

View

Online


Export
Citation

RESEARCH ARTICLE |  FEBRUARY 15 2003

Rectification of laser-induced electronic transport through
molecules 
Jörg Lehmann; Sigmund Kohler; Peter Hänggi; Abraham Nitzan

J. Chem. Phys. 118, 3283–3293 (2003)
https://doi.org/10.1063/1.1536639

 25 Septem
ber 2024 14:17:14

https://pubs.aip.org/aip/jcp/article/118/7/3283/535563/Rectification-of-laser-induced-electronic
https://pubs.aip.org/aip/jcp/article/118/7/3283/535563/Rectification-of-laser-induced-electronic?pdfCoverIconEvent=cite
javascript:;
javascript:;
javascript:;
javascript:;
https://crossmark.crossref.org/dialog/?doi=10.1063/1.1536639&domain=pdf&date_stamp=2003-02-15
https://doi.org/10.1063/1.1536639
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2510985&setID=592934&channelID=0&CID=908664&banID=522064408&PID=0&textadID=0&tc=1&rnd=8148010760&scheduleID=2429182&adSize=1640x440&data_keys=%7B%22%22%3A%22%22%7D&matches=%5B%22inurl%3A%5C%2Fjcp%22%5D&mt=1727273834181111&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Fjcp%2Farticle-pdf%2F118%2F7%2F3283%2F19321601%2F3283_1_online.pdf&hc=bb7b53c31f01221cc44b42851638aaf49e5c6276&location=


JOURNAL OF CHEMICAL PHYSICS VOLUME 118, NUMBER 7 15 FEBRUARY 2003
Rectification of laser-induced electronic transport through molecules
Jörg Lehmann, Sigmund Kohler,a) and Peter Hänggi
Institut für Physik, Universität Augsburg, Universitätsstraße 1, D-86135 Augsburg, Germany
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We study the influence of laser radiation on the electron transport through a molecular wire weakly
coupled to two leads. In the absence of a generalized parity symmetry, the molecule rectifies the
laser-induced current, resulting in directed electron transport without any applied voltage. We
consider two generic ways of dynamical symmetry breaking: mixing of different harmonics of the
laser field and molecules consisting of asymmetric groups. For the evaluation of the nonlinear
current, a numerically efficient formalism is derived which is based upon the Floquet solutions of
the driven molecule. This permits a treatment in the nonadiabatic regime and beyond linear
response. © 2003 American Institute of Physics. @DOI: 10.1063/1.1536639#
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I. INTRODUCTION

During the last several years, we experienced a wealth of
experimental activity in the field of molecular electronics.1–3
Its technological prospects for nanocircuits4 have created
broad interest in the conductance of molecules attached to
metal surfaces or tips. In recent experiments5–8 weak tunnel-
ing currents through only a few or even single molecules
coupled by chemisorbed thiol groups to the gold surface of
leads has been achieved. The experimental development is
accompanied by an increasing theoretical interest in the
transport properties of such systems.9,10 An intriguing chal-
lenge presents the possibility to control the tunneling current
through the molecule. Typical energy scales in molecules are
in the optical and the infrared regime, where today’s laser
technology provides a wealth of coherent light sources.
Hence, lasers represent an inherent possibility to control at-
oms or molecules and to direct currents through them.

A widely studied phenomenon in extended, strongly
driven systems is the so-termed ratchet effect,11–16 originally
discovered and investigated for overdamped classical
Brownian motion in periodic nonequilibrium systems in the
absence of reflection symmetry. Counterintuitively to the
second law of thermodynamics, one then observes a directed
transport although all acting forces possess no net bias. This
effect has been established as well within the regime of dis-
sipative, incoherent quantum Brownian motion.17 A related
effect is found in the overdamped limit of dissipative tunnel-
ing in tight-binding lattices. Here the spatial symmetry is
typically preserved and the nonvanishing transport is brought
about by harmonic mixing of a driving field that includes
higher harmonics.18–20 For overdamped Brownian motion,
both phenomena can be understood in terms of breaking a
generalized reflection symmetry.21

Recent theoretical descriptions of molecular conductiv-
ity are based on a scattering approach.22,23 Alternatively, one
can assume that the underlying transport mechanism is an

a!Electronic mail: sigmund.kohler@physik.uni-augsburg.de
3280021-9606/2003/118(7)/3283/11/$20.00
electron transfer reaction and that the conductivity can be
derived from the corresponding reaction rate.9 This analogy
leads to a connection between electron transfer rates in a
donor–acceptor system and conduction in the same system
when operating as a molecular wire between two metal
leads.24Within the high-temperature limit, the electron trans-
port on the wire can be described by inelastic hopping
events.9,25–27 For a more quantitative ab initio analysis, the
molecular orbitals may be taken from electronic structure
calculations.28

Isolated atoms and molecules in strong oscillating fields
have been widely studied within a Floquet formalism29–34
and many corresponding theoretical techniques have been
developed in that area. This suggests the procedure followed
in Ref. 35: Making use of these Floquet tools, a formalism
for the transport through time-dependent quantum systems
has been derived that combines Floquet theory for a driven
molecule with the many-particle description of transport
through a system that is coupled to ideal leads. This ap-
proach is devised much in the spirit of the Floquet–Markov
theory36,37 for driven dissipative quantum systems. It as-
sumes that the molecular orbitals that are relevant for the
transport are weakly coupled to the contacts, so that the
transport characteristics are dominated by the molecule it-
self. Yet, this treatment goes beyond the usual rotating-wave
approximation as frequently employed, such as, e.g., in Refs.
37 and 38.

A time-dependent perturbative approach to the problem
of driven molecular wires has recently been described by
Tikhonov et al.39,40 However, their one-electron treatment of
this essentially inelastic transmission process cannot consis-
tently handle the electronic populations on the leads. More-
over, while their general formulation is not bound to their
independent channel approximation, their actual application
of this approximation is limited to the small light-molecule
interaction regime.

