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Layer-Specific Analysis and Spatial Prediction
of Soil Organic Carbon Using Terrain Attributes

and Erosion Modeling

High-resolution soil organic C (SOC) maps are a major prerequisite for many environmental studies dealing with
C stocks and fluxes. Especially in hilly terrain, where SOC variability is most pronounced, high-quality data are
rare and costly to obtain. In this study, factors and processes influencing the spatial distribution of SOC in three soil
layers (<0.25, 0.25-0.50, and 0.5-0.90 m) in a sloped agricultural catchment (4.2 ha) were statistically analyzed,
utilizing terrain parameters and results from water and tillage erosion modeling (with WATEM/SEDEM).
Significantly correlated parameters were used as covariables in regression kriging (RK) to improve SOC mapping for
different input data densities (6-38 soil cores ha!) and compared with ordinary kriging (OK). In general, patterns
of more complex parameters representing soil moisture and soil redistribution correlated highest with measured
SOC patterns, and correlation coefficients increased with soil depth. Analogously, the relative improvement of
SOC maps produced by RK increased with soil depth. Moreover, an increasing relative improvement of RK was
achieved with decreasing input data density. Hence, the expected decline of interpolation quality with decreasing
data density could be reduced, especially for the subsoil layers, by incorporating soil redistribution and wetness
index patterns in RK. The optimal covariable differed among the soil layers. This indicates that bulk SOC patterns
derived from topsoil SOC measurements might not be appropriate in sloped agricultural landscapes; however,
generally more complex covariables, especially patterns of soil redistribution, exhibit a great potential to improve

subsoil SOC mapping,

Abbreviations: CA, catchment arca; C-plan, plan curvature; C-prof, profile curvature; DEM, digital
elevation model; MEF, model-efficiency coefficient; OK, ordinary kriging; RE, relative elevation; RI,
relative improvement; RK, regression kriging; RUSLE; Revised Universal Soil Loss Equation; R}, 17-m
input raster; R, s, 25-m input raster; Rgg, 50-m input raster; SEDEM,, Sediment Delivery Model; SOC, soil
organic carbon; SPI, stream power index; Wal' EM, Water and Tillage Erosion Model; W1, wetness index.

Soils play a major role in the global C cycle. Approximately 1500 Pg of C are
stored in the topmost meter of soils worldwide, corresponding to twice the
amount of atmospheric C and triple the amount of C stored in the biosphere
(Schlesinger, 2005). Nevertheless, the role of this reservoir as a CO, sink or source
in global climate and environmental studies is not clear. To analyze the possibilities
of soils to sequester atmospheric CO,, as well as for other environmental issues
(e.g., analysis of soil quality and adaptation of management practices), detailed and
precise maps of the distribution of SOC are an essential prerequisite. Especially
in agricultural regions, the complex arrangement and combination of topography,
soil, and management practices as well as the biological processes controlled by
these parameters lead to a high spatial variability of SOC. A rolling topography
also affects the spatial heterogeneity of SOC in agricultural fields through soil
redistribution processes. Most studies dealing with soil and SOC redistribution
indicate an increase of SOC in depositional arcas, compared with regions of cro-
sion, where SOC is depleted (e.g., Ritchie et al., 2007; Mabit et al., 2008); how-
ever, there are also opposite results published in literature. For example, Arriaga
and Lowery (2005) found that the introduction of clayey subsoil material into the



plow layer duc to crosion of the topsoil stabilized and hence in-
creased the SOC content in the topsoil of severely eroded sites.
Below the plow layer, a decrease in SOC occurred in areas of
erosion, while more or less constant SOC contents were found
throughout the soil profile in regions of soil deposition (Arriaga
and Lowery, 2005).

To produce accurate SOC maps, in general, different kinds
of interpolation schemes are applied based on point measure-
ments. As field measurements are costly and time consuming, the
improvement of interpolation methods to derive spatial SOC
patterns using secondary information is important and has been
extensively tested. Terrain attributes of various complexities have
been used as proxies for relief-driven processes of pedogenesis. In
most studies, primary terrain parameters, which can be casily de-
rived from digital elevation models (DEMs), such as (relative) el-
evation (Mueller and Pierce, 2003; Ping and Dobermann, 2006;
Sumfleth and Duttmann, 2008), slope (Mueller and Pierce,
2003; Ping and Dobermann, 2006; Takata et al., 2007; Sumfleth
and Duttmann, 2008), aspect (Odeh et al,, 1994, 1995), and
curvature (Terra et al., 2004; Takata et al., 2007) were used as
secondary information. These primary terrain parameters can
also be combined, resulting in more complex secondary terrain
parameters or indices comprising landscape processes more ex-
plicitly. Often the wetness (or topographic) index (Beven and
Kirkby, 1979) has been tested for its capability to improve the
interpolation of SOC and other soil properties (e.g., Herbst et
al,, 2006; Takata et al., 2007; Sumfleth and Duttmann, 2008).
In addition to these terrain parameters, other parameters have
also been used as covariables for interpolation schemes. Takata
ct al. (2007), for example, used the enhanced vegetation index,
whereas Chen et al. (2000) used soil color to successfully predict
the spatial distribution of SOC. Both parameters were derived
from remote sensing data. Another covariable utilized effectively
to improve the interpolation of SOC is the electrical conductiv-
ity of the topsoil layer (Terra et al., 2004; Simbahan ct al., 2006;
Ping and Dobermann, 2006).

A variety of statistical and geostatistical methods exist to in-
terpolate point data with and without consideration of second-
ary information (e.g., Isaaks and Srivastava, 1989; Webster and
Oliver, 2001). While simple statistical approaches to interpolate
SOC, such as a (multiple) linear regression, performed well un-
der certain circumstances (e.g., Mucller and Pierce, 2003), often
geostatistical kriging approaches, which account for the spatial
structure of SOC as well as that of covariables, performed better.
Whereas ordinary kriging utilizes only the spatial autocorrela-
tion of the target variable, there are several geostatistical tech-
niques that allow the incorporation of a spatial trend caused by
spatial patterns of secondary parameters in the kriging approach.
Most often regression kriging (RK) or kriging with external drift
(KED) has been applied. In contrast to KED, which is a one-
algorithm system, RK is a stepwisc approach combining a regres-
sion between the target and a covariable with simple or ordinary
kriging of the regression residuals. Whereas the target and the
covariable have to be linearly related in KED, RK also allows the

integration of more complex regression models (i.c., multiple lin-
car or nonlinear functions). Kriging with external drift and linear
RK differ only in the computational steps used, but the resulting
predictions are the same given the same input data (target and covari-
able) and the same regression fitting method (Hengl et al., 2007).

Odch et al. (1994, 1995) defined three types of regression
kriging, of which regression kriging Model C, where the trend
function is calculated using ordinary least squares and the residu-
als arc interpolated using ordinary kriging, was successfully used
to improve the interpolation of SOC as well as that of other soil
properties in many studies (e.g., Terra et al., 2004; Herbst et al,,
2006; Takata et al., 2007; Sumfleth and Duttmann, 2008).

A geostatistically more sophisticated approach, which over-
comes some statistical deficiencies of KED and RK, is REML-
EBLUP (Lark et al., 2006). In this method, the trend model is
estimated using residual maximum likelihood (REML), and sub-
sequently the estimated parameters are used for the empirical best
linear unbiased prediction (EBLUP). Minasny and McBratney
(2007a,b), however, who compared RK Model C with REML-
EBLUP for interpolating four different soil properties, conclud-
ed that, although statistically somewhat inappropriate, RK has
proven to be a robust technique for practical applications. In con-
cordance with these results, Chai et al. (2008), who analyzed the
effect of different covariables on the spatial interpolation of soil
organic matter, concluded that REML-EBLUP was more stable,
but that the improvement was not significant compared with RK.

