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1. Introduction

From the viewpoint of neurophysiological control, the sensorimotor coordi-
nation is important because it signi7es human individual di%erences [1]. The
fundamental rules of brain functioningmechanisms responsible for this
coordination are unknown and complicated. In particular, it is a well-established
fact that features of interhemispheres interactions of human brain are intimately con-
nected to the speci7city of ful7llment of di%erent cognitive tasks. It is well known,
that the interhemispheres organization of brain activity is one of the major factors
which renders appreciable in: uence on the character and features of realization of
mental functions of a person [2]. Recently, Chen et al. [1] discovered that the task
of synchronizingthe movement of one’s limb to a periodic environmental signal can
be modeled by the fractional Gaussian noise and the stochastic delayed di%erential
equations.
Long ago it was suggested that many complex natural systems should be described by

some of low dimensional non-linear dynamic models. The properties of these systems
are expressed by Lyapunov exponents, unique fractal dimensions or Kolmogorov–Sinai
entropy. However, considerable recent attention has been focused on the wide variety
of complex systems and it revealed convincingly that such low dimensionality could
be expected for the coherent phenomena like the ones observed in laser systems. Alive
data seems to have a more complicated structure largely due to high-dimensional and
many-factor processes and due to the pronounced e%ects of random : uctuations and
long-time memory e%ects.
Since publications [1], the in: uence of long-range correlations for human brain

activity and sensorimotor coordination has been revealed. In addition to it the
analysis presented in [1] demonstrate that the random time series associated
with the synchronization task contain long-term memory. As shown in Refs. [3,4],
the functional signi7cance of long memory in human coordination may be related
to the : exibility of switches from one pattern to another. For the description of
the e%ects of the time correlation in complex systems the standard methods of sta-
tistical physics are basically used. Amongthem is the fractal approach, based on
scalingof the frequency spectrum on power law !−� [5]. Some properties of such
systems are successfully described with the help of the theory of self-organized crit-
icality [6] or Hurst exponent [7] as well as the methods of non-linear dynamics (see
Refs. [8–15]).
In alive systems the time : uctuations of independent parameters play an important

role [1]. Moreover, the scale and the intensity of time correlations, the long-range
memory e%ects, the discrete and intermittent nature of the experimental procedure of
measurement is very important. The radical change of di%erent regimes of behavior
and alternation of various types of functioningmechanisms is peculiar to alive systems.
Here, we use the statistical theory of discrete non-Markov stochastic processes given
in Ref. [16] for the more detail description of the dynamic properties of alive complex
systems. It is a well-established fact, that the non-Markov properties and long-range
statistical memory e%ects play a great role in the behavior of complex alive systems
[17,18]. For this reason, we take into account the full set of statistical non-Markov
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parameters and functions. Further, on we shall use the power spectra of low order
memory functions as well as the 7rst three points of non-Markovity parameter for the
analysis of the e%ects of discretization, memory and intermittency of the underlying
processes. The detailed technique of the calculations of these quantities was considered
in Ref. [16].
The brain activity and, in particular, the laws of hemisphere interaction, are one of

the strikingexamples of complex systems. Recently, the study of these systems has
attracted great attention [3–14]. Many of psychological and physiological researches are
based on EEGs [13]. The parameter measured in these studies is the potential of group
of neurons or an individual neuron of a brain. The changes of this parameter within a
short interval of time, about 10−3–10−1 s, are usually analyzed. The self-organized crit-
icality is frequently observed in the dynamics of EEGs. It comes from the characteristic
fractal behavior of power spectra P(f) ∼ f−� [10].
On the other hand, macroscopical parameters should also exist here. The study of

long-term memories in human coordination [11] is one of the most available standard
psychological tests.
In such investigations the macroscopic parameter, which characterizes the system as

a whole at the given moment and depends on full set of the available microscopic
parameters, is measured.
The static tests are used traditionally in psychology, and the measured parameter

