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Abstract. In Data Mining large and increasing sets of data are becoming more and more common. In
order to avoid losing the overview on these data-sets, preference queries are a very popular method to
reduce quantities of data to high relevant information. Together with clustering methods like k-means,
confusing sets of objects can be constituted and presented clearer in order to get a better overview.
In this report we present on the one hand the Pareto-dominance as a very suitable and promising
approach to cluster objects over better-than relationships. In order to meet someones desires, one can
tip the balance of the final results to the more favored dimension if no decision for allocating objects
is possible. On the other hand we introduce based on the Pareto-dominance an advanced clustering
approach exploiting the Borda Social Choice voting rule to manage distances of different domains by
equally weights during the clustering process.
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1 Introduction

Recommendations in online shopping, movie-on-demand services like Amazon or Netflix, or music-streaming
services like Spotify or Deezer are becoming more and more popular. Since the data is growing, too, it is
very difficult to keep track of the presented results, because the users are overwhelmed with partly unwanted
results.

One solution to get less confusing recommendations is to exploit the users preferences in order to get
only some best matches using Pareto-frontiers. But for more detailed preference-based wishes, the number of
results which are returned, known as Pareto-optima, are growing aswell. Clustering these results is a very
promising opportunity to present less but representative results to the users. For example, in a recommender
system which addresses people with a similar taste of movies and series, e.g., Netflix or Amazon Instant Video,
the following use-case is very common.

Example 1 Assume user Alex wants to watch a movie. He prefers movies with a possible low running time
and a recent release year at the same time. The movies presented to Alex are so-called Pareto-optima on a
Pareto-frontier or Skyline. An object is a Pareto-optima if no other object dominates this object w.r.t. the
given preferences. In Fig. 1, e.g., P4 has a more recent release year than P14 and a lower running time at the
same time. So P4 dominates P14 in both dimensions at the same time w.r.t. Alex’ preferences, while P3, e.g.,
is dominated by P4 only w.r.t. the running time. Since the set of Pareto-optima can also get very enormous
and confusing, clustering is a very promising approach to compress this set and express it with a smaller
appropriate set of representatives. Another approach is to mask out undesirable results, e.g., users like P8 who
have a more recent release year, but unfortunately a very high running time. These two attempts can only be
reached with some kind of clustering like k-means.

However, since we have two dimensions with different domains, it is hardly possible to achieve a useful
outcome without great afford, because the dimensions should be set into relation to each other. In our example
it is very circumstantial to set this range of minutes for the runningtime in relation to only a smaller range
of release-years. Since every user has diverse requirements in such a recommender system, it is by far not
sufficient to use the basic k-means clustering algorithm along with the well-known Euclidean distance.
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Fig. 1: Pareto-frontier of users with preferably lowest runningtime and preferably recent release-year.

The first approach presented in this report uses the Pareto-dominance in order to cluster more efficient
regarding quality of the final clusters and runtime over better-than relationships unlike mapped Euclidean
distances, which have to be adjusted inconveniently for each use case.

Alex’ movie-search from Example 1, where only two preferences are considered, is a common use case. But
more often the following use case, where more preferences are considered, is very conventional, too.

Example 2 Assume Alex wants to watch a movie again. His most favored actors Tom Hanks, Johnny Depp,
Bruce Willis, Natalie Portman, Mila Kunis, Samuel L. Jackson, Benedict Cumberbatch, Scarlett Johansson
and Kate Beckinsale should possibly get consulted. Since it is late in the evening Alex possibly wants to watch
movies, which runtime should be around 120 minutes. Moreover Alex is in the mood for movie genres like
Action- and Comedymovies, Thrillers and Science-Fiction. At the same time he favors recommendations for
movies, which have a possibly high user-rating and were released around the year 2000. The possibly best
matches can be seen in Table 1.

We used Pareto-dominance for the cluster allocation in the basic k-means clustering algorithm to find a
cluster, which dominates all other clusters for each object in our former workshop paper [8] in a 2-dimensional
set of objects like in Example 1. Using Pareto-dominance avoids the process of adjusting the domains and
setting them into relation to each other before the clustering process. Moreover the user can influence on the
clustering process by weighting one of the dimensions, if there is more than one Pareto-optimal cluster for
each object, to gain the allocation to one and only one cluster.

In Example 2 the Pareto-dominance clustering approach presented in [8] stretches to its limits, because of
five dimensions, which have to be considered. So our Pareto-dominance clustering approach needs a more
precise decision criterion for the cluster allocation of the given objects, than the Pareto-dominance, which
leads often to the appearance of Pareto-optima. We decided to consider not only the closest centroids for each
dimension, but rather the second-, third-, etc. closest centroids, as well in contrast to the Pareto-dominance
approach. Finally we used the Borda Social Choice voting rule [13] in order to assign each point to one and
only one cluster by ordering and weighting the distances from each object to each cluster for all dimensions.
Eventually the highest sum over all dimensions decides which centroid is the most appropriate. Using Borda
has the advantage that all distances for each dimension and cluster-centroids are considered, while the
Pareto-dominance only adduces the closest centroids in each dimension. So the opportunity of more than one
suitable cluster centroid is minimized. Furthermore no adjustments before the clustering process are needed,
too.

The rest of the report is organized as follows: We explain the basic background knowledge in Section 2.
Our Pareto-dominance clustering approach and our Borda Social Choice Clustering approach iare described
and compared in Section 3 and 4. After that, we discuss experiments, where runtime, number of iterations
and quality of the final clusters are considered and compared to other clustering algorithms in Section 5. We
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present related work in Section 6. Finally in Section 7 the results are summarized and we give an outlook on
future work.

Table 1: Table of Alex’ 5-dimensional movie-search with preference scores for the Pareto-frontier exposition.

