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The phenomenon of frequency and phase synchronization in stochastic systems requires a revision
of concepts originally phrased in the context of purely deterministic systems. Various definitions of
an instantaneous phase are presented and compared with each other with special attention paid to
their robustness with respect to noise. We review the results of an analytic approach describing
noise-induced phase synchronization in a thermal two-state system. In this context exact expressions
for the mean frequency and the phase diffusivity are obtained that together determine the average
length of locking episodes. A recently proposed method to quantify frequency synchronization in
noisy potential systems is presented and exemplified by applying it to the periodically driven noisy
harmonic oscillator. Since this method is based on a threshold crossing rate pioneered by Rice the
related phase velocity is termed the Rice frequency. Finally, we discuss the relation between the
phenomenon of stochastic resonance and noise-enhanced phase coherence by applying the
developed concepts to the periodically driven bistable Kramers oscillator. © 2003 American
Institute of Physics. @DOI: 10.1063/1.1500497#
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Studying synchronization phenomena in stochastic sys-
tems necessitates a revision of concepts originally devel-
oped for deterministic dynamics. This statement becomes
obvious when considering the famous phase-locking
effect;1,2 unbounded fluctuations that occur, for instance,
in Gaussian noise will always prevent the existence of a
strict bound for the asymptotic phase difference of two
systems. Nevertheless, a reformulation of the synchroni-
zation phenomenon in the presence of noise is possible by
quantifying the average duration ŠT lock‹ of locking ep-
ochs that are disrupted by phase slips. In case that
ŠT lock‹šT0 , where T0 is some characteristic time of the
dynamics, e.g., the period of an external drive or the in-
verse of some intrinsic natural frequency, it is justified to
speak about effective phase synchronization.

I. INTRODUCTION

From the conceptual point of view different degrees of
synchronization can be distinguished: complete synchron-
ization,3 generalized synchronization,4 lag synchronization,5
phase synchronization,6,7 and burst ~or train! synchron-
ization.8 In the following, we focus our attention on phase
synchronization in stochastic systems that has attracted re-
cent interest for the following reasons: in many practical ap-
plications the dynamics of a system, though not perfectly
periodic, can still be understood as the manifestation of a
stochastically modulated limit cycle.9,10 As examples, we
mention neuronal activity,11 the cardiorespiratory system,12
or population dynamics.13

Given a data set or some model dynamics there exists a
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variety of methods to define an instantaneous phase f(t) of
a signal or a dynamics. For a clear cut separation of deter-
ministic and noise-induced effects it is essential to assess the
robustness of each of these different phase definitions with
respect to noise. Section II is devoted to this issue. Since we
do not distinguish between dynamical and measurement
noise14 our treatment is also tied to the question how syn-
chronization can be detected within any realistic experimen-
tal data.

The synchronization properties of a noisy system can be
classified in a hierarchical manner: stochastic phase locking
always implies frequency locking while the converse is not
true in general. On the other hand, small phase diffusivity is
necessary but not sufficient for phase synchronization. This
will become clear in Sec. III when we review an analytic
approach15 to stochastic phase synchronization developed for
a thermal two-state system with transitions described by
noise-controlled rates.

A recently proposed method16 to measure the average
phase velocity or frequency in stochastic oscillatory systems
based on Rice’s rate formula for threshold crossings17,18 will
be presented and discussed in Sec. IV. The Rice frequency
proves to be useful especially in underdamped situations
whereas the overdamped limit yields only finite values for
colored noise. Its relation to the frequency based on the
widely used Hilbert phase ~cf. Sec. II C! is discussed and
illustrated.

In the final Sec. V we connect the topic of stochastic
resonance ~SR! ~Refs. 19, 20! with results on noise-enhanced
phase coherence.21 To this end we study the synchronization
properties of the bistable Kramers oscillator driven exter-
nally by a periodic signal.22 As a complement to the fre-
quently investigated overdamped limit, we consider here the
© 2003 American Institute of Physics
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underdamped case employing the methods presented in Sec.
IV.

II. PHASE DEFINITIONS IN THE PRESENCE OF
NOISE

A. Natural phase fN

A phase occurs in a quite natural way when describing
the cyclic motion of an oscillator in phase space. Self-
sustained oscillators are nonlinear systems that asymptoti-
cally move on a limit cycle. The instantaneous position in
phase space can be represented through instantaneous ampli-
tude aN(t) and phase fN(t). A systematic approach to relate
the amplitude and phase dynamics to the dynamics formu-
lated in original phase space was developed by Bogoliubov
and Mitropolski.23 Their method starts from the following
decomposition of the dynamics:

ẋ5v , ~1!

v̇52v0
2 x1 f ~x ,v ,t ,j , . . . !, ~2!

where the function f comprises all terms of higher than first
order in x ~nonlinearities!, velocity dependent terms ~fric-
tion!, and noise. In their work Bogoliubov and Mitropolski
considered the function f to be a small perturbation of order
e which means that the system is weakly nonlinear and the
noise or the external forces are comparatively small as not to
distort the harmonic signal too much. The definition of an
instantaneous phase proceeds by expressing the position x
and the velocity v in polar coordinates aN and fN,

x~ t !5aN~ t !cos@fN~ t !# , ~3!

v~ t !52v0aN~ t !sin@fN~ t !# ~4!

which yields by inversion24

aN~ t !5Ax2~ t !1@v~ t !/v0#
2, ~5!

fN~ t !5arctanF2
v~ t !/v0

x~ t ! G . ~6!

It should be noted that a meaningful clockwise rotation in the
x , v-plane determines angles to be measured in a specific
way depending on the sign of v0 . Using Eqs. ~3!, ~4!, ~5!,
and ~6! it is straightforward to transform the dynamics in x
and v , Eqs. ~1! and ~2!, into the following dynamics for aN

and fN:2,25

ȧN52
f ~aN cos~fN!,2v0 aN sin~fN!,t ,j !

v0
sin~fN!, ~7!

ḟN5v02
f ~aN cos~fN!,2v0 aN sin~fN!,t ,j !

v0aN cos~fN!.

~8!

The line x50 corresponds to angles fN5p/21np ,nPN .
As can be read off from Eq. ~8!, the phase velocity always
assumes a specific value for x50,26 i.e.,

ḟN~x50 !5v0 . ~9!

This has the following remarkable consequence. We see that
even in the presence of noise passages through zero in the
upper half plane v.0 are only possible from x,0 to x
.0, in the lower half plane only from x.0 to x,0. This
insight becomes even more obvious from a geometrical in-
terpretation: as the noise exclusively acts on the velocity v ,
cf. Eq. ~2!, it can only effect changes in the vertical direction
~in x , v-space!. Along the vertical line x50, however, the
angular motion possesses no vertical component while radial
motion is solely in the vertical direction and, therefore, only
affected by the noise. From this we conclude that between
subsequent zero crossings of the coordinate with positive
velocity the phase has increased by an amount of 2p. This
finding establishes a simple operational instruction how to
measure the average phase velocity of stochastic systems.
We will come back to this point in Sec. IV.