With this work we investigate the possibilities for mo-
lecular quantum wires to act as coherent quantum ratchets,
3 © 2003 American Institute of Physics
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i.e., as quantum rectifiers for the laser-induced electrical cur-
rent. In doing so, we provide a full account of the derivation
published in letter format in Ref. 35. In Sec. II we present a
more detailed derivation of the Floquet approach to the trans-
port through a periodically driven wire. This formalism is
employed in Sec. III to investigate the rectification properties
of driven molecules. Two generic cases are discussed,
namely mixing of different harmonics of the laser field in
symmetric molecules and harmonically driven asymmetric
molecules. We focus thereby on how the symmetries of the
model system manifest themselves in the expressions for the
time-averaged current. The general symmetry considerations
of a quantum system under the influence of a laser field are
deferred to the Appendix.

II. FLOQUET APPROACH TO THE ELECTRON
TRANSPORT

The entire system of the driven wire, the leads, and the
molecule–lead coupling as sketched in Fig. 1 is described by
the Hamiltonian

H~ t !5Hwire~ t !1H leads1Hwire-leads . ~1!

The wire is modeled by N atomic orbitals un&, n51,.. . ,N ,
which are in a tight-binding description coupled by hopping
matrix elements. Then, the corresponding Hamiltonian for
the electrons on the wire reads in a second quantized form

Hwire~ t !5 (
n ,n8

Hnn8~ t !cn
†cn8 , ~2!

where the fermionic operators cn , cn
† annihilate, respectively,

create, an electron in the atomic orbital un& and obey the
anticommutation relation @cn ,cn8

†
#15dn ,n8 . The influence

of the laser field is given by a periodic time-dependence of
the on-site energies yielding a single particle Hamiltonian of
the structure Hnn8(t)5Hnn8(t1T), where T52p/V is de-
termined by the frequency V of the laser field.

The orbitals at the left and the right end of the molecule,
which we shall term donor and acceptor, u1& and uN&, respec-
tively, are coupled to ideal leads ~cf. Fig. 1! by the tunneling
Hamiltonians

Hwire-leads5(
q

~VqL cqL
† c11VqRcqR

† cN!1H.c. ~3!

FIG. 1. Level structure of a molecular wire with N58 atomic sites which
are attached to two leads.
The operator cqL (cqR) annihilates an electron on the left
~right! lead in state Lq (Rq) orthogonal to all wire states.
Later, we shall treat the tunneling Hamiltonian as a pertur-
bation, while taking into account exactly the dynamics of the
leads and the wire, including the driving.

The leads are modeled as noninteracting electrons with
the Hamiltonian

H leads5(
q

~eqL cqL
† cqL1eqRcqR

† cqR!. ~4!

A typical metal screens electric fields that have a frequency
below the so-called plasma frequency. Therefore, any elec-
tromagnetic radiation from the optical or the infrared spectral
range is almost perfectly reflected at the surface and will not
change the bulk properties of the gold contacts. This justifies
the assumption that the leads are in a state close to equilib-
rium and, thus, can be described by a grand-canonical en-
semble of electrons, i.e., by a density matrix

% leads,eq}exp@2~H leads2mLNL2mRNR!/kBT# , ~5!

where mL/R are the electrochemical potentials and NL/R
5(qcqL/R

† cqL/R the electron numbers on the left/right lead.
As a consequence, the only nontrivial expectation values of
lead operators read

^cqL
† cqL&5 f ~eqL2mL!, ~6!

where eqL is the single particle energy of the state qL and
correspondingly for the right lead. Here, f (x)5(1
1ex/kBT)21 denotes the Fermi function.

A. Time-dependent electrical current

The net ~incoming minus outgoing! current through the
left contact is given by the negative time derivative of the
electron number in the left lead, multiplied by the electron
charge 2e , i.e.,

IL~ t !5e
d
dt ^NL& t5

ie
\

^@H~ t !,NL#& t . ~7!

Here, the angular brackets denote expectation values at time
t , i.e., ^O& t5Tr@Or(t)# . The dynamics of the density matrix
is governed by the Liouville–von Neumann equation
i\%̇(t)5@H(t),%(t)# together with the factorizing initial
condition %(t0)5%wire(t0)^ % leads,eq . For the Hamiltonian
~1!, the commutator in Eq. ~7! is readily evaluated to

IL~ t !5
2e
\
Im(

q
VqL^cqL

† c1& t . ~8!

To proceed, it is convenient to switch to the interaction pic-
ture with respect to the uncoupled dynamics, where the
Liouville–von Neumann equation reads

i\
d
dt%̃~ t ,t0!5@H̃wire-leads~ t ,t0!,%̃~ t ,t0!# . ~9!

The tilde denotes the corresponding interaction picture op-
erators, X̃(t ,t8)5U0

†(t ,t8)X(t)U0(t ,t8), where the propaga-
tor of the wire and the lead in the absence of the lead–wire
coupling is given by the time-ordered product
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U0~ t ,t8!5TQ expS 2
i
\ E

t8

t
dt9@Hwire~ t9!1H leads# D . ~10!

Equation ~9! is equivalent to the integral equation

%̃~ t ,t0!5%̃~ t0 ,t0!

2
i
\ E

t0

t
dt8@H̃wire-leads~ t8,t0!,%̃~ t8,t0!# . ~11!

