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1. Introduction

In the last few years, considerable progress to-
wards an electronics based on single molecules has
been made [1]. Nanotubes [2,3], fullerenes [4,5],
and organic molecules [6–9] have been contacted
and current–voltage characteristics were mea-
sured. These experimental successes are accompa-
nied by a vast body of theoretical studies [10]
which mostly concentrate on coherent transport
through the molecules. However, relaxation pro-
cesses on the molecule may lead to incoherent
transport [11–13] and some of the experimental
data may be interpreted in this sense [5,8].

In the coherent regime, Coulomb interaction
may give rise to interesting effects in the current–
voltage characteristics [14,15]. However, the addi-
tional charge due to the coupling to the electrodes is
often small [16] and then charging effects should be
weak. In contrast, for incoherent transport, elec-
trons are temporarily localized on the wire and thus
the influence of Coulomb interaction becomesmore
significant. Recently, this problem of incoherent
transport in the presence of Coulomb interaction
has been addressed by Petrov et al. [12,13] in the
framework of a nonlinear quantum kinetic statisti-
cal many-body approach in mean-field approxima-
tion in the limit of very strongCoulomb interaction.
In the present paper we will instead employ a
description based onmaster equations which allows
us to elucidate the role of the electron spin, finite
Coulomb interaction, and finite temperature.
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We start in Section 2 by introducing a generic
model for the molecular wire and discussing the
voltage profile across the wire. Assuming that re-
laxation processes on the wire units are much
faster than the time scale for tunneling between
different units, a description in terms of rate
equations for the electronic state of the wire is then
adequate. The limit of strong Coulomb repulsion,
which will be considered in Section 3, allows us to
restrict the calculation to the lowest unoccupied
molecular orbitals (LUMOs) and to neglect exci-
tations to higher levels. In particular, this implies
that temperature is sufficiently low so that the
Coulomb interaction exceeds the thermal energy.
In Section 4 we will include the spin degree of
freedom for the electrons which had been ne-
glected in Section 3. In this context the blocking of
spin channels due to Coulomb interaction will be
discussed in detail. Finally, in Section 5 we relax
the requirement of strong Coulomb interaction
and study the different regimes arising from the
interplay between Coulomb repulsion and thermal
fluctuations.

2. Model for a molecular wire

In this paper, we will focus on generic proper-
ties of incoherent charge transport through a
molecular wire. The model for the wire will con-
sequently be kept as simple as possible: a linear
array of N identical wire units numbered consec-
utively from left to right is joined by N � 1 iden-
tical molecular bridges denoted by ‘‘M’’. In order
to apply a voltage and to pass a current through
the wire, the setup shown in Fig. 1 is used where

two contacts ‘‘C’’ connect the wire to the elec-
trodes marked by ‘‘L’’ and ‘‘R’’.
Except for Section 5, we will confine the dis-

cussion to the case of strong Coulomb interaction.
This prevents the wire from being charged with
more than one electron. Neglecting spin for the
moment, the wire will then always be found in one
of N þ 1 states: either the wire is in its ground state
and all wire units are neutral, or exactly one of the
units is charged by an additional electron. We will
denote these states by ‘‘0’’ for a neutral wire or the
number of the unit i ¼ 1; . . . ;N which carries an
extra charge.
Since we are interested in the current across the

molecule beyond linear response, we also need to
specify the voltage drop along the wire. In princi-
ple, this requires the solution of the coupled
Schr€oodinger and Poisson equations of the elec-
trode–molecule–electrode system [17], which in it-
self presents a formidable task that we will not try
to tackle. Instead, we will use the simple model
proposed in [7,16], which views the two electrodes
as parallel plates forming a capacitor with the
molecule in between acting like a dielectric.
Within this picture one obtains a potential

profile where the applied voltage V drops partially
by gLV and gRV at the left and right contact, re-
spectively, and decreases linearly by gMV along the
wire. The condition gL þ gM þ gR ¼ 1 ensures that
we have accounted for the full voltage drop. This
situation is shown in Fig. 2 where we have fixed
the electrochemical potential in the left electrode at
zero energy. The dashed lines at energy E indicate
the position of the LUMOs in the absence of an
applied voltage. The actual levels represented by
the full lines at energies

