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Abstract

Recent advances in location-aware technologies enable the collection of trajectories
of moving entities, which can be useful in different application domains such as
urban planning, transportation and environment management. The analysis of these
trajectories has mainly focused on discovering movement patterns. However, the
usefulness of the discovered patterns depends on the possibility to interpret and
understand them. Recent studies have shown that the consideration of the movement
context, while analysing trajectories, has the potential to support the understanding of
movement patterns. However, the integration of movement context into the analysis
of trajectories is still in its infancy and most of the available work considers only
a static geographic context. This thesis develops a comprehensive conceptual and
methodological framework for integrating a dynamic geographic context into the
analysis of trajectories.

In the first step, a conceptual model relating the movement to its dynamic geographic
context is developed. The thesis establishes a classification of geographic context
elements and then proposes a set of qualitative relations, termed movement interactions,
between the movement and the context. In the second step, the thesis proposes an
analysis framework which exploits the conceptual model developed. The analysis
framework is based on the process of Knowledge Discovery in Database (KDD). The
thesis focuses on two steps, which correspond to the steps of the KDD process aimed
at discovering and interpreting patterns. The first step applies data mining and spatial
analysis methods to extract interactions from trajectories and context data. The second
step quantifies the extracted interactions and explores the correlation or dependence
between the quantified interactions and dynamic attributes of the movement and the
context.

In order to evaluate the framework developed, the thesis executes three experiments
using real trajectories of vehicle movement in urban environment. Each experiment
focusses on specific challenges addressed by the thesis. The first experiment focuses on
the temporal dynamics of the dynamic geographic context while the second experiment
focusses on its spatial dynamics. While the first two experiments involve context data
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in pattern discovery, the third experiment involves context data for post-processing
already discovered patterns. The experiments show that the integration of context
data supports not only the interpretation of movement patterns but also a deeper
understanding of the movement context. Furthermore, the experiments show that
context data can be integrated at the pattern discovery stage or for post-processing
already discovered patterns. The choice of the integration step depends on the data
being analysed and the type of patterns being mined.



Zusammenfassung

Aktuelle Errungenschaften in standortbezogenen Technologien ermöglichen Trajek-
torien Erfassung von sich beweglichen Objekten. Bewegungstrajektorien können in
verschiedenen Anwendungsfeldern wie Stadtplanung, Transport und Umweltmanage-
ment nützlich sein. Die Analyse dieser Trajektorien konzentriert sich vor allem auf
die Detektion von Bewegungsmustern. Der Nutzen der detektierten Muster hängt von
Möglichkeiten ab, diese zu interpretieren und zu verstehen. Neueste Studien zeigen,
dass die Betrachtung des Bewegungskontextes bei der Analyse von Trajektorien das
Verständnis von Bewegungsmustern unterstützt. Allerdings ist die Integration des
Bewegungskontextes in die Analyse der Trajektorien noch nicht viel erforscht und die
meisten verfügbaren Studien betrachten nur einen statischen geographischen Kontext.
Diese Arbeit entwickelt ein umfassendes konzeptionelles und methodologisches Frame-
work für die Integration eines dynamischen geografischen Kontexts in die Analyse von
Trajektorien.

Im ersten Teil wird ein konzeptionelles Modell entwickelt, das Bewegung mit ihrem
zugrundeliegenden dynamischen geographischen Kontext verknüpft. Die vorliegende
Dissertation stellt eine Klassifikation der geographischen Kontextelemente vor und
schlägt anschließend eine Reihe von qualitativen Beziehungen zwischen der Bewegung
und dem Kontext vor. Diese qualitativen Beziehungen werden als Bewegungsinteraktio-
nen bezeichnet. Im zweiten Teil der Arbeit wird ein Analyse-Framework vorgeschlagen,
das auf dem entwickelten konzeptionellen Modell beruht. Das Analyse-Framework
basiert auf dem Prozess der Knowledge Discovery in Database (KDD). Die Arbeit
konzentriert sich auf zwei Schritte des KDD-Prozesses, die darauf abzielen, Muster
zu detektieren und zu interpretieren. Der erste Schritt besteht aus Data Mining
und räumlichen Analysemethoden mit dem Ziel Interaktionen aus Trajektorien und
Kontextdaten zu extrahieren. Der zweite Schritt quantifiziert die extrahierten Interak-
tionen und untersucht die Korrelation oder Abhängigkeit zwischen den quantifizierten
Interaktionen und den dynamischen Attributen der Bewegung und des Kontextes.

Um das entwickelte Framework zu bewerten, werden in der Arbeit drei Experimente
durchgeführt, die erfasste Trajektorien von Fahrzeugbewegungen in urbanen Gebi-
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eten benutzen. Jedes Experiment konzentriert sich auf spezifische Herausforderungen,
mit denen sich diese Dissertation beschäftigt. Das erste Experiment konzentriert
sich auf die zeitliche Dynamik des dynamischen geographischen Kontextes, während
das zweite Experiment auf seine räumliche Dynamik fokussiert. Während die ersten
beiden Experimente Kontextdaten vor der Extrahierung von Bewegungsmustern in-
tegrieren, integriert das dritte Experiment Kontextdaten für die Nachbearbeitung
bereits extrahierter Bewegungsmuster. Die Experimente zeigen, dass die Integration
von Kontextdaten nicht nur die Interpretation von Bewegungsmustern unterstützt,
sondern auch ein tieferes Verständnis des Bewegungskontextes ermöglicht. Darüber
hinaus zeigen die Experimente, dass Kontextdaten entweder bei der Extrahierung von
Bewegungsmustern oder bei der Nachbearbeitung bereits extrahierter Bewegungsmuster
integriert werden können.
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Chapter 1

Introduction

1.1 Motivation
Mobile sensing technologies such as GPS, RFID, GSM, and Bluetooth and location-
aware devices enabled for them have revolutionised the possibility to track moving
entities such as vehicles, pedestrians, event visitors and animals. This tracking produces
data about the movement of tracked entities commonly known as movement data. The
increasing availability of tracking devices with a finer temporal resolution is leading to
increasing availability of large volumes of movement data.

