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The validity of linear response theory to describe the response of a nonlinear stochastic
system driven by an external periodical time dependent force is put to a critical test.
A variety of numerical and analytical approximations is used to compare its predictions
with numerical solutions over an extended parameter regime of driving amplitudes and
frequencies and noise strengths. The relevance of the driving frequency and the noise
value for the applicability of linear response theory is explored for single and multi-
frequency input signals.

                                                                              
                                                               

1. Introduction

The response ofdissipative physical systems to small amplitude external perturba-
tions is usually described with the powerful tools of linear response theory (LRT)
[1]. This method has found widespread application for the phenomenon of Stochas-
tic Resonance which describes the constructive role ofnoise for the transduction
and detection ofweak information-carrying signals in systems that possess some
sort ofthreshold [2, 3, 4]. In this context, the stochastic dynamics ofa rocked
bistable potential has served as an archetype to study many features of this ex-
citing and prominent physical effect [2]. For sufficiently small external forces, one
can introduce a smallness parameter proportional to the external amplitude. The
evolution equation for the probability density describing the system dynamics can
be treated to first order in perturbation theory. Thus, one finds that the effect of
the perturbation on the evolution ofthe relevant system variables can be described
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in terms ofsmall deviations from their behaviors in the unperturbed system. In
particular, for long times and for systems which in the absence of driving reach an
equilibrium distribution, LRT provides an approximate expression for the probabil-
ity distribution where the deviations with respect to the equilibrium distribution
in the absence ofdriving are proportional to the driving amplitude. Consequently,
LRT predicts that the first moment ofthe probability distribution scales linearly
with the driving amplitude.

When the driving force is periodic in time, the linearity of the evolution equa-
tion for the probability density allows us to use the Floquet ideas [5]. The main
consequence is that the long time probability distribution is periodic in time with
the same period as the external driving. This is a general result valid for any value
ofthe input amplitude. Consequently, the first moment will also be periodic in time
and it can be expanded in a Fourier series containing the fundamental and higher
order harmonics. LRT predicts that the only harmonics that should show up in the
system response are those already present in the input.

In recent work [6], we have considered the dynamics ofa noisy bistable system
subject to the action ofan external driving. We have pointed out the relevance
ofparameters other than the amplitude ofthe driving force, for the validity of
LRT. We showed that for a periodic single-frequency external force, the validity of
LRT depends not just on the amplitude ofthe driving term but also crucially on
its frequency. The purpose of this work is to further extend the analysis in two
aspects. First, in [6], the 2-mode approximation for the susceptibility described in
[7] was used. This analytical expression is not valid when the noise strength is large.
In this work, we evaluate the susceptibility using a numerical procedure which is
not subject to the limitations ofsmall noise strengths. This allows us to explore
the system response in a wider range ofparameter values. Limitations ofthe LRT
description can not be ascribed to an invalid estimate ofthe system susceptibility.
Second, we consider the response ofthe system when the external driving contains
many frequencies [8]. In particular, we analyze an external driving of the form
depicted in Fig. 1. Driving forces of this kind have been recently considered by
Gingl et al. [9] in their studies ofthe signal-to-noise ratio in double wells.

After the introduction of the model in Sec. 2 we study analytically the system
response in Sec. 3 within LRT and check our predictions ofLRT against the numer-
ically obtained behavior for a sinusoidal driving, see Sec. 4, and a multifrequency
input in Sec. 5. Our conclusions are presented in Sec. 5.

2. TheModel

Let us consider a system characterized by a single degree offreedom, x, whose time
evolution is governed by the nonlinear Langevin equation (in dimensionless form),

ẋ(t) = x(t) − x3(t) + F (t) + η(t) , (1)

where F (t) represents an external periodic signal with period T and η(t) is a Gaus-
sian white noise with zero average and 〈η(t)η(s)〉 = 2Dδ(t− s). The corresponding
linear Fokker-Planck equation (FPE) for the probability density P (x, t) reads

∂P

∂t
=

∂

∂x

{
(−x+ x3 − F (t))P

}
+D

∂2P

∂x2
. (2)
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Fig. 1. Sketch of a periodic external force containing many harmonics of the fundamental frequency.

The unperturbed system has an equilibrium distribution ofthe form

Peq(x) = N exp

(
−U0(x)

D

)
, (3)

where N is a normalization constant and U0(x) is the unperturbed potential

U0(x) = −x
2

2
+
x4

4
. (4)

This potential has two minima located at xm = ±1 and a maximum at xM = 0,
with a barrier height of0 .25.

