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Abstract.  We  investigate  the  influence  of  external  laser  excitations  on  the
average current through bridged molecules. For the computation of the current, we
use a numerically very efficient formalism that is based on the Floquet solutions of
the time-dependent molecule Hamiltonian. It is found that the current as a function
of the laser frequency exhibits characteristic peaks originating from resonant excita-
tions of electrons to bridge levels that are unoccupied in the absence of radiation.
The  electric  current  through  the  molecule  can  exhibit  a  drastic  enhancement  by
several orders of magnitude.

1. INTRODUCTION
In a seminal work,1 Aviram and Ratner proposed almost
thirty years ago to build elements of electronic circuits
—in their case, a rectifier—with single molecules. To-
day  their  vision  is  starting  to  become  reality,  and  the
experimental and theoretical study of such systems en-
joys vivid activity.2–4 Recent experimental progress has
enabled  reproducible  measurements5,6  of  weak  tunnel-
ing  currents  through  molecules  that  are  coupled  by
chemisorbed thiol groups to the gold surface of external
leads.  A  necessary  ingredient  for  future  technological
applications will be the possibility to control the tunnel-
ing current through the molecule.

Typical energy scales in molecules are in the optical
and the infrared regime, where basically all of today’s
lasers operate. Hence, lasers represent a natural possibil-
ity  to  control  atoms  or  molecules  and  also  currents
through them. It is, for example, possible to induce by
the laser field an oscillating current in the molecule that
under certain asymmetry conditions is rectified by the
molecule, resulting in directed electron transport even in
the absence of any applied voltage.7,8 Another theoreti-
cally predicted effect is current suppression by the laser
field,9 which offers the possibility to control and switch
the  electron  transport  by  light.  Since  the  frequencies

considered lie below typical plasma frequencies of met-
als, the laser light will be reflected at the metal surface,
i.e., it does not penetrate the leads. Consequently, we do
not expect major changes of the leads’ bulk properties—
in  particular,  each  lead  remains  close  to  equilibrium.
Thus, to a good approximation, it is sufficient to consider
the influence of the driving solely in the molecule Hamil-
tonian. In addition, the energy of infrared light quanta is by
far smaller than the work function of a common metal,
which is of the order of 5 eV. This prevents the genera-
tion of a photo current that would dominate the effects
discussed below.

Recent theoretical descriptions of the molecular con-
ductivity in non-driven situations are based on a scatter-
ing  approach,10,11  or  assume  that  the  underlying  trans-
port mechanism is an electron transfer reaction from the
donor to the acceptor site and that the conductivity can
be derived from the corresponding reaction rates.3 It has
been  demonstrated  that  both  approaches  yield  essen-
tially  identical  results  in  a  large  parameter  regime.12

Within  a  high-temperature  limit,  electron  transport
on  the  wire  can  be  described  by  inelastic  hopping
events.13,14
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Atoms  and  molecules  in  strong  oscillating  fields
have  been  widely  studied  within  a  Floquet  formal-
ism.15,16 This suggests utilizing the tools that have been
acquired  in  that  area,  thus  developing  a  transport  for-
malism that combines Floquet theory for a driven mol-
ecule  with  the  many-particle  description  of  transport
through a system that is coupled to ideal leads.7–9 Such
an approach is devised much in the spirit of the Floquet–
Markov theory17,18  for driven dissipative quantum sys-
tems.

A rather heuristic approach to the problem of driven
molecular  wires  has  been  introduced  in  ref  19.  It  is
based on the assumption that each sideband of a Floquet
state contributes as an independent conduction channel
to the average current, and that each contribution can be
calculated from a current formula that has been derived
for  the  time-independent  situation.  As  a  consequence,
this approach does not allow a consistent treatment of
the coherences between different Floquet states or of the
coherence between different sidebands within a Floquet
state.