does not depend on time, as a rule. The dynamics of parameter is not usually taken
into account. One of central positions of the neuropsychological theory of cerebral
organization of the highest mental functions says, that brain works as a paired organ
for any mental function. The laws of interaction and asymmetry of hemispheres, taken
as the speci7c case of interaction, can be referred to the fundamental laws of brain
activity as a paired organ. The parameters of hemisphere asymmetry correlates with
di%erent mental processes. In psychological literature the notion “hemispheresness” is
widely use. Most of the authors understand it as “handness”, that is preference of the
right or left hand or their equality. The connection of “hemispheresness” (“handness”)
with the emotional-personal sphere and the cognitive processes is well-known. There
is also a connection of “handness” with certain features of human temperament. With
regard to the domination of brain hemispheres the following classi7cation is developed
in psychology [2]: (i) the “plain” right-hander, (ii) the right-hander, (iii) the mixed
type or ambidexter, (iv) the left-hander and (v) the “plain” left-hander. Such divi-
sion is created on the basis of static tests, questionnaires and the self-estimation of
examinees.
In the present paper, we investigate long-term memory e%ects in sensorimotor

human’s reaction with the help of the statistical theory of discrete non-Markov
processes [16] . In our study, we use the experimental results of dynamic
tapping-test. The experimental data were obtained by the dynamic tapping-test
for the left and the right hand. In Section 2, we brie: y discuss the basic points of
our statistical theory. In Section 3, the experimental method is shown. In Section 4,
we analyze the obtained 7gures and parameters, and in Section 5 we discuss our
results.
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2. Basic concepts and de�nitions

We use the theory of discrete non-Markov processes in complex systems developed
in the recent paper [16]. Below we present the basic points of this theory.
Analyzingthe complex system we obtain the discrete equidistant series of the

experimental data, the so-called random variable

X = {x(T ); x(T + 	); x(T + 2	); : : : ; x(T + k	); : : : ; x(T + 	N − 	)} : (2.1)

It corresponds to the measured signal within time t=(N −1)	, where 	 is a temporary
samplinginterval of the signal. The mean value 〈X 〉, : uctuation �xj, absolute (�2) and
relative (�2) dispersion for the set of random variables (2.1) are de7ned as follows

〈X 〉= 1
N

N−1∑
j=0

x(T + j	) ; (2.2)

xj = x(T + j	); �xj = xj − 〈X 〉 ; (2.3)

�2 =
1
N

N−1∑
j=0

�x2j ; (2.4)

�2 =
�2

〈X 〉2 =
1=N

∑N−1
j=0 �x2j

{1=N ∑N−1
j=0 x(T + j	)}2 : (2.5)

The above-mentioned values determine the static (independent from time) property of
the considered system. For the dynamical analysis, it is more convenient to use the
normalized time correlation function (TCF). For the discrete processes the TCF has
the regular form (t = m	; N − 1¿m¿ 1)

a(t) =
1

(N − m)�2

N−1−m∑
j=0

�x(T + j	)�x(T + (j + m	)) : (2.6)

The properties of TCF a(t) are determined by the condition of normalization and
attenuation of correlations

lim
t→0

a(t) = 1; lim
t→∞ a(t) = 0 : (2.7)

For real systems the values xj=x(T+j	) and �xj=�x(T+j	) represent the experimental
data. To account the dynamics of a system we shall de7ne the evolution operator
U (T + t2; T + t1) as follows (t2¿ t1):

x(t + 	) = U (t + 	; t)x(t) : (2.8)

Then the equation of the motion becomes discrete

dx
dt

=
Qx(t)
Q t

= i L̂(t; 	)x(t); L̂(t; 	) = (i	)−1[U (t + 	; t)− 1] : (2.9)
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Let us introduce the vector of the initial and 7nal states

A0
k(0) = (�x0; �x1; �x2; : : : ; �xk−1)

= (�x(T ); �x(T + 	); : : : ; �x(T + (k − 1)	) : (2.10)

Am
m+k(t) = {�xm; �xm+1; �xm+2; : : : ; �xm+k−1}

= {�x(T + m	); �x(T + (m + 1)	);