The analysis ofthe dynamics is simplified by making use oftwo important theo-
rems: the H-theorem, which ensures the existence ofa unique long time distribution
function P∞(x, t) [10, 11] and the Floquet theorem, which guarantees that P∞(x, t)
is periodic in time with the same period as the external force [5]. Then, the long
time distribution can be expanded in the Fourier series

P∞(x, t) =
∞∑
n=0

[Hn(x) cos(nΩt) + In(x) sin(nΩt)] , (5)

where the quantity Ω = 2π/T denotes the fundamental angular frequency of the
external driving signal.

The first moment ofthe probability distribution can be used to characterize the
system response to the external driving. In the long time limit, 〈x(t)〉∞ becomes a
periodic function of time. It can be written as a Fourier series,

〈x(t)〉∞ =

∞∑
n=1

[Mn cos(nΩt) +Nn sin(nΩt)] . (6)

Unfortunately, the two powerful theorems cited above equation (5) are not enough
for a detailed analysis ofthe system behavior under the action ofthe external
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driving. The nonlinearity ofthe Langevin dynamics precludes the exact analytical
knowledge ofthe probability distribution and, therefore, the coefficients Mn and Nn
in the Fourier expansion are unknown. In order to gain quantitative information,
one needs to turn to approximations ofanalytical or numerical character.

3. The Linear Response Theory Description of the System Response

The basic quantity ofLRT is the system response function, χ(t). It is related to
the equilibrium time correlation function ofthe system in the absence ofexternal
driving, K(t), via the fluctuation-dissipation theorem (FDT) [7], i.e.,

χ(t) =

{
0 : t ≤ 0

− 1
D
K̇(t) : t > 0 .

(7)

In LRT the long time average value 〈x(t)〉LRT∞ is given by

〈x(t)〉LRT∞ =

∫ ∞
0

dτ χ(τ)F (t− τ) . (8)

The external driving F (t) can be expanded in a Fourier series as

F (t) =

∞∑
n=1

(fn cos(nOmegat) + gn sin(nΩt)) , (9)

with the Fourier coefficients, fn and gn, given by

fn =
2

T

∫ T
0

dt F (t) cos(nΩt) ,

gn =
2

T

∫ T
0

dt F (t) sin(nΩt) .

(10)

Here, we are assuming that the cycle average ofthe external driving over its period
is zero. Insertion ofthe Fourier expansion into Eq. (8) leads to

〈x(t)〉LRT∞ =

∞∑
n=1

[MLRT
n cos(nΩt) +NLRTn sin(nΩt)] , (11)

where the coefficients MLRT
n and NLRTn are given by

MLRT
n = fnχ

r
n − gnχin ; NLRTn = fnχ

i
n + gnχ

r
n . (12)

In these formulas, we have introduced χrn and χin defined as

χrn =

∫ ∞
0

dτ χ(τ) cos(nΩτ) , (13)

χin =

∫ ∞
0

dτ χ(τ) sin(nΩτ) . (14)
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Use ofthe FDT in the above expressions allows us to write immediately

χrn =
〈x2〉eq − nΩ

∫∞
0

dtK(t) sin(nΩt)

D
, (15)

χin =
nΩ

D

∫ ∞
0

dtK(t) cos(nΩt) . (16)

For nonlinear problems, explicit expressions for K(t) are unknown, but useful
approximations have been presented in the literature [12]. For the bistable potential
in Eq. (4), we can use the two-mode approximation ofJung and H änggi [7]. It is
based on a large difference in the time scales associated to inter-well and intra-well
motions, and it is expected to be valid for small values of the noise strength D.
With this model, one gets

K(τ) = g1 exp(−λ1τ) + g2 exp(−ατ) , (17)

where [13]

λ1 ≈
√

2

π

(
1− 3

2
D

)
exp[−1/(4D)] (18)

and α = 2. The weights, g1 and g2, can be obtained from the moments of the
equilibrium distribution in the absence ofdriving using the expressions

g2 =
λ1〈x2〉eq
λ1 − α +

〈x2〉eq − 〈x4〉eq
λ1 − α , (19)

g1 = 〈x2〉eq − g2 . (20)

Ifthe noise strength D is small, so that the time scales ofinter and intra-well motions
are well separated, the 2-mode approximation to K(t) (Eq. (17)) can be used to
evaluate the coefficients χrn, χ

i
n needed to describe the behavior of 〈x(t)〉LRT∞ . When

the separation between the time scales associated to inter- and intra-well motions
is not clear, the 2-mode approximation to K(t) is unreliable. Fortunately, the
correlation function in the absence of driving can also be evaluated numerically
from the FPE. (See [14] for details). Comparison of the numerical results with
those obtained using Eq. (17) indicates that for noise strengths D < 0.2 the 2-mode
formula gives an adequate approximation.