Inserting this relation into Eq. ~8!, we obtain an expres-
sion for the current that depends on the density of states in
the leads times their coupling strength to the connected sites.
At this stage it is convenient to introduce the spectral density
of the lead–wire coupling

GL/R~e !5
2p

\ (
q

uVqL/Ru2d~e2eqL/R!, ~12!

which fully describes the leads’ influence. If the lead states
are dense, GL/R(e) becomes a continuous function. Since we
restrict ourselves to the regime of a weak wire–lead cou-
pling, we can furthermore assume that expectation values of
lead operators are at all times given by their equilibrium
values ~6!. Then we find after some algebra for the stationary
~i.e., for t0→2`), time-dependent net electrical current
through the left contact the result

IL~ t !5
e

p\
Re E

0

`

dtE de GL~e !e iet/\$^c1
† c̃1~ t ,t

2t !& t2t2@c1
† , c̃1~ t ,t2t !#1 f ~e2mL!%. ~13!

A corresponding relation holds true for the current through
the contact on the right-hand side. Note that the anticommu-
tator @c1

† , c̃1(t ,t2t)#1 is in fact a c-number ~see Eq. ~22!
below!. Like the expectation value ^c1

†c̃1(t ,t2t)& t2t , it de-
pends on the dynamics of the isolated wire and is influenced
by the external driving.

It is frequently assumed that the attached leads can be
described by a one-dimensional tight-binding lattice with
hopping matrix elements D8. Then, the spectral densities
GL/R(e) of the lead–wire couplings are given by the
Anderson–Newns model,41 i.e., they assume an elliptical
shape with a bandwidth 2D8. However, because we are
mainly interested in the behavior of the molecule and not in
the details of the lead–wire coupling, we assume that the
conduction bandwidth of the leads is much larger than all
remaining relevant energy scales. Consequently, we approxi-
mate in the so-called wide-band limit the functions GL/R(e)
by the constant values GL/R . The first contribution of the e
integral in Eq. ~13! is then readily evaluated to yield an ex-
pression proportional to d~t!. Finally, this term becomes lo-
cal in time and reads eGL^c1

†c1& t .

B. Floquet decomposition

Let us next focus on the single-particle dynamics of the
driven molecule decoupled from the leads. Since its Hamil-
tonian is periodic in time, Hnn8(t)5Hnn8(t1T), we can
solve the corresponding time-dependent Schrödinger equa-
tion within a Floquet approach. This means that we make use
of the fact that there exists a complete set of solutions of the
form29–31,33,34

uCa~ t !&5e2ieat/\uFa~ t !&, uFa~ t !&5uFa~ t1T !& ~14!

with the quasienergies ea . Since the so-called Floquet
modes uFa(t)& obey the time-periodicity of the driving field,
they can be decomposed into the Fourier series

uFa~ t !&5(
k

e2ikVtuFa ,k&. ~15!

This suggests that the quasienergies ea come in classes,

ea ,k5ea1k\V , k50,61,62,.. . , ~16!

of which all members represent the same solution of the
Schrödinger equation. Therefore, the quasienergy spectrum
can be reduced to a single ‘‘Brillouin zone’’ 2\V/2<e
,\V/2. In turn, all physical quantities that are computed
within a Floquet formalism are independent of the choice of
a specific class member. Thus, a consistent description must
obey the so-called class invariance, i.e., it must be invariant
under the substitution of one or several Floquet states by
equivalent ones,

ea , uFa~ t !&→ea1ka\V , e ikaVtuFa~ t !&, ~17!

where k1 , . . . ,kN are integers. In the Fourier decomposition
~15!, the prefactor exp(ikaVt) corresponds to a shift of the
side band index so that the class invariance can be expressed
equivalently as

ea , uFa ,k&→ea1ka\V , uFa ,k1ka
&. ~18!

Floquet states and quasienergies can be obtained from
the quasienergy equation29–34

S (
n ,n8

un&Hnn8~ t !^n8u2i\
d
dt D uFa~ t !&5eauFa~ t !&.

~19!
Awealth of methods for the solution of this eigenvalue prob-
lem can be found in the literature.33,34 One such method is
given by the direct numerical diagonalization of the operator
on the left-hand side of Eq. ~19!. To account for the periodic
time-dependence of the uFa(t)&, one has to extend the origi-
nal Hilbert space by a T-periodic time coordinate. For a har-
monic driving, the eigenvalue problem ~19! is band-diagonal
and selected eigenvalues and eigenvectors can be computed
by a matrix-continued fraction scheme.33,42

In cases where many Fourier coefficients ~in the present
context frequently called ‘‘sidebands’’! must be taken into
account for the decomposition ~15!, direct diagonalization is
often not very efficient and one has to apply more elaborate
schemes. For example, in the case of a large driving ampli-
tude, one can treat the static part of the Hamiltonian as a
perturbation.30,43,44 The Floquet states of the oscillating part
of the Hamiltonian then form an adapted basis set for a sub-
sequently more efficient numerical diagonalization.

A completely different strategy to obtain the Floquet
states is to propagate the Schrödinger equation for a com-
plete set of initial conditions over one driving period to yield
the one-period propagator. Its eigenvalues represent the Flo-
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quet states at time t50, i.e., uFa(0)&. Fourier transformation
of their time-evolution results in the desired sidebands. Yet
another, very efficient propagation scheme is the so-called
(t ,t8) formalism.45

As the equivalent of the one-particle Floquet states
uFa(t)&, we define a Floquet picture for the fermionic cre-
ation and annihilation operators cn

† , cn , by the time-
dependent transformation

ca~ t !5(
n

^Fa~ t !un&cn . ~20!

The inverse transformation

cn5(
a

^nuFa~ t !&ca~ t ! ~21!

follows from the mutual orthogonality and the completeness
of the Floquet states at equal times.33,34 Note that the right-
hand side of Eq. ~21! becomes t-independent after the sum-
mation. In the interaction picture, the operator ca(t) obeys

c̃a~ t ,t8!5U0
†~ t ,t8!ca~ t !U0~ t ,t8!5e2iea(t2t8)/\ca~ t8!.