B. Linear interpolating phase fL

As we have just seen zero crossings can be utilized to
mark the completion of a cycle. This can be generalized to
the crossings of an arbitrary threshold with positive velocity
or even to the crossing of some separatrix. In this connection
the concept of isochrones of a limit cycle has to be
mentioned.27 All of these extensions of the natural phase
require a thorough knowledge of the dynamics and the phase
space structure. In many practical applications, however, the
detailed phase portrait is not known. Instead, one is given a
data series exhibiting a repetition of characteristic marker
events, e.g., the spiky peaks of neural activity, the R-peaks of
an electrocardiogram, or pronounced maxima as found in
population dynamics. These marker events can be used to
pinpoint the completion of a cycle, k , and the beginning of a
subsequent one, k11. It is then possible to define an instan-
taneous phase fL(t) by linear interpolation, i.e.,

fL~ t !5
t2tk

tk112tk
2p1k 2p ~ tk<t,tk11!, ~10!

where the times tk are fixed by the marker events. Reexpress-
ing the time series x(t) of the system as

x~ t !5aL~ t ! cos@fL~ t !# , ~11!

then defines an instantaneous amplitude aL(t). The benefit of
such a treatment is to reveal a synchronization of two or
more such signals; whereas the instantaneous amplitudes
and, therefore, the time series might look rather different, the
phase evolution can display quite some similarity. If the av-
erage growth rates of phases match ~notwithstanding the fact
that phases may diffuse rapidly! the result is termed fre-
quency locking. Small phase diffusion, in addition to fre-
quency locking, means that phases are practically locked
during long episodes that occasionally are disrupted by phase
slips caused by sufficiently large fluctuations. This elucidates
the meaning of effective phase synchronization in stochastic
systems.

As should be clear from its definition the linear phase
relies on the clear identification of marker events. With in-
creasing noise intensity this identification will fail since suf-
ficiently large fluctuations may either mask true or imitate
spurious marker events. On the other hand, in some cases,
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e.g., for excitable systems, fluctuations can be essential for
the generation of marker events, i.e., marker events may be
noise-induced.

As a final remark, let us mention that relative maxima of
a differentiable signal x(t) correspond to positive-going ze-
ros of its derivative ẋ(t). However, this seemingly trivial
connection is overshadowed by complications if the deriva-
tive itself is a nonsmooth function that does not allow to
easily extract the number of zero crossings ~cf. Sec. IV and
Fig. 5!.

C. Hilbert phase fH

In situations where a measured signal x(t) exhibits a lot
of irregularity it is not quite clear how to define a phase—the
signal might look far from a perturbed harmonic or even
periodic one and marker events cannot be identified unam-
biguously. The concept of the analytic signal as introduced
by Gabor28 offers a way to relate the signal x(t) to an instan-
taneous amplitude aH(t) and a phase fH(t). The physical
relevance of a such constructed phase is a question of its
own; for narrow-band signals or harmonic noise it has a clear
physical meaning whereas the general case requires further
considerations ~cf. Appendix A2 in Ref. 29!.

The analytic signal approach extends the real signal
x(t) to a complex one z(t)5x(t)1i y(t)5aH(t) exp@fH(t)#
with the imaginary part y(t) resulting from an appropriate
transformation of the real part x(t). Instead of taking y(t)
52 ẋ(t)/v0 as for the natural phase we search y(t) as the
result of a convolution of x(t) with some appropriate kernel
K(t), i.e.,

y~ t !5E
2`

`

x~t !K~ t2t !dt . ~12!

Now, appropriate means that the kernel has to be chosen
such that the method reproduces the phase of a harmonic
signal. Applying the convolution theorem it is easy to see
that the Fourier transform Y (v) of the transformed signal
y(t) should be related to the Fourier transform X(v) of the
original signal x(t) by a phase shift that transforms a cosine
into a sine, i.e.,

Y ~v !52i sgn~v !X~v !, ~13!

where sgn(•) is the sign function. By an inverse Fourier
transform we thus find that K(t)51/(pt) which implies that
y(t) is related to x(t) via the Hilbert transform,

y~ t !5xH~ t !5
1
p
PE

2`

` x~t !

t2t
dt . ~14!

The symbol P in front of the integral in Eq. ~14! is a re-
minder that the integral has to be evaluated in the sense of
the Cauchy principal value. The fact that the Hilbert phase,24

fH~ t !5arctanFxH~ t !
x~ t ! G ~15!

arises as the result of a convolution instead of a differentia-
tion makes it less sensitive to short-lived small fluctuations.
This observation was already reported by Vainstein and
Vakman.30
Moreover, the construction by a convolution brings the
Hilbert phase in close contact with the wavelet transform that
is widely used to compute a time-dependent spectral decom-
position of nonstationary signals.31 By virtue of Eq. ~13! it is
evident that the Fourier transform of the analytic signal Z(v)
satisfies the relation,

Z~v !5@11sgn ~v !# X~v !52 u~v ! X~v !, ~16!

where u(•) is the step function. Equation ~16! shows that all
positive Fourier components of the original signal contribute
with equal weights. Selecting, instead, a certain frequency
band by using a subsequent Gaussian filter ~in frequency
space! corresponds to a convolution with the Morlet wavelet
~Gabor function!. Generalized phase definitions and the
wavelet transform were employed to detect phase-
synchronous activity in the brain32 and in a chaotic laser
array.33

D. Discrete phase fD

Multistability is one of the crucial consequences of non-
linearity and plays a dominant role for many important top-
ics, e.g., evolution, information processing and communica-
tion, pattern formation, etc. Frequently, fluctuations play a
benificial role in that they effect transitions between the dif-
ferent states that are directly tied to the performance of a
task. The phenomenon of SR,19,20 for instance, can be ob-
served in a bistable system. Typically, the information that is
processed in a bistable system does not require to keep track
of a continuum but is rather contained in the switching
events between the two states.19,34 Hence, it is desirable to
link the dichotomous switching process to a description in
terms of an instantaneous phase. Since switching to and fro
constitutes one cycle and, thus, corresponds to a phase incre-
ment of 2p the linear interpolating phase fL can be readily
constructed employing switchings as marker events of half-
cycles. Furthermore, the Hilbert phase can be easily com-
puted. Alternatively, it is possible to use the switching pro-
cess ~between 21 and 11! and construct a discrete
instantaneous phase fD(t) changing discontinuously at the
switching events. The last-mentioned instantaneous phase is
obtained simply by multiplying the number of switches ~or
the number of renewals in renewal theory35! k(t) by the
value p, i.e., fD(t)5k(t)p . The instantaneous state, in turn,
can be obtained from the discrete phase via x(t)
5cos@fD(t)#. In Fig. 1 we show how the three alternative
phases fL, fH, and fD agree in the description of a dichoto-
mous switching process. Note that the natural phase fN(t) is
related to the underlying process in real phase space and,
hence, cannot be deduced from the two-state signal. The ad-
vantage of the discrete phase is that it allows an analytic
treatment of effective phase synchronization in stochastic
bistable systems. This will be addressed in Sec. III.