To our knowledge, all studies that have explicitly dealt with
the interpolation of SOC and its possible improvement by in-
corporating covariables in the interpolation process have focused
on the topsoil layer (<0.3 m, c.g., Mueller and Pierce, 2003; Terra
et al,, 2004; Simbahan et al,, 2006; Ping and Dobermann, 2006;
Takata et al,, 2007; Sumfleth and Duttmann, 2008); however,
the spatial patterns of SOC in sloped agricultural catchments
might differ substantially in different soil depths. This aspect
should be taken into account for studies addressing the soil C
balance as well as for simulations of soil C dynamics.

The objectives of this study were: (i) to evaluate the spatial
patterns of SOC for different soil layers in a small agricultural
catchment and to analyze their relation to spatial patterns of ter-
rain parameters and the results from soil redistribution model-
ing, and (ii) to evaluate whether these (casily available) param-
eters can serve as improving covariables in a layer-specific inter-
polation of SOC data by RK, and hence potentially allow a re-
duction in SOC sampling density without a loss of mapping quality.

MATERIALS AND METHODS
Test Site

The test site is part of the Pleiser Hiigelland, a hilly landscape located
about 30 km southeast of Cologne in North Rhine-Westphalia, Germany.
It covers a small catcchment of approximately 4.2 ha at an altitude of 125
to 154 m above sea level (Fig. 1) that is part of a larger agricultural ficld
(50°43' N, 7°12/ E). Slopes range from 1° in the west up to 9° in the eastern
part with a relatively flat thalweg arca heading to the outlet.
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‘The mean annual air temperature is 10.0°C and the average precip-
itation per year is 765 mm (1990-2006), with the highest rainfall inten-
sities occurring from May to October (data from the German Weather
Service station at Bonn-Roleber, located about 1 km to the west of the
test site, 159 m above sea level).

Due to its fertile, loess-containing, silty and silt-loamy soils classi-
fied as Alfisols (Soil Survey Staff, 1999) and its proximity to the ag-
glomeration of Cologne-Bonn, the test site is used intensively for arable
agriculture. The present crop rotation consists of sugarbect (Beza vulgar-
is L.), winter wheat (Zriticum aestivum L.), and winter barley (Hordeum
vulgare L.). Since 1980, a no-till system has been established with mus-

tard (Sinapis arvensis L.) cultivated as a cover crop after winter barley.

Soil Sampling and Soil Organic Carbon Measurement

To investigate the vertical and horizontal distribution of SOC in
the test site, a first set of soil samples was taken in April 2006. It consist-
cd of 92 sail cores, of which 71 cores were positioned on a regular 25- by
25-m raster. To account for small-scale spatial variability of SOC, ad-
ditionally a north—south transect in the eastern part of the test site with
point distances of 12.5 m and two microplots consisting of nine sample
points cach in a 1- by 1-m raster were augered. In each of the microplots,
the central sampling point belonged to the regular 25- by 25-m raster.
Microplots were selected to cover different slope positions. To increase
the density of the first sampling grid, a second set of soil cores (2 = 65)
was taken in March 2007 using a 25- by 25-m raster that was offset by
12.5 m to the north and west in relation to the 2006 raster. Additionally,
three samples were taken near the outlet of the test site to account for a
small colluvial area. Thus, soil samples are available in a regular 17.7- by
17.7-m raster with a density of 38 samples ha=! (Fig. 1), with addi-
tional samples along the transcct and in the microplots. Within cach
sampling campaign, soil cores were extracted with a Pyrckhauer soil au-
ger (approximately 2-cm diameter) and soil samples were taken in three
depths (I: 0-0.25 m; II: 0.25-0.50 m; I1I: 0.50-0.90 m). All sampling
points were surveyed with a differential global positioning system with a
horizontal accuracy between 0.5 and 2.0 m.

After oven drying at 105°C for 24 h, the samples were ground and
coarse particles were separated by 2-mm sieving. Roots and other recog-
nizable undecomposed organic matter particles were removed by hand
picking. The total C content was determined by dry combustion using
a CNS elemental analyzer (Vario EL, Elementar, Hanau, Germany).
Although loess soils in the area are in most cases deeply decalcified, all
soil samples were checked for lime (CaCO5) with HCI (10%). If any
inorganic C content was recognized, its amount was determined ac-
cording to the Scheibler method (Deutsches Institut fiir Normung,
1996). Combining both methods if necessary, the SOC content was

calculated from total minus inorganic C.

Terrain Analysis

A set of primary terrain attributes and secondary terrain indices
that might have affected the spatial distribution of SOC was calculated.
The indices combine different primary terrain ateributes and thus rep-
resent landscape processes more explicitly. The derivation of these pa-
rameters was based on a DEM with a 6.25- by 6.25-m grid. The DEM

was interpolated from Lidar data (2-3-m point distance) provided by
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Fig. 1. Test site with location of soil sampling points. Each of the two
microplots (MP) consists of nine sample points arranged in a 1- by
1-m grid; flow direction is from west to east.
the Landesvermessungsamt North Rhine-Westphalia using ordinary
kriging (spherical model; nugget: 0.6; sill: 46.2; range: 237 m) within
the Geostatistical Analyst of the geographic information system ArcGis
9.2 (ESRI, Redlands, CA). A grid size of 6.25 by 6.25 m was chosen to
assure that each sampling point was located in the center of a grid cell.
The following primary terrain attributes were calculated using
ArcGis 9.2: the relative elevation (RE), which is the vertical distance of
every grid cell to the outlet of the catchment, the slope, the aspect, and
the curvature. The curvature is the sccond derivative of the surface and is
separated into profile curvature (C-prof, the curvature in the direction
of maximum slope) and plan curvature (C-plan, the curvature perpen-
dicular to the direction of maximum slope). Another primary terrain at-
tribute used in this study is the catchment area, CA, calculated for cach
grid cell using the extension HydroTools 1.0 for ArcView 3.x (Schiuble,
2004). The multiple flow algorithm of Quinn et al. (1991) was ap-
plicd, in which the flow is distributed among three downslope grid cells
weighted by slope gradient. The catchment area takes into consideration
the amount of surface water that is distributed toward each grid cell.
The parameter thus is related to soil moisture and infiltration as well as
erosion and deposition. The two combined indices, wetness index (W1I)
and stream power index (SPI), differentiate between these two process
groups more explicitly through the incorporation of the local slope gra-
dient. The WT characterizes the distribution of zones of surface satura-
tion and soil water content in landscapes (Beven and Kirkby, 1979)

and is calculated as

SCA
[1]
tan$

WIi=In
where SCA is the specific catchment or contributing arca (m? m™1) or-
thogonal to the flow direction and is calculated as the CA divided by the
grid length (6.25 m) and Sis the slope (°).

The SPI is the product of the specific catchment arca, SCA
(m? m~1), and slope S (°) (Moore et al., 1993):

SPI=SCAtanS§ [2]

Itis directly proportional to stream power and can thus be interpreted as

the crosion disposition of overland flow.



Erosion Modeling

To more explicitly consider different soil redistribution processes
), tillage (E,;), and total (£
corresponding patterns were calculated by applying the long-term soil
crosion and sediment delivery model WaT EM/SEDEM version 2.1.0
(Van Oost ct al., 2000; Van Rompacy et al., 2001; Verstracten ct
al,, 2002).