2. FLOQUET TREATMENT OF ELECTRON
TRANSPORT

The entire system of the wire in the laser field, the leads,
and the molecule–lead coupling, as sketched in Fig. 1, is
described by the Hamiltonian

(1)

The wire is modeled by N atomic orbitals |n〉, n = 1,
..., N, which are in a tight-binding description, coupled
by  hopping  matrix  elements.  Then,  the  corresponding
Hamiltonian for the electrons on the wire, in a second
quantized form, is

(2)

where  the  fermionic  operators  cn, cn
†  annihilate  and

create, respectively, an electron in the atomic orbital |n〉
and obey the anti-commutation relation [cn, cn′

† ]+ = δn,n′.
The influence of  the  laser  field  is  given by a  periodic
time-dependence  of  the  on-site  energies  yielding  a
single  particle  Hamiltonian  of  the  structure  Hnn′ (t)  =
Hnn′ (t + ),  where   =  2π/Ω  is  determined  by  the
angular frequency Ω of the laser field.

The orbitals |1〉 and |N〉 at the left and the right ends
of the molecule, which we shall term donor and accep-
tor, respectively, are coupled to ideal leads (cf. Fig. 1)
by the tunneling Hamiltonians

(3)

The operator cqL (cqR) annihilates an electron in state
qL (qR) on the left (right) lead. The leads are modeled as
non-interacting electrons with the Hamiltonian

(4)

where  is the single particle energy of state qL  and
correspondingly for the right lead. As discussed above,
the  leads  can  be  described  by  a  grand-canonical  en-
semble of electrons, i.e., by a density matrix

(5)

where µL/R are the electrochemical potentials and NL/R =
Σqc†

qL /RcqL/R the electron numbers in the left/right lead. As
a consequence, the only non-trivial expectation values
of lead operators are

(6)

Here, f (x) = (1 + ex/kBT)–1 denotes the Fermi function.

Fig. 1. Level structure of a molecular wire with N = 8 atomic sites, which is attached to two leads.
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2.1 Perturbation Theory
While the leads and the wire, including the driving,

will be treated exactly, we take into account the wire-
lead  Hamiltonian  as  a  perturbation.  Starting  from  the
Liouville–von Neumann equation ,
together  with  the  factorizing  initial  condition

we derive  by  standard  techniques
an approximate equation of motion for the total density
operator . This is most conveniently achieved in the
interaction  picture  with  respect  to  the  uncoupled  dy-
namics, where the Liouville–von Neumann equation is

(7)

The  tilde  (~)  denotes  the  corresponding  interaction
picture  operators,  ,
where  the  propagator  of  the  wire  and  the  lead  in  the
absence of the lead-wire coupling is given by the time-
ordered product

(8)

Equation 7 is equivalent to the following integral equation:

(9)

We reinsert this expression into the differential equation
(eq 7) and use that to zeroth order in the molecule-lead
coupling  the  interaction-picture  density  operator  does
not change with time,  A transfor-
mation  back  to  the  Schrödinger  picture  results  in  the
following approximate equation of motion for the total
density operator7,8

(10)

Since we only consider asymptotic times t – t0 → ∞, we
have set the upper limit in the integral to infinity. The third
term in eq 10 stems from the initial condition at t0 in the
integrated  form (eq  9)  of  the  Liouville–von  Neumann
equation. For the chosen factorizing initial condition, it
will not contribute to the expectation values calculated
below.

The net (incoming minus outgoing) current through
the left contact is given by the negative time derivative
of the electron number in the left lead, multiplied by the
electron charge –e, i.e.,

(11)

We insert  from eq 10 and obtain an expression that
depends on the density of states in the leads times their
coupling strength to the connected sites. At this stage, it
is  convenient  to  introduce  the  spectral  density  of  the
lead-wire coupling

(12)

which  fully  describes  the  leads’  influence.  If  the  lead
states are dense,   becomes a continuous func-
tion. Because we are mainly interested in the behavior
of the molecule and not in the details of the lead-wire
coupling, we assume that the conduction bandwidth of
the  leads  is  much  larger  than  all  remaining  relevant
energy scales. Consequently, we approximate in the so-
called  wide-band  limit  the  functions   by  the
constant values . After some algebra, we find for
the time-dependent net electrical current through the left
contact the expression