Ei ¼ E� gLeV � gM
i� 1
N � 1 eV ð1Þ

are shifted according to the local voltage, thereby
displaying the voltage profile.
The current through the wire is governed by the

energy differences between neighboring sites

DEM ¼ Ei � Eiþ1 ¼ gM
eV

N � 1 ð2Þ

and between the electrochemical potentials in the
electrodes and the adjacent wire units

Fig. 1. The molecular wire is modeled by identical wire units

represented by circles which are joined by identical molecular

bridges ‘‘M’’. Two contacts ‘‘C’’ provide the connection to the

left and right electrodes denoted by ‘‘L’’ and ‘‘R’’, respectively.
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DEL ¼ �E1 ¼ gLeV � E; ð3Þ

DER ¼ EN þ eV ¼ gReV þ E: ð4Þ
Particularly at very low temperatures the current
depends strongly on the energy differences (2)–(4).
If one of these energy differences is negative, the
absence of thermally activated processes will lead
to a suppression of the current. This situation is
depicted in Fig. 2 where DEL < 0. If, on the other
hand, the energy levels of the molecular sites lie
between the electrochemical potentials in the two
electrodes, a current may flow even at zero tem-
perature. Apart from Section 5, we will always
have the latter situation in mind when discussing
zero temperature results.
In the following, the electrochemical potential

�eV in the right electrode is assumed to lie lower
in energy, thereby favoring transport from left to
right, which we will denote as forward direction.
Furthermore, we specialize the voltage profile to
the two limiting cases depicted in Fig. 3. Within
model A the voltage is constant along the molecule
and drops by equal amounts at the two contacts
(gL ¼ gR ¼ 1=2, gM ¼ 0). In contrast, in model B
the entire voltage drops linearly along the molecule
(gL ¼ gR ¼ 0, gM ¼ 1).

3. Current for spinless electrons in the presence of

strong Coulomb interaction

3.1. Master equation and tunneling rates

The incoherent electron transport through an
individual wire shall be described as sequential
tunneling events of an electron between the elec-
trodes and the end units of the wire or between
adjacent wire units. The dynamics is then modeled
in terms of a Markovian master equation. Fig. 4
shows the possible transitions between the N þ 1
different wire states. The arrows over the corre-
sponding tunneling rates C indicate the direction
of transport for a geometry depicted in Fig. 1,
while the subscripts L, M, and Rcorrespond to the
left contact, a molecular bridge, and the right
contact, respectively.
In order to determine the average current

through the wire, we will need the probabili-
ties piðtÞ to find the system in one of the states
i ¼ 0; . . . ;N . Since these constitute the only

Fig. 3. The positions of the energy levels are shown for models

A (left) and B (right) of the voltage drop across the system.

Fig. 2. The energies of the LUMOs of the wire units are de-

picted as dashed lines at energy E above the electrochemical

potential in the left electrode. An external voltage V shifts the

levels to the positions marked by the full lines. The energy

differences DEL, DEM, and DER are defined in Eqs. (2)–(4). gL,
gM, and gR denote the fractions of the total applied voltage
which drop across the left contact, the wire, and the right

contact, respectively.

Fig. 4. Transitions between the N þ 1 states of the wire occur
either by tunneling between adjacent wire units or between the

end units of the wire and one of the two electrodes.
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possible states, the probabilities should satisfy the
normalization condition

XN
i¼0

piðtÞ ¼ 1: ð5Þ

The dynamical evolution of the probabilities due
to the incoherent transitions depicted in Fig. 4 is
determined by the master equation

_pp0ðtÞ ¼� C
!
L

�
þCR

�
p0ðtÞþCLp1ðtÞþC

!
RpN ðtÞ; ð6Þ

_pp1ðtÞ ¼� C
!
M

�
þCL

�
p1ðtÞþC

!
Lp0ðtÞþCMp2ðtÞ; ð7Þ

..

.

_ppiðtÞ ¼� C
!
M

�
þCM

�
piðtÞþC

!
Mpi�1ðtÞþCMpiþ1ðtÞ

ði¼ 2; . . . ;N �1Þ; ð8Þ

..

.

_ppN ðtÞ ¼ � C
!
R

�
þ CM

�
pN ðtÞ þ CRp0ðtÞ þ C

!
MpN�1ðtÞ:

ð9Þ

From a solution of these equations, the average
currents through the left and right contacts

ILðtÞ ¼ e C
!
Lp0

�
� CLp1

�
; IRðtÞ ¼ e C

!
RpN

�
� CRp0

�
;

ð10Þ
and through the molecular bridge between units i
and iþ 1

IM;iðtÞ ¼ e C
!
Mpi

�
� CMpiþ1

�
ð11Þ

can be obtained. We will be particularly interested
in the stationary case where the probabilities pi
become time-independent. Then, all currents (10)
and (11) will be equal, i.e.