The WaTEM/SEDEM model is a spatially distributed model com-
bining WaTEM (Water and Tillage Erosion Model) (Van Oost ct al.,
2000) and SEDEM (Sediment Delivery Model) (Van Rompacey et al.,
2001). The WaTEM model consists of water and tillage erosion compo-

due to water (E. ) erosion and deposition,

wat tot

nents that can be run separately. The water erosion component uses an
adapted version of the Revised Universal Soil Loss Equation (RUSLE,
Renard et al., 1996). Adaptations consist in the substitution of slope
length with the unit contributing area calculated following Desmet
and Govers (1996) and the integration of sedimentation following an
approach of Govers et al. (1993). Tillage erosion is caused by varia-
tions in tillage translocations across a landscape and always results in a
net soil displacement in the downslope direction. The net downslope
flux, Q (kg m~1 yr~1), due to tillage implementations on a hillslope
of infinitesimal length and unit width is calculated with a diffusion-type
equation adopted from Govers ct al. (1994) and is proportional to the

local slope gradient:

dH
Oy = kyS =—k; dx [3]
where k is the tillage transport coefficient (kg m~!yr~1), Sis the local
slope gradient (%), H is the height at a given point of the hillslope (m),
and x the distance in the horizontal direction (m). The local erosion or

deposition rate, E ;) (kg m~2yr~ 1), is then calculated as

2
g,=-4Q dH [4]
“ dx  d’x
Because tillage erosion is controlled by the change in the slope
gradient and not by the slope gradient itself, erosion takes place on con-
vexities and soil is accumulated in concavities. The intensity of the pro-

cess is determined by the constant £, which ranges between 500 and

til®
1000 kg m~! yr~! in western Europe (Van Qost et al., 2000).

A second module of WaTEM/SEDEM calculates sediment trans-
port and sedimentation. The sediment flow pattern is calculated with
a multiple flow algorithm (Desmet and Govers, 1996). The sediment
is routed along this flow pattern toward the river, taking into account
its possible deposition. Deposition is controlled by the transport capac-
ity computed for each grid cell. The transport capacity is the maximal
amount of sediment that can pass through a grid cell and is assumed
to be proportional to the potential rill (and ephemeral gully) erosion
volume (Van Rompaey et al., 2001). If the local transport capacity is
lower than the sediment flux, deposition is modeled.

The Wal EM/SEDEM model requires the input of several maps
as well as various constants and was implemented as follows: The 6.25-
by 6.25-m DEM served as the basis for the calculations. Additionally,
a land use map containing ficld boundaries and was derived from
digital aerial photographs provided by the Landesvermessungsamt
North Rhine-Westphalia. The K factor of the RUSLE was also given as

a map with values ranging from 0.058 to 0.061 kg h m~% N~ This
map was derived from a digital soil map (1:50,000 scale) provided by
the Geological Survey of North Rhine-Westphalia. Accounting for the
crop rotation and the implemented soil conservation practice at the test
site, the C factor was set to 0.05 (Deutsches Institut fiir Normung,
2005). The R factor of the USLE was calculated with a regression equa-
tion between R factor and mean summer precipitation developed for
North Rhine-Westphalia (Deutsches Institut fiir Normung, 2005).
Therefore, precipitation data (1990-2006) of the German Weather
Service station at Bonn-Roleber were used, resulting in an R factor of
67 N'h™Lyr=1L Since no sediment yield data for model calibration were
available, modeling was first performed on a 20- by 20-m grid, which is
the grid size used in carlier, calibrated simulations under similar envi-
ronmental conditions in the Belgium Loess Belt (Verstracten et al.,
2006). The results of this first simulation were used to recalibrate the
transport capacity coefficients to run the model on a 6.25- by 6.25-m
grid. All other constants necessary for running WaT EM/SEDEM were
set to default because no absolute but only relative erosion and deposi-

tion values were needed.

Statistical and Geostatistical Analyses
Statistical Analysis

For statistical and geostatistical analyses, three SOC input grids
with different sampling densities were created. To achieve a dense 17.7-
by 17.7-m sample raster (R,,), SOC data of the 2006 and 2007 sam-
pling campaign were combined in each soil layer. For the topsoil layer,
it was assumed that interannual differences of sampling date and thus of
planted crops, soil management, and climate could have resulted in dif-
ferences in SOC concentrations as measured during the two sampling
campaigns. Thus, after assessing normal distribution by analyzing skew-
ness coefficients, a Student’s #-test (although not optimal when used
with spatially autocorrelated data) was applied to estimate the equality
of means of the SOC data of the two sampling years. In the two deeper
soil layers, these influences were considered negligible. There, the SOC
contents of the two sampling dates were simply combined into one data
sct. The 2006 sampling points (z = 92) arranged in a 25-m raster (Rys)
served as an input data set with a medium density of 17 samples ha™1
for cach soil layer. To produce a low-density, S0-m input raster (Rg, 7 =
44), every second data point of R, 5 was climinated, resulting in a density
of approximately 6 samples ha~ L. Each raster contained the transect and
the two microplots to include short distances in the geostatistics.

The relationship between the spatial patterns of SOC and the spa-
tial patterns of potential covariables was tested using Pearson correla-
tion cocflicients calculated between all parameters and the SOC data
for each soil layer and each raster width. In this correlation analysis, the
cight additional points of the microplots were excluded because all nine
sampling points of a microplot were located in one grid cell with one
value for the relevant parameter. Parameters that were significantly (P
< 0.05) related to SOC in a soil layer were tested for their potential to

improve the interpolation results when used as a linear trend in RK.

Geostatistical Analysis
Geostatistical methods are based on the theory of regionalized

variables (Matheron, 1963). For further information concerning the
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theoretical background of geostatistics, sce Isaaks and Srivastava
(1989) or Webster and Oliver (2001). The basic assumption is that
sample points located close to each other are more similar than sample
points farther apart. This spatial autocorrelation is quantified in an em-
pirical semivariogram of the sampled data, where the semivariance is
plotted as a function of the lag distance. For a data set z(xi), i=1,2,..,

the semivariance g of a certain lag distance / is calculated as

1 8 2
(D)= gy 2L )= ()] 5]
where 7(h) is the number of pairs of data points separated by lag 4, and
~(h) is the semivariance of a certain lag distance 4. To apply this semi-
variogram in the following interpolation process, known as kriging in
geostatistics, a theoretical model has to be fit to the sample variogram.
Ordinary kriging (OK) which only uses the spatial autocorrelation
of the target variable can be considered as a basic geostatistical interpo-
lation method. It can be described as a weighted spatial mean, where
sample point values x; are weighted according to the semivariance as a
function of distance to the prediction location x. The weights X, are

chosen by solving the OK system to minimize the kriging variance:

Zn:xi,\((xi’xj )"HP:’\{(xi’xo)
i=1

PR
i=1

where N(xi,xj) is the semivariance between the sampling points x; and %

[6]

(x,5%) is the semivariance between the sampling point x;and the target
point x, and ¢ is a Lagrange multiplier necessary for the minimization
process (Ahmed and De Marsily, 1987).

The regression kriging used in this study follows regression kriging
Model C described in Odeh et al. (1995) and accounts for a possible
trend in the data combining linear regression with OK of the residuals.
In a first step, a linear regression function of the target variable with the
covariables is used to create a spatial prediction of the target variable at
the new locations. In a second step, OK is applied to the residuals of the
regression, resulting in a spatial prediction of the residuals. Finally, the
spatially distributed regression results and the kriged residuals are added
to calculate the target variable at all new locations.

As a prerequisite of geostatistics, the SOC data in each soil layer
and in cach raster width should be normally distributed. Following
Kerry and Oliver (2007a), this prerequisite can be met in geostatisti-
cal analysis if the absolute skewness coefficient (SC) is <1. Moreover,
data with an asymmetry caused by aggregated outliers need not to be
transformed if the absolute SC is <2 (Kerry and Oliver, 2007b). If
this was true, the SOC data were not transformed. For use in RK, the
residuals resulting from linear regression with the significantly correlat-
ed parameters in each soil layer and in cach raster width should also be
normally distributed. Skewness coefficients as well as normal Q- Q plots
of the residuals were analyzed. If the residuals showed strong devia-
tions from a normal distribution, the corresponding parameters were
logarithmically transformed and a linear regression analysis was applied
(these transformed covariables are indicated by the subscript #7).