ID Movie rank time year actorscore genrescore

0 The Shawshank Redemption 9.3 142 1994 0.000 0.000
1 Pulp Fiction 9.0 154 1994 0.033 0.250
2 The Dark Knight 9.0 152 2008 0.000 0.400
3 Inception 8.8 148 2010 0.000 0.600
4 Goodfellas 8.8 146 1990 0.006 0.167
5 The Silence of the Lambs 8.7 118 1991 0.000 0.200
6 American History X 8.6 119 1998 0.000 0.000
7 Leon 8.6 110 1994 0.012 0.200
8 Memento 8.6 113 2000 0.000 0.250
9 Terminator 2 8.6 137 1991 0.000 1.000
10 Terminator 2 8.6 154 1991 0.000 1.000
11 Terminator 2 8.6 152 1991 0.000 1.000
12 Reservoir Dogs 8.4 099 1992 0.000 0.250
13 The Avengers 8.3 143 2012 0.024 0.333
14 Kill Bill: Vol. 1 8.2 112 2003 0.000 0.500
15 V for Vendetta 8.2 132 2005 0.009 0.500
16 The Sixth Sense 8.2 107 1999 0.018 0.200
17 Slumdog Millionaire 8.1 120 2008 0.000 0.200
18 Black Swan 8.1 108 2010 0.030 0.200
19 Kill Bill: Vol. 2 8.0 137 2004 0.014 0.500
20 District 9 8.0 112 2009 0.000 1.000
21 Iron Man 7.9 126 2008 0.011 0.500
22 The Hunger Games 7.2 142 2012 0.000 0.750
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2 Background

Before explaining our clustering frameworks, we describe some important concepts. One basic point for
all clustering approaches is the k-means clustering algorithm. Another important point is the preference
framework in order to shape desire-based queries, that should be clustered. Furthermore we used several
distances measures and the Borda Social Choice voting rule in order to allocate objects to clusters. The most
important of them are described in this section, too.

2.1 Clustering

k-means Since k-means clustering is the base for our approaches, we shortly describe the algorithm, as it is
presented in [7], cp. Algorithm 1.

1. Find an initial partition for the cluster centroids by choosing a random point of set X for each of the k
centroids in line 2.

2. Calculate for each point the distances to all centroids by Function 1. The point is being allocated to the
closest centroid in line 9 of Alg. 1, by using, e.g., the Euclidean distance (line 5 in Func. 1).

3. Recalculate the centroids by averaging the contained points in Alg. 1, line 14.
4. Proceed with step 2 until two succeeding clusterings are stable, which means that all clusters from the

last iteration contain the equal set of points as in the current iteration (Alg. 1, line 6).

k-means++ The k-means++ algorithm is a version of the basic k-means clustering algorithm where the
initial partition is not chosen arbitrary by a random, but by a randomized seeding technique in order to speed
up the clustering process. In particular the possibly best centroids for the initial partition should be found in
order to reach more accurate clusterings faster in comparison to using the basic k-means clustering algorithm.
The k-means algorithm as presented in Algorithm 1 is modified in line 2, as it is mentioned in [1].

1. Arbitrary choose a point of the set X as first cluster centroid c0.

2. For each further cluster centroid ci choose x ∈ X with a probabiltity of p(x) = D(x)2∑
x∈X D(x)2 where D(x)2

is the shortest squared Euclidean distance from a point to the already chosen closest centroid until we
have k centroids.

3. Proceed with the k-means clustering algorithm in line 3 of Algorithm 1.

In Example 3 the k-means clustering algorithm is presented with Euclidean distance as distance measure.

Example 3 (k-means euclidean norm)
Consider the users in Figure 2, shown as points on a Pareto-frontier. Now we want to get three clusters.

– Iinitialize the centroids of the three desired clusters randomly with P2, P5 and P8 for C0, C1 and C2.
– Calculate for each user P1, ..., P8 the distances to all three centroids using the Euclidean distance. P1, P2

and P3 are allocated to C0, while the users P4, P5, P6 and P7 are assigned to C1. Finally C3 receives the
user P8.

– The new centroids W0,W1 and W2 of each cluster are averaged based on the points contained in the
clusters. The result is shown in Figure 2.

2.2 Preferences

Preferences represent wishes which should be fulfilled. In database systems a preference P = (A,<P ) is
modeled as a strict partial order on the domain of A, dom(A). The term x <P y can be described as “I like y
more than x”. In order to construct preferences there are several preference constructors published in [9, 10],
which are mentioned in the following Subsections.
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Algorithm 1 k-means-clustering

Input: Set X = {xi | i = 1, ..., n} of d-dimensional points xi = (xi1, ..., xid) of size n, set of k cluster centroids
C = {cj | j = 1, ..., k}.
Output: Sets Ek = {ej | j = 0, ...,m} of clustered d-dim. points ei = (ei1, ..., eid).

1: function k-means(X,C)
2: C ← random(X, k) // Random initial partition for k centroids
3: E ← ∅ // Current clustered set
4: E′ ← ∅ // Clustered set from last iteration
5: equals← false // Variable for stop-criterion
6: while !equals do // Termination-criterion: Old Set equals current set
7: for xi ∈ X do // Iterate through all points
8: id← getClosestCentroidId(xi, C) // Get id of closest cluster
9: Eid ← Eid ∪ {xi} // Add the current point to the closest centroid

10: end for
11: equals← checkClusterings(E,E′) // Check if clusters are equals
12: E′ ← E // Save the current clustering for next iteration
13: for Ei ∈ E do
14: ci ← recalculateCentroid(Ei) // Recalculate centroids of each cluster
15: end for
16: end while
17: return E
18: end function

Function 1 Closest centroid for traditional distances
Input: d-dim. point xi = (xi1, ..., xid), set of k centroids C = {cj | j = 1, ..., k}.
Output: id of the closest centroid, the point gets allocated to.