I ¼ IL ¼ IR ¼ IM;i; ð12Þ
thereby ensuring current conservation.
As can be seen from Eqs. (6)–(9), the stationary

probabilities pi depend only on ratios of transition
rates. We therefore introduce the ‘‘backward–for-
ward’’ ratios

cM ¼
CM

C
!
M

; cL ¼
CL

C
!
L

; cR ¼
CR

C
!
R

; ð13Þ

and the ‘‘branching’’ ratios

fL ¼
C
!
M

C
!
L

; fR ¼
C
!
M

C
!
R

: ð14Þ

The latter two relate molecular properties to con-
tact properties and therefore depend on the
microscopic details. The ratios (13), on the other
hand, combine backward and forward rates at the
same contact or bridge. In order to ensure ther-
modynamic equilibrium they are given by Boltz-
mann factors at inverse temperature b ¼ 1=kBT
cM ¼ e�bDEM ; cL ¼ e�bDEL ; cR ¼ e�bDER ; ð15Þ
where the energy differences have been introduced
in Eqs. (2)–(4). Since all energy differences have to
sum up to the difference in electrochemical po-
tential between left and right electrodes, i.e.

DEL þ ðN � 1ÞDEM þ DER ¼ eV ; ð16Þ
the ‘‘backward–forward’’ ratios obey the relation

cLc
N�1
M cR ¼ e�beV : ð17Þ

3.2. Stationary solution

In the following, we will restrict ourselves to the
stationary case. Together with the ratios (13) and
(14), the master equation (6)–(9) then turns into

� ðfR þ cRfLÞp0 þ cLfRp1 þ fLpN ¼ 0; ð18Þ
� ðfL þ cLÞp1 þ p0 þ cMfLp2 ¼ 0; ð19Þ

..

.

� ð1þ cMÞpi þ pi�1 þ cMpiþ1 ¼ 0
ði ¼ 2; . . . ;N � 1Þ; ð20Þ

..

.

� ð1þ cMfRÞpN þ cRp0 þ fRpN�1 ¼ 0: ð21Þ

Out of these N þ 1 equations only N are linearly
independent, so that the normalization condition
(5) is needed to determine the N þ 1 stationary
probabilities pi.
It is convenient to start with the ‘‘molecular’’

part (20), which takes on the form of a two-step
recursion relation and can thus readily be solved in
terms of the two probabilities p1 and pN leading to
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pi ¼
1� cN�iM

1� cN�1M

p1 �
cN�1M � cN�iM

1� cN�1M

pN ði ¼ 1; . . . ;NÞ:

ð22Þ
Inserting this result into Eqs. (19) and (21) and
making use of the normalization (5), one finds for
the probability for a neutral wire

p0 ¼ 1

�
þ ðcNM
�

� 1ÞðfLcR þ fRÞ þ Nðe�beV � 1Þ

þ cNM � 1
cM � 1

ð1� cLcRÞ
�

fcLðcN�1M

�
� 1Þ þ ðcM � 1ÞðfL þ fRcLc

N�1
M Þg

��1
;

ð23Þ

while the probability for an electron on site i may
be expressed in terms of p0 as

pi ¼
e�beV � 1þ ðcM � 1ÞðfLcR þ fRÞ þ 1� cLcR½ �cN�iM

cLðcN�1M � 1Þ þ ðcM � 1ÞðfL þ fRcLc
N�1
M Þ p0:

ð24Þ

3.3. Stationary current

The stationary solution (23) and (24) allows to
calculate from any of the expressions (10) and (11)
the average current (12). The resulting expression
can be cast into the form

I ¼ e
1� e�beV

cL

C
!
L

þ cM

C
!
M

þ cR

C
!
R

; ð25Þ

where we have introduced the abbreviations:

cL ¼ 1þ
e�beV

cL

1� 1=cNM
1� 1=cM

; ð26Þ

cM ¼ cL
1� cN�1M

1� cM
þ ðcLcR � 1Þ

1� cNM
ð1� cMÞ

2

þ N
1� e�beV

1� cM
; ð27Þ

cR ¼
e�beV

cR
þ 1� cNM
1� cM

: ð28Þ

The current changes its sign when the applied
voltage is reversed and at the same time forward

and backward rates as well as left and right con-
tacts are interchanged. This can be verified by
noting that under these changes the coefficients

(26)–(28) are transformed according to cL=C
!
L !

ebeV cR=C
!
R, cR=C

!
R ! ebeV cL=C

!
L, and cM=C

!
M !

ebeV cM=C
!
M.