For each raster width and cach of the three soil layers, SOC was in-

terpolated using OK and RK with the selected parameters as covariables
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to target points spanning a 6.25- by 6.25-m raster within the test site.
For the construction of omnidirectional empirical semivariograms of
the original SOC data as well as of the residuals, the maximum distance
up to which point pairs were included was set to 200 m, which is half
of the maximum extent of the test site in the cast—west direction. Lag
increments were set to 10 m. In each approach, two theoretical vario-
gram models (exponential and spherical) and three methods for fitting
the variogram model to the empirical variogram, including ordinary
least squares (i.c., equal weights to all semivariances) and two weighted
least square methods (weighting by 7 o = number of pairs and weighting
by nph_z with / = lag distance), were applied. To evaluate the various
theoretical variograms against the original data and to choose the best
model, a cross-validation procedure was implemented. In the cross-
validation procedure, one measurement was omitted in the variogram
construction, this value was subsequently estimated by the kriging (OK
and RK) method, and the estimate was finally compared with the mea-
surement. This procedure was applied to all measurements one at a time.

As a measure of spatial dependence, the ratio of the nugget to the
sill (%) was calculated reflecting the influence of the random compo-
nent to the spatial variability. Following Cambardella et al. (1994)
nugget/sill ratios between 0 and 25% show that the data are highly spa-
tially structured with low nugget variances, whereas ratios between 25
and 75% indicate moderate spatial dependence. Data with ratios >75% are

weakly spatially structured, with a high proportion of unexplained variability.

Validation

The previously described cross-validation procedure was also used
to validate the kriging results of the high-density input grid (R ;) and
to compare the performance of the different geostatistical approaches in
this raster width, although it systematically underestimates the quality
of predictions when using a regular input grid (Isaaks and Srivastava,
1989; Mueller et al., 2001, 2004). Nevertheless, we used this proce-
dure to avoid a loss of information in the input data. When using the
reduced sampling grids R, or Ry as input data, the 2007 sampling
points (7 = 67) were used for validation and for comparing the different
kriging approaches within each raster width. Analogously to the cross-
validation procedure, this procedure also underestimates the prediction
quality because the tested prediction distance is much larger than the
requested prediction distance of the resulting SOC maps. Hence, the
measures of goodness-of-fit can be regarded as somewhat conservative.
Because the main objective of this study was to analyze whether the
prediction precision can be improved within one raster width when in-
corporating secondary parameters in the kriging process, however, this
validation method can be accepted as a suitable approach.

Because different validation schemes had to be applied for the
three input data sets due to the lack of an independent and randomized
validation data set, a direct quantitative comparison of the interpola-
tion results obtained for R, and the two reduced input data sets is not
possible. Comparisons of the different raster widths can only be done in
qualitative terms.

To evaluate the goodness-of-fit of the various kriging results, a set of in-
dices was used. To account for the bias and the precision of the prediction, the

mean error (ME) and the root mean square error (RMSE) were calculated:



ME%iz(xi )=2(x,) [7]

RMSE= \/%Z[z(xi )-2(x) | 8]

where 7 is the number of points in the validation sample or the num-
ber of points used for cross-validation, z(x,) is the observed values,
and Z(X;) is the predicted values. The ME should be close to zero for
unbiased predictions, and the RMSE should be as small as possible.
Additionally, the model-efficiency coefficient (MEF) of Nash and
Sutcliffe (1970) was calculated:

MEF=1 Zjll;z(xi)_é(xizr [9]
Z,ﬂ[z(xi )_’7]

The MEF is a measure of the mean squared error to the observed

variance and ranges between —OC and 1. If the value of MEF = 1, the
model or interpolation represents a perfect fit. If the error is in the same
order of magnitude as the observed variance (MEF = 0), the arithmetic mean
X of the observed values can represent the data as good as the interpolation.
The relative improvement, RI (%), of the prediction precision of

RK with the selected covariables compared with OK was derived as

_ RMSE,, —RMSE
RMSE,,

RI RK100 [10]

where RMSEp - and RMSE ¢ are the root mean square errors for a cer-
tain regression kriging approach and for ordinary kriging, respectively.

Additionally, the prediction quality was assessed by visual exami-
nation of the plots of predicted vs. measured SOC contents of the differ-
ent kriging approaches. High quality results when the scatter of data or
its lincar regression fit adheres closely to the 1:1 line (Mueller et al., 2004).

The statistical and geostatistical analyses were performed with
GNU Rversion 2.6 (R Development Core Team, 2007) and the supple-
mentary geostatistical package gstat (Pebesma, 2004).

Table 1. Statistics of soil organic C content (% w/w) for 2006 and
2007 and the merged data set for three soil depths (I: 0-0.25 m;

II: 0.25-0.50 m; 111: 0.50-0.90 m).

RESULTS AND DISCUSSION
Measured Horizontal and Vertical Soil Organic
Carbon Distribution

Because Student’s #test clearly shows that the SOC con-
tents of the two sampling dates in Soil Layer I belong to the same
population, SOC contents in cach soil layer were combined into
one data set. After merging the data sets, the SOC values in Soil
Layer I ranged from 0.68 to 1.67% (w/w), in Soil Layer II from
0.13 to 1.19% (w/w), and in Soil Layer III from 0.04 to 1.18%
(w/w) (Table 1). Maximum values in all soil layers were found
in the flat area near the outlet of the test site (Fig. 2), indicating
accumulation of SOC by depositional processes. This phenom-
enon is more pronounced with increasing soil depth. Another
small arca of relatively high SOC concentrations primarily in
the two upper soil layers is located in the upper part near the
southern boundary of the test site. We assumed that this was
caused by areas formerly used for dung or sugarbect storage, but
no detailed data to verify or falsify this assumption regarding its
location exist. Remarkably, the SOC distribution of the middle
soil layer shows more small-scale variability than the other two
soil layers. This indicates a small-scale change in the depth of the
boundary between the topsoil with high SOC concentrations
and the subsoil with lower SOC concentrations relative to the
surface, which can be ascribed to soil redistribution processes.
The results show that the majority of these transitions take place
in this middle soil layer.

The maps of the measured SOC content (Fig. 2) show a de-
crease in SOC content and an increase in spatial variability with
increasing soil depth, also indicated by increasing cocfhicient of
variations (Table 1). The low spatial variability in Soil Layer I can
be attributed to homogenization caused by management prac-
tices as well as to high turnover rates of soil organic matter in this
soil layer. In the deepest soil layer, high SOC contents are most
pronounced in the depositional area near the outlet of the test
site, resulting in a SC of 1.5, indicating a non-normal distribu-
tion. Since this non-normality was caused by outliers aggregated
in the depositional arca (Fig. 2), the data were not transformed be-
fore further geostatistical analysis.

In general, the results show that the spatial patterns of
SOC contents in the three soil layers differ substantially. This
suggests that an evaluation of total SOC pools in a hilly ag-
ricultural terrain may fail if SOC analysis is restricted to the

Soil Data ot Soil organic C content topsoil layer.
layer set Mean Median SDt CVt Min. Max. SCt
% (wiw) %  — % (Wiw) — .
| 2006 92 1.16 1.14 0.18 15.13 0.68 1.68 0.75 ;e'::’:ndlrara.glet.ers and Patterns of
I 2006 92 067 067 022 3262 013 119 o024 SOl Redistribution
" 2006 92 032 024 018 6213 005 090 151 Statistics and spatial patterns of the calculated terrain

| 2007 67 1.11 1.08 0.16
1l 2007 68 0.75 0.77 0.23 3044 0.18 1.18
1 2007 68 036 0.33 0.22 6255 0.04 1.18
| merged 159 1.14  1.12 0.17 1491 0.68 1.68
1l merged 160 0.71  0.71 0.22 3099 0.13 1.19
1 merged 160 0.34 0.27 021 62.61 0.04 1.18

1223 0.85 1.43

0.30  and soil redistribution parameters are shown in Table 2 and
-0.32  Fig. 3. All possible covariables have a considerable spatial
1.57  variability within the test site, indicating their appropriate-

0.74  ness for use in RK. The relative clevation, RE, has a clear
0.01

1.50

tendency from west to east, with a maximum value of 27.4
m at the western boundary of the test site and a minimum of

1 n, sample size; SD, standard deviation, CV, coefficient of variation; SC,

Skewness coefficient.

