattern
matched the measured runoff best, because TRMM based interpo-
lation produced more rainfall in one sub-catchment and less
rainfall in the other sub-catchment when compared to the interpo-
lation methods that used the X-coordinate. The comparatively high
spatial resolution of the TRMM pattern provides an accurate esti-
mate of the spatial rainfall distribution, which is particularly
important, when interpolated rainfall is used for spatially distrib-
uted analysis, such as spatially distributed modeling. Superior to
most empirical covariates, the TRMM pattern allows for a transfer
of the methodology to other study areas within the geographic
range of 38°S to 38°N covered by TRMM. Moreover, it is a valuable
alternative to the commonly used covariate elevation, especially in
regions where a rainfall dependence on elevation is not present or
cannot be derived from measurements.

Furthermore, the results indicate that cross-validation is not
sufficient to identify the most suitable precipitation interpolation
method in data scarce regions, and that spatially integrated evalu-
ation is needed to assess the accuracy of interpolated spatial rain-
fall distributions. In this context, hydrologic models are useful
tools as they allow for evaluations that are based on runoff, which
temporally and spatially integrates rainfall.

In general, our results indicate the high potential of pooled kri-
ging in combination with TRMM data as a covariate (RKrmm) to
derive appropriate daily inputs for hydrologic models in data
scarce tropical to sub-tropical regions. Moreover, our study under-
lines the importance of more sophisticated multi-step validation of
interpolations schemes, especially if applied in data scarce regions
where cross-validation techniques alone may not be sufficient.

Acknowledgements

We gratefully acknowledge support by a grant from the German
National Academic Foundation. We would like to thank Chris Kidd
for providing the TRMM rainfall pattern, which was processed by
the Earth System Science Interdisciplinary Center, University of
Maryland and NASA/Goddard Space Flight Center. We are grateful
to IMD Pune, Water Resources Department Nashik, Khadakwasla
Irrigation Division Pune, Groundwater Department Pune, Depart-
ment of Agriculture Pune, and NRSC Hyderabad for supplying envi-
ronmental data, good cooperation and discussions. Moreover, we
acknowledge supply of ASTER data by the USGS Land Processes
Distributed Active Archive Center. Special thanks go to Karen
Schneider for proof reading the manuscript and to the students
from the Institute of Environment Education & Research at Bharati
Vidyapeeth University Pune for assistance with the field measure-
ments. The authors thank the editor and the two anonymous
reviewers for their helpful comments.

Appendix A

See Table Al.



399

Table A1
Applied SWAT model parameterization of potential calibration parameters.
Parameter Description Value Source
name
CN2 Initial SCS runoff curve number for soil moisture condition II Depends on soil and land use Estimated by the model
(Neitsch et al., 2010)
SOL_AWC Available water capacity of the soil layer Depends on the soil, values given in  Immerzeel et al. (2008)
Wagner et al. (2011)
SOL_K Saturated hydraulic conductivity of the soil layer Depends on the soil, values given in  Immerzeel et al. (2008)
Wagner et al. (2011)
CANMX Maximum canopy storage 0 Default model parameter
value
EPCO Plant uptake compensation factor 1 Default model parameter
value
ESCO Soil evaporation compensation coefficient 0.95 Default model parameter
value
CH_N Manning’s roughness coefficient for channel flow 0.014sm '3 Default model parameter
value
SURLAG Surface runoff lag coefficient 4 Default model parameter
value
GWQMN Threshold depth of water in the shallow aquifer required for return flow to occur 0 mm Default model parameter
value
GW_DELAY  Groundwater delay time 31d Default model parameter
value
GW_REVAP  Groundwater “revap” coefficient 0.02 Default model parameter
value
ALPHA_BF Baseflow alpha factor 0.048d Default model parameter
value
REVAPMN Threshold depth of water in the shallow aquifer for “revap” or percolation to the 1 mm Default model parameter
deep aquifer to occur value
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