�x(T + (m + 2)	); : : : ; �x(T + (m + k − 1)	} : (2.11)

The normalized TCF can be presented as a scalar product of the states vectors (t=m	
is discrete time):

a(t) =
〈A0

k · Am
m+k〉

〈A0
k · A0

k〉
=

〈A0
k(0) · Am

m+k(t)〉
〈A0

k(0)
2〉 : (2.12)

The initial TCF can be received by projectingof the vector of the 7nal state on the
vector of the initial state with the help of the followingprojection operator:

�Am
m+k(t) = A

0
k(0)

〈A0
k(0)A

m
m+k(t)〉

〈|A0
k(0)|2〉

= A0
k(0)a(t) : (2.13)

The projection operator � possesses the followingproperties:

� =
|A0

k(0)〉〈A0
k(0)|

〈|A0
k(0)|2〉

; �2 = �; P = 1− �; P2 = P;

�P = 0; P� = 0 : (2.14)

The vector of the : uctuation obeys the 7nite-di%erence Liouville’s equation

Q
Q t
Am

m+k(t) = iL̂(t; 	)Am
m+k(t) : (2.15)

The projection operators � and P split the Euclidean space of states A(k) into two
mutually-orthogonal subspaces which allows us to split the dynamic equation (2.15)
into two equations in two subspaces:

QA′(t)
Q t

= iL̂11A′(t) + iL̂12A′′(t) ; (2.16)

QA′′(t)
Q t

= iL̂21A′(t) + iL̂22A′′(t) : (2.17)

Extractingfrom Eq. (2.17) the irrelevant part Q A′′(t) we obtain the closed 7nite-
di%erence equation of a non-Markov type for TCF a(t):

Qa(t)
Q t

= �1a(t)− 	�1

m−1∑
j=0

M1(j	)a(t − j	) : (2.18)
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Here, �1 is a relaxation parameter with the dimension of square of frequency and
parameter �1 describes an eigen-spectrum of Liouville’s quasioperator L̂

�1 = i
〈A0

k(0)L̂A
0
k(0)〉

〈|A0
k(0)|2〉

; �1 =
〈A0

k L̂12L̂21A0
k(0)〉

〈|A0
k(0)|2〉

: (2.19)

The function M1(j	) in the r.h.s. of Eq. (2.18) represents the 7rst memory function

M1(j	) =
〈A0

k(0)L̂12{1 + i	L̂22} jL̂21A0
k(0)〉

〈A0
k(0)L̂12L̂21A0

k(0)〉
; M1(0) = 1 : (2.20)

It is easy to notice, that except for the initial TCF in Eq. (2.20) we consider the time
correlation of the new orthogonal dynamic variable L̂21A0

k(0).
Eq. (2.18) represents the 7rst equation of the chain of 7nite-di%erence kinetic equa-

tions with memory for the discrete TCF a(t). The memory function M1(t) takes into
account the memory about the previous states of the system. Actingsimilarly to the
above-stated procedure one can receive kinetic equations for subsequent memory func-
tions. However, a more convenient way is makinguse of the Gram–Schmidt orthogo-
nalization procedure [16]. Because of this it is easy to obtain the recurrence formula, in
which variables Wn =Wn(t) with higher index are expressed in terms of the variables
with lower indices

W0 = A0
k(0); W1 = {iL̂ − �1}W0; : : :

Wn = {iL̂ − �n−1}Wn−1 + �n−1Wn−2 + : : : ; n¿ 1 : (2.21)

Usingthe above-mentioned procedure and introducingthe correspondingprojection
operators, we come to the followingchain of connected non-Markov 7nite-di%erence
kinetic equations (t = m	)

QMn(t)
Q t

= �n+1Mn(t)− 	�n+1

m−1∑
j=0

Mn+1(j	)Mn(t − j	) : (2.22)

Here, parameters �n+1 represent an eigen values of the Liouville’s quasioperator and
the relaxation parameters of �n+1 are determined as follows:

�n = i
〈WnL̂Wn〉
〈|Wn|2〉 ; �n =−〈Wn−1(iL̂ − �n+1)Wn〉

〈|Wn−1|2〉 :

The zero-memory function M0(t) (2.22)

M0(t) = a(t) =
〈A0

k(0)A
m
m+k(t)〉

〈|A0
k(0)|2〉

; t = m	

describes the statistical memory in complex systems with discrete time. The initial TCF
a(t) and the set of discrete memory functions Mn(t) in Eq. (2.22) are important for
further consideration. The 7rst three equations of this chain (t = m	 is discrete time)
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can be presented as follows:

Qa(t)
Q t

=−	�1

m−1∑
j=0

M1(j	)a(t − j	) + �1a(t) ;

QM1(t)
Q t

=−	�2

m−1∑
j=0

M2(j	)M1(t − j	) + �2M1(t) ;

QM2(t)
Q t

=−	�3

m−1∑
j=0

M3(j	)M2(t − j	) + �3M2(t) : (2.23)

These systems of 7nite-di%erence equations (2.22) and (2.23) are a discrete analogue
of the well-known chain of kinetic Zwanzig’–Mori’s equations. The latter plays a fun-
damental role in modern statistical physics of non-equilibrium phenomena with con-
tinuous time. It is necessary to note that the chain of Zwanzig’–Mori’s equations is
valid only for quantum and classical Hamiltonian systems with continuous time. The
7nite-di%erence chain of kinetic equations (2.22),(2.23) is valid for complex systems,
in which there is no Hamiltonian, time is discrete, and there are no exact equations of
motion. However, the “dynamics” and “motion” in real complex systems undoubtedly
exist and can be directly registered in the experiment. The 7rst three equations in the
chain (2.23) form the basis for quasihydrodynamic description of stochastic discrete
processes in complex systems. Below we reproduce as an example the calculation of
the 7rst memory function for m-discrete steps, assumingthat parameters �1=0, �2=0,
�3 = 0:

M1(0) = 1; M1(	) =−a(2	) + j−1
1 {a(2	)− a(3	)} ;

M1(2	) =−{a(2	)M1(	) + a(3	)}+ j−1
1 {a(3	)− a(4	)} ;

M1(3	) =−{a(2	)M1(2	) + a(3	)M1(	) + a(4	)M1(0)}+ j−1
1 {a(4	)− a(5	)} ;

...

M1(m	) =−
m−1∑
j=0

M1(j	)a{(m + 1− j)	}+ j−1
1 [a{(m + 1)	}

− a{(m + 2)	}] : (2.24)

Generally, we can 7nd the recurrent relations between memory functions of higher and
lower orders which are

Ms(m	) =−
m−1∑
j=0

Ms(j	)Ms−1((m + 1− j)	)

+ j−1
s {Ms−1((m + 1)	)− Ms−1((m + 2)	)};
js = 	2�2

s ; s = 1; 2; 3; : : : (2.25)
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The obtained relations allow us to 7nd the necessary memory function Ms(t) of any
order s=1; 2 : : : on the basis of the experimental data, usingonly the initial TCF a(m	)
[17]. Relaxation parameters �i and �i, i=1; 2; 3 : : : ; in Eqs. (2.24) are evaluated from
the experimental data. The application of Eqs. (2.25) opens new possibilities in the
detailed analysis of the statistical properties of the correlations in complex systems. The
fact of the existence of a 7nite- di%erence Eqs. (2.22) allows us to evaluate unknown
functions directly from the experimental data.

3. Technique of experiment and experimental data processing

Thirty two students of the physical faculty of the pedagogical university aged from
19 to 22 took part in this research. The research included 400 approaches of the
tapping-test for the right hand for 5 s. The obtained data were processed with the help
of the above introduced technique. The set of three memory functions was calculated
for each sequence of data. Frequency power spectra for each of these functions are
obtained with the help of the fast Fourier transform. For a more detailed diagnostics of
properties of the system we also consider the frequency spectrum of the 7rst three points
of the statistical spectrum of non-Markovity parameter. The spectrum of non-Markovity
parameter was entered earlier in Refs. [19,20] and was also used in statistical physics
of liquids [4]. In this study, we use frequency spectrum of non-Markovity parameter

 i(!) =
{

!i−1(!)
!i(!)