0 m at the outlet. The slope shows a more complex pattern:
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almost two-thirds of the test site (middle to western part) is rel-
atively flat, with slopes ranging between 1 and 2°. Steep slopes
(up to approximately 9.5°) exist in the eastern part. Incorporated
into this easterly part is a very small thalweg arca with still greater
slopes (3-5°) than the flat westerly part. The spatial distribution
of the aspect indicates the differentiation between a south-facing
(values >135°) and a north-facing slope (values <45°) in the cast.
The flat westerly part is orientated to the east, with aspects rang-
ing from approximately 60 to 120°. Profile and plan curvature
show a diffuse behavior in the flat west, whereas the pattern of
convexities and concavities in the east corresponds well to the de-
rived slope pattern. The catchment area, CA, and the two indices
W1 and SPIare distributed in similar patterns, with a concentrated
arca of high values near the outlet of the test site. Compared with
SPI, this area is smaller in the north-south direction and more
clongated in the east—west direction in the patterns of CA and W1

Comparing the distributions of tillage and water erosion
(E; and E_ ) derived from WaTEM/SEDEM clearly shows
different spatial patterns of crosion and deposition resulting
from these two processes, which agrees well with other studies
(Govers et al., 1994; Van Oost et al., 2000). Areas with the steep-
est slopes have the highest water-induced crosion rates, resulting
in an aggregated arca of high erosion rates with values between

—15and —5.8 mmyr~!

in the test site. This aggregated area cor-
responds well to the areas with high values of SPI, indicating that
these parameters represent similar processes. The rest of the test
site is dominated by only slight water-induced erosion rates, with
values between —1 and 0 mm yr~!. No water-induced deposi-
tion was calculated inside the test site because WaTEM/SEDEM
is not capable of modcling the backwater cffect induced by the
land use change at the outlet of the test site. Tillage-induced ero-
sion generally occurs on convexities and on the downslope side
of field boundaries, whereas deposition occurs on concavities,
and on the upslope side of field boundaries (Govers et al., 1994;
Van Oost ct al., 2000). High tillage-induced deposition rates,

1 were simulated

with values ranging from 2 up to 15 mm yr~
in the thalweg area near the outlet of the test site, whereas high-
est erosion rates (—0.5 to —3 mm yr~!) were simulated on the
shoulders of the north—south-facing slope in the casterly part.
The most pronounced difference between water and tillage ero-
sion patterns were modeled along the thalweg: here deposition
by tillage interacts with water-induced erosion. The pattern of
total erosion (E, ) combines the two soil redistribution pat-
terns. Most grid cells experiencing tillage-induced deposition in
the thalweg area are deposition sites in the total erosion pattern.

Relation between Soil Organic Carbon and
Secondary Parameters

Among the primary terrain attributes, C-prof, C-plan, and
CA showed significant linear relationships with SOC in all soil
layers and in all input raster widths (Table 3). Correlation cocf-
ficients with C-prof and CA were always positive, whereas cor-
relations with C-plan were always negative. Additionally, RE
showed negative correlations with SOC in Soil Layer III for all

928

SOC % (w/w)

0.0<04
« 04<08
e 08<12
® 12<16

0 100 200
I meters N

Fig. 2. Measured SOC contents at the 17.7- by 17.7-m raster sampling
points for Soil Layers I (0~0.25 m), 11 (0.25-0.50 m), and 111 (0.50-0.90 m).
raster widths. The SPI and the soil redistribution patterns based
on water and tillage erosion modeling all significantly correlat-
ed with SOC in all soil layers and in all raster widths, whereas
the WI was only significantly correlated with SOC in the two
subsoil layers. Correlations between SOC and Ejjand E, | were

Table 2. Statistics of terrain attributes and soil redistribution
parameters within the test site (n = 1030): relative elevation (RE),
slope, aspect, profile and plan curvature (C-prof and C-plan,
respectively), catchment area (CA), wetness index (WI), stream
power index (SPI), and patterns of tillage (E;), water (E,,,), and
total (E,,) erosion.

Parameter Mean Median SD CV+t Min. Max. SC*

RE, m 15.82 1644 597 — 0.00 27.42 -0.31
Slope, ° 393 321 187 4758 1.56 946 1.05
Aspect, ° 8733 7882 28.17 3226 4037 166.38 123
C-prof, 0.0l m -0.03 -0.02 020 — -1.08 095 -0.10
C-plan, 0.01 m -0.04 -0.01 026 — -1.27 072 -1.05
CA, m? 1569 868 2635 168 105 25612 5.45
wi 779 790 090 — 573 11.00 -0.03
SPI 20.67 715 41.19 199.27 0.68 325.99 4.28
Egommyr' 002 016 149 — -5.28 15.00 2.96
Epay mmyr! =050 -023 066 — -5.81 -0.02 -3.58
Fp mmyr!  -047 -044 130 — -5.39 1319 1.82

t The coefficient of variation cannot be calculated for variables containing
negative values or possessing a negative skewness coefficient (Isaaks and
Srivastava, 1989).

¥ Skewness coefficient.
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Fig. 3. Maps of terrain attributes and patterns of soil redistribution derived from the model WaTEM/SEDEM: relative elevation (RE), slope (S),
aspect (A), profile and plan curvature (C-prof and C-plan, respectively), catchment area (CA), wetness index (WI), stream power index (SPI), and
patterns of tillage (E;), water (E,,,), and total (E, ) erosion. A positive curvature (C-prof and C-plan) indicates that the surface is upwardly convex,
and a negative value indicates that the surface is upwardly concave; negative values of E, E, ., and E, , represent erosion while positive ones

represent deposition.

positive in each soil layer and in each raster width, indicating an
accumulation of SOC at depositional sites and a loss of SOC
at eroding sites. In contrast, the water-induced erosion pattern
expressed by E, and SPI resulted in a different picture: high
erosion rates corresponding to high SOC concentrations in each
soil layer. This resulted from the counterbalancing effect of water
and tillage crosion, which in most cases led to a nct deposition

considering both processes (see E,_ ), while water erosion alone

)
tot
led to net erosion. Hence, it is misleading to use water erosion or
corresponding indices alone as a covariable for any SOC interpo-
lation scheme in agricultural landscapes.

In general, the linear relationship between SOC and the
two indices, as well as between SOC and the erosion-deposi-
tion patterns, increased with increasing soil depth within each
raster width. The same is true for the relationship between SOC
and CA. This indicates (i) that relief-driven processes play a
less significant role in the topsoil layer, where periodic manage-
ment practices homogenize soil properties in agricultural areas,

and (ii) that more process-related terrain attributes such as CA,
the two indices W1 and SPL, and the patterns of soil redistribu-
tion play a more important role in the spatial distribution of
SOC in the deeper soil layers. The correlation between SOC
and water erosion (SPIand E_, ) as well as between SOC and
tillage erosion (E;) indicates the importance of erosion and de-
position in the deeper soil layers. The increasing correlations of
SOC with CA and W1 with increasing soil depth also points out
that processes affecting soil moisture and infiltration influence
the SOC patterns in these soil layers. The W1 represents areas
where water accumulates, and zones with higher W1 values tend
to have higher biomass production, lower SOC mineralization,
and higher sediment deposition compared with zones of low W1
(Terra et al,, 2004).