Further insight into the result (25)–(28) can be
gained by discussing several special cases. An im-
portant limit, which will be particularly relevant in
the discussion of the following sections, is a wire
consisting only of one unit and no bridges. Then,
the current simplifies to

I ¼ e
C
!
LC
!
R � CLCR

C
!
L þ CL þ C

!
R þ CR

ð29Þ

containing forward and backward contributions.
For positive energy differences DEL and DER, the
backward rates vanish at zero temperature and
one is left with the familiar result

I ¼ e
C
!
LC
!
R

C
!
L þ C

!
R

ð30Þ

for an sequential incoherent process with rates C
!
L

and C
!
R.

For more than one wire unit it is instructive to
compare the two models for the voltage profile in-
troduced in Section 2.We start by consideringmodel
A where the voltage drops only across the contacts.
As a consequence, the forward and backward rates
on the molecule are equal and we have cM ¼ 1. In
this case, the coefficients (26)–(28) become

cL ¼ 1þ
e�beV

cL
N ; ð31Þ

cM ¼ cLðN � 1Þ þ ð1þ e�beV ÞNðN � 1Þ
2

; ð32Þ

cR ¼
e�beV

cR
þ N ; ð33Þ

which is consistent with Eqs. (29) and (30) for
N ¼ 1. For long wires, the current scales like 1=N 2

with the number of wire units. Since forward and
backward tunneling rates on the wire are equal,
the electron has equal probability for tunneling in
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forward and backward direction. The length de-
pendence of the current can therefore be under-
stood in terms of a random walk where the
average time to diffuse across a wire of length N is
proportional to N 2.
For model B, where the voltage drops entirely

along the wire, the same argument holds provided
the thermal energy is much larger than the energy
difference between adjacent sites, kBT � DEM. At
low temperatures, however, the situation differs
qualitatively since the backward rates are negligi-
bly small. In order to obtain a finite current even in
the limit of zero temperature, we assume that
DEL; DER > 0. At zero temperature, Eqs. (25)–(28)
then yield

I ¼ e
1

1

C
!
L

þ N�1
C
!
M

þ 1

C
!
R

; ð34Þ

which reduces to (30) for N ¼ 1. For a long wire,
the current now decreases linearly with the number
of units or, equivalently, with the length of the
wire. In this sense, for model B the wire resembles
an ohmic resistor.
The comparison of models A and B demon-

strates that the dependence of the current on the
wire length at low temperatures may provide
qualitative information about the voltage drop
across the molecule. In any case, however, inco-
herent transport leads to an algebraic length de-
pendence of the current in clear contrast to the
exponential dependence characteristic for coherent
transport [10].

4. Blocking of spin channels by strong Coulomb

interaction

So far, we have ignored the spin degree of
freedom of the electrons. In this section, we will
take the spin into account but, due to the strong
Coulomb interaction, there will be not more than
one electron present on the wire. Furthermore, we
will assume that the two spin directions are
equivalent and that no spin flips occur.
Inclusion of the electron spin increases the

number of possible wire states to 2N þ 1. The wire
can now either be neutral (with probability p0ðtÞ)

or there can be an extra electron with spin up or
down at site i ¼ 1; . . . ;N (with probability p";iðtÞ
and p#;iðtÞ, respectively). The possible transitions
between the different states are depicted in Fig. 5.
We emphasize that, like in Section 3, all rates are
to be understood as rates per spin direction. In the
presence of a magnetic field, the two spin direc-
tions would no longer be equivalent and the rates
would have to be distinguished by a spin index.
A comparison of Figs. 4 and 5 shows that the

two molecular parts are independent of the spin
direction and correspond to the molecular part in
the spinless case. The only difference lies in the
coupling to the neutral state ‘‘0’’. This motivates to
introduce the total probability piðtÞ ¼ p";iðtÞþ
p#;iðtÞ for an electron on site i irrespective of its
spin. The resulting master equation including the
normalization condition is of the same form as
Eqs. (5) and (6)–(9) in the spinless case. The only
difference consists in a factor of 2 by which the
rates C

!
L and CR describing the charging of the wire

have to be multiplied. For these rates, the spin
degree of freedom leads to an additional process

Fig. 5. The situation depicted in Fig. 4 is generalized to include

the electron spin. The two rings corresponding to the two spin

directions are joined via the neutral state ‘‘0’’ of the molecule.
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allowing to occupy the wire. This is not the case
for an electron leaving the wire. In this case, the
spin is fixed and the corresponding rates CL and

C
!
R are not doubled.