}1=2

:

Here, i = 1; 2:: and !i(!) there is a power spectrum of ith level. The parameters  i
allow to receive quantitative estimation of long-term memory e%ects in experimental
time series of the data as shown in apers [4,19–21]. From the physical point of view
parameter  i allows to mark out the three most important cases [4,19–21]. The Markov
and completely random processes correspond to values  → ∞, quasi-Markov processes
(elements of memory can be noticed there) correspond to values  ¿ 1. The limiting
case  ∼ 1 concerns the case of non-Markov processes, i.e., processes, where there is
a long-term memory.
All the examinees were distributed into 7ve representative groups by analogy to

the neuropsychological classi7cation [2] and by the obtained spectra of memory func-
tions and the 7rst points of non-Markovity parameter. Amongthem: (i) the “plain”
right-hander, (ii) the right-hander, (iii) the mixed type or ambidexter, (iv) the left-
hander and (v) the “plain” left- hander.

4. Discussion

In this section, in Figs. 1–7, we present the characteristic behavior of memory
functions, their power spectra and frequency spectra of the 7rst three points of non-
Markovity parameter for each representative group.
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Fig. 1. Time recording of measured taping-test parameter for 7ve types of examinees: (a) I type (“plain”
right-hander), (b) II type (right-hander), (c) III type (ambidexter or mixer type), (d) IV type (left-hander),
(e) V type (“plain” left-hander).
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Fig. 2. Time dependence of initial time correlation function M0(t): (a, e); 7rst-order memory function M1(t):
(b, f); second-order memory function M2(t): (c, g) and third-order memory function M3(t): (d, h) for type
I (a–d) and for type V (e–h).

In Fig. 1, the time recording of the initial dynamic variable X (t) of the dynamic
tapping-test is given for all the characteristic groups. Both weak and strong : uctua-
tions of the measured parameter are visible in Figs. 1a–e. The greatest : uctuations are
appreciable in case 1e (“clean” left-hander) and 1d (left-hander). The least : uctuations
are appreciable in case 1a (“clean” right-hander) and 1c (ambidexter or mixed type).
In Fig. 2, the time dependence of TCF and three memory functions are given for the
two extreme cases: type I Figs. 2a–d) and type V (Figs. 2e–h). From these 7gures it is
visible, that high-frequency modulation is characteristic of type I. On the other hand,
intensive and sharp correlations in the dynamics for type V are appreciable for the
parameter of the tapping-test. In Figs. 3–5, the power spectra for the initial TCF and
the 7rst three memory functions for types I, III and V are given. The fractal behavior,
which is characterized by a sharp growth of intensity on low frequencies, is visible
in Fig. 3 for all four spectra (a–d) of type I. Such behavior is characteristic for the
steadiest type of human sensorimotor coordination. Thus, appreciable peaks on high
frequencies occur only in senior memory functions (see Figs. 3c and d). This clearly
demonstrates the harmonious, synchronized and coordinated activity of human motor
and nervous subsystems. The similar behavior varies gradually at transition from type
I to type III and then and to type V (see Figs. 4 and 5). Peaks increase everywhere for
type III, and noticeable peaks arise in all spectra for type V. Moreover, the height of
zero peaks in case of type V decreases almost 6 times. The experimental data testify
that in systems III and V the mismatch between motor and nervous subsystems arises
and appreciably ampli7es. Between them there is a con: ict, which can be described
quantitatively.
The frequency spectra of the 7rst three points of non-Markovity parameter, intro-

duced in Figs. 6a–i are of particular interest. The long-range memory is easily found



                                           681

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

30

ω [2 π / τ]

µ 0(ω) 
[τ2 ]

(a)

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

ω [2 π / τ]

µ 1(ω) 
[τ2 ]

(b)