1: function getClosestCentroidId(xi, C)
2: dist← maxDistance // Distance to closest centroid
3: id← 0
4: for cj ∈ C do // Iterate through all clusters
5: d← distance(xi, cj) // Current distance between point and cluster
6: if d < dist then
7: dist← d // Replace closest distance if current distance is closer
8: id← j // Replace id if current id has closer distance
9: end if

10: end for
11: return id
12: end function

Base Preferences The numerical BETWEEN(A, [low, up]) preference for example prefers values between a
lower and an upper bound. If no value in [low, up] is present, return the values with the lowest distance to the
interval. LOWEST(A) and HIGHEST(A) correspond to the minimum and maximum preference, respectively.
If we restrict the attention to LOWEST/HIGHEST as input preferences, then Pareto preference queries
coincide with the traditional Skyline queries [3]. Sub-constructors of BETWEEN like AROUND, HIGHEST,
LOWEST, MORE THAN and LESS THAN can be described as BETWEEN aswell, e.g. AROUNDd(A, z) :=
BETWEENd(A, z, z). The other numerical constructors are self-explaining.

There are also preference constructors for categorical domains, e.g., LAYEREDm(A, (L1, . . . , Lm)), where
Li partitions dom(A) with disjoint layers. Thereby L1 contains the most preferred values, L2 the second
preferred values, etc.

Pareto Preference The most important preference is the well-known Pareto preference which models
equal importance where base preferences are used to build Pareto preferences in an intuitive way. A Pareto
preference P := P1 ⊗ P2 = (A1 × A2, <P ) with preferences Pi = (Ai, <Pi

) and tuples x = (x1, x2), y =
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Fig. 2: k-means clustering of users with the Euclidean norm after the first iteration.

(y1, y2) ∈ dom(A1)× dom(A2) is defined as follows:

(x1, x2) <P (y1, y2)⇔ (x1 <P1
y1 ∧ (x2 <P2

y2 ∨ x2 = y2)) ∨ (x2 <P2
y2 ∧ (x1 <P1

y1 ∨ x1 = y1)) (1)

2.3 Similarity Measures

There are several distance measures presented in [2], which we use in our paper to calculate similarities
between Objetcs.

Euclidean distance The Euclidean distance can be seen in Eq. 2. Given two points xi, xj with d dimensions,
the particular squared distances regarding each dimension are summed up and rooted after that.

distij =

√√√√ d∑
k=1

(xik − xjk)2 (2)

Canberra norm In order to set the focus on distances using small domains as well, the Canberra distance is
a very promising measure. It sums up the absolute fractional distances of two d-dimensional points xi, xj in
relation to the range of the focussed dimension for all dimensions, cp. Eq. 3.

distij =

d∑
k=1

|xik − xjk|
(xik + xjk)

(3)

Jaccard Jaccard is a measure for similarity of sets. In order to handle categorical preferences in our framework
as well, we need to express categorical preferences with numerical values. Given two d-dimensional sets of
objects A and B, the similarity of these two sets is calculated as follows, as it is presented in [15].

J(A,B) =
A ∩B

A ∪B
(4)

where A ∪B represents the number of simultaneous presence in both sets, while A ∩B represent the union
set of the two sets.

Example 4 Remember Alex’ favourite genres from our starting example as Object xAlex = {Action(Ac),
Comedy(Co), Thriller(Th), Sci− Fi(Sc)} and the movies as Objects xj with their genres in Table 1. Now in
Table 2 Jaccard-Scores for some movies are calculated.
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2.4 Borda Social Choice Voting Rule

For our approach regarding objects with more than two dimensions Borda Social Choice is a promising
method, because every candidate receives equal weighted votes from each voter, as it is defined in [13].

Given m candidates Ci, i = 1...m and d voters Vj , j = 1...d where every voter votes for each candidate.
Each voter Vj has to allocate the votings vjk from a pairwise distinct set of k = 0...m− 1. After all voters
assigned their votes, the votes for each candidate are summed up as it can be seen in Eq. 5, while the Borda
winner is determined as mentioned in Eq. 6.

bordasumCm
=

d∑
j=1

vjm (5)

bordawinnerCm
= max{bordasumCm

} (6)

If we depict this approach to our clustering-framework we replace the candidates with the available clusters
and the voters with the d-dimensional object which should be allocated to one and only one cluster. Finally
each object votes for each cluster and after the voting Eq. 5 determines the sum of all votes for each cluster
and Eq. 6 the winner, which got the most votes.

Finally, dimensions, which would not be considered because of a smaller domain, get equal weighted votes
like the other dimensions and have a higher influence on the clustering process.

Table 2: Calculation Jaccard score in a movie scenario. Action(Ac), Crime(Cr), Thriller(Th), Drama(Dr), Adventure(Ad), Sci-Fi(Sc)

Movie Genres Jaccard-Score

Pulp Fiction {Cr,Th} 0.2

The Dark Knight {Ac, Cr, Th, Dr} 0.33

The Hunger Games {Ac, Sc, Ad, Th } 0.4

Table 3: Votings in Borda Social Choice.

C1 C2 C3 ... Cm

V1 v11 v12 v12 ... v1m
V2 v21 v22 v23 ... v2m
V3 v31 v32 v33 ... v3m
... ... ... ... ... ...
Vd vd1 vd2 vd3 ... vdm
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3 Solution for the 2-Dimensional Case

In this section we describe the Pareto-dominance framework in detail for two-dimensional use cases. While a
Pareto preference is used to determine the importance of preferences, the Pareto-dominance in our approach
is used to allocate an object to the possibly best cluster, which is not dominated by other clusters w.r.t. the
distances of the individual objects, by using the Euclidean norm for one-dimensional distances. Moreover the
Pareto-dominance can additionally be used to find the centroids closest point on the Pareto-frontier as new
centroid in each cluster.

3.1 Cluster Allocation

Consider the Pareto-frontier in Figure 3, presenting users w.r.t. a possibly high music-matching score and
a possibly close distance. The aim is to get three promising clusters C1, C2 and C3. The points P2, P5 and
P8 are chosen as the cluster centroids. After that, for each point P1, ..., P10 the particular distances of the x-
and the y-dimension to the cluster centroids are calculated as it can be seen in Table 4. Furthermore the
y-dimension, representing the music-matching score is chosen as more important than the x-dimension at
the appearance of Pareto-optimal cluster-centroids. This so-called one-dimensional clustering realizes, that a
decision is arrived for each object at the cluster allocation. In Figure 3 a clustering after the first iteration is
shown.