The appearance of a factor of 2 may also be
understood in terms of the density of states in the
electrodes which enters the tunneling rates. For
tunneling of electrons onto the wire the number
of initial states is increased by the spin degree of
freedom thereby leading to an effective doubling of
the density of states. On the other hand, for tun-
neling into the electrodes the density of final states
is not increased since the spin is determined by the
electron leaving the wire.
Taking into account the factor of 2 in the tun-

neling rates that populate the wire, one finds for
the average current

I ¼ e 2C
!
Lp0

�
� CLp1

�
: ð35Þ

Here, the probability p1 implicitly contains a factor
of 2 since the electron contributing to the back-
ward current may carry either spin up or down.
Making the required modifications of the rates C

!
L

and CR, the current (25)–(28) turns into

I ¼ e
1� e�beV

cL

C
!
L

þ cM

C
!
M

þ cR

C
!
R

; ð36Þ

where the coefficients now are given by

cL ¼
1

2
þ e

�beV

cL

1� 1=cNM
1� 1=cM

; ð37Þ

cM ¼
cL
2

1� cN�1M

1� cM
þ ðcLcR � 1Þ

1� cNM
ð1� cMÞ

2

þ N
1� e�beV

1� cM
; ð38Þ

cR ¼
e�beV

2cR
þ 1� cNM
1� cM

: ð39Þ

We remark that due to the mutual blocking of the
electrons one does not obtain an overall factor of 2
in the current relative to the spinless case (25)–(28).
Instead, the current shows a more intricate influ-
ence of the spin degree of freedom.
The mechanism of blocking is particularly

transparent if the wire consists of only one site, i.e.

N ¼ 1. We restrict ourselves to the case of zero
temperature where, as in the derivation of Eq. (30),
all backward rates vanish. Then the current (36)
simplifies to read

I ¼ 2e C
!
LC
!
R

2C
!
L þ C

!
R

: ð40Þ

This result has to be compared with the case where
the two spin directions lead to independent trans-
port channels so that the expression (30) is multi-
plied by a factor of 2 yielding the current

I0 ¼ 2e
C
!
LC
!
R

C
!
L þ C

!
R

: ð41Þ

The effect of blocking due to the Coulomb inter-
action is quantified by the ratio of the current (40)
in the presence of Coulomb repulsion and the
current (41) in the absence of interaction, i.e.

I
I0
¼ 1þ g
1þ 2g : ð42Þ

The blocking is completely determined by the ratio

g ¼ C
!
L

C
!
R

ð43Þ

of the rates through the left and right contacts and
varies between 1 for C

!
L � C

!
R and 1/2 for

C
!
L � C

!
R as shown in Fig. 6.

This dependence on g can be understood in
terms of the average population of the wire which
here is given by p1. From the stationary solution of
the master equation for the case with spin and
N ¼ 1 one obtains

p1 ¼
2g

1þ 2g : ð44Þ

The blocking effect on the current (42) may
therefore be directly related to the average popu-
lation of the wire by

I
I0
¼ 1� p1

2
: ð45Þ

For small g, or equivalently C
!
L � C

!
R, the wire is

depleted almost immediately after it has been
populated. The average population of the wire
therefore is very small and the passage of another
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electron is almost never blocked. In the opposite
case of large g, or C

!
L � C

!
R, the right contact

represents a bottleneck which leads to a sizable
average population of the wire and therefore to the
blocking of transport.
This result clearly shows that inclusion of the

spin degree of freedom does not necessarily lead to
a doubling of the current as would be the case in
the absence of Coulomb interaction on the wire.
Apart from the interaction strength, the average
population of the wire plays a decisive role and
blocking is strongest when the right contact in-
creases the population by acting as a bottleneck.