The LRT leads to explicit predictions about the behavior ofthe system response
to an external driving force. Clearly, ifthe amplitude ofthe driver is infinitesimal,
i.e., smaller than any other parameter in the problem, there is no doubt about its
applicability. But for finite values of the driving amplitude, the reliability of the
LRT description for different regions of the parameter values has to be investigated.
Differences in the observed response with respect to the LRT predictions in a range
ofparameter values indicate a failure ofLRT.

4. TheCaseof Monochromatic Driving

A very large fraction of the papers devoted to the study of Stochastic Resonance
consider the system response to an external force of the type F (t) = A cos Ωt, with
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Ω = 2π/T . In this case, the general formulas obtained within the LRT simplifies
considerably. All the coefficients in the expansion in Eq. (9) vanish except one,
f1 = A. The average value can be written as

〈x(t)〉LRT∞ = A

∫ ∞
0

dτ χ(τ) cos Ω(t− τ) = a cos(Ωt− φ) , (21)

where the response amplitude a is related to the driver amplitude by

a = A

√
(χr1)

2 + (χi1)
2 , (22)

and the phase lag ofthe response with respect to the input signal , φ, lies in the
interval 0 ≤ φ ≤ π/2. It is given by

φ = arctan
χi1
χr1

. (23)

Within the 2-mode approximation to K(t), the response amplitude and phase lag
are given by

a =
A

D

[
g21λ

2
1

λ21 + Ω2
+

g22α
2

α2 + Ω2
+

2g1g2λ1α(λ1α+ Ω2)

(λ21 + Ω2)(α2 + Ω2)

] 1
2

, (24)

and

φ = arctan

g1λ1Ω
λ21+Ω

2 + g2αΩ
α2+Ω2

g1λ21
λ21+Ω

2 + g2α2

α2+Ω2

. (25)

The result for the amplitude in Eq. (24) reveals already the limiting validity of
linear response theory: Note that for small noise intensity, i.e. D � A, (weak noise
regime) the amplitude a assumes large values. In this latter regime the weak noise
theory must be invoked, see in Refs. [15, 16]. Likewise, linear response theory does
break down for small angular driving frequency Ω at weak noise obeying A < D,
see also Ref. [6].

Regardless ofthe way that K(t) is evaluated, it is clear that the LRT description
ofthe response ofthe system to a monochromatic driving predicts that: i) the first
moment 〈x(t)〉∞ should contain a single harmonics with the frequency of the driving
force; ii) the output amplitude should behave linearly with A. In order to check
these predictions, we have resorted to numerical solutions ofthe FPE, Eq. (2). The
technique is based on the use ofthe split propagator method ofFeit et al. [17]
and detailed in [18]. From the numerical solution ofthe FPE we can easily obtain
the time dependence of 〈x(t)〉∞. As this is a periodic function of time, its Fourier
components can be obtained by numerical quadrature.

In Fig. 2 , we show the amplitudes ofthe harmonics appearing in the Fourier
analysis of 〈x(t)〉∞ obtained from the numerical solution of the FPE for several sets
ofparameter values. In all cases we take for the input amplitude the value A = 0.35
that is just slightly below its threshold value (AT ≈ 0.37). For the two values of
the external frequency, Ω = 0.1 and Ω = 0.001, we consider two illustrative noise
strengths: D = 0.1 and D = 1.0. For both frequencies, increasing the value of D
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Fig. 2. Amplitudes of the Fourier modes of 〈x(t)〉∞ for a single frequency input signal with
amplitude A = 0.35 and several values of D and Ω. The order of the harmonics is indicated on
the horizontal axis.

reduces the number ofharmonics contributing to the overall behavior of 〈x(t)〉∞.
Actually, for the value of A considered, and D = 1, the response shows essentially
the fundamental harmonics, regardless of the frequency value. (See panels (c) and
(d) in Fig. (2)). On the other hand, for D = 0.1, the importance ofthe frequency
is manifested. From inspection of panels (a) and (b) in Fig. (2) it is clear that
as the frequency gets smaller, the system response contains more harmonics than
the input. This is an indication ofthe breakdown ofLRT to describe the system
response at low external frequencies and finite driving amplitudes, in agreement
with the idea that LRT requires that A/D < 1.