Table 4: Distances of each user to each cluster centroid. C1 := P2, C2 := P5, C3 := P8, x-dim. = distance, y-dim. = music matching
score.

dxC1
dyC1

dxC2
dyC2

dxC3
dyC3

P1 27.44 0.01 120.72 0.06 264.60 0.09

P2 0.00 0.00 93.27 0.05 237.16 0.09

P3 1.66 0.01 91.61 0.04 235.50 0.07

P4 41.27 0.04 52.00 0.01 195.89 0.05

P5 93.27 0.05 0.00 0.00 143.89 0.04

P6 141.27 0.06 48.00 0.016 95.89 0.023

P7 150.88 0.09 57.61 0.04 86.28 0.00

P8 237.16 0.09 143.89 0.04 0.00 0.00

P9 311.32 0.09 218.05 0.04 74.16 0.00

P10 323.08 0.10 229.81 0.06 85.92 0.02

Now we shortly explain the allocation of the given users to the clusters:

– The users P1 and P3 are assigned to cluster C1, because the centroid of C1 dominates the other two
centroids regarding the distances in both dimensions.

– P4 has 2 Pareto-optima, because of the closer distance to C1 regarding the x-dimension and to C2

regarding the y-dimension. Hence C1 and C2 are Pareto-optimal w.r.t. to the x- and y-dimension. Now
the one-dimensional clustering tips the balance to C2.

– P6 and P8 are allocated to Cluster C2, because of the closer distances to the centroid of C2 in both
dimensions.

– P7 is closer to C2 concerning the x-dimension, but has a smaller distance to the centroid of C3 regarding
the y-dimension. This ensures that P7 is allocated to C3.

– P8 and P10 are allocated to cluster C3, because of the existence of only one Pareto-dominant cluster
centroid namely C3.

In order to explain our approach in detail we draw the attention to Figure 4, which shows a snippet of
the Pareto-frontier of Figure 3. While P4 is assigned to C1 regarding the smaller Euclidean distance of 41.27
unlike a distance of 52.00 to C2, the Pareto-dominance approach shows its versatility. The user can influence
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Fig. 3: Clustering of users with the Pareto-dominance after the first iteration.

on the clustering by choosing one dimension as the more important at the appearance of Pareto-optima.
If he chooses the x-dimension, as more important P4 will be assigned to C2. This ensures that each user
will be allocated to one and only one cluster, to avoid overlapping and imprecise clusters. This example
shows, that a Pareto-dominant clustering combined with a one-dimensional clustering at the appearance of
Pareto-optima tends to a hierarchical clustering. Users with similar scoring values w.r.t. the music matching
score are clustered together, unlike in the basic k-means clustering. In particular cluster C1 and C2 contain
users with very similar music-matching scores, where the range between the two boundary points is very small
unlike the k-means clustering approach. So if P7 is allocated to C2 and P4 to C1 the users contained in the
clusters are not as similar as in our approach.

Fig. 4: Camparison of Pareto-dominance and Euclidean Distance. C1 := P2, C2 := P4.
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3.2 Cluster Centroids

After each user is allocated to a cluster, the cluster-centroids are recalculated regarding the contained users.
For each cluster all values for the x-dimension and y-dimension are averaged, which can be seen in Figure 3 as
W1,W2 and W3.

For each cluster-centroid W1,W2 and W3 the closest Pareto-dominant user in each cluster is selected as
the new cluster-centroid for the next iteration. In order to find these users, the particular distances regarding
the two dimensions are calculated, which can be seen in Table 5. Figure 3 shows the calculated centroids
before assigning and the new centroids aswell.

– P2 is the new cluster centroid of C1, because of the closest distance of each x- and y-dimension to W1.
– For cluster C2 P5 is allocated as new centroid because of the closer distances in both dimensions, too.
– P8 and P9 both are Pareto-optima for the allocation of the cluster centroid of C3, because P9 is closer

to W3 regarding the y-dimension and P8 regarding the x-dimension. The one-dimensional clustering
determined by Bob tips the balance to P8 as new cluster centroid.

Table 5: Particular distances of recalculated cluster-centroids W1,W2,W3 to the points in each cluster.

dxW1
dyW1

dxW2
dyW2

dxW3
dyW3

P1 18.848 0.010 — — — —

P2 8.595 0.001 — — — —

P3 10.253 0.010 — — — —

P4 — — 50.667 0.012 — —

P5 — — 1.331 0.002 — —

P6 — — 49.331 0.014 — —

P7 — — — — 104.730 0.004

P8 — — — — 18.451 0.004

P9 — — — — 55.709 0.003

P10 — — — — 67.4726 0.0120

3.3 Complexity

The first implementation of our Pareto-dominant clustering approach was realized as a Java program. The
clustering algorithm reaches a complexity of O(n · c) where n is the number of points that should be clustered
in c clusters. In each iteration for every point n the distances to each cluster c are calculated in O(c) and the
best centroid is chosen subsequently after the distance-calculation.
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4 Solution for the d-Dimensional Case

In this section we present our Borda clustering framework in detail, which is a better solution for clustering
multi-dimensional objects. While the Pareto-dominance works well for a two-dimensional clustering, for higher
dimensions Pareto-dominance is not suitable because of a higher probability of the occurence of Pareto-optima.

Thus we need to find a decision criterion for the allocation of each point to one and only one cluster. For
this the Borda Social Choice voting rule is a very promising approach, which allows more influence of smaller
domains and incorporates each distance as a weighting, whether they are the best regarding one dimension or
not.

4.1 Cluster Allocation

Remember the k-means clustering algorithm from Section 2.1. We modified Algorithm 1, in order to realize a
clustering with Borda Social Choice as decision criterion for the cluster allocation. Line 8 of Algorithm 1 is
replaced by the function presented in Function 2 in order to perform the Borda voting rule.