5. Temperature dependence of blocking

The calculation of the current–voltage charac-
teristics presented so far was based on the as-
sumption that at any given time there is at most
one extra electron on the wire. Although it is
straightforward to generalize the rate equations
(6)–(9) to more than one electron by extending the
state space, in general one has to solve the rate
equations numerically.
Some insight into the validity of the limit of

strong Coulomb interaction can be gained by

allowing a second electron on the wire. Then, an
analytical treatment is still possible if we restrict
the length of the wire to one site, i.e. N ¼ 1. We
will assume that this very site may be occupied by
at most two electrons of opposite spin. Then, there
exist four different wire states, j0i, j "i, j #i, and
j "#i, which correspond to no electron, one elec-
tron with spin up or down, and two electrons,
respectively. The energies of these four states are
schematically shown in Fig. 7 where we allow for
an interaction energy U if two electrons are present
on the wire. By changing both, the temperature as
well as the one-electron energy E relative to the left
electrochemical potential, we may choose the
levels which are relevant for the transport through
the wire.
The discussion in the last section has shown

that the effect of blocking is most pronounced
when the tunneling rates through the right contact
are much smaller than through the left one. We
therefore shall concentrate on this limit. Then, the
master equation for the probabilities pn of being in
a state with n ¼ 0; 1, or 2 electrons depends only
on the rates through the left contact. These tun-
neling rates may be identified by the change of the
number of electrons. For example, C2!1 refers to
the backward rate through the left contact with
initially two electrons on the molecule. With this
notation the master equation reads:

_p0p0ðtÞ ¼ �2C0!1p0ðtÞ þ C1!0p1ðtÞ; ð46Þ

_p1p1ðtÞ ¼ �ðC1!0 þ C1!2Þp1ðtÞ þ 2C0!1p0ðtÞ
þ 2C2!1p2ðtÞ; ð47Þ

Fig. 7. Many-particle states for one site with n ¼ 0; 1, and 2
electrons. D is the one-particle energy of the states j "i and j #i
and U is the Coulomb interaction energy between the electrons

occupying the site.

Fig. 6. The current suppression (42) due to Coulomb interac-

tion is plotted as a function of the ratio g of the tunneling rates
in the left and right contacts.
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_p2p2ðtÞ ¼ �2C2!1p2ðtÞ þ C1!2p1ðtÞ ð48Þ
with the normalization condition

p0ðtÞ þ p1ðtÞ þ p2ðtÞ ¼ 1: ð49Þ
The rates C0!1 and C2!1 are each multiplied by a
factor of 2, thereby accounting for the two spin
directions possible in these processes. The proba-
bility p1 of finding one electron of arbitrary spin on
the wire implicitly contains a factor of 2 in the
same sense as was discussed after Eq. (35).
If the probabilities are calculated from the

master equations (46)–(48), thereby neglecting
tunneling through the right contact, the current
has to be evaluated at that contact. We will assume
that the electrochemical potential in the right

electrode is so low that the forward rates C
!
R

through the right contact are approximately in-
dependent of the occupation of the molecular site
and that backward rates may be neglected. Then,
the stationary current is obtained as

I ¼ eC
!
Rðp1 þ 2p2Þ; ð50Þ

where the factor of 2 accounts for the two spin
directions available when one of two electrons is
leaving the molecule.
Solving the master equations (46)–(48) in the

stationary limit, we obtain from (50) for the current

I ¼ eC
!
R

1þ C1!2
C2!1

1þ C1!0
2C0!1

þ C1!2
2C2!1

: ð51Þ

In order to study the effect of blocking, we have to
compare this current with the current I0 in the
absence of Coulomb interaction. In this case
C1!2 ¼ C0!1 and C2!1 ¼ C1!0 and we find

I0 ¼ eC
!
R

1þ C0!1
C1!0

1þ C1!0
2C0!1

þ C0!1
2C1!0

: ð52Þ

This result still depends on temperature and on the
energy E of the one-electron level relative to the
left electrochemical potential.
The ratio I=I0 depends only on rate ratios

which, as in Section 3.1, may be expressed in terms
of Boltzmann factors. For single occupation of the
molecule, we have