The robustness of the discrete phase with respect to
noise comes into play not when making the ‘‘transition’’
from the switching process to the instantaneous phase fD(t)
but when constructing the switching events from the continu-
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ous stochastic trajectory. At the level of a Markovian switch-
ing process noise enters only via its intensity that changes
transition rates.

E. Phases in higher dimensional systems

In systems of dimension d.1 there are various ways to
define one or even more instantaneous phases: projecting the
2D-dimensional phase space onto two-dimensional surfaces,
choosing Poincaré sections or computing the Hilbert phase
for each of the coordinates. Many of the methods can only be
done numerically and always require to consider the dynam-
ics in detail in order to check whether a made choice is
appropriate. We will not elaborate these details here but refer
to Ref. 29 ~especially Chap. 10!, and references therein.

III. ANALYTIC TREATMENT OF A DRIVEN NOISY
BISTABLE SYSTEM
A. Setup of the doubly dichotomous system

In this section we consider a stochastic bistable system,
for instance a noisy Schmitt trigger, which is driven exter-
nally either by a dichotomous periodic process ~DPP! or a
dichotomous Markovian process ~DMP!. The dichotomous
character of the input shall be either due to a two-state fil-
tering or be rooted in the generation mechanism of the sig-
nal. The bistable system generates a dichotomous output sig-
nal. For convenience we choose to label input and output
states with values 11 and 21, respectively. The DPP is
completely specified by its angular frequency V5p/T0 ,
where T0 is the half-period. Correspondingly, the DMP is
fully characterized by its average switching rate g5T0

21.
Since both input and output are two-state variables it is

possible to study phase synchronization in terms of discrete
input and output phases f in(t) and fout(t), respectively.
Consequently, also the phase difference f(t)5fout(t)
2f in(t) is a discrete quantity that can assume positive and
negative multiples of p. From the definition of the phase
difference f it follows that each transition between the out-
put states increases f by p, whereas each transition between
the input states reduces f by p.

FIG. 1. The linear interpolating phase, the Hilbert phase, and the discrete
phase agree in the description of a dichotomous switching process.
Transitions between the input states are governed by the
rates,

W6
DMP5g and W6

DPP~ t !5 (
n52`

`

d~ t2tn!, ~17!

where a single realization of the DPP is characterized by
deterministic switching times tn5(np1w0)V21. Here, w0
is the initial phase of the input signal rendering the periodic
process nonstationary ~cyclostationary!. To achieve strict sta-
tionarity we average the periodic dynamics with respect to
w0 which is equidistributed over the interval @0,2p!.

In the absence of an input signal the two states are sup-
posed to be symmetric and the hopping rates for both direc-
tions are identical and completely determined by a prefactor
a0 , the energy barrier DU , and the noise intensity D . The
central assumption of our analysis is that the input signal
modifies the transition rates of the output solely through the
phase difference f in the following way:

Wout~f !5g~f !5a0 expF2
DU1A s~f !

D G , ~18!

where the function s(f)5cos(f)561 and the amplitude
A,DU50.25 to keep the signal subthreshold. This defini-
tion introduces two noise-dependent time scales,

a15a~D ! expS 2
A
D D and a25a~D ! expS AD D ~19!

with a(D)5a0 exp(2DU/D). The function s(f) favors
phase differences with even multiples of p, i.e., in-phase
configurations.

A description of the stochastic evolution of the phase
difference is based on the probabilities P(f ,tuf0 ,t0) to ex-
perience a phase difference f at time t conditioned by a
phase difference f0 at time t0 . Due to the discrete character
of f ~allowing only for multiples of p) we briefly denote
Pk5P(f5kp ,tuf0 ,t0). Then the probabilistic evolution
operator reads with gk5g(f5kp) from ~18!,

]Pk~ t !
]t 5L̂Pk~ t !1gk21Pk21~ t !2gkPk~ t !. ~20!

While the last two terms on the right-hand side of Eq. ~20!
account for the change of f due to transitions of the output
the operator L̂ reflects switches of the input,

L̂Pk5W6 ~Pk112Pk!, ~21!

with the related input switching rates W6 given by Eq. ~17!.
As mentioned above the nonstationary ~cyclostationary!
character of the DPP can be cured by averaging over the
initial phase w0 . Since ‘‘temporal’’ and ‘‘spatial’’ contribu-
tions in Eq. ~21! are separable we can perform this average
prior to the calculation of any moment of f yielding

^W6
DPP&w0

5E
0

2p dw0

2p (
n52`

`

dS t2 np1w0

V D5
V

p
. ~22!

From Eq. ~22! we see that the w0-averaged DPP formally
looks equivalent to a DMP with the transition rate V/p. Of
course, initial phase averaging does not really turn a DPP
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into a DMP. The subtle difference is that while f-moments
of the DMP change in time continuously corresponding
f-moments of the DPP ~before the w0-average! are still dis-
continuous, hence, temporal derivatives of functions of ^f&
have to be computed with care before initial phase
averaging.15,36

B. Noise-induced frequency locking

Using standard techniques37 we can derive the evolution
equation for the mean phase difference ^f& from Eq. ~20!,

^ḟ&52^v in&1^vout& ~23!

52^v in&1
p

2 ~a11a2!2
p

2 ~a22a1!^s&. ~24!

Here, ^v in& denotes the average frequency of the input phase
and equals gp for the DMP and V for the DPP. Assuming
higher moments uncoupled, i.e., ^s(f)&}s(^f&), Eq. ~23!
is Adler’s equation25,38 arising in the context of phase lock-
ing. Note that here both the frequency mismatch D
52^v in&1 (p/2) (a11a2) and the synchronization band-
width Ds5(p/2) (a22a1) are noise dependent. This eluci-
dates the opportunity to achieve noise-induced frequency and
effective phase locking. For the short-time evolution a nec-
essary condition for locking is uDu,Ds which defines ‘‘Ar-
nold tongues’’ 1 of synchronization in the A vs D plane.