~22!
This is easily verified by differentiating the definition in the
first line with respect to t and using that uFa(t)& is a solution
of the eigenvalue equation ~19!. The fact that the initial con-
dition c̃a(t8,t8)5ca(t8) is fulfilled completes the proof. Us-
ing Eqs. ~21! and ~22!, we are able to express the anticom-
mutator of wire operators at different times by Floquet states
and quasienergies:

@cn8 , c̃n
†~ t ,t8!#15(

a
e iea(t2t8)/\^n8uFa~ t8!&

3^Fa~ t !un&. ~23!

This relation together with the spectral decomposition
~15! of the Floquet states allows one to carry out the time
and energy integrals in expression ~13! for the net current
entering the wire from the left lead. Thus, we obtain

IL~ t !5(
k

e2ikVtIL
k , ~24!

with the Fourier components
 25 Septem
ber 2024 14:17:14
IL
k5eGLF (

abk8k9
^Fa ,k81k9u1&^1uFb ,k1k9&Rab ,k82

1
2(

ak8
~^Fa ,k8u1&^1uFa ,k1k8&1^Fa ,k82ku1&^1uFa ,k8& ! f ~ea ,k82mL!

2
i
2(

ak8
~^Fa ,k8u1&^1uFa ,k1k8&2^Fa ,k82ku1&^1uFa ,k8& !PE de

p

f ~e2mL!

e2ea ,k8
G . ~25!
Here, P denotes the principal value of the integral; it does not
contribute to the dc component IL

0 . Moreover, we have in-
troduced the expectation values

Rab~ t !5^ca
† ~ t !cb~ t !& t5Rba* ~ t ! ~26!

5(
k

e2ikVtRab ,k . ~27!

The Fourier decomposition in the last line is possible be-
cause all Rab(t) are expectation values of a linear, dissipa-
tive, periodically driven system and therefore share in the
long-time limit the time-periodicity of the driving field. In
the subspace of a single electron, Rab reduces to the density
matrix in the basis of the Floquet states which has been used
to describe dissipative driven quantum systems in Refs. 34,
36, 37, 46–48.

C. Master equation

The last step toward the stationary current is to find the
Fourier coefficients Rab ,k at asymptotic times. To this end,
we derive an equation of motion for the reduced density
operator %wire(t)5Trleads%(t) by reinserting Eq. ~11! into the
Liouville–von Neumann equation ~9!. We use that to zeroth
order in the molecule–lead coupling the interaction-picture
density operator does not change with time, %̃(t2t ,t0)
'%̃(t ,t0). A transformation back to the Schrödinger picture
results after tracing out the leads’ degrees of freedom in the
master equation

%̇wire~ t !52
i
\

@Hwire~ t !,%wire~ t !#

2
1
\2 E0

`

dtTrleads@Hwire-leads ,@H̃wire-leads~ t

2t ,t !,%wire~ t ! ^ % leads,eq## . ~28!

Since we only consider asymptotic times t0→2` , we have
set the upper limit in the integral to infinity. From Eq. ~28!
follows directly an equation of motion for the Rab(t). Since
all the coefficients of this equation, as well as its asymptotic
solution, are T-periodic, we can split it into its Fourier com-
ponents. Finally, we obtain for the Rab ,k the inhomogeneous
set of equations
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i
\

~ea2eb1k\V !Rab ,k5
GL

2 (
k8

S (
b8k9

^Fb ,k81k9u1&^1uFb8,k1k9&Rab8,k81 (
a8k9

^Fa8,k81k9u1&^1uFa ,k1k9&Ra8b ,k8

2^Fb ,k82ku1&^1uFa ,k8& f ~ea ,k82mL!2^Fb ,k8u1&^1uFa ,k81k& f ~eb ,k82mL!D
1same terms with the replacement $GL ,mL ,u1&^1u%→$GR ,mR ,uN&^N u%. ~29!
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For a consistent Floquet description, the current formula to-
gether with the master equation must obey class invariance.
Indeed, the simultaneous transformation with Eq. ~18! of
both the master equation ~29! and the current formula ~25!
amounts to a mere shift of summation indices and, thus,
leaves the current as a physical quantity unchanged.

For the typical parameter values used in the following, a
large number of sidebands contributes significantly to the
Fourier decomposition of the Floquet modes uFa(t)&. Nu-
merical convergence for the solution of the master equation
~29!, however, is already obtained by just using a few side-
bands for the decomposition of Rab(t). This keeps the nu-
merical effort relatively small and justifies a posteriori the
use of the Floquet representation ~21!. Yet we are able to
treat the problem beyond a rotating-wave approximation.

D. Average current

Equation ~24! implies that the current IL(t) obeys the
time-periodicity of the driving field. Since we consider here
excitations by a laser field, the corresponding frequency lies
in the optical or infrared spectral range. In an experiment one
will thus only be able to measure the time average of the
current. For the net current entering through the left contact
it is given by

Ī L5IL
05eGL(

ak F(
bk8

^Fa ,k81ku1&^1uFb ,k8&Rab ,k

2^Fa ,ku1&^1uFa ,k& f ~ea ,k2mL!G . ~30!

Mutatis mutandis we obtain for the time-averaged net current
that enters through the right contact

ĪR5eGR(
ak F(

bk8
^Fa ,k81kuN&^N uFb ,k8&Rab ,k

2^Fa ,kuN&^N uFa ,k& f ~ea ,k2mR!G . ~31!

Total charge conservation of the original wire–lead
Hamiltonian ~1! of course requires that the charge on the
wire can only change by current flow, amounting to the con-
tinuity equation Q̇wire(t)5IL(t)1IR(t). Since asymptoti-
cally, the charge on the wire obeys at most the periodic time-
dependence of the driving field, the time-average of Q̇wire(t)
must vanish in the long-time limit. From the continuity equa-
tion one then finds that Ī L1 ĪR50, and we can introduce the
time-averaged current
Ī5 Ī L52 ĪR . ~32!