In Function 2 the Borda votes for each point xi to each cluster is assigned as explained in Eq. 5. For this
an array is created in line 2 in order to sum up the votes for the clusters. Thus the distances in each dimension
between the considered point and the cluster centroid are calculated, which is performed in Func. 3. For each
dimension these distances are calculated and saved together with the id in an object-based data-structure in
line 6 and 7. After that the object is set on the current last position of the array in line 8 and sorted with
insertion sort between line 10 and 22 to the right position according to the distances (line 12), in order to
avoid a further sorting if all objects would be added unsorted to the array.

While the last distance is sorted to the right position in the array, the votes for each cluster are determined
(line 17) and summed up in the array (line 19) for the absolute votes, in order to avoid another iteration
through the array afterwards. After the array with the summed up votes is returned from Function 3, it is
sorted with insertion sort in line 3 of Function 2 in order to find the Borda winner as explained in Eq. 6. If
there is only one Borda winner (line 5), the id of the centroid is returned.

We noticed after some preliminary tests, especially for higher dimensions and higher number of clusters,
that there are some problems regarding the convergence, which will be explained more explicitly in Section
4.2. We decided to add a specific decision criterion for the cluster allocation at the appearence of more than
one Borda winner, in order to solve this problem. Our approach looks back to the last iteration, in order to
check if the centroid was allocated to one of the Borda winners (Func. 2, line 10). If not, one of the centroids
ids, which is represented in the Borda winners, is randomly chosen in line 19. Finally the k-means clustering
continues in line 9 of Function 1.

4.2 Convergence

After some preliminary tests, we found out, that especially for growing numbers of dimensions, our former
approach was not terminating, which leads to alternating between two or more clusters. So in addition to our
Borda Clustering Framework we decided to adjust Step 1 of the k-means clustering algorithm in Algorithm 1
(line 2) by using k-means++. Using k-means++ ensures especially in higher dimensions that our approach
terminates.

One more problem concerning the initial partition is resulting in empty clusters. If the first centroid was
randomly chosen, the probability that a direct neighbor of the first centroid will be chosen is very slight.
Especially, if there are, e.g., different movies with almost the same specifications from our starting example in
Table 1 like Inception (ID 3) and Goodfellas (ID 4) or duplicate movies except for the runningtime, which
results because of different ranked versions, like Terminator 2, the possibility is given, that these movies both
are chosen as cluster centroids. If so the order of the cluster centroids decides, that the first of the regarding
clusters will be populated with objects, while the following neighbor or duplicate will stay empty. K-means++
minimizes these problems and furthermore cares that the runtime and the number of iterations will decrease
compared to the Borda Clustering Framework without using k-means++.
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Function 2 Closest centroid for Borda Social Choice voting rule

Input: d-dim. point xi, clusterset C, cluster-id last iteration idlast.
Output: id of the closest cluster for point xi.

1: function getBestClusterId(xi, C, idLast)
2: bordaV als[]← calculateBordaV als(xi, C) // calculate Borda values
3: insertion sort(bordaV als[]) // Sort Borda values
4: counter ← 1
5: if bordaV als[0].val > bordaV als[1] then // Only one Borda winner
6: return bordaV als[0].id // Return id of first element
7: end if
8: if bordaV als[0].val == bordaV als[1] then // More than one Borda winner
9: while bordaV als[counter].val == bordaV als[0].val do

10: if bordaV als[counter].id == idlast then // Check idlast
11: return idlast // Return id of element from last iteration
12: end if
13: counter ← counter + 1
14: if counter >= bordaV als[].Size() then // All centroids Borda winner
15: return bordaV als[random(0, counter − 1)].id // Return random id
16: end if
17: end while
18: end if
19: return bordaV als[random(0, counter − 1)].id // Return random id
20: end function

Function 3 Calculate the Votes for each centroid
Input: d-dim. point xi, clusterset C.
Output: bordaVals for each centroid.

1: function calculateBordaVals(xi, C)
2: bordaV als[]← bordaV als[C.size()]
3: for i = 0; x < xi.getDims().size(); i← i + 1 do
4: bordaObj[]← bordaObj[C.size()] // Array for voters
5: for k = 0; k < C.size(); k ← k + 1 do // For each voter(centroid)
6: val =| xi.getDims()[i]− cj .getDims()[i] | // Calculate distance
7: obj ← newbordaObj(val, cj .id) // Init. object for voter
8: bordaObj[k] = obj // Set object on last available position
9: voteDiff ← k + 1 // Difference for Votes

10: for j = k; j >= 0; j ← j − 1 do // Start insertion sort
11: if j > 0 then // Check if not last item is sorted
12: if obj.val < bordaObj[j − 1].val then // Compare obj. pairwise
13: swap(bordaObj[j − 1], bordaObj[j]) // Swap objetcs
14: end if
15: end if
16: if k == C.size()− 1 then // Last Element is sorted
17: val← bordaObj[].size()− voteDiff // Determine Votes
18: id← bordaObj[j].id // Fetch id of Object to sum up
19: bordaV als[id].val← bordaV als[id].val + val // Sum up the value
20: voteDiff ← voteDiff − 1 // Reduce voteDiff for growing values
21: end if
22: end for
23: end for
24: end for
25: return bordaV als[]
26: end function
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A problem regarding the convergence in higher dimensions was solved as follows. For each iteration we
save the clusterid for each point, the point got allocated after line 9 in an array, which will be created after
line 4 in Algorithm 1. Now if there are more than one Borda winners in line 8 of Function 2, it is checked if
the ID of the centroid from the last iteration is represented in any of these Borda winners. If so, the object
goes to the same cluster as in the last iteration. Finally preliminary benchmarks showed, that this solution
ensures that the clusters are becoming stable in a less number of iterations.