The kinetic equation for ^s& can be evaluated explicitly
yielding

^ṡ&52F2 ^v in&
p

1a11a2G^s&1a22a1 . ~25!

From Eq. ~25! we see that ^s& approaches a stationary value,

^s*&5
a22a1

2
^v in&

p
1a11a2

~26!

that exactly coincides with the stationary correlation coeffi-
cient between the input and output.41 The relaxation time is
given by t5@2^v in&/p1a11a2#

21. Hence, the stationary
output phase velocity can be achieved from Eq. ~23! by in-
sertion of Eq. ~26! yielding

^vout* &5
p

2 ~a11a2!2
p

2 ~a22a1!^s*&. ~27!

This expression is in agreement with similar results derived
in the context of resonant activation.39 In Fig. 2 we depict the
mean output switching rate ^vout* & as a function of the noise
intensity D for several values of the input signal amplitude
A . With increasing amplitude the region of frequency lock-
ing, i.e., the region of D for which ^vout* &'^v in&, widens ~cf.
also Fig. 9 in Ref. 40!. For most of these intensities the
bistable system possesses rates that do not obey the time
scale matching condition; nevertheless, on the average the
output switching events are entrained by the input signal. As
mentioned before the whole effect is nonlinear. If detuning
becomes too large the output gets desynchronized and re-
turns to its own dynamics.
Besides many alternatives, we defined the width of the
frequency locking region by requiring the slope of the curves
to be less than 30% of the slope for A50 at the point where
the output switching rate coincides with g @or V/p, respec-
tively#, simultaneously disqualifying the initial flat region for
small D . The resulting ‘‘Arnold tongues’’ ~compatible with
data from Refs. 21, 41, 42! are shown in the inset of Fig. 2.
It can be seen that frequency locking necessitates to exceed a
minimal amplitude that shifts to lower values for slower
signals.42 Let us emphasize that the frequency locking region
groups around the noise intensity that satisfies the time scale
matching condition @in our case by definition v in5vout* (D)#;
for a harmonic input this range of D also maximizes the
spectral power amplification, in contrast to values of D
where the signal to noise ratio attains its maximum (D
}DU).19,20

C. Phase locking and effective synchronization

The phenomenon of phase locking can be demonstrated
by considering the diffusion coefficient D of the phase dif-
ference, achieved as the time derivative of the variance
1
2] t@^f

2&2^f&2# . Performing the calculation for both the
DMP and DPP yields

D5Din1
p2

2 F ^vout&
p

2~a22a1!
^fs&2^f&^s&

p G ~28!

with Din5(p2/2) g for the DMP and Din50 for the DPP.
The stationary correlator ^(dfds)*&, i.e., the asymptotic
limit of ^fs&2^f&^s&, can be computed from the corre-
sponding kinetic equation.15 Inserting ^(dfds)*& into Eq.
~28! we thus find for the DMP ~cf. Fig. 3 top!

FIG. 2. Mean output switching frequency ~in units of p! versus noise inten-
sity for the DMP ~or the DPP! signal for g50.001 ~or V/p50.001, respec-
tively! and for three amplitudes A: 0 ~solid!, 0.1 ~dotted!, 0.2 ~dashed!
~DU50.25, other parameters see text!. ‘‘Arnold tongues,’’ defined by the
demand of ‘‘sufficiently small slopes’’ ~see text!, are shown in the inset for
various g : 0.001 ~solid!, 0.002 ~dotted!, 0.005 ~dashed!.
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DDMP5
p2

2 Fg1
^vout* &

p
2~2g2~a11a2!!^s*&2

2
1
2 ~a22a1!^s*&~11^s*&2!G ~29!

and for the DPP ~cf. Fig. 3 bottom!,

DDPP5
p2

2 F ^vout* &
p

2S 2 V

p
2~a11a2! D ^s*&2

2
1
2 ~a22a1!^s*&~11^s*&2!1

V

p
^s*&G ~30!

with ^s*& given by Eq. ~26! and ^vout* & by Eq. ~27!. Both
Eqs. ~29! and ~30! possess the same structure D5Din1Dout
2Dco with Dout5(p/2) ^vout* &. Since Dout is never decreas-

FIG. 3. Effective diffusion coefficients D DMP ~top! and D DPP ~bottom! of
the instantaneous phase difference f as functions of the noise intensity D
for g5 V/p 50.001 and for three amplitudes A: 0 ~solid!, 0.1 ~dotted!, 0.2
~dashed! ~other parameters as in Fig. 2!. The values at D50 are determined
solely by the input diffusion and, hence, vanish for strictly periodic signals.
Defining the region of phase locking by the demand that D DMP,D in

DMP

yields the tongues depicted in the upper inset which, as in Fig. 2, reveals a
critical amplitude varying with g: 0.001 ~solid!, 0.002 ~dotted!, 0.005
~dashed!. As can be seen from the lower inset phase locking occurs for
considerably large ^s*& only @curves for amplitudes A: 0 ~solid!, 0.1 ~dot-
ted!, 0.2 ~dashed!#.
ing ~with increasing noise intensity! the same is true for the
sum of the first two terms. The possibility of synchronized
input–output jumps is rooted in Dco . Since this term com-
prises only contributions scaling with powers of ^s*&, which
itself rapidly vanishes for small D ~cf. inset of Fig. 3 bot-
tom!, we first observe an increase of D. An increase of ^s*&
signals the coherent behavior of input and output and, con-
sequently, endows Dco with considerable weight to outbal-
ance the increase of Dout . As can be seen from the inset of
Fig. 3 bottom a negative slope is initiated only for a suffi-
ciently large ^s*&. However, the range of high input–output
correlation ^s*& does not determine the range of low diffu-
sion coefficients since at rather high noise intensities D the
output switches with a large variance and thus, finally domi-
nates over the ordering effect of Dco .

Plotting the boundaries of the region where DDMP

,D in
DMP defines the tongues depicted in the inset of Fig. 3

top. As for the ‘‘Arnold tongues’’ in Fig. 2 a minimal ampli-
tude varies with the mean input switching rate ^v in& and
shifts to lower values when considering slower signals. It is
worth mentioning that the addition of an independent di-
chotomous noise that modulates the barrier DU can drasti-
cally reduce this minimal amplitude if this second dichoto-
mous noise switches faster than the external signal.43

The minimum of D observed in the region of frequency
locking can be equivalently expressed as a pronounced maxi-
mum of the average duration of locking episodes ^T lock&. To
show this we note that a locking episode is ended by a phase
slip whenever the phase difference has changed, i.e., in-
creased or decreased, by the order of p, or

^f2&5^ḟ&2^T lock&
212D^T lock&5p2. ~31!