(13)

and,  correspondingly,  for  the current  through the con-
tact on the right-hand side. Here, we made the assump-
tion that the leads are at all times well described by the
density operator  (eq 5). Note that the anti-commutator

is in fact a c-number. Like the expecta-
tion value , it depends on the dynamics
of  the  isolated  wire  and  is  influenced  by  the  external
driving. The first contribution of the -integral in eq 13
is readily evaluated to yield an expression proportional
to  Thus,  this  term  becomes  local  in  time  and  is

2.2 Floquet Decomposition
Let us next focus on the single-particle dynamics of

the driven molecule decoupled from the leads. Since its
Hamiltonian is periodic in time, Hnn′ (t) = Hnn′ (t + ), we
can solve the corresponding time-dependent Schrödinger
equation within a Floquet approach. This means that we
make use of the fact that there exists a complete set of
solutions of the form16,20–23
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(14)

with the quasi-energies . Since the so-called Floquet
modes |Φα (t)〉 obey the time-periodicity of the driving
field, they can be decomposed into the Fourier series

(15)

This implies that the quasi-energies  come in classes,

(16)

all members of which represent the same solution of the
Schrödinger  equation.  Therefore,  the  quasi-energy
spectrum  can  be  reduced  to  a  single  “Brillouin  zone”
– Ω/2 ≤  < Ω/2. In turn, all physical quantities that
are computed within a Floquet formalism are indepen-
dent of the choice of a specific class member. Thus, a
consistent description must obey the so-called class in-
variance, i.e., it must be invariant under the substitution
of one or several Floquet states by equivalent ones,

(17)

where k1,…,kN  are integers.  In the Fourier decomposi-
tion (eq 15), the prefactor exp(ikαΩt) corresponds to a
shift of the side band index so that the class invariance
can be expressed equivalently as

(18)

Floquet states and quasienergies can be obtained from
the quasienergy equation15,16,20–23

(19)

A wealth of methods for the solution of this eigenvalue
problem can be found in the literature. For an overview,
we  refer  the  reader  to  the  reviews  in  refs  16,  23,  and
references therein.

As the equivalent of the one-particle Floquet states
|Φα (t)〉,  we define a  Floquet  picture for  the fermionic
creation  and  annihilation  operators  c†

n, cn  by  the  time-
dependent transformation

(20)

The inverse transformation

(21)

follows  from  the  mutual  orthogonality  and  the  com-
pleteness of the Floquet states at equal times.16,23 Note
that the right-hand side of eq 21 becomes t-independent
after the summation. The operators cα (t) are constructed
in such a way that the time-dependences of the interac-
tion  picture  operators  c~α (t  –  τ, t)  separate,  which  will
turn  out  to  be  crucial  for  the  further  analysis.  Indeed,
one can easily verify the relation

(22)

by  differentiating  the  definition  in  the  first  line  with
respect to τ  and using that |Φα (t)〉  is a solution of the
eigenvalue  eq  19.  The  fact  that  the  initial  condition
c~α (t, t)  =  cα (t)  is  fulfilled  completes  the  proof.  The
corresponding expression for the interaction picture op-
erator  in  the  on-site  basis,  c~n (t  –  τ, t),  can  be  derived
with the help of eq 21 at time t – τ, together with eq 22:

(24)

Equations 22 and 24 consequently allow to express the
interaction picture operator c~1

†
 (t – τ, t), appearing in the

current formula (eq 13), via cα (t), dressed by exponential
prefactors.

This spectral decomposition allows one to carry out
the time and energy integrals in eq 13 for the net current
entering the wire from the left lead. Thus, we obtain

(25)

with the corresponding Fourier components

(26)

Here, we have introduced the expectation values

(27)

(28)

The Fourier decomposition in the last line is possible
because  all  Rαβ (t)  are  expectation  values  of  a  linear,
dissipative,  periodically-driven  system  and  therefore

(23)
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share in the long-time limit the time-periodicity of the
driving field.  In the subspace of  a  single electron,  Rαβ

reduces to the density matrix in the basis of the Floquet
states, which has been used to describe dissipative, peri-
odically-driven quantum systems in refs 16,18,24–27.