4.3 Example

We want to present our approach based on Alex’ movie query from Example 2, which refers to the snippet of
a movie data set in Table 1. The advanced Borda approach with k-means++ and the lookback to the last
iteration at the appearance of more than one Borda winner will be considered.

Initial Partition with k-means++

– The Movie Leon (ID 7) is chosen randomly as centroid C1. After that the distances for each point to the
current centroid C1 are calculated as explained in Sec. 2.1 Step 2, which can be seen in Table 6.

– The movie is set as new centroid, which exceeds a determined random value while iterating through the
set. Since the sum of all previous movie-values for Iron Man(ID 21) and itself is 34921.6, it becomes the
new centroid C2, because a determined random-value for this centroid was 34775.

– For C3 The Shawshank Redemption (ID 0) is determined likewise C2 after updating the distances shown
in Tab. 6. If a current distance is smaller than a previous one, the current is set and the probability to be
chosen decreases.

Table 6: Creating the initial cluster partition with kmeans++.

ID D(x)2
∑

ID D(x)2
∑

01 6896.62 6896.62 21 205.80 34921.6
00 1445.30 7206.92 22 1822.62 36744.20

... 04 2720.41 39464.61
20 0140.00 34715.78 15 0052.50 39517.11

Allocation with Borda Social Choice

– We show the allocation for the movies Pulp Fiction (ID 1) and The Hunger Games (ID 22) to the initialized
centroids C1, C2 and C3 with Borda Social Choice, as it can be seen in Table 7.

Table 7: Cluster allocation for some movies. Dima := actorscore, Dimg := genrescore, Dimr := rating, Dimy := release year,
Dimt := runnting time

Pulp Fiction (ID 1) The Hunger Games (ID 22)

D(C1) D(C2) D(C3) D(C1) D(C2) D(C3)

Dima 0.017 (2) 0.029 (1) 0.032 (0) 0.016 (0) 0.004 (1) 0.000 (2)
Dimg 0.008 (2) 0.290 (0) 0.287 (1) 0.508 (0) 0.210 (2) 0.213 (1)
Dimr 0.575 (1) 0.920 (0) 0.400 (2) 1.225 (1) 0.880 (2) 1.400 (0)
Dimy 0.875 (1) 0.600 (2) 3.000 (0) 6.875 (0) 5.400 (1) 3.000 (2)
Dimt 19.38 (1) 27.20 (0) 10.40 (2) 7.375 (1) 15.20 (0) 1.600 (2)∑

7 3 5 2 6 7
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– Pulp Fiction has the closest distance of 0.017 to C1 w.r.t the actorscore, so the voting will be 2. C2 is the
second-closest, so it receives a voting of 1 while C3 has the largest distance and receives 0. For all other
dimensions the votings are assigned likewise.

– After all dimensions got processed, the votings for each centroid are summed up as mentioned in Eq. 5.
Finally C1 receives a total of 7 votes, while C3 gets 5 votes and C2 only 3 votes. According to Eq. 6 Pulp
Fiction will go to the Borda winner C1.

– In contrast to Borda, using Pareto-dominance would provide the following result. We would have 3 different
Pareto-optima, because C1 would dominate the other centroids w.r.t the actor- and genre-score, C2 would
dominate the others w.r.t the year and C3 regarding the other both dimensions. Even if we would consider
the number of dominating dimensions, there would be a draw between C1 and C3 because of 2 dominating
dimensions. Borda finally provides a distinct result compared to the Pareto-dominance.

– If there would be a draw, e.g. for the movie The Hunger Games considering C2 and C3, which would
get a total of 7 votes, the cluster-ID of the previous iteration would tip the balance to one of these both
centroids if the ID is represented in the current set of Borda winners. Else the movie will be allocated by
random. Finally The Hunger Games goes to C3 because C3 is the Borda winner with a total of 7 votes.

– The algorithm continues with the recalculation of the centroids and the check of the termination criterion
as mentioned in Section 2.1.

The final clusterings after the fifth iteration can be seen in the Figures 5, 6, 7 and 8. In this figures the
dimension for rank is chosen as fixed dimension for all other dimensions in order to compare them easily.
Finally in the two-dimensional illustrations several clusterings around the centroids CQ, CP and CR can be
seen.

Fig. 5: Final clustering of Ex. 2 w.r.t the dimensions rank and
actorscore.

Fig. 6: Final clustering of Ex. 2 w.r.t the dimensions rank and
genrescore.

Note that we have five dimensions to be considered, which means that in some of them outliers can be
recognized, while they can be very close in other dimensions. In detail:

– Except for some outliers in Fig. 6 and 8 all blue displayed movies are very close to the centroid CQ.
– While the green displayed movies are spread especially in Fig. 7 and 8, clusters can be recognized in Fig.

5 and 6 for centroid CR.
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Fig. 7: Final clustering of Ex. 2 w.r.t the dimensions rank and
runningtime.

Fig. 8: Final clustering of Ex. 2 w.r.t the dimensions rank and
year.

– For CP clusters can be identified in Fig. 5 and 8 by the red displayed movies with only two aberrations
regarding P22 and P0, while they are spread in the other dimensions.

– All in all the final configuration of the clusters is intuitive and comprehensible, which leads to a adequate
quality becuase of similar movies. For Example both versions of Terminator 2(ID 9, 10) are clustered
together. As previously mentioned, the similar movies Goodfellas (ID 4) and Inception (ID 3) are clustered
together as well, because they have an equal rank and equivalent release year, a very similar score for the
actors and similar running times.

4.4 Complexity

Our algorithm reaches a complexity of O(n · (d · c · c2 + c2 + c)) where n is the number of d-dimensional points
that should be clustered in c clusters. For each point n the distances of each dimension d for each cluster c is
calculated in O(d · c). These distances are sorted by insertion sort with a complexity of O(c2) for the worst
case, while the list of the summed up votes is sorted with insertion sort in O(c2), too . Finally the list is
iterated one more time in order to check if there is more than one Borda winner in O(c). Hence we get a
complexity of O(n · d · c3).
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5 Experiments

In this section we briefly describe the benchmark settings and present results of experiments regarding runtime,
number of iterations and quality of the clustering approaches compared to the basic k-means approach with
traditional distance measures both for our Pareto-dominance clustering approach and our Borda Social Choice
clustering approach.