This quadratic equation can be solved for ^T lock& ~Ref. 36!

and by inserting the noise-dependent expressions for 5^ḟ&
and D we can compute ^T lock&/T0 as a function of noise
intensity D where T0 is either 1/g for the DMP or p/V for
the DPP, respectively. The results for both the DMP and the
DPP are plotted in Fig. 4. A pronounced maximum for inter-
mediate values of noise intensity clearly proves that noise-
induced frequency synchronization is accompanied by noise-
induced phase synchronization.

IV. OSCILLATORY SYSTEMS AND THE RICE
FREQUENCY
A. General relations for potential systems

As mentioned in Sec. II A positive-going zero crossings
can be used to count completions of a cycle in oscillatory
systems. In this view the average frequency, i.e., the average
phase velocity, turns out to be the average rate of zero cross-
ings which is captured by a formula put forward by Rice.17,18
This elementary observation yields a novel way to quantify
the average frequency of a phase evolution, henceforth
termed the ‘‘Rice frequency,’’ and to prove frequency lock-
ing in stochastic systems.16

To detail our derivation of the Rice frequency in this
section, we start from the following one-dimensional poten-
tial system:
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ẍ1g ẋ1U8~x !5Agj1F cos~Vt ! ~32!

subjected to Gaussian white noise j of intensity D , i.e.,

^j~ t !&50, ^j~ t !j~s !&52Dd~ t2s !, ~33!

and being driven by the external harmonic force F cos(Vt).
In Fig. 5 we show a sample path for the harmonic oscillator,

ẍ1g ẋ1v0
2x5Agj1F cos~Vt !, ~34!

where we used the friction coefficient g51, the natural fre-
quency v051, and a vanishing amplitude F50 of the exter-
nal drive. As can be read off from Fig. 5, the velocity v5 ẋ
basically undergoes a Brownian motion and, therefore, con-
stitutes a rather jerky continuous, but generally not differen-
tiable signal. In particular, near a zero crossing of v there are
many other zero crossings. In contrast to that, the coordinate
x is a much smoother signal since it is determined by an
integral over a continuous function,

x~ t !5x~0 !1E
0

t
v~t !dt , ~35!

FIG. 4. The normalized average duration of locking episodes ^T lock& @cf. Eq.
~31!# for the DMP ~top! and the DPP ~bottom! exhibits an enormous maxi-
mum for intermediate values of noise intensity thus proving noise-induced
phase synchronization.
and, therefore, differentiable. In particular, near a zero cross-
ing of x there are no other zero crossings. In the following,
we will take advantage of this remarkable smoothness prop-
erty of x that is an intrinsic property of the full oscillatory
system ~32! and disappears when we perform the over-
damped limit.

In 1944, Rice17 deduced a formula for the average num-
ber of zero crossings of a smooth signal like x in the oscil-
lator equation ~32!. In this rate formula enters the probability
density P(x ,v;t) of x and its time derivative, v5 ẋ , at a
given instant t . The Rice rate for passages through zero with
positive slope ~velocity! is determined by18

^ f &~ t !5E
0

`

vP~x50,v;t ! dv . ~36!

This time-dependent rate is to be understood as an ensemble
average. If the dynamical system is ergodic and mixing the
asymptotic stationary rate ^ f s& can likewise be achieved by
the temporal average of a single realization. Let N(@0,t#) be
the number of positive-going zeros of the signal x in the time
interval @0,t# . Using ergodicity, the relation,

^ f s&5E
0

`

vPs~x50,v ! dv5 lim
t→`

N~@0,t# !

t ~37!

is fulfilled for the process characterized by the stationary
density Ps(x ,v). In the following we always consider sta-
tionary quantities. As explained in Sec. II A, the zero cross-
ings can be used as marker events to define an instantaneous
phase fL(t) by linear interpolation, cf. Eq. ~10!. The related
average phase velocity is the product of the ~stationary! Rice
rate and 2p and, hence, called the ~stationary! Rice fre-
quency,

^v&R52p ^ f s&52pE
0

`

vPs~x50,v ! dv . ~38!

FIG. 5. Position x and velocity v of the undriven noisy harmonic oscillator
Eq. ~34! with friction coefficient g51, and natural frequency v051.
Whereas the position x is smooth the velocity v is continuous but nowhere
differentiable. Counting of zero crossings is, consequently, only possible for
the x-coordinate.
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For a dynamics described by a potential U(x) in the
absence of an external driving, i.e., ~32! with F50, the sta-
tionary density can be calculated explicitly yielding

Ps~x ,v !5C expF2S v2

2 1U~x ! D Y DG , ~39!

where C is the normalization constant. From this and the
application of Eq. ~38!, it is straightforward to derive the
exact result,

^v&R5

A2pD expF2
U~0 !

D G
*2`

` expF2
U~x !

D G dx . ~40!

In the limit D→0, we can perform a saddlepoint approxima-
tion around the deepest minima x i ~e.g., for symmetric po-
tentials!. In this way we find the following expression valid
for D!DU5uU(0)2U(x i)u, i.e., the small noise approxi-
mation,

^v&R5F(
i

expF U~0 !2U~x i!
D G

AU9~x i!
G21

. ~41!

In the limit D→` , we have to consider the asymptotic be-
havior of the potential, limx→6` U(x), to estimate the inte-
gral in Eq. ~40!. For potentials that can be expanded in a
Taylor series about zero and that, therefore, result in a power
series of order 2m , i.e., U(uxu→`);x2m, we can rescale the
integration variable by x5D1/2mx̃ . For sufficiently large D ,
the integral is dominated by the power 2m term. In this way
we find the large noise scaling,

^v&R ;
~D→` !

Da, with a5
m21
2m . ~42!

Applying Eqs. ~40! and ~41! to the harmonic oscillator ~34!
we immediately find that ^v&R5v0 , independent of g and
for all values of D.0. This is also in agreement with Eq.
~42!. It follows because m51 implies that, for large noise,
the Rice frequency ^v&R does not depend on D at all. Note,
however, that in the deterministic limit, i.e., for D50, we
have the standard result,

^v&R 5
~D50 !HAv0

22g2/4 for g,2v0

0 for g>2v0
, ~43!

which explicitly does depend on the friction strength g.0.
Therefore, the limit D50 is discontinuous except in the un-
damped situation g50.

The similarity of Eqs. ~40! and ~41! with rates from tran-
sition state theory44 will be addressed below when we dis-
cuss the bistable potential.