For consistency, Eq. ~32! must also follow from our ex-
pressions for the average current ~30! and ~31!. In fact, this
can be shown by identifying Ī L1 ĪR as the sum over the
right-hand sides of the master equation ~29! for a5b and
k50,

Ī L1 ĪR5(
a

F i\ ~ea2eb1k\V !Rab ,kG
a5b ,k50

50,

~33!

which vanishes as expected.

E. Rotating-wave approximation

Although we can now in principle compute time-
dependent currents beyond a rotating-wave approximation
~RWA!, it is instructive to see under what conditions one
may employ this approximation and how it follows from the
master equation ~29!. We note that from a computational
viewpoint there is no need to employ a RWA since within the
present approach the numerically costly part is the computa-
tion of the Floquet states rather than the solution of the mas-
ter equation. Nevertheless, our motivation is that a RWA al-
lows an analytical solution of the master equation to lowest
order in the lead–wire coupling G. We will use this solution
in the following to discuss the influence of symmetries on
the G-dependence of the average current.

The master equation ~29! can be solved approximately
by assuming that the coherent oscillations of all Rab(t) are
much faster than their decay. Then it is useful to factorize
Rab(t) into a rapidly oscillating part that takes the coherent
dynamics into account and a slowly decaying prefactor. For
the latter, one can derive a new master equation with oscil-
lating coefficients. Under the assumption that the coherent
and the dissipative time scales are well separated, it is pos-
sible to replace the time-dependent coefficients by their time-
averages. The remaining master equation is generally of a
simpler form than the original one. Because we work here
already with a spectral decomposition of the master equation,
we give the equivalent line of argumentation for the Fourier
coefficients Rab ,k .

It is clear from the master equation ~29! that if

ea2eb1k\V@GL /R , ~34!

then the corresponding Rab ,k emerge to be small and, thus,
may be neglected. Under the assumption that the wire–lead
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couplings are weak and that the Floquet spectrum has no
degeneracies, the RWA condition ~34! is well satisfied except
for

a5b , k50, ~35!

i.e., when the prefactor of the left-hand side of Eq. ~34! van-
ishes exactly. This motivates the ansatz

Rab ,k5Pada ,bdk ,0 , ~36!

which means physically that the stationary state consists of
an incoherent population of the Floquet modes. The occupa-
tion probabilities Pa are found by inserting the ansatz ~36!
into the master equation ~29! and read

Pa5
(k@wa ,k

1 f ~ea ,k2mL!1wa ,k
N f ~ea ,k2mR!#

(k~wa ,k
1 1wa ,k

N !
. ~37!

Thus, the populations are determined by an average over the
Fermi functions, where the weights

wa ,k
1 5GLu^1uFa ,k&u2, ~38!

wa ,k
N 5GRu^N uFa ,k&u2, ~39!

are given by the effective coupling strengths of the kth Flo-
quet sideband uFa ,k& to the corresponding lead. The average
current ~32! is within RWA readily evaluated to read

ĪRWA5e (
a ,k ,k8

wa ,k
1 wa ,k8

N

(k9~wa ,k9
1

1wa ,k9
N

!

3@ f ~ea ,k82mR!2 f ~ea ,k2mL!# . ~40!

III. RECTIFICATION OF THE DRIVING-INDUCED
CURRENT

In the absence of an applied voltage, i.e., mL5mR , the
average force on the electrons on the wire vanishes. Never-
theless, it may occur that the molecule rectifies the laser-
induced oscillating electron motion and consequently a non-
zero dc current through the wire is established. In this section
we investigate such ratchet currents in molecular wires.

As a working model we consider a molecule consisting
of a donor and an acceptor site and N22 sites in between
~cf. Fig. 1!. Each of the N sites is coupled to its nearest
neighbors by a hopping matrix elements D. The laser field
renders each level oscillating in time with a position-
dependent amplitude. The corresponding time-dependent
wire Hamiltonian reads

Hnn8~ t !52D~dn ,n8111dn11,n8!1@En2a~ t !xn#dnn8 ,
~41!

where xn5(N1122n)/2 is the scaled position of site un&,
the energy a(t) equals the electron charge multiplied by the
time-dependent electrical field of the laser and the distance
between two neighboring sites. The energies of the donor
and the acceptor orbitals are assumed to be at the level of the
chemical potentials of the attached leads, E15EN5mL
5mR . The bridge levels En , n52, . . . ,N21, lie EB above
the chemical potential, as sketched in Fig. 1. Later, we will
also study the modified bridge sketched in Fig. 6. We remark
that for the sake of simplicity, intra-atomic dipole excitations
are neglected within our model Hamiltonian.

In all numerical studies, we will use the hopping matrix
element D as the energy unit; in a realistic wire molecule, D
is of the order 0.1 eV. Thus, our chosen wire–lead hopping
rate G50.1D/\ yields eG52.5631025 A and V53D/\
corresponds to a laser frequency in the infrared. Note that for
a typical distance of 5 Å between two neighboring sites, a
driving amplitude A5D is equivalent to an electrical field
strength of 23106 V/cm.

A. Symmetry

It is known from the study of deterministically rocked
periodic potentials49 and of overdamped classical Brownian
motion21 that the symmetry of the equations of motion may
rule out any nonzero average current at asymptotic times.
Thus, before starting to compute ratchet currents, let us first
analyze what kind of symmetries may prevent the sought-
after effect. Apart from the principle interest, such situations
with vanishing average current are also of computational rel-
evance since they allow one to test numerical implementa-
tions.

The current formula ~25! and the master equation ~29!
contain, besides Fermi factors, the overlap of the Floquet
states with the donor and the acceptor orbitals u1& and uN&.
Therefore, we focus on symmetries that relate these two. If
we choose the origin of the position space at the center of the
wire, it is the parity transformation P:x→2x that exchanges
the donor with the acceptor, u1&↔uN&. Since we deal here
with Floquet states uFa(t)&, respectively, with their Fourier
coefficients uFa ,k&, we must also take into account the time
t . This allows for a variety of generalizations of the parity
that differ by the accompanying transformation of the time
coordinate. For a Hamiltonian of the structure ~41!, two sym-
metries come to mind: a(t)52a(t1p/V) and a(t)52a
(2t). Both are present in the case of a purely harmonic
driving, i.e., a(t)}sin(Vt). We shall derive their conse-
quences for the Floquet states in the Appendix and shall
argue here why they yield a vanishing average current within
the present perturbative approach.