5.1 Benchmark Settings

The first implementation of our Pareto-dominant clustering was realized as a Java program. We also im-
plemented a database internal approach based on PG/PL-SQL in PostgreSQL1, because we want to show
the benefits of clustering in relational databases. For both approaches we varied the number of points and
the number of desired clusters. To compare the runtimes, we created several synthetic anticorrelated sets of
two-dimensional Pareto-optimal points. In order to gain averaged reliable data, clusterings were performed in
test rows with varying numbers of repeats w.r.t. the number of points.

For the multi-dimensional Borda Social Choice Clustering approach we ran our experiments on a Intel
Xeon machine with 2.53 GHz and a cache-size of 8192 kB. For our benchmarks we created anticorrelated sets
of multidimensional objects, too and varied the number of dimensions, the number of objects per set and the
number of desired clusters. We investigated the runtimes and number of iterations of our approach compared
to the basic k-means with Euclidean distance and Canberra as distance measures. Furthermore results of our
experiments with k-means++ are also presented.

5.2 Benchmarks Pareto-dominance

Runtime The benchmarks of the Java implementation in Figure 9 show that the approach using the
Pareto-dominance are mostly similar regarding the runtime compared to the basic k-means approach using
the Euclidean distance. For constant numbers of clusters and growing number of points the runtime of the
averaged clustering is growing for both approaches. Whereas for constant numbers of points and growing
clusterings there are some aberations at k = 7 for 15000 for both approaches. Especially if points at the border
of the cluster switch between two clusters, the runtime is growing. All in all the clustering approach using the
Pareto-dominance is nearly efficient as using the Euclidean distance.

Fig. 9: Java benchmarks of the basic k-means clustering algorithm
with Euclidean distance(Eucl) and Pareto-dominance(P-d).

1 https://www.postgresql.org/
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The benchmarks for the database approach in Figure 10 shows different behavior. The Pareto-dominance
approach is of factor 2 slower than the approach using the Euclidean distance, because of the use of expensive
database operations like Joins or Group by operations, which are not needed using the Euclidean distance.
Especially the tests with k = 5, 7 and sets with 15000 points show aberations for the Pareto-dominance. But
all in all for growing number of points and growing number of clusters the runtime is growing, too. Finally
our approach is slower than the basic k-means clustering. But the effort of normalizing the users w.r.t. the
two dimensions should be considered as a time-consuming process in each use case.

Fig. 10: PostgreSQL benchmarks of the basic k-means cluster-
ing algorithm with Euclidean distance(Eucl) and Pareto-
dominance(P-d).

Iterations The number of iterations w.r.t. the number of desired clusters and the number of points can be
seen in Figure 11. For both frameworks, the number of iterations is similar. For growing number of desired
clusters, the number of iterations is growing for both approaches as well, except for the sets of k = 5, 7 with
15000 points using the Pareto-dominance. In contrary to our expectations for this experiment the number of
points in the sets has no influence on the number of necessary iterations to achieve a stable clustering.

Fig. 11: Comparison of Euclidean distance (Eucl.) and Pareto-
dominance(P-d) regarding iterations.
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5.3 Benchmarks Borda Social Choice

Since Euclidean is the most common distance for k-means, we want to show that our approach terminates at
least as fast as k-means and needs the same or less numbers of iterations until termination. Furthermore we
investigated Canberra to gain useless reference values for our approach, which should be dominated by them
of our approach w.r.t. the runtime and the number of iterations as well. In order to receive a faster runtime
and less iterations until stable clusterings, we want to show the utility of k-means++ for our Borda approach
w.r.t. the runtime and number of iterations.

Runtime

– In the 3-dimensional testrow in Figure 12 for growing number of clusters and sets of input objects
(5000, 10000, 15000) the runtime is growing, too. Our approach (Borda) works in equal time compared to
k-means with Euclidean (Eucl.) and Canberra (Canb.) for small numbers of clusters. For 7 and 9 clusters
our approach is slower independent of the number of input objects because of a higher complexity of our
approach. Benefits of a faster runtime for k-means++ (Borda++) is in most cases hardly recognizable.

– In Figure 13, For growing numbers of dimensions our approach reaches a better runtime compared to
the Euclidean distance except for high number of clusters in all benchmarked sets of 5000, 10000 and
15000 object. In some cases our approach terminates faster than k-means using Canberra, e.g., the testrow
with 7 clusters, but all in all our approach mostly reaches an equal runtime in a 5-dimensional space.

– A similar behavior illustrates the testrow for a 9-dimensional set of objects in Figure 14. While both our
approaches terminate in similar time compared to k-means with Canberra for 3 and 5 clusters, they are a
lot faster than k-means with euclidean distance. The trends for growing runtimes w.r.t. the number of
clusters and objects can be noticed in 9-dimensional space, too.

Iterations

– For growing numbers of clusters and growing numbers of objects per set the numbers of needed iterations
until termination is ascending for all dimensions as it can be seen in Figures 15, 16 and 17.

– Both our versions of k-means reach a stable clustering in clearly less iterations, especially for higher
number of clusters and bigger sets of objects.

– While the number of iterations is growing fast for growing numbers of dimensions for k-means using
Euclidean and Canberra, our Borda approach only needs less additional iterations compared to smaller
dimensions.

– K-means++ has only small effects on the iterations of k-means with Borda Social Choice for the cluster
allocation.

Finally our approach works at most in equal time compared to k-means with both of the other distances,
but for higher numbers of clusters it needs more time until termination because of the higher complexity of
the Borda voting rule. Moreover our approaches need only a fractional part of iterations until termination for
all testrows.

5.4 Quality

In this subsection we want to compare the quality of clusters between the basic k-means clustering algorithm
and our Pareto-dominance clustering approach in order to show that the stable clusters are different but
similar and thus useful for clustering objects of Pareto-frontiers.