B. The role of colored noise

It is well known that the Rice frequency cannot be de-
fined for stochastic variables that integrate increments of the
Wiener process ~white noise!. From Eq. ~32! this holds true
for the velocity v̇5 ẍ . This is so, because the stochastic tra-
jectories of degrees of freedom being subjected to Gaussian
white noise forces are continuous but are of unbounded
variation and nowhere differentiable.9,45 This fact implies
that such stochastic realizations cross a given threshold
within a fixed time interval infinitely often if only the nu-
merical resolution is increased ad infinitum. This drawback,
which is rooted in the mathematical peculiarities of idealized
Gaussian white noise, can be overcome if we consider in-
stead a noise source possessing a finite correlation time, i.e.,
colored noise, see Ref. 46. To this end, we consider here an
oscillatory noisy harmonic dynamics driven by Gaussian ex-
ponentially correlated noise z(t), i.e.,

ẋ5v , ~44!

v̇52gv2v0
2x1Agz~ t !, ~45!

ż52
z
t

1
1
t

j , ~46!

with z(t) obeying ^z(t)&50 and

^z~ t !z~s !&5
D
t
expS 2

ut2su
t D . ~47!

Following the same reasoning as before we find for the Rice
frequency of x(t) as before,

^v&x5E
0

`

dvE
2`

`

dzv Ps~0,v ,z ! ~48!

5
v0

A11gt
. ~49!

Likewise, upon noting that within a time interval Dt ,
2Dt(2g ẋ2v0

2x1Agz),v,0, or 2Dt(2v0
2x1Agz)

1O(Dt)2,v,0, respectively, the Rice frequency of the
zero crossings with positive slope of the process v(t) is
given by

^v&v5E
2`

`

dxE
x

`

dz~Agz2v0
2x ! Ps~x ,0,z !, ~50!

which is evaluated to read

^v&v5Av0
21

g

t
. ~51!

The result in ~49! shows that for small noise color t the Rice
frequency for ^v&x assumes a correction ^v&x;v0(1
2 (gt/2)), as t→01. In clear contrast, the finite Rice fre-
quency ^v&v for the velocity process v(t) diverges in the
limit of vanishing noise color proportional to t21/2.

C. Relation between Rice and Hilbert frequency

To exemplify the relation between the Rice frequency
^v&R and the Hilbert frequency ^v&H5^ḟH&, again we con-
sider the damped harmonic oscillator Eq. ~34! agitated by
noise alone. In Fig. 6 we show a numerically evaluated
sample path and the corresponding Hilbert phase ~normal-
ized to 2p and modulo 1! using the parameters g51, D
51, v051, F50. An important point to observe here is that
around t'3 and t'9 the Hilbert phase fH does not increase
by 2p after two successive passages through zero with posi-
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tive slope. This shall illustrate the difference between the
Hilbert phase and the natural phase. In Sec. II C this obser-
vation was already mentioned as a consequence of the non-
local character of the Hilbert transform. In particular, short
and very small amplitude crossings to positive x are not
properly taken into account by the Hilbert phase since they
only result in a small reduction of fH. This leads us to
conjecture that quite generally

^v&R>^v&H ~52!

holds. In fact, for the case of the harmonic oscillator that
generates a stationary Gaussian process one even can prove
this conjecture by deriving explicit expressions for ^v&R and
^v&H . As usual, let S(v) denote the spectrum of the station-
ary Gaussian process x . Then the Rice frequency can be
recast in the form of18

^v&R5F*0
`v2 S~v !dv

*0
`S~v !dv G 1/2. ~53!

A similar expression ~additionally involving an Arrhenius-
type exponential! exists when considering nonzero crossings,
as in Eq. ~53!, but crossings of an arbitrary threshold. In Ref.
16 it was shown that the Hilbert frequency of the same pro-
cess x is given by a similar expression, namely,

^v&H5F*0
`v S~v !dv

*0
`S~v !dv G . ~54!

Interpreting the quantity S(v)/*0
`S(v̂)dv̂ as a probability

density P(v), vP(0,`), we can use the property that the
related variance is positive, i.e.,

E
0

`

v2P~v !dv>F E
0

`

vP~v !dvG 2. ~55!

Taking the square-root on both sides of the last inequality
immediately proves Eq. ~52!.

FIG. 6. Signal x(t) ~top panel! and corresponding Hilbert phase fH(t)/2p
modulo 1 ~bottom panel! for the undriven harmonic oscillator Eq. ~34! with
friction strength g51, noise intensity D51, natural frequency v051, and
driving amplitude F50. Note that although there are successive zero cross-
ings of x with positive slope near t'3 and t'9 the Hilbert phase does not
increase by 2p.
Using the spectrum of the undriven noisy harmonic os-
cillator,

S~v !5
4gD

~v0
22v2!21g2v2 ~56!

and employing Eqs. ~53! and ~54!, it is easy to see that both
^v&R and ^v&H do not vary with D . We have already shown
above that ^v&R5v0 . In contrast to this, ^v&H is a mono-
tonically decreasing function of g that approaches v0 from
below in the limit g→01.

D. Periodically driven noisy harmonic oscillator

The probability density of the periodically driven noisy
harmonic oscillator can be determined analytically by taking
advantage of the linearity of the problem. Introducing the
mean values of the coordinate and the velocity, ^x(t)& and
^v(t)&, the variables

x̃5x2^x&, ṽ5v2^v& ~57!

obey the differential equation of the undriven noisy harmonic
oscillator. In the asymptotic limit t→` the mean values con-
verge to the well known deterministic solution,

^x~ t !&5
F

A~v0
22V2!21g2V2 cos~Vt2d !, ~58!

^v~ t !&52V
F

A~v0
22V2!21g2V2 sin ~Vt2d !, ~59!

d5arctan F gV

v0
22V2G , ~60!

with the common phase lag d. Therefore, after deterministic
transients have settled the cyclostationary probability density
of the driven oscillator reads

Pcs~x ,v;t !5Ps~x2^x~ t !&,v2^v~ t !& ! ~61!

with the Gaussian density

Ps~x ,v !5
v0

2pD expF2S v2

2 1
v0

2x2

2 D Y DG . ~62!

Using Eq. ~38! the cyclostationary probability density ~61!
yields an oscillating expression for the Rice frequency
^v&R (t). The time dependence of this stochastic average can
be removed by an initial phase average, i.e., a subsequent
average over one external driving period 2p/V,

^v&R5E
0

2p/V
^v&R~ t !

Vdt
2p

~63!

5E
0

2p/V E
0

`

v Pcs~0,v;t !dvVdt . ~64!

The resulting analytical and numerically achieved values of
the Rice frequency as a function of the noise intensity D are
shown in Fig. 7 for fixed v051, F51, V53 and various
values of g. For small noise intensities D the Rice frequency
^v&R is identical to the external driving frequency V,
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whereas for large noise intensities the external drive becomes
inessential and the Rice frequency approaches ^v&R5v0 .