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

12

ω [2 π / τ]

µ 2(ω) 
[τ2 ]

(c)

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

ω [2 π / τ]

µ 3(ω) 
[τ2 ]

(d)

Fig. 3. Power spectra of initial time correlation function !0(!): (a), of 7rst-order !1(!): (b), second-order
!2(!): (c) and third-order !3(!): (d) memory functions for type I of examinees.
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Fig. 4. Power spectra of initial time correlation function !0(!): (a) and 7rst-order !1(!): (b), second-order
!2(!): (c) and third-order !3(!): (d) memory functions for type III of examinees.
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Fig. 5. Power spectra of initial time correlation function !0(!): (a) and 7rst-order !1(!): (b), second-order
!2(!): (c) and third-order !3(!): (d) memory functions for type V of examinees.
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Fig. 6. Frequency spectra of the 7rst three points of non-Markovity parameter j1(!) : (a; d; g);
j2(!) : (b; e; h); j3(!) : (c; f; i) for three most characteristic types of examinees : type I (a–c), type III (d–f),
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Fig. 7. Frequency dependence of a con: ictness coe; cient c (!) for the typical representatives of 7ve types
of examinees: (a) for type I, (b) for type II, (c) for type III, (d) for type IV and (e) for type V, (f) a mean
power spectrum of initial time correlation function 〈!0(!)〉 for the whole of group of examinees of type I.

on frequency dependences of values of parameters ji(!); i = 1; 2; 3 for all types I–V.
The presence of rigid memories at the 7rst relaxation level (see, Figs. 6a, d, g) is
especially striking. In Figs. 7a–e the frequency spectrum of con: ict coe; cient c(!) is
shown for all types of the test. It was evaluated as follows. The mean power spectrum
of the initial TCF

!(i)
0 (!) =

1
ni

ni∑
j=1

!(i; j)
0 (!)

was calculated for all types of the examinees. Here, !(i; j)
0 (!) is a power spectrum of

jth examinees in ith group, and ni stands for the number of such examinees. The mean
spectrum for group I is shown in Fig. 7f. Con: ict coe; cient for values i = 1; 2; 3; 4; 5
was calculated for the typical representatives of each group as follows:

c(i)(!) =
!(i)
0 (!)

!(I)
0 (!)

:

The followingfeatures are of importance. The con: ict coe; cient for a representative
of group I is close to unit everywhere (see, Fig. 7a). The amplitude of : uctuations
c(!) increases noticeably in the process of risingcon: ict between human motor and
nervous subsystems. The : uctuations in groups IV and V are especially great. Here,
there is a strongmismatch in human sensorimotor activity.
Besides, it is possible to draw the followingconclusions of common nature. Great

di%erences between di%erent types of the examinees for various spectra are visible
from the given 7gures. The stably functioning system is in the state of self-organized
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Table 1
Sets of static and kinetic relaxation parameters for typical representatives of 7ve neurophysiological groups

Parameters I type II type III type IV type V type

〈n〉 20.9659 26.0244 25.2634 27.039 27.6537
�2 9.3631 11.6375 10.0576 12.2576 12.7355
� 0.14595 0.13108 0.12553 0.12948 0.12905

�1; [	−1] − 0.93572 − 0.79773 − 0.83812 − 0.80362 − 0.84341
�2; [	−1] − 1.0225 − 1.0012 − 1.0243 − 1.0066 − 1.0053
�3; [	−1] − 1.0198 − 1.0064 − 1.0011 − 1.0013 − 0.9994
�1; [	−2] − 0.1655 − 0.0216 − 0.0343 − 0.0114 0.0445
�2; [	−2] 0.00689 0.00249 0.00485 − 0.00825 − 0.00086

j1(0) 1.1444 1.3307 1.3985 1.4013 1.3211
j2(0) 1.3461 1.1041 1.0866 1.0467 0.93511
j3(0) 0.96614 1.0371 0.99058 1.0137 0.98168