In some respects our results disagree with other results where
correlations between SOC and various primary terrain attributes
were found. Mueller and Pierce (2003), for example, derived the
highest correlation coeflicients between SOC and elevation at
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three different raster widths for the top-
soil layer. They and other researchers (e.g.,
Terra et al., 2004; Takata et al., 2007) also
found significant correlations with slope.

Table 3. Quality of correlation between SOC content (% [w/w]) and all calculated
parameters in the three soil layers (I: 0-0.25 m; II: 0.25-0.50 m; 1lI: 0.50-0.90 m)
expressed as Pearson correlation coefficients; results are given for the raster widths
(Ry7, 17.7 by 17.7 m; Ry, 25 by 25 m; R5, 50 by 50 m) used as input for geostatistics.

Pearson correlation coefficient

The positive correlations with CA and W1

Parametert Ry, (n,= 143, ny = 144) R, (n = 76) Ry (n = 28)
correspond with the findings of other re- 1 T T 1 T m 1 T m
scarchers (e.g., Terra et al, 2004; Sumfleth  RE, m -0.04 -0.03 -028% -0.16 -0.15 -031** -037 -023 -0.45*
and Duttmann, 2008). Slope, ° 0.13 003 0.14 022 015 028* 026 015 037
Aspect, ° 012 001 008 028 005 010 037 -0.12 0.04
Soil Organic Carbon C-prof, 0.01 m 0.37% 0.44%F 0.39%  0.49** 0.47** 0.44** 0.53* 070" 0.55%*
Kriging Results C-plan, 0.01 m -0.28%% -0.36** -0.56**  -0.38% -0.34** -0.44** -0.46* -0.45% -0.52%
For the high-density SOC input data, m2 0.19% 0.27% 0.67** 036 0.46** 0.66** 048 0.51% 0.65*
, o : wi 0.4 035% 053* 008 037 041* 024 048 0.46*
different combinations of theoretical var-
, L Spl 0.25%F 0.29%* 0.67** 038 0.43* 0.67** 0.53* 0.52% 071
fogram modcls and weighting methods Egommyrl  0.36% 045% 0.67*  0.48% 051% 0.57% 059 0.59* 061
performed best for the original SOC data Frap MMyrT <0224 0255 -0.53%  -0.25% -0.32% -0.50%* -0.51%* -0.45" -0.68%*

in the three soil layers. Theoretical vario- 1
Yy Emt, mm yr

0.33** 0.42** 0.55**

0.41** 0.41** 0.35** 0.47* 0.50** 0.40**

gram parameters (Table 4) show that the ¥ significant at 95%.

original SOC data of R |; are moderatelyto  ** Significant at 99%.
highly spatially structured for all three soil
layers, with low nugget/sill ratios. Ranges tllage (E,y), water (E
are much larger than the raster width, with
a maximum value of 216 m for the SOC
data in Soil Layer I, indicating that the sampling scheme used
here accounts for most of the spatial variation of SOC in the
three soil layers. The nugget variances comprising small-scale
variability as well as measurement errors are close to zero in all
soil layers. Mean crrors calculated from cross-validation for OK
in each soil layer are close to zero, indicating unbiased predic-
tions (Table 4). Root mean square errors resulting from OK are
0.12, 0.20, and 0.15% (w/w) SOC for Soil Layers I, II, and III,
respectively, corresponding to approximately 10, 28, and 44% of
the mean SOC values in the different soil layers (Table 1). This
indicates a loss of precision with increasing soil depth. In con-
trast, MEF is highest in Soil Layer III (MEF = 0.53) and lowest
in Soil Layer IT (MEF = 0.23). Plots of predicted vs. measured
SOC contents (Fig. 4) show the greatest deviations from the 1:1
line in the case of Soil Layer II. The SOC maps derived from OK
(Fig. 5) represent well the spatial distributions of SOC in each
soil layer, which are already visible in the patterns of the mea-
sured SOC values at the sampling points (Fig. 2).

Regarding the theoretical variogram parameters of the re-
siduals resulting from linear regression with the different signifi-
cantly related covariables in the three soil layers (Table 4), the
same conclusions as for the original SOC data in each soil layer
can be drawn. The residuals are moderately or even highly spa-
tially structured, and ranges are larger than the raster width. The
sill of the different residual variograms is reduced compared with
the sill of the raw data in all soil layers, reflecting the success of
regression fitting (Hengl et al., 2004; Terra ct al,, 2004). Nugget
variances are all close to zero.

In all three soil layers, the geostatistical interpolation of
SOC could be improved by incorporating covariables in RK
(Table 4). For Soil Layer I, there is only one covariable, name-

ly C-prof. For Soil Layer II, C-prof, C-plan, CA, W1, and the
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wat)’

t Relative elevation (RE), slope, aspect, profile and plan curvature (C-prof and C-plan,
respectively), catchment area (CA), wetness index (WI), stream power index (SPI), and patterns of
and total (F,

tot) €rosion.

three soil redistribution patterns derived from modeling were
able to ameliorate the interpolation results, and in Soil Layer I1I
- SPIU, WI“,
E s and E, . as covariables in RK. Mean errors are still close to

improvements were achieved by using C-plan, CA

zero for all kriging approaches in all soil layers, indicating unbi-
ased predictions. Due to the high spatial density of the original
SOC data relative improvements of the described RK approach-
es compared to OK are only low to moderate in all three soil lay-
ers. In Soil Layers I and 111, the integration of the more complex
covariables outperformed that of the primary terrain parameters
(Table 4). The improvement in Soil Layer III especially resulted
from the more definite representation of high SOC contents
situated in the depositional area at the downslope end of the test
site (Fig. 4). In general, spatial distributions resulting from the
best RK approach in cach soil layer (Fig. 5) are similar to those
derived from OK but show more small-scale variability.
Although a minimum number of at least 50 (better 100-
150), sampling points is reccommended for geostatistical analysis
(Webster and Oliver, 2001), the theoretical semivariogram pa-
rameters of the SOC data and the values describing the good-
ness-of-fit for OK of the two reduced-input raster widths R
(n=92) and Ry, (7 = 44) still show reasonable results in cach
soil layer (Tables 5 and 6). As for the high-density sampling grid
(Ry5), different combinations of theoretical variogram models
and weighting methods performed best for the original SOC
data. Nugget/sill ratios show that the primary SOC data in the
two subsoil layers are highly spatially structured in both raster
widths, and SOC data in the topsoil are moderately spatially de-
pendent. This indicates that the low-density sampling schemes
are still suitable to resolve the spatial continuity of the original
SOC data. For st, the ranges are larger than the raster width;
only in Soil Layer IT in Ry, this is not the case. Nevertheless, the
results of the Ry interpolation are still reasonable because the



Table 4. Theoretical semivariogram parameters of original soil organic C (SOC) data and
residuals resulting from linear regression with different covariables as well as cross-valida-
tion results from ordinary (OK) and regression kriging (RK) of SOC content (% [w/w]) in
three soil layers (I: 0-0.25 m; I1: 0.25-0.50 m; Ill: 0.50-0.90 m) using the 17.7- by 17.7-m
raster data set (Ry;) (n = 159; ny; ;; = 160). The RK results are included only when they
improve the prediction compared with OK. For exponential models, the practical range is
given; goodness-of-fit was tested using mean error (ME), root mean square error (RMSE),
model efficiency (MEF), and relative improvement (RI).