As mentioned above, a signature ofthe validity ofLRT is that the amplitude
ofthe response should scale linearly with that ofthe input. In Fig. 3, we show the
behavior ofthe output amplitude, Aout, provided by the numerics (circles and the
connecting dashed lines), and the behavior ofthe output amplitude obtained within
LRT, a (solid line), for a wide range of input amplitudes A, and different values of
D and Ω. The results shown here further corroborate the comments in the above
paragraph. For large values ofthe driving frequency, Ω = 0 .1, (panels (a) and (c))
the difference between the numerical amplitude, Aout, and the LRT amplitude, a,
is very small even for quite large values of A. Large values of D favor the extension
ofthe linear behavior to regions ofhigher driving amplitudes. As seen in panel (c),
the linear behavior is approximately valid even for input amplitudes with values
very close to its threshold value (A = 0.37). Panels (b) and (d) show the results for
Ω = 0.001. At this small frequency and small noise (D = 0.1, panel (b)), deviations
ofthe numerical results from the LRT behavior are clearly detectable at A ≈ 0.05.
On the other hand, as D increases (panel (d)), even for A values higher than its
threshold value, the linearity ofthe system amplitude with respect to the driving
amplitude is still approximately valid.
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Fig. 3. Behavior of the output amplitude (vertical axes) obtained with the LRT formula Eq. (22)
(solid line) and that obtained from the numerics (circles and dashed lines). The input force is
sinusoidal with a frequency indicated in the panels and amplitude, A, in the range indicated on
the horizontal axes.

5. Multiple Frequency Periodic Driving Force

As an example ofthe response ofthe system to a periodic driving term containing
several harmonics, let us now consider a periodic driver with period T ofthe form
given in Fig. (1). The force vanishes during most of the period except for small
time intervals ofduration τ where it is kept constant with (alternating) values ±A.
The duty cycle ofthe input is defined as 2 τ/T . The Fourier coefficients in Eq. (9)
are given by,

fn =

{
0 : n even ,

2A
nπ sin(nΩτ) : n odd ,

(26)

gn =




0 : n even ,

2A
nπ (1− cos(nΩτ)) : n odd .

(27)

It then follows from Eqs. (9)–(12) that 〈x(t)〉LRT∞ contains just odd harmonics. This
feature is more general, valid even ifthe LRT description ofthe system response
fails, as it is a consequence of the spatial and temporal symmetries in the problem.
The driving force changes sign every half period, i.e., F (t+T/2) = −F (t). Then, the
symmetry of U0(x) implies that P∞(−x, t) = P∞(x, t+ T/2). Therefore, the coeffi-
cients in the expansion given in Eq. (5) satisfy the relations,Hn(x) = (−1)nHn(−x),
In(x) = (−1)nIn(−x) and, consequently, the series expansion in Eq. (6) contains
just odd terms.

Figure 4 shows the amplitude ofthe first 40 harmonics ofthe fundamental
frequency appearing in the output for an input signal with a period of 2π/Ω with
Ω = 0.1, and a duty cycle of10%. The solid bars indicate the values ofthe
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Fig. 4. Amplitude of the harmonics of 〈x(t)〉LRT∞ (bars), and 〈x(t)〉∞ (circles) for an input force
of the type sketched in Fig. (1) with a period of 2π/0.1, and a duty cycle of 10%. The order of
the harmonics are indicated on the horizontal axes.

amplitudes, an, ofeach harmonics of 〈x(t)〉LRT∞ obtained from

an =
√

(MLRT
n )2 + (NLRTn )2 , (28)

where MLRT
n and NLRTn are given by Eqs. (12)–(16) and K(t) is obtained numer-

ically from the FPE in the absence of driving. The circles indicate the amplitudes
ofthe harmonics obtained with the formula

√
(Mn)2 + (Nn)2, where Mn and Nn

are the Fourier coefficients in Eq. (6) ofthe numerical result, 〈x(t)〉∞. Except for
A = 0.35 and D = 0.1, the LRT predictions and the numerically obtained values
coincide.

Notice that, within LRT, even though the system response contains the same
harmonics as the driving term, the degree ofamplification ofeach harmonics de-
pends on its frequency. Therefore, the shape of the output 〈x(t)〉LRT∞ will, in general,
be different from the shape of the input F (t). Nonetheless, the maximum value of
〈x(t)〉LRT∞ should scale linearly with the maximum of F (t).