criticality, then the spectra of a zero-order memory function for such systems have
fractal behavior 1=!� [6]. For example, power spectrum of TCF for type I (see,
Fig. 3a) reminds of the fractal behavior of the systems. In our case it corresponds
to domination of the left-hand brain hemisphere (type I). For the examinees of type
III power spectrum of TCF is shown in Fig. 4a, it is close to fractal behavior. For the
examinees, referred to type V, the power spectrum of TCF looks like a color noise on
all frequencies (Fig. 5a). Power spectra of the 7rst, the second and the third memory
functions for each type test almost repeat each other with minor characteristic di%er-
ences. Type I spectra have almost similar behavior in the form of a color noise on
the mean and high frequencies (see, Fig. 3b–d). At this point, we can judge about the
stability of such a state, and speak about the distinct predominance of the left-hand
hemisphere. The frequency spectrum of memory functions of junior orders looks al-
most like a white noise with a sharp : ash of power in a high-frequency region (Figs.
4b–d). It speaks about a stable state of the system, and we refer such examinees to
mixed type III.
The complex pattern of spikes is also visible in the spectra of non-Markovity param-

eter  1(!),  2(!),  2(!) (Fig. 6a–i). These 7gures demonstrate, that almost all values
of non-Markovity parameter  1(!),  2(!)  3(!) lie within a small interval of values
(0.6–1.6). This observation strongly suggests that the e%ects of a long-term memory
are exhibited in the dynamics of human sensorimotor coordination.
In Table 1 numerical values of the static (〈n〉; �2; �) and kinetic (�1; �2; �3;�1; �2; �3;

j1(0); j2(0); j3(0)) parameters for the typical representatives of the 7ve neurophysio-
logical groups are given. The average value of the tapping-test parameter 〈n〉 grows
monotonically from the 7rst to the 7fth type, and relative dispersion � on the con-
trary decreases. All values of relaxation parameter �i are negative. Let us remind, that
in physics, parameter �i is close to Lyapunov’s exponent [22]. Behavior �i testi7es
the stability of the system from the point of view non-linear dynamics (�i6 0). The
numerical values of another relaxation parameter �i appears small and sign-variable.
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The numerical values of non-Markovity parameters ji(0); i = 1; 2; 3 are within an in-
terval 0.966–1.401, that manifests the rigid prevalence of the long-term memory in the
dynamics of parameter of the tapping-test.

5. Conclusion

In this paper, we have obtained some relevant results. We consider the dynamics of
neurophysiological parameter of the tapping-test to be a discrete random non-Markov
process. It has allowed us to use the results of the last theory of stochastic non-Markov
processes in complex systems [16]. The theory [16] allows to 7nd the functions and
parameters of a long-term memory from the experimental data. Our motivation is to
present the unifyingmechanism for a diverse set of longmemory processes, observed
under a variety of sensorimotor conditions. On the basis of our experimental data we
have calculated memory functions, their power spectra and frequency dependence of
non-Markovity parameters.
Our calculus has allowed to 7nd out the dynamic types of neurophysiological activity

on the basis of long-term memory data in alive systems. Our classi7cation essentially
extends the conventional classi7cation, established in psychology [2]. Besides, we man-
aged to enter new psychological parameter: con: ict coe; cient. The latter characterizes
quantitatively and qualitatively a mismatch and a con: ict between the two human neu-
rophysiological subsystems: motor and nervous. The existence of this coe; cient enables
to describe quantitatively the disbalance in human mental functions.
It is possible to expect, that the given method can be used for the study in other life

sciences on the basis of non-Markov properties of statistical memory for these type of
complex systems.
We have found a large variety of interesting physical e%ects in the obtained di%erent

non-linear spectra. Amongthem we have: the fractal-like behavior of the power spectra
with power frequency law, the phenomena of self-organized criticality and the restricted
self-organized criticality, the spectral behavior of some frequency spectra in the form
of white and color noises, the existence of the legibly expressed quality and the quan-
titative di%erences in spectral and kinetic characteristics. Our preliminary study shows
that the indicated di%erences can serve as a reliable method in neuropsychological
studies.
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