C0!1
C1!0

¼ e�bE: ð53Þ

Double occupancy costs the additional interaction
energy U, so that

C1!2
C2!1

¼ e�bðEþUÞ: ð54Þ

The blocking due to Coulomb interaction is then
described by

I
I0
¼ 1� 1� e�bU

ebE þ 2þ e�bðEþUÞ : ð55Þ

Fig. 8 depicts this result as a function of kBT =jEj
for U=jEj ¼ 2 and 2000. The full lines correspond
to the case, where the one-electron energy lies be-
low the left electrochemical potential, i.e. E < 0.
The dashed line refers to the opposite case with
E > 0. As a function of temperature, we can dis-
tinguish three different regimes.
In the limit of zero temperature, one finds for

E < 0, and U > �E an interaction induced re-
duction of the current by a factor of 1/2. This is the
blocking discussed already in Section 4. For
Eþ U < 0, double occupancy is possible even in
the zero temperature limit and no blocking occurs.
As can be seen from the dashed lines in Fig. 8,
blocking is also absent for E > 0. In this case, the
current as well as the occupation of the molecule

Fig. 8. The current (51) through the wire normalized with re-

spect to the current (52) in the absence of Coulomb interaction

is plotted as a function of the temperature T in units of jEj for
U=jEj ¼ 2 and 2000. For each value of U=jEj, a full line and
a dashed line are shown, corresponding to E < 0 and E > 0,

respectively.
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approach zero exponentially for low temperatures.
In analogy to the reasoning presented in Section 4,
blocking thus becomes ineffective.
For U � jEj, a second regime appears at inter-

mediate temperatures jEj � kBT � U . For
U=jEj ¼ 2000, Fig. 8 indeed shows a clear plateau
at a blocking factor of 2/3. This can be attributed to
the fact that for kBT � jEj the backward rate C1!0
is of the order of the forward rate C0!1. This re-
duces the population of the molecule and therefore
blocking is less effective than at lower temperatures.
The reduction by a factor of 2/3 can be under-

stood even without recourse to Eq. (55). For equal
forward and backward rates, the probabilities for
an empty wire or a wire occupied with one electron
of given spin are equal, leading to probabilities
p0 ¼ 1=3, p1 ¼ 2=3 and p2 ¼ 0. From Eq. (50) one
therefore finds I ¼ ð2=3ÞeC

!
R. In the absence of

Coulomb interaction, double occupancy is allowed
and one finds all four possible states with equal
probability leading to p0 ¼ 1=4, p1 ¼ 1=2 and

p2 ¼ 1=4. This yields the current I0 ¼ eC
!
R, and

thus the blocking factor reads I=I0 ¼ 2=3.
Finally, in the high-temperature regime, where

kBT � jEj;U , the thermal energy is much bigger
than the interaction energy U so that the latter
becomes irrelevant. Therefore, the Coulomb in-
teraction can no longer lead to blocking of the
electronic transport.

6. Conclusions

The influence of Coulomb interaction on inco-
herent electronic transport through a molecular
wire has been found to be multifaceted. In the re-
gime of strong Coulomb interaction, the current of
spinless electrons shows an algebraic dependence
on the wire length characteristic for incoherent
transport. It was found, however, that this length
dependence varies as a function of the voltage
profile across the system. At low temperatures a
1=N 2 behavior indicates the absence of a voltage
drop along the molecule while in the presence of a
voltage drop a 1=N behavior is expected.
Inclusion of the spin degree of freedom in the

absence of Coulomb interaction leads to an
increase of the current by a factor of 2. Coulomb

interaction, on the other hand, should lead to a
reduction of the current. It was found that this
blocking effect not only depends on the interaction
strength but also on the average population of the
wire and thus on the tunneling rates (cf. Fig. 6).
For finite Coulomb interaction, the amount of

blocking also depends on temperature. Between
the limits of suppression of the current by a factor
of 2 at zero temperature and the absence of
blocking at high temperatures an intermediate re-
gime may exist. There, Coulomb interaction pro-
hibits double occupancy. Nevertheless the current
is only reduced by a factor of 2/3 (cf. Fig. 8). This
is a consequence of the competition between
backward and forward rates, which equally pop-
ulates the two one-electron levels.
As a final remark, we mention that even though

we have restricted ourselves to electronic trans-
port, the approach presented here is also applica-
ble to hole transport. Depending on the situation,
holes may be the dominant charge carriers; the
results presented above may easily be adapted to
this case. On the other hand, if both, holes and
electrons, contribute to the transport, an extension
similar to the one presented in Section 4, where
spin is included, becomes necessary.
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