The next step towards the stationary current is to find
the Fourier coefficients Rαβ,k at asymptotic times. To this
end,  we  derive  from  the  equation  of  motion  (10)  a
master equation for Rαβ (t). Since all coefficients of this
master equation, as well as its asymptotic solution, are

-periodic, we can split it into its Fourier components.
Finally, we obtain for the Rαβ,k the inhomogeneous set of
equations

(29)

For a consistent Floquet description, the current formula
together  with  the  master  equation  must  obey class  in-
variance. Indeed, the simultaneous transformation with
eq 18 of both the master equation (eq 29) and the current
formula (eq 26) amounts to a mere shift of summation
indices and thus leaves the current, as a physical quan-
tity, unchanged.

For the typical parameter values used below, a large
number  of  sidebands  contributes  significantly  to  the
Fourier  decomposition  of  the  Floquet  modes  |Φα (t)〉.
Numerical  convergence  for  the  solution  of  the  master
equation (eq 29),  however,  is already obtained by just
using a few sidebands for the decomposition of Rαβ (t).
This  keeps  the  numerical  effort  relatively  small  and
justifies a posteriori the use of the Floquet representa-
tion (eq 21). Yet we are able to treat the problem beyond
the rotating-wave-approximation.

2.3 Time-Averaged Current through the Molecular
Wire

Equation 25 implies that the current IL (t) obeys the
time-periodicity of the driving field. Since we consider
here excitations by a laser field, the corresponding driv-
ing  frequency  lies  in  the  optical  or  infrared  spectral
range.  In  an  experiment  thus  one  will  only  be  able  to
measure  the  time-average  of  the  current.  For  the  net

current entering through the left contact, it is given by

(30)

By  replacing  {|1〉, L} →  {|N〉, R},  one  obtains  the
current that enters from the right, IR (t), and the corre-
sponding Fourier coefficients and time averages.

Total  charge  conservation  of  the  original  wire-lead
Hamiltonian (eq 1) of course requires that the charge on
the wire can only change by current flow, amounting to
the continuity  equation Q•

wire (t)  = IL (t)  + IR (t).  Since
asymptotically  the  charge  on  the  wire  obeys,  at  most,
the  periodic  time-dependence  of  the  driving  field,  the
time-average  of  Q•

wire (t)  must  vanish  in  the  long-time
limit. From the continuity equation, one then finds that

+  = 0,  and we can introduce the time-averaged
current

(31)

This continuity equation can be obtained directly from
the  average  current  formula  (eq  30)  together  with  the
master equation (eq 29), as has been explicitly shown in
ref 8.

3. LASER-ENHANCED CURRENT

3.1 Bridged Molecular Wire
As a working model, we consider a molecule consist-

ing of a donor and an acceptor site  and N  – 2 sites in
between (cf. Fig. 1). Each of the N sites is coupled to its
nearest neighbors by a hopping matrix element ∆. The
laser field renders each level oscillating in time with a
position-dependent amplitude. Thus, the corresponding
time-dependent wire Hamiltonian is

(32)

where xn = (N + 1 – 2n)/2 is the scaled position of site |n〉.
The energy A equals the electron charge multiplied by
the  electrical  field  amplitude  of  the  laser  and  the  dis-
tance  between  two  neighboring  sites.  The  energies  of
the donor and the acceptor orbitals are assumed to be at
the level of the chemical potentials of the attached leads,
E1 = EN = µL = µR. The bridge levels EN , n = 2,…, N – 1,
lie EB >> ∆ above the chemical potential, as sketched in
Fig. 1.
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In  all  numerical  studies,  we  will  use  a  symmetric
coupling, ΓL = ΓR = Γ.  The hopping matrix element ∆
serves as the energy unit; in a realistic wire molecule, ∆
is of the order 0.1 eV. Thus, our chosen wire-lead hop-
ping rate Γ = 0.1∆ /  yields eΓ = 2.56 × 10–5 Ampère
and Ω ≈ 10∆ /  corresponds to a laser frequency in the
near infrared. For a typical distance of 5 Å between two
neighboring sites, a driving amplitude A = ∆ is equiva-
lent to an electrical field strength of 2 × 106 V/cm.