Further insight into the analytic expression ~64! is gained
from performing the following scale transformations:

t̃5V t2d and x̃5
x

A2D/V
~65!

from which we immediately find the rescaled velocity,

ṽ5
dx̃

d t̃
5

V/A2D

V

dx

dt
5

v

A2D
. ~66!

Inserting these dimensionless quantities into Eq. ~64! yields

^v&R5v0I~ Ã ,ṽ0!, ~67!

I~ Ã ,ṽ0!5
1
p E

2d

2p2dE
0

`

ṽ exp@2~ ṽ1Ã sin t̃ !2

2~ṽ0 Ã cos t̃ !2# d ṽ d t̃ , ~68!

where we have defined further dimensionless quantities

Ã5
V

A2D

F

A~v0
22V2!21~gV !2

, ~69!

ṽ05
v0

V
. ~70!

Due to the 2p periodicity of the trigonometric functions, the
integral ~68! does not change when shifting the interval for
the integration with respect to t̃ back to @0,2p#. Hence, I is
only a function of Ã and ṽ0 . An expansion for small Ã
yields

FIG. 7. Rice frequencies for the driven harmonic oscillator Eq. ~34! with
natural frequency v051, driving amplitude F51, and driving frequency
V53 for different values of the friction strength g. The numerically
achieved values ~symbols with error bars! match the analytical curves de-
termined using Eq. ~64!.
^v&R5v0F11
12ṽ0

2

2 Ã21O~ Ã4!G ~71!

which implies for large D/F2,

^v&R2v0;
F2

D . ~72!

The opposite extreme, Ã→` or D/F2→0, can be extracted
from a saddlepoint approximation around ṽ5Ã and t̃
53p/2. Following this procedure, the integral ~68! gives the
constant 1/ṽ0 . This directly implies ^v&R5V .

The crossover between these two extremes occurs when
the first correction term in ~71! is no longer negligible, i.e.,
for

u12ṽ0
2u

2 Ã2'1. ~73!

When solved for the crossover noise intensity Dco /F2, this
yields

Dco

F2 '
uV22v0

2u

4@~v0
22V2!21~gV !2#

, ~74!

which, for the parameters used in Fig. 7, correctly gives val-
ues between 1022 and 1021.

In Fig. 7 the parameters F , V, and v0 and, hence, ṽ0 are
identical for all curves. Solving Ã(g1 ,D1)5Ã(g2 ,D2) with
respect to D2 shows that the curves become shifted horizon-
tally as in the log-linear plot in Fig. 7. Another way to ex-
plain this shift is by noting that dDco /dg,0.

V. BISTABLE KRAMERS OSCILLATOR:
NOISE-INDUCED PHASE COHERENCE AND SR
A. Rice frequency and transition state theory

The bistable Kramers oscillator, i.e., Eq. ~32! with the
double well potential,

U~x !5
x4

4 2
x2

2 , ~75!

is often used as a paradigm for nonlinear systems. With ref-
erence to Eq. ~32! the corresponding Langevin equation is
given by

ẍ1g ẋ1x32x5Agj1F cos~Vt ! ~76!

which, in the absence of the external signal, F50, generates
the stationary probability distribution,

Ps~x ,v !5C expH 2S v2

2 1
x4

4 2
x2

2 D /DJ ~77!

with the normalization constant C . Using this stationary
probability density and Eq. ~38! we can determine the Rice
frequency analytically. In Fig. 8 we depict this analytic result
together with numerical simulation data including error bars.
The simulation points perfectly match the analytically deter-
mined curve. As expected for the asymptotically dominant
quartic term, i.e., m52 @cf. Sec. IVA, especially Eq. ~42!#,
the Rice frequency scales as ^v&R;D1/4 for large values of
D .
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Comparing the Rice frequency formula, Eq. ~38!, with
the forward jumping rate kTST

1 from the transition state
theory,44

kTST
1 5Ẑ0

21E dx dvu~v ! d~x !v exp@2H~x ,v !/D# , ~78!

where

Ẑ05E
x,0

dx dv exp@2H~x ,v !/D# , ~79!

and H(x ,v)5(1/2)v21(1/4)x42(1/2)x2 represents the cor-
responding Hamiltonian, one can see that the difference be-
tween both solely rests upon normalizing prefactors.
Whereas the rate kTST

1 is determined by the division of the
integral Eq. ~78! by the ‘‘semipartition’’ function Ẑ0 , the rate
^v&R/2p is established by dividing the same integral appear-
ing in Eq. ~78! by the complete partition function

Z05E dx dv exp@2H~x ,v !/D# . ~80!

Particularly for symmetric ~unbiased! potentials, i.e.,
V~2x!5V(x), this amounts to the relation Z052Ẑ0 , hence,

^v&R5p kTST
1 . ~81!

At weak noise, Eb /D@1, this relation simplifies to @cf. Eq.
~41!#

^v&R'
v0

2 exp@2Eb /D# , ~82!

wherein Eb denotes the barrier height and v0 the angular
frequency inside the well (v05&). Indeed, in the small-to-
moderate regime of weak noise this estimate nicely predicts
the exact Rice frequency ~cf. Fig. 8!.

B. Periodically driven bistable Kramers oscillator

The periodically driven bistable Kramers oscillator was
the first model considered to explain the phenomenon of SR

FIG. 8. Rice frequencies for the undriven bistable oscillator Eq. ~76! with
friction strength g51. Numerical values with error bars match the analyti-
cally determined values ~dashed line! using Eq. ~38! with Eq. ~77!. As ex-
pected, for large values of D the Rice frequency scales like D1/4. The solid
line presents the leading weak noise approximation in Eq. ~82!.
~Ref. 47! and it still serves as one of the major paradigms of
SR.19,20 In its overdamped form it was used to support ex-
perimental data ~from the Schmitt trigger! displaying the ef-
fect of stochastic frequency locking21,42 observed for suffi-
ciently large, albeit subthreshold signal amplitudes, i.e., for
Fmin,F,2/A27. From a numerical simulation of the over-
damped Kramers oscillator and computing the Hilbert phase
it was also found that noise-induced frequency locking for
large signal amplitudes was accompanied by noise-induced
phase coherence, the latter implies a pronounced minimum
of the effective phase diffusion coefficient,

D̃eff5
1
2 ] t@^~f~ t !!2&2^f~ t !&2# ~83!

occurring for optimal noise intensity. Based on a discrete
model,48 analytic expressions for the frequency and phase
diffusion coefficient were derived that correctly reflect the
conditions for noise-induced phase synchronization15 for
both periodic and aperiodic input signals ~cf. Sec. III!.