1. Generalized parity
As a first case, we investigate a driving field that obeys

a(t)52a(t1p/V). Then, the wire Hamiltonian ~41! is in-
variant under the so-called generalized parity transformation

SGP :~x ,t !→~2x ,t1p/V !. ~42!

Consequently, the Floquet states are either even or odd under
this transformation, i.e., they fulfill the relation ~A5!, which
reduces in the tight-binding limit to

^1uFa ,k&5sa~21 !k^N uFa ,k&, ~43!

where sa561, according to the generalized parity of the
Floquet state uFa(t)&.

The average current Ī is defined in Eq. ~32! by the cur-
rent formulas ~30! and ~31! together with the master equation
~29!. We apply now the symmetry relation ~43! to them in
order to interchange donor state u1& and acceptor state uN&. In
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addition we substitute in both the master equation and the
current formulas Rab ,k by R̃ab ,k5sasb(21)kRab ,k . The
result is that the new expressions for the current, including
the master equation, are identical to the original ones except
for the fact that Ī L , GL and Ī R , GR are now interchanged
~recall that we consider the case mL5mR). Therefore, we can
conclude that

Ī L
GL

5
Ī R
GR
, ~44!

which yields together with the continuity relation ~32! a van-
ishing average current Ī50.

2. Time-reversal parity

A further symmetry is present if the driving is an odd
function of time, a ( t)52a (2 t). Then, as detailed in the
Appendix, the Floquet eigenvalue equation ~19! is invariant
under the time-reversal parity

STP :~F ,x , t !→~F*,2x ,2 t !, ~45!

i.e., the usual parity together with time-reversal and complex
conjugation of the Floquet states F. The consequence for the
Floquet states is the symmetry relation ~A7! which reads for
a tight-binding system

^1uFa ,k&5^N uFa ,k&*5^Fa ,kuN &. ~46!

Inserting this into the current formulas ~30! and ~31! would
yield, if all Rab ,k were real, again the balance condition ~44!
and, thus, a vanishing average current. However, the Rab ,k
are in general only real for GL5GR50, i.e., for very weak
coupling such that the condition ~34! for the applicability of
the rotating-wave approximation holds. Then, the solution of
the master equation is dominated by the RWA solution ~36!,
which is real. In the general case, the solution of the master
equation ~29! is however complex and consequently the
symmetry ~46! does not inhibit a ratchet effect. Still we can
conclude from the fact that within the RWA the average cur-
rent vanishes, that Ī is of the order G2 for G→0, while it is
of the order G for broken time-reversal symmetry.

FIG. 2. Shape of the harmonic mixing field a ( t) in Eq. ~47! for A 152A 2 for
different phase shifts f. For f50, the field changes its sign for t→2 t
which amounts to the time-reversal parity ~45!.
B. Rectification from harmonic mixing

The symmetry analysis in Sec. III A explains that a sym-
metric bridge like the one sketched in Fig. 1 will not result in
an average current if the driving is purely harmonic since a
nonzero value is forbidden by the generalized parity ~42!. A
simple way to break the time-reversal part of this symmetry
is to add a second harmonic to the driving field, i.e., a con-
tribution with twice the fundamental frequency V, such that
it is of the form

a~ t !5A 1 sin~V t !1A 2 sin~2V t1f !, ~47!

as sketched in Fig. 2. While now shifting the time t by a half
period p/V changes the sign of the fundamental frequency
contribution, the second harmonic is left unchanged. The
generalized parity is therefore broken and we find generally a
nonvanishing average current.

Here, the phase shift f plays a subtle role. For f50 ~or
equivalently any multiple of p! the time-reversal parity is
still present. Thus, according to the above-mentioned sym-
metry considerations, the current vanishes within the
rotating-wave approximation. However, as discussed earlier,
we expect beyond RWA for small coupling a current Ī}G2.
Figure 3 confirms this prediction. Yet one observes that al-

FIG. 3. Average current response to the harmonic mixing signal with am-
plitudes A 152A 25D , as a function of the coupling strength for different
phase shifts f. The remaining parameters are V510D/\ , EB55D , kBT
50.25D , N510. The dotted line is proportional to G; it represents a current
which is proportional to G2.

FIG. 4. Average current response to the harmonic mixing signal ~47! for
V510D/\ and phase f5p/2. The wire–lead coupling strength is G
50.1D , the temperature kBT50.25D , and the bridge height EB55D . The
arrows indicate the driving amplitudes used in Fig. 5.
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ready a small deviation from f50 is sufficient to restore the
usual weak coupling behavior, namely a current which is
proportional to the coupling strength G.

The average current for such a harmonic mixing situa-
tion is depicted in Fig. 4. For large driving amplitudes, it is
essentially independent of the wire length and, thus, a wire
that consists of only a few orbitals, mimics the behavior of
an infinite tight-binding system. Figure 5 shows the length
dependence of the average current for different driving
strengths. The current saturates as a function of the length at
a nonzero value. The convergence depends on the driving
amplitude and is typically reached once the number of sites
exceeds a value of N'10. For low driving amplitudes the
current response is more sensitive to the wire length.