Soil Covariablet Theoretical semivariogram parameters Kriging results
layer Model  Weightf Nugget Sill Range Nugget/sil  ME RMSE MEF RI
m % %
| exponential equal  0.013 0.034 216 40 -0.001 0.123 0.45 -
C-prof exponential equal  0.008 0.023 113 33 -0.002 0.115 0.53 6.50
1 exponential nph'2 0.000 0.054 40 0 -0.002 0.196 0.23 -
C-prof exponential nph‘2 0.000 0.038 28 0 -0.001 0.192 0.26 2.04
C-plan exponential nph'2 0.000 0.047 35 0 -0.001 0.192 0.25 2.04
CA exponential nph‘2 0.000 0.051 35 0 -0.002  0.194 0.24 1.02
WI exponential nph'2 0.000 0.050 36 0 -0.002  0.190 0.28 3.06
Eqy exponential nph'2 0.000 0.039 28 0 -0.002 0.187 0.29 4.59
Eat exponential nph‘2 0.000 0.050 37 0 -0.002 0.195 0.24 0.51
Frot exponential  n 2 0.000 0.040 29 0 -0.002 0.187 0.29 4.59
1] spherical n, 0.013 0.044 64 30 -0.002 0.145 0.53 -
C-plan spherical My 0.011 0.030 064 37 -0.001 0.139 0.57 4.14
CA, spherical n, 0.008 0.037 79 23 -0.001 0.131 0.62 9.66
Wi, spherical Ny 0.010 0.041 87 24 -0.002  0.130 0.6210.35
SPIL,, spherical n, 0.009 0.037 73 25 -0.000 0.136 0.59 6.21
Egy exponential equal  0.000 0.024 22 0 -0.003 0.134 0.60 7.59
Eior spherical n 0.012 0.030 53 40 -0.002  0.134 0.60 7.59

P

1 No covariable indicates OK was used; RK covariables are profile and plan curvature (C-prof and
C-plan, respectively), catchment area (CA), wetness index (W), stream power index (SPI), and patterns
of tillage (E;), water (E,,,,), and total (£,,) erosion. A subscript tr means that the values were transformed
to logarithms so that linear regression residuals met normal distribution.

¥ Weighting of the semivariogram model was done by ordinary least squares (i.e., equal weights to

all semivariances) and two weighted least square methods: weighting by n, (number of pairs) and
weighting by nph'z (h = lag distance [ml]).

short distances formed by the transect and the two microplots

the Ry interpolation resules for the
deepest soil layer.

As was the case in R, nug-
get/sill ratios and the ranges of the
various residuals for the different soil
layers showed a moderate to high
spatial structure. Sills were also low-
er than for the original SOC data,
and nuggets were close to zero.

In contrast to the use of the high-
resolution sampling grid R as input
data, no improvements compared
with OK were achieved in Soil Layer
I by RK when using R,5 and Ry,
(Tables 5 and 6). In Soil Layer IT, RK
including total erosion improved pre-
dictions best with R,s and Ry, (RI =
8.4 and 6.2%, respectively). Relative
improvements in Soil Layer III were
even higher in the medium- and low-
density raster than for Soil Layer IL
In R,s, the spatial pattern of tillage
erosion and in Ry the wetness index
WI performed best in improving the
RK results (Tables S and 6; Fig. 4).

In general, relative improve-
ments in Soil Layers IT and III using
RK vs. OK were more pronounced
in the case of medium- and low-den-
sity than high-density input data.
Moreover, SOC maps produced by
RK in Soil Layers IT and III with

were retained in each input raster. Nugget and sill variances of
the original SOC data tended to be in the same order of mag-
nitude as in R for each soil layer. Mean errors resulting from
OK are still relatively low, indicating unbiasedness, and relations
of the RMSE:s to the mean values of the original SOC data also
remain similar compared with the relations in R, for each soil
layer. Model efficiency through OK was 0.23 (R,s) and 0.14
(Rs) in Soil Layer Tand 0.01 (Ry5) and 0.15 (Rsy) in Soil Layer
II. Higher values for OK were again reached in the deepest soil
layer, where an MEF of 0.34 (Ry5) and 0.39 (Ry,) was found.
Deviations between measured and predicted SOC contents
from the 1:1 line (Fig. 4) are similar for the two reduced raster
widths compared with the high-density input grid, although a
direct comparison between the different raster widths is not pos-
sible due to the use of different validation schemes.

The interpolated SOC distributions resulting from OK
with the medium- and low-input data sets (Fig. 5) are smoothed
compared with those using the high-density input data set in
cach soil layer. But even with coarse sampling (Rs), there is still
a pronounced arca with high SOC concentrations in the ecast
in all soil layers. The second region with high SOC values (the
southern edge and center), however, is no longer detectable in

R 5 and Ry (Fig. 5) show considerably more detail and com-
pare more favorably with the spatial patterns produced with R,
input data. Although a direct comparison of the interpolation
results with the different input raster widths is not possible due
to a missing independent data set, it has to be recognized that a
reduction of input data density seems to slightly decrease MEF
and increase RMSE.

Except for the high-density input data, our results for the
topsoil layer agree with Terra et al. (2004), who found that OK
predicted SOC best compared with cokriging, RK, and mul-
tiple regression for the uppermost 30 cm and for three different
densities of input data (8, 32, and 64 samples ha~!). In contrast,
other rescarchers (e.g., Mueller and Pierce, 2003; Simbahan et
al, 2006; Sumfleth and Duttmann, 2008) could improve the
prediction of SOC in the topsoil layer by using (relative) eleva-
tion and electrical conductivity, respectively, as covariables in
RK and kriging with external drift. Their studies showed that
the sampling density played an important role in improving the
performance of geostatistics when incorporating covariables.
Mueller and Pierce (2003), for example, also used three differ-
ent input raster widths at their test site. For their high-resolution
input raster (10.7 samples ha=1), they also found only modest
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differences between the applied interpola-
tion techniques, but for their two reduced
raster widths (2.7 and 1 samples ha=1), dif-
ferent interpolation methods incorporating
covariables could outperform OK. This was
also true for the three test sites of Simbahan
et al. (2006) with sampling densities of
2.5 to 4.2 samples ha=!. Our result of no
or only slight improvements in the first
soil layer might be caused by (i) our high
sampling densities (38, 17, and 6 samples
ha=1), (ii) homogenization effects of man-
agement and the corresponding low spatial
variability, and (iii) the arca of high SOC
concentrations at the southern boundary of
the test site, which is most pronounced in
the topsoil. The existence of this arca can-
not be ascribed to relief-driven processes,
and in combination with homogenization
it thus leads to relatively low correlations
between SOC and the various parameters
in the topsoil layer.

In contrast, considerable improve-
ments of RK over OK in our study were
achieved in the two subsoil layers. In Soil
Layer II, this improvement was greatest
when using the patterns of tillage or total
erosion as a covariable in RK. This indicates
that especially tillage-induced erosion and
deposition processes affect the SOC dis-
tribution in this layer. This makes it neces-
sary to consider not only water-induced soil
redistribution processes, which are already
represented in other primary and secondary
terrain attributes (CA and SPI) used here
and in other studies. Relative patterns of
tillage erosion and deposition can easily be
derived with well-tested erosion and sedi-
ment delivery models such as the WAl EM/
SEDEM model. To implement the tillage
erosion component, onlya DEM and an es-
timation of the tillage transport coefficient
arc required (Van Oost ct al., 2000).

Although the tillage and total erosion
patterns significantly improved SOC pre-
diction in the deepest soil layer for all three
raster widths, comparable and in some in-
stances even better results were produced
by RK with CA and W1. This indicates that
not only soil redistribution processes affect
the spatial distribution of SOC in the decep-
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Fig. 4. Plots of predicted vs. measured soil organic C (SOC) contents (%w/w) for three soil layers (I:
0-0.25 m; 11: 0.25-0.50 m; 11I: 0.50-0.90 m) resulting from ordinary (OK) and the best regression
kriging (RK) approach using three different raster widths: R, (17.7 by 17.7 m), R,; (25 by 25 m),
and Ry, (50 by 50 m) as input. Covariables of the RK approaches (profile curvature [C-prof],
total erosion [E, /], tillage erosion [Ey ], and wetness index [WI]; Wl means that WI values were
transformed to logarithms so that linear regression residuals met normal distribution) are given in
each plot; the 1:1 line is dashed, linear regression fit is indicated by a solid line.

est soil layer but also processes concerning the spatial distribu- sorption of dissolved organic C and (ii) limited mineralization of

tion of infiltration and soil moisture. Both processes may increase SOC in the case of high soil moisture contents.