To link the mentioned results to the Rice frequency in-
troduced above we next investigate the behavior of the
Kramers oscillator with nonvanishing inertia.16 We show nu-
merical simulations of Eq. ~76! with the parameters V
50.01,g50.5 and diverse values of F in Fig. 9. For larger
values of F , a region around D'0.05 appears where the
Rice frequency is locked at the external driving frequency V.
Since for larger values of the external driving F smaller val-
ues of the noise parameter D are needed to obtain the same
rate for switching events, the entry into the locking region
shifts to smaller values of D for increasing F .

In Fig. 10 we present numerical simulations for fixed
F50.384, V50.01 and different values of the damping
coefficient g. Note that the value of F is slightly smaller
than the threshold value F t52/A27'0.3849 . . . . For
smaller values of g wider coupling regions appear since it is
easier for the particle to follow the external driving for
smaller damping.

FIG. 9. Numerically determined Rice frequencies of the periodically driven
bistable Kramers oscillator Eq. ~76! computed with the friction coefficient
g50.5 and the angular driving frequency V50.01 and plotted as a function
of the noise intensity D . Different curves correspond to various amplitudes
of the harmonic drive F . For larger values of F wider regions appear where
the Rice frequency is locked to the external driving frequency V.
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To check whether frequency synchronization is accom-
panied by effective phase synchronization we have also com-
puted the averaged effective phase diffusion coefficient, this
time defined by the following asymptotic expression:

Deff5 lim
t→`

1
2t ^@f~ t !2^f~ t !&#2&. ~84!

It should be clear that the instantaneous ‘‘Rice’’ phase f(t)
was determined via zero crossings. The connection with the
instantaneous diffusion coefficient defined in ~83! is estab-
lished by applying the limit t→` ,

Deff5 lim
t→`

1
t E0

t
D̃eff~ t̃ !d t̃ . ~85!

In Fig. 11 we show numerical simulations of the effective
phase diffusion coefficient Deff as a function of the noise
intensity D . The phase diffusion coefficient displays a local
minimum that gets more pronounced if the damping coeffi-
cient g is decreased. Indeed, phase synchronization reveals
itself through this local minimum of the average phase dif-
fusion coefficient Deff in the very region of the noise inten-
sity D where we also observe frequency synchronization, cf.
Fig. 9. The qualitative behavior of the diffusion coefficient
agrees also with a recently found result related to diffusion of
Brownian particles in biased periodic potentials.49 A neces-
sary condition for the occurrence of a minimum was an an-
harmonic potential in which the motion takes place. In this
biased anharmonic potential the motion over one period con-
sists of a sequence of two events. Every escape over a barrier
~Arrhenius-type activation! is followed by a time scale in-
duced by the bias and describing the relaxation to the next
minimum. The second step is weakly dependent on the noise
intensity and the relaxation time may be even larger than the
escape time as a result of the anharmonicity. For such poten-
tials the diffusion coefficient exhibits a minimum for optimal
noise, similar to the one presented in Figs. 11 and 12.

FIG. 10. Numerically determined Rice frequency as a function of the noise
intensity D for the periodically driven Kramers oscillator Eq. ~76! with the
angular driving frequency V50.01 and driving amplitude F50.384 for dif-
ferent values of the friction coefficient g. For smaller values of g wider
regions of frequency locking appear.
The average duration of locking episodes ^T lock& can be
estimated by equating the second moment of the phase dif-
ference ~between the driving signal and the oscillator! to p2

@cf. Eq. ~31!#.36 A rough estimate, valid for the regions where
frequency synchronization occurs, i.e., where the dynamics
of the phase difference is dominated by diffusion, thus reads
^T lock&5p2/2Deff or, when expressed by the number of driv-
ing periods50

^n lock&5
Vp

2Deff
. ~86!

In this way we estimate from Figs. 11 and 12 ^n lock&
;150–15 000 for V50.01 and relevant Deff varying be-
tween 1024–1026.

FIG. 11. Effective phase diffusion coefficient vs noise intensity for the
periodically driven bistable Kramers oscillator Eq. ~76! with angular driving
frequency V50.01, driving amplitude F50.384, which is close-to-
threshold driving, and for different values of g. For smaller values of the
friction coefficient g phase diffusion is diminished.

FIG. 12. Effective phase diffusion coefficient vs noise intensity for the
periodically driven bistable Kramers oscillator Eq. ~76! with friction coeffi-
cient g50.5, angular driving frequency V50.01, plotted for the undriven
case F50 and for driving with an amplitude F50.2.
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C. SR without noise-enhanced phase coherence

In the previous examples we have shown how frequency
synchronization, revealing itself through a plateau of the out-
put frequency matching the harmonic input frequency, and
reduced phase diffusivity together mark the occurrence of
noise-enhanced phase coherence. Optimal noise intensities
were found in the range where one also observes SR ~in the
overdamped system!. In order to underline that under certain
conditions SR exists but may not be accompanied by effec-
tive phase synchronization we present simulation results16,51
for the Rice frequency and the diffusion coefficient in Fig. 13
obtained for the bistable Kramers oscillator with a friction
coefficient g51 and external frequency V50.1. For noise
intensities D'0.15 the output frequency matches V and
nearby the overdamped Kramers oscillator exhibits the phe-
nomenon of SR, i.e., one finds a maximum of the spectral
power amplification.19,20 In contrast, we neither can find a
minimum in the diffusion coefficient nor a plateau around V
meaning that no phase coherence and not even frequency
synchronization can be observed. The reason is that the ex-
ternal signal switches much too fast for the bistable system

FIG. 13. For friction coefficient g51 and external driving frequency V
50.1 the bistable Kramers oscillator does neither exhibit frequency syn-
chronization nor noise-enhanced phase coherence but still stochastic reso-
nance occurs for noise intensities in the range of values (D'0.15), where
^v&R'V ~see also Ref. 51!.
to follow; note that in the two-state description with Arrhen-
ius rates the prefactor a0 @cf. Eq. ~19!# restricts the switching
frequency from above. Noise-induced phase coherence re-
quires a device with a faster internal dynamics, i.e., V
!a0 .

VI. CONCLUSIONS

We underline that the noise-induced phase synchroniza-
tion is a much more stringent effect than stochastic reso-
nance. This statement becomes most obvious when recalling
that the spectral power amplification attains a maximum at
an optimal noise intensity for arbitrarily small signal ampli-
tudes and any frequency of the external signal. In contrast,
noise-induced phase synchronization and even frequency
locking are nonlinear effects and as such require amplitude
and frequency to obey certain bounds ~see the ‘‘Arnold
tongues’’ in Sec. III!. We expect that the functioning of im-
portant natural devices, e.g., communication and information
processing in neural systems or subthreshold signal detection
in biological receptors, rely on phase synchronization rather
than stochastic resonance.
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