C. Rectification in ratchet-like structures

A second possibility to realize a finite dc current is to
preserve the symmetries of the time-dependent part of the
Hamiltonian by employing a driving field of the form

a~ t !5A sin~Vt !, ~48!

while making the level structure of the molecule asymmetric.
Asymmetry in molecular structures can be achieved in many
ways, and was explored as a source of molecular rectifying
since the early paper of Aviram and Ratner.50 In general, it
can be controlled by attaching different chemical groups to
the opposite sides of an otherwise symmetric molecular

FIG. 6. Level structure of the wire ratchet with N58 atomic sites, i.e.,
N g52 asymmetric molecular groups. The bridge levels are EB above the
donor and acceptor levels and are shifted by 6E S/2.

FIG. 5. Length dependence of the average current for harmonic mixing with
phase f5p/2 for different driving amplitudes; the ratio of the driving am-
plitudes is fixed by A152A2 . The other parameters are as in Fig. 4; the
dotted lines serve as a guide to the eye.
wire.8,51 A tight-binding model of such a structure is
sketched in Fig. 6.35,52 In this molecular wire model, the
inner wire states are arranged in N g groups of three, i.e., N
2253N g . The levels in each such group are shifted by
6E S/2, forming an asymmetric saw-tooth-like structure.

Figure 7 shows for this model the stationary time-
averaged current Ī as a function of the driving amplitude A .
In the limit of a very weak laser field, we find Ī}A2E S , as
can be seen from Fig. 8. This behavior is expected from
symmetry considerations: On one hand, the asymptotic cur-
rent must be independent of any initial phase of the driving
field and therefore is an even function of the field amplitude
A . On the other hand, Ī vanishes for zero step size E S since
then both parity symmetries are restored. The A2 dependence
indicates that the ratchet effect can only be obtained from a
treatment beyond linear response. For strong laser fields, we
find that Ī is almost independent of the wire length. If the
driving is moderately strong, Ī depends in a short wire sen-
sitively on the driving amplitude A and the number of asym-
metric molecular groups N g ; even the sign of the current
may change with N g , i.e., we find a current reversal as a
function of the wire length. For long wires that comprise five
or more wire units ~corresponding to 17 or more sites!, the

FIG. 7. Time-averaged current through a molecular wire that consists of N g
bridge units as a function of the driving strength A . The bridge parameters
are EB510D , E S5D , the driving frequency is V53D/\ , the coupling to
the leads is chosen as GL5GR50.1D/\ , and the temperature is kBT
50.25D . The arrows indicate the driving amplitudes used in Fig. 9.

FIG. 8. Absolute value of the time-averaged current in a ratchet-like struc-
ture with N g51 as a function of A2E S demonstrating the proportionality to
A2E S for small driving amplitudes. All other parameters are as in Fig. 7. At
the dips on the right-hand side, the current Ī changes its sign.
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average current becomes again length-independent, as can be
observed in Fig. 9. This identifies the current reversal as a
finite size effect.

Figure 10 depicts the average current versus the driving
frequency V, exhibiting resonance peaks as a striking fea-
ture. Comparison with the quasienergy spectrum reveals that
each peak corresponds to a nonlinear resonance between the
donor/acceptor and a bridge orbital. While the broader peaks
at \V'EB510D match the 1:1 resonance ~i.e., the driving
frequency equals the energy difference!, one can identify the
sharp peaks for \V&7D as multiphoton transitions. Owing
to the broken spatial symmetry of the wire, one expects an
asymmetric current–voltage characteristic. This is indeed the
case as depicted with the inset of Fig. 10.

IV. CONCLUSIONS

With this work we have detailed our recently presented
approach35 for the computation of the current through a time-
dependent nanostructure. The Floquet solutions of the iso-
lated wire provide a well-adapted basis set that keeps the
numerical effort for the solution of the master equation rela-

FIG. 9. Time-averaged current as a function of the number of bridge units
Ng , N53Ng12, for the laser amplitudes indicated in Fig. 7. All other
parameters are as in Fig. 7. The connecting lines serve as a guide to the eye.

FIG. 10. Time-averaged current as a function of the angular driving fre-
quency V for Ng51. All other parameters are as in Fig. 7. The inset displays
the dependence of the average current on an externally applied static voltage
V , which we assume here to drop solely along the molecule. The driving
frequency and amplitude are V53D/\ ~cf. arrow in main panel! and A
5D , respectively.
tively low. This allows an efficient theoretical treatment that
is feasible even for long wires in combination with strong
laser fields.

With this formalism we have investigated the possibility
to rectify with a molecular wire an oscillating external force
brought about by laser radiation, thereby inducing a non-
vanishing average current without any net bias. A general
requirement for this effect is the absence of any reflection
symmetry, even in a generalized sense. A most significant
difference between ‘‘true’’ ratchets and molecular wires stud-
ied here is that the latter lack the strict spatial periodicity
owing to their finite length. However, as demonstrated ear-
lier, already relatively short wires that consist of approxi-
mately 5 to 10 units can mimic the behavior of an infinite
ratchet. If the wire is even shorter, we find under certain
conditions a current reversal as a function of the wire length,
i.e., even the sign of the current may change. This demon-
strates that the physics of a coherent quantum ratchet is
richer than the one of its units, i.e., the combination of co-
herently coupled wire units, the driving, and the dissipation
resulting from the coupling to leads bears new intriguing
effects. A quantitative analysis of a tight-binding model has
demonstrated that the resulting currents lie in the range of
1029 A and, thus, can be measured with today’s techniques.

An experimental realization of the phenomena discussed
in this paper is obviously not a simple problem. The require-
ment for asymmetric molecular structures is easily realized
as discussed earlier, however difficulties associated with the
many possible effects of junction illumination have to be
surmounted.53 First is the issue of bringing the light into the
junction. This is a difficult problem in a break-junction setup
but possible in a STM configuration. Second, in addition to
the mechanism discussed in this paper, which is associated
with modulation of electronic states on the molecular bridge,
other processes involving excitation of the metal surface may
also affect electron transport. A complete theory of illumi-
nated molecular junction should consider this possible effect.
Also, part of the junction response to an oscillating electro-
magnetic field may involve displacement currents associated
with the junction capacity. Finally, junction heating may con-
stitute a severe problem when strong electromagnetic fields
are applied. On the other hand, the light-induced rectification
phenomenon discussed in this paper is generic in the sense
that it does not require a particular molecular electronic
structure as long as an inherent molecular asymmetry is
present. The prediction that with proper illumination one
might induce a unidirectional current without applied voltage
suggests a possibility to observe the effect without the back-
ground of a direct current component.