SOC contents in the thalweg area due to (i) infiltration and ab-
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Fig. 5. Maps of soil organic C content (% [w/w]) for three soil layers (I: 0-0.25 m; II: 0.25-0.50 m; III: 0.50-0.90 m) resulting from ordinary (OK)
and the best regression kriging (RK) approach using three different raster widths: R;, (17.7 by 17.7 m), R,5 (25 by 25 m), and R, (50 by 50 m) as
input. Covariables of the RK approaches (profile curvature [C-prof], total erosion [E, ], tillage erosion [El, and wetness index [WI]; Wl means
that W1 values were transformed to logarithms so that linear regression residuals met normal distribution) are given above each map.

In contrast to the topsoil layer, in the two subsoil layers, im-
proved SOC interpolations were actually obtained when using
a high density of input data for RK. This was possibly caused by
higher spatial variations of SOC in these soil layers, expressed as
the coeflicient of variation (Table 1).

CONCLUSIONS
Our results show that the spatial SOC patterns in a sloped
arable test site differ significantly among three soil layers.

Whereas the topsoil SOC pattern was homogenized by tillage
operations, the patterns of the two subsoil layers show an increas-
ing spatial variability primarily caused by high SOC contents in
the depositional area at the downslope end of the test site. In the
middle soil layer (0.25-0.50 m), the best RK result was produced
with the patterns of tillage and total crosion, indicating the im-
portance of soil redistribution (especially the inclusion of tillage
erosion) for the spatial distribution of SOC in agricultural areas.
In the third soil layer (0.50-0.90 m), tillage and total crosion as
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Table 5. Theoretical semivariogram parameters of original soil organic C (SOC) data and residuals resulting from linear regression
with different covariables as well as results from ordinary (OK) and regression kriging (RK) with SOC content (% [w/w]) in three
soil layers (I: 0-0.25 m; II: 0.25-0.50 m; I1I: 0.50-0.90 m) using the 25- by 25-m raster data set (R,;) (n = 92). The values describ-
ing the goodness-of-fit result from the comparison with a validation data set (n = 67); RK results are included only when they
improve the prediction compared with OK. For exponential models the practical range is given; goodness-of-fit was tested using
mean error (ME), root mean square error (RMSE), model efficiency (MEF), and relative improvement (RI).

Soil . Theoretical semivariogram parameters Kriging results
Covariablet - - -
layer Model Weightt  Nugget  Sill Range Nugget/sill ME RMSE MEF RI
m % %
I exponential equal 0.003  0.035 41 9 -0.033 0.118 0.23 -
I exponential n,h? 0000 0.052 40 0 0.058 0226 001 -
WI exponential nph'2 0.000 0.050 37 0 0.049 0.217 0.09 3.98
it spherical Ny 0.006  0.029 34 20 0.055 0.221 0.06 221
Evat exponential nph'2 0.000 0.047 31 0 0.058 0.223 0.04 1.33
Eior exponential nph'2 0.000  0.031 25 0 0.053 0.207 0.17 8.40
I spherical equal  0.010 0.044 56 23 0.053 0.181 0.34 -
C-plan spherical nph'2 0.001 0.032 57 3 0.053 0.171 0.41 5.55
CA,, spherical equal 0.006  0.040 65 16 0.048 0.159 0.50 12.15
Wi, spherical equal 0.016  0.044 67 26 0.047 0.159 0.48 12.15
SPI, spherical equal 0.006  0.037 57 17 0.051 0.167 0.43 7.73
Lyt exponential nph'2 0.000 0.027 53 0 0.054 0.158 0.50 12.71
Fvat spherical equal 0.013 0.037 66 35 0.053 0.172 0.40 4.97
Eiot spherical equal 0.015 0.034 70 44 0.050 0.159 0.49  12.15

t No covariable indicates OK was used; RK covariables are plan curvature (C-plan), catchment area (CA), wetness index (WI), stream power index

(SPI), and patterns of tillage (E;), water (E,,,,), and total (E
linear regression residuals met normal distribution.

tot)

erosion. A subscript tr means that the values were transformed to logarithms so that

+ Weighting of the semivariogram model was done by ordinary least squares (i.e., equal weights to all semivariances) and two weighted least

square methods: weighting by n, (number of pairs) and weighting by nph'2

well as the WI and partly the CA performed best. This indicates
that besides soil redistribution, also processes concerning the dis-
tribution of soil moisture affect the spatial pattern of SOC in the
decpest soil layer. Here SOC contents in the depositional arca
were as high as topsoil SOC contents, indicating the importance
of including deeper soil layers when assessing soil C balances, espe-
cially in hilly agricultural arecas.

Because patterns of topsoil SOC distribution might be dis-
similar to subsoil patterns, particularly in agricultural arcas prone

(h = lag distance [m]).

to soil erosion and deposition, estimating total SOC pools from
topsoil SOC, for instance by applying remote sensing techniques
(e.g., Stevens et al., 2008), might not be appropriate.

In general, it was shown that (especially) integrating pat-
terns of soil redistribution (which must include tillage erosion) in
kriging approaches can substantially improve SOC interpolation
of subsoil data in hilly arable landscapes. This is an important
finding insofar as high-resolution subsoil SOC data are rare and

Table 6. Theoretical semivariogram parameters of original soil organic C (SOC) data and residuals resulting from linear regression
with different covariables as well as results from ordinary (OK) and regression kriging (RK) of SOC content (% [w/w]) in three soil
layers (I: 0-0.25 m; 1I: 0.25-0.50 m; 11I: 0.50-0.90 m) using the 50- by 50-m raster data set (R ) (n = 44). The values descrlblng
the goodness-of-fit result from the comparison with a validation data set (n = 67); RK results are mcluded only when they improve
the prediction compared with OK. For exponential models, the practical range is given. Goodness-of-fit was tested using mean
error (ME), root mean square error (RMSE), model efficiency (MEF), and relative improvement (RI).

Soil Covariablet Theoretical semivariogram parameters Kriging results
layer Model Weightt  Nugget  Sill Range Nugget/sill ME RMSE MEF RI
m % %
| spherical n, 0.014  0.047 75 30 -0.055 0.139 0.14 -
Il exponential ph'2 0.000  0.060 48 0 0.015 0.210 0.15
C-prof exponential ph'2 0.000  0.019 15 0 0.015 0.206 0.18 1.90
it spherical ny 0.011 0.029 48 41 0.019 0.202 0.20 3.81
Eior spherical n, 0.012  0.029 50 40 0.015 0.197 0.25 6.19
Il spherical n, 0.007  0.071 79 10 0.046 0.174 0.39 -
Wi spherical ny 0.010  0.070 75 14 0.028 0.149 0.55 14.37
Egy spherical n, 0.012  0.045 76 27 0.041 0.158 0.49 9.20
Eiot spherical equal 0.018  0.050 84 36 0.040 0.162 0.47 6.90

t No covariable indicates OK was used; RK covariables are profile curvature (C-prof), wetness index (WI), and patterns of tillage (£;) and total

(Etot) erosion.

¥ Weighting of the semivariogram model was done by ordinary least squares (i.e., equal weights to all semivariances) and two weighted least

square methods: weighting by n, (number of pairs) and weighting by nph'2 (h=
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the promising approach to improving spatial estimates of SOC
by applying remote sensing techniques is limited to topsoil SOC.
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