Considering the example from Figure 3, which shows the most occurent stable clusterings after the second
and last iteration. We performed a test-series based on the k-means clustering, which were compared to a
testrow with 100 clusterings of our approach. In order to compare these clusters we use precision and recall.
Precision represents all desired and delivered objects (correct alarms) in relation to all delivered objects
(correct alarms & false alarms), whereas recall represents the desired and delivered objects (correct alarms) in
relation to all desired objects (correct alarms & false dismissals).
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Fig. 12: Runtime for 3 dimensions. Fig. 15: Iterations for 3 dimensions.

Fig. 13: Runtime for 5 dimensions. Fig. 16: Iterations for 5 dimensions.

Fig. 14: Runtime for 9 dimensions. Fig. 17: Iterations for 9 dimensions.

Table 8 shows the values for precision and recall for the most occurent Pareto-dominant clustering on the
base of the k-means clusters. Precision and recall both show for all clusters very high values with only two
user, which switch between the clusters. Thus the quality of the Pareto-dominant clustering is in this case
mostly high, but not equal to the k-means clustering with Euclidean distance. In Table 9 the test series show
the precision and recall scores for two more clusterings and the frequency in the test series of 100 clusterings,
which get averaged. Finally in this case there is one very present clustering (1), which is a very satisfying
clustering as mentioned in Section 4. Both other clusterings have very high scores for precision. The scores for
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Table 8: Precision-Recall model in detail for the most occurent clustering in Figure 3.

C1 C2 C3

false alarms (fa) {} {P4} {P7}
false dismissals (fd) {P4} {P7} {}
correct alarms (ca) {P1, P2, P3} {P5, P6} {P8, P9, P10}

Precision: ca
ca+fa

1 0.66 0.75

Recall: ca
ca+fd

0.75 0.66 1

recall especially for the third cluster for the clustering 2 and 3 are very low, which shows that only a few
users based on the k-means approach were assigned to this cluster.

Table 9: Averaged Precision-Recall model for 100 testrows and the three occurent clusterings of users in Figure 3.

Clustering freq. PC1 PC2 PC3 RC1 RC2 RC3

1 78 1.00 0.67 0.75 0.75 0.67 1.00

2 7 1.00 0.60 1.00 1.00 1.00 0.33

3 15 0.80 0.60 1.00 1.00 0.75 0.33

Averaged 100 0.97 0.65 0.81 0.81 0.70 0.85

6 Related Work

Since clustering is are very common topic in Data Mining, there are several other approaches considering
clustering and Pareto-dominance, which were published in the last years.

A very early approach considering a Pareto-efficient clustering was published in [5] where more then
one criterion for clustering was consulted. This paper presents on the one hand a modified relocation
algorithm, and on the other hand a modified agglomerative algorithm. These approaches aim finding a
Pareto-dominant clustering that dominates all other clusterings, while the approach presented in our report
uses Pareto-dominance in order to allocate an object to a specific cluster.

In [6] a k-means clustering-based technique was published, where a so-called SkyClustering method
is working within a Skyline-computation in SQL on a relational database in order to compress a large
Pareto-optimal set of objects to explore the diversity of a Skyline.

In order to prevent a large set of Pareto-optimal objects, in highdimensional space in [4] only a few
dimensions k are considered for the Skyline computation. This approach attaches weight to less, but maybe
more important dimensions on objects.

Another approach to handle with Skylines was presented in [14], where supervised alternative clusterings
are introduced. The main focus of this paper is to find clusterings of good quality starting from given negative
clusterings which should be as different as possible and at the same time a Pareto-optimal solution. If the
solution is not satisfying, the Pareto-frontier will be reclustered with the traditional k-means clustering, unlike
the Pareto-dominant clustering presented in our report.

In [12] Subspace Clustering is considered to mask out dimensions in high dimensional data by a so called
feature selection, which reduces the dimensions by removing irrelevant and redundant ones. So overlapping
clusterings are found in subspaces. In contrast to previous work, we exploit Borda Social Choice to weight the
distances to clusters in each dimension according to the distances for the cluster allocation for each object.
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7 Conclusion and Outlook

In this report we presented on the one hand a novel Pareto-dominance based clustering framework on Pareto-
frontiers for two-dimensional uses cases. Our framework provides several reasons for using this to manage large
confusing sets of tuples with explicitly different domains. First, one can influence the result of the clustering
by attaching a weight to a more important dimension in order to cluster at least over one dimension at the
appearance of Pareto-optima. Second, tuples can now be clustered over better-than relationships in order
to avoid adjustments for utilization in different uses cases. Third, our preliminary benchmarks show that
a Pareto-dominant clustering can be realized in adequate time. The quality of our approach is satisfying,
because the stable clusters distinguish from them of the basic k-means clustering, but are still as similar as
possible, especially regarding the affiliation of similar points w.r.t. the one-dimensional clustering.

On the other hand we introduced a novel clustering framework eploiting the Borda Social Choice voting
rule. Especially for high-dimensional applications our framework handles large and dizzying sets of objects.
The users don’t need to care about the normalization of the domains, because Borda Social Choice for the
cluster allocation consults each dimension equally by weighting the distances to the clusters. Furthermore our
benchmarks show that our approach terminates in comparative runtime to k-means clustering with traditional
measures and needs less iterations until a stable clustering is reached. Our Borda Clustering framework can
be used to manage a variety number of multi-dimensional preference-based use cases with diverse domains,
e.g., movie-search, hotel-booking, car-purchase, etc.

In summary both our approaches presented in this report are promising, because of satisfying results of
our experiments. Since Pareto-dominance works well for clustering objects in smaller number of dimensions,
Borda Social Choice is more convenient for uses cases with at least three dimensions.

Future work includes the optimization of our approaches in order to cluster faster compared to k-means
using traditional metrics. Afterwards we will integrate our approaches into the commercial analytical database
EXASolution [11].
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