An alternative experimental realization of the presented
results is possible in semiconductor heterostructures, where,
instead of a molecule, coherently coupled quantum dots54
form the central system. A suitable radiation source that
matches the frequency scales in this case must operate in the
microwave spectral range.
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tien Camalet, Igor Goychuk, Gert-Ludwig Ingold, and Ger-



3292 J. Chem. Phys., Vol. 118, No. 7, 15 February 2003 Lehmann et al.

 25 Septem
ber 2024 14:17:14
hard Schmid. This work has been supported by Sonderfors-
chungsbereich 486 of the Deutsche Forschungsgemeinschaft
and by the Volkswagen-Stiftung under Grant No. I/77 217.

APPENDIX: PARITY OF A SYSTEM UNDER DRIVING
BY A DIPOLE FIELD

Although we describe in this work the molecule within a
tight-binding approximation, it is more convenient to study
its symmetries as a function of a continuous position and to
regard the discrete sites as a special case. Let us first consider
a Hamiltonian that is an even function of x and, thus, is
invariant under the parity transformation P:x→2x . Then,
its eigenfunctions wa can be divided into two classes: even
and odd ones, according to the sign in wa(x)56wa(2x).

Adding a periodically time-dependent dipole force xa(t)
to such a Hamiltonian evidently breaks parity symmetry
since P changes the sign of the interaction with the radiation.
In a Floquet description, however, we deal with states that
are functions of both position and time—we work in the
extended space $x ,t%. Instead of the stationary Schrödinger
equation, we address the eigenvalue problem

H~x ,t !F~x ,t !5e F~x ,t ! ~A1!

with the so-called Floquet Hamiltonian given by

H~ t !5H0~x !1xa~ t !2i\
]

]t , ~A2!

where we assume a symmetric static part, H0(x)5H0
(2x). Our aim is now to generalize the notion of parity to
the extended space $x ,t% such that the overall transformation
leaves the Floquet equation ~A1! invariant. This can be
achieved if the shape of the driving a(t) is such that an
additional time transformation ‘‘repairs’’ the acquired minus
sign. We consider two types of transformation: generalized
parity and time-reversal parity. Both occur for purely har-
monic driving, a(t)5sin(Vt). In the following two sections
we derive their consequences for the Fourier coefficients

Fk~x !5
1
T E0

T
dt e ikVtF~x ,t ! ~A3!

of a Floquet states F(x ,t).

1. Generalized parity

It has been noted55–57 that a Floquet Hamiltonian of the
form ~A2! with a(t)5sin(Vt) may possess degenerate
quasienergies due to its symmetry under the so-called gener-
alized parity transformation

SGP : ~x ,t !→~2x ,t1p/V !, ~A4!

which consists of spatial parity plus a time shift by half a
driving period. This symmetry is present in the Floquet
Hamiltonian ~A2!, if the driving field obeys a(t)52a(t
1p/V), since then SGP leaves the Floquet equation invari-
ant. Owing to SGP2 51, we find that the corresponding Floquet
states are either even or odd, SGPF(x ,t)5F(2x ,t1p/V)
56F(x ,t). Consequently, the Fourier coefficients ~A3!
obey the relation

Fk~x !56~21 !kFk~2x !. ~A5!
2. Time-inversion parity

A further symmetry is found if a is an odd function of
time, a(t)52a(2t). Then, time inversion transforms the
Floquet Hamiltonian ~A2! into its complex conjugate so that
the corresponding symmetry is given by the antilinear trans-
formation

STP : ~F ,x ,t !→~F*,2x ,2t !. ~A6!

This transformation represents a further generalization of the
parity P; we will refer to it as time-inversion parity since in
the literature the term generalized parity is mostly used in the
context of the transformation ~A4!.

Let us now assume that that the Floquet Hamiltonian is
invariant under the transformation ~A6!, H(x ,t)5H*(2x ,
2t), and that F(x ,t) is a Floquet state, i.e., a solution of the
eigenvalue equation ~A1! with quasienergy e. Then, F*
(2x ,2t) is also a Floquet state with the same quasienergy.
In the absence of any degeneracy, both Floquet states must
be identical and, thus, we find as a consequence of the time-
inversion parity STP that F(x ,t)5F*(2x ,2t). This is not
necessarily the case in the presence of degeneracies, but then
we are able to choose linear combinations of the ~degenerate!
Floquet states which fulfill the same symmetry relation.
Again we are interested in the Fourier decomposition ~A3!
and obtain

Fk~x !5Fk*~2x !. ~A7!

The time-inversion discussed here can be generalized by
an additional time-shift to read t→t02t . Then, we find by
the same line of argumentation that Fk(x) and Fk*(2x) dif-
fer at most by a phase factor. However, for convenience one
may choose already from the start the origin of the time axis
such that t050.
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H. v. Löhneysen, Phys. Rev. Lett. 88, 176804 ~2002!.
9A. Nitzan, Annu. Rev. Phys. Chem. 52, 681 ~2001!.
10P. Hänggi, M. Ratner, and S. Yaliraki, Chem. Phys. 281, 111 ~2002!.
11P. Hänggi and R. Bartussek, Lecture Notes in Physics, edited by J. Parisi,
S. C. Müller, and W. W. Zimmermann ~Springer, Berlin, 1996!, Vol. 476,
pp. 294–308.

12R. D. Astumian, Science 276, 917 ~1997!.
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