3.2 Average Current at Resonant Excitations
Let us first discuss the static problem in the absence

of the field, i.e., for A = 0. In the present case, where the
coupling between two neighboring sites is much weaker
than the bridge energy, ∆ << EB, one finds two types of
eigenstates:  One forms a  doublet  whose states  are  ap-
proximately given by (|1〉 ± |N〉)/  2 . Its splitting can be
estimated in a perturbational approach28 and is approxi-
mately given by 2∆ (∆/EB)N – 2. A second group of states
is located on the bridge. It consists of N – 2 levels with
energies in the range [EB – 2∆, EB + 2∆]. In the absence
of  the  driving  field,  these  bridge  states  mediate  the
super-exchange  between  the  donor  and  the  acceptor.
This  yields  an  exponentially  decaying  length  depen-
dence of the conductance.3,10

This behavior changes significantly when a driving
field with a frequency of Ω ≈ EB /  is switched on. Then
the resonant bridge levels merge with the donor and the
acceptor  state  to  form  a  Floquet  state.  This  opens  a
direct channel for the transport, resulting in an enhance-
ment of the electron current, as depicted in Fig. 2 where
we plot the current amplification, defined as the ratio of
the time-averaged current to the current in the absence
of the laser, η = / I0: In a wire with N = 8 sites, one
finds peaks in  the current  when the driving frequency

matches the energy difference between the donor/accep-
tor doublet and one of the N – 2 = 6 bridge levels. The
voltage applied is always so small that the bridge levels
lie above the chemical potentials of the leads. The am-
plification  can  assume  many  orders  of  magnitude,  cf.
Fig.  2.  Generally,  the  response  of  a  system  to  weak
resonant driving scales with the damping and the driv-
ing amplitude. Figure 3 demonstrates this behavior for
the peaks of the electrical current. The peak heights at
the maxima of the time-averaged current are found to be
proportional to A2/Γ. Further scaling behavior is found
for  the current  peaks as  a  function of  the wire length:
The average current no longer exhibits the exponentially
decaying  length  dependence  that  has  been  found  for
bridged super-exchange. By contrast, it emerges propor-
tional  to  1/(N  –  1).  This  can  be  appreciated  in  Fig.  4,

Fig. 4. Average current  as a function of driving frequency
Ω  for  various  wire  length  N.  All  other  parameters  are  as  in
Fig. 2.

Fig. 3.  Average current  as a function of driving frequency
Ω  for  various  driving  amplitudes  A  and  coupling  strength
Γ = ΓL = ΓR. All other parameters are as in Fig. 2.

Fig. 2. Amplification of the time-averaged current through the
wire sketched in Fig. 1 with EB = 10∆. The scaled amplitude is
A  =  0.1∆;  the  applied  voltage  µL  –  µR  =  5∆/e.  The  other
parameters are Γ = ΓL = ΓR = 0.1∆/h, kBT = 0.25∆.
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where the scale of the abscissa is chosen proportional to
N – 1 such that it suggests a common envelope function.
Put differently, the current is essentially inversely pro-
portional to the length, as in the case of Ohmic conduc-
tance.

In  summary,  we  find  current  peaks  whose  height
peak scales according to

(33)

Thus,  the  current,  especially  for  long  wires,  is  much
larger than the corresponding current in the absence of
the driving field.

4. CONCLUSIONS
We have presented a detailed derivation of the Floquet
transport formalism that has been applied in refs 7–9. The
analysis of a bridged molecular wire revealed that reso-
nant  excitations  from the  levels  that  connect  the  mol-
ecule to the external leads to bridge levels yield peaks in
the current as a function of the driving frequency. In a
regime with weak driving and weak electron-lead cou-
pling, ∆  >> Γ, A,  the peak heights scale with the cou-
pling  strength,  the  driving  amplitude,  and  the  wire
length. The laser irradiation induces a large current en-
hancement of several orders of magnitude. The observa-
tion of these resonances could serve as an experimental
starting point for the more challenging attempt of mea-
suring quantum ratchet effects7,8 or current switching by
laser fields.9
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