In Fig. 5, we show the time evolution of 〈x(t)〉LRT∞ in the long-time regime given
by Eqs. (11)–(16), and the entire time evolution of 〈x(t)〉 including the transient
from some initial condition, obtained by numerically solving the corresponding FPE.
We show the results for two driving amplitudes: a small value, A = 0.05, and
A = 0.35, that is slightly below its threshold value. The noise values considered
are D = 0.1 and D = 1.0, while the period ofthe driving term is T = 2π/Ω, with
Ω = 0.1. The duty cycle ofthe input is set at 10%. It is clear from inspection of
panels (c) and (d) that for large noise intensities (D = 1), the LRT gives an excellent
description of the long time dynamics, even for large driving amplitudes. After a
very short transient, the numerically obtained 〈x(t)〉∞ coincides with 〈x(t)〉LRT∞ .
On the other hand, for D = 0.1 and A = 0.35, the deviations between the two long
time results are noticeable. The peaks ofthe numerical solution are slightly larger
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Fig. 5. Time evolution of 〈x(t)〉LRT∞ (dotted lines), and 〈x(t)〉 (dashed lines) for an input force of
the type sketched in Fig. (1) with a period of 2π/ 0.1, and a duty cycle of 10%.

than the peaks obtained with the LRT formulas. These plots are in total agreement
with the Fourier spectra depicted in Fig. 4. The deviations ofLRT predictions with
respect to the numerical results are noticeable only for parameter values such that
A/D > 1 [15, 16].

The peaks ofthe output correspond to the impulses ofthe driver. It is interesting
to observe the relevance ofthe noise strength in the time evolution ofthe output
after each peak. When D is large, after each impulse of the driving force, very
quickly the system adapts to a situation corresponding to no forcing and the output
decays to zero as expected for a bistable system in the absence of driving. On the
other hand, when D is small, the decay time is much longer. Diffusion is not fast
enough to make the amplitude decays to zero before the next impulse of the driving
term appears. This influence ofthe noise strength on the decay time after each
impulse is clearly observed in Fig. 6, where we show the time evolution during
several periods of 〈x(t)〉∞ for an input signal with A = 0.35 and the same duty
cycle as in Figs. 4 and 5, for a sequence of noise strengths. From top to bottom,
the D values are: D = 0.05 (a), D = 0.1 (b), D = 0.5 (c) and D = 1.0 (d). We
also note that the heights ofthe peaks do not depict a monotonic behavior versus
the noise strength D. The amplitude first increases as D increases (panels (a) to
(c)), and then, it decreases when D is further augmented going to panel (d). This
non-monotonic behavior ofthe maximum amplitude ofthe output is typical ofthe
phenomenon of Stochastic Resonance [2, 3, 4].

6. Conclusions

In this work, we have further extended the analysis carried out in [6] to check
the validity ofthe LRT description ofthe dynamics ofdriven nonlinear stochastic
systems. We have compared the predictions ofLRT with the results ofthe numerical
solution ofthe FPE for a wide range ofvalues ofthe noise strength D. As it is well
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Fig. 6. Time evolution of 〈x(t)〉∞ for an input signal with a duty cycle of 10% and A = 0.35. The
noise values are: D = 0.05 (panel a), D = 0.1 (panel b), D = 0.5 (panel c) and D = 1.0 (panel d).

known, LRT formulas are based on the knowledge of the linear susceptibility, which
in turns, depends on the knowledge ofthe equilibrium time correlation function in
the absence ofdriving. In [6], we restricted ourselves to cases with small values
of D so that the 2-mode approximation to the linear susceptibility could be used.
Here, we present results without this restriction. The equilibrium time correlation
function in the absence ofdriving is obtained from the numerical solution ofthe FP
equation for the conditional probability density. Then, the linear susceptibility is
obtained by numerical quadrature.

As a further extension ofthe analysis, we have considered the case ofperiodic
input signals with a more complicated structure than a pure sinusoidal signal. In
particular, we have studied the behavior under the influence ofa multiple frequency
input signal ofthe type considered recently in [9]. The interest ofthis extension
lies in the fact that according to the authors of [9], gains in the signal-to-noise ratio
larger than unity can be obtained for subthreshold input signals of this kind.

We have tested the predictions ofLRT by concentrating on the analysis ofthe
Fourier spectrum ofthe output and the scaling ofthe output amplitude with the
input amplitude. Our numerical calculations indicate that, in general terms, LRT
provides an adequate approximation to the dynamics even for input amplitudes
which are a substantial fraction ofits threshold value. For fixed values ofthe input
parameters (amplitude and frequency), the quality of LRT predictions improves
as the noise strength increases. On the other hand, for small values of the input
frequency, and noise valuesD such thatA/D is large, the deviations ofthe numerical
findings with respect to the LRT predictions are manifested. Thus, in order to decide
on the validity ofLRT when dealing with input signals with finite amplitude, it is
also necessary to take into account the input frequency. These general conclusions
extend to the case ofmultifrequency input signals as well.
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