Movement data are an important resource in various application domains. For
instance, understanding the transportation needs of urban dwellers as shown by their
movement (e.g., commuting patterns (Dewulf et al., 2015)) is crucial for transportation
management. In ecology, animal movement data are useful in studying different animal
behaviours (e.g., migration (Cagnacci et al., 2011), foraging (Augustine and Derner,
2013) and mating (Long and Nelson, 2013)). In urban planning, the infrastructure
development benefits from understanding the movement of the users of this infrastruc-
ture. Recreational park managers can benefit from profiling park users which can be
achieved from their movement data (Meijles et al., 2014).

However, the usefulness of movement data in different application fields depends on
the availability of tools and techniques for extracting human understandable information
from these raw data. The field of computer science has a long tradition of developing
tools and methods for data analysis. Special to mention is the Knowledge Discovery in
Database (KDD), which is a process aimed at discovering knowledge from data (Fayyad
et al., 1996). This process has been widely adopted for analysing huge classical data.
Due to this feature of coping with large volume for data analysis, the KDD process
has been adapted also for geographic data in the field of Geographic Information
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Science (or GIScience). This special case of KDD has been named GKD (Geographic
Knowledge Discovery) (Han and Miller, 2009). The Geographic Knowledge Discovery
has also a potential for analysing movement data as a special type of geographic data
characterised by a large volume and a temporal nature (Mennis and Guo, 2009).

The analysis of movement data has mainly focused on the extraction of movement
patterns, which are detectable structures in the movement data of individuals or groups
of individuals (Laube, 2009). However, patterns themselves are less useful in application
fields because they include very limited or no high level description needed by the
application fields. So, they need to be interpreted by relating them to the context in
which the movement takes place. The context is important for interpreting movement
patterns because the same movement pattern may have different interpretations in
different contexts as explained in the following example illustrated in Figure 1.1.

The left part of Figure 1.1 shows a section of movement of taxis between San
Francisco airport and the downtown. The figure shows that there exists a standard
route on the map extent shown between these two places. The taxis normally follow the
standard route as shown by many taxi positions recorded along this route (in brown).
However, at some time a taxi follows an uncommon route (see the blue point positions).
The interpretation of this movement pattern, called trajectory outlier, depends on the
context. The right part of Figure 1.1 shows three examples of contexts that can lead to
different interpretations of the trajectory outlier pattern. The first case suggests that
the pattern may be interpreted as a deviation aimed at avoiding slow motion due to
traffic congestion on the standard route. In another case (case 2), some roadwork may
be in progress on the standard route; leading to intermittent blocking of the traffic.
This may lead to a deviation aimed at avoiding “stopping and waiting” on the standard
route. In a third case (case 3), a road on the standard route may be fully closed for
some reason. In this case, the deviation will be aimed at replacing the unavailable
standard route. These examples show that without considering the context it will be
hard if not impossible to interpret the trajectory outlier pattern observed.

The literature contains some work relating movement patterns to specific examples
of movement environment also called geographic context. For example, the movement
of an individual has been related to the context made of other moving entities in (Laube,
Imfeld and Weibel, 2005). In other examples, the movement of vehicles has been related
to the road network to which the movement is restricted (Wang et al., 2014) while the
movement of ships has been related to physical properties of the geographic space in
which they travel (Lundblad et al., 2009). Beyond this integration of context examples,
few authors attempted to develop a general framework to relate the movement to its
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Fig. 1.1 A trajectory outlier pattern (a) and different contexts (b) that can lead to
different interpretations for the pattern
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environment in general considering the different types of this environment (Buchin
et al., 2014; Andrienko, Andrienko and Heurich, 2011; Gschwend, 2015). However, a
changing environment has not been considered in this general framework. The changing
environment is hereafter referred to as a dynamic geographic context. For example, a
street protest is a dynamic geographic context because it is associated with changes
over time: participants’ arrival, protest progress, and participants’ dismissal. Other
moving objects (e.g., pedestrians and other vehicles) constitute a dynamic context
because their locations change over time. Likewise, a road segment considered along
with its traffic congestion level is a dynamic context because the congestion level
changes with time.

A dynamic geographic context affects the movement of objects depending on its
dynamics. For instance, a street protest slows down the vehicles using the street or
causes them to deviate from this street. Similarly, when the traffic congestion on
a road segment increases the vehicles moving on it are forced to adopt a single file
movement pattern and to move slowly. In a flock of migrating birds, the movement of
an individual bird depends on the movement the other members of the flock: it has to
change its direction to adjust it to the general direction of the flock. The geographic
context that has been commonly considered in movement data analysis (e.g., points of
interest (POIs)) is static, which simplifies relating it to movement. While checking the
spatial proximity between car trajectories and a road intersection can allow identifying
the cars that passed the intersection, it is not straightforward to identify cars that
avoided a specific road segment because of a traffic jam on it. The reason is that unlike
in the case of a static geographic context, in the case of a dynamic geographic context
some relations between the movement and the context build over time, and a relation
may be made of many different basic relations. The case illustrated in Figure 1.1
is used in the following as an example to explain these characteristics of a dynamic
geographic context.

If we detect a traffic jam on the standard route, we can say that the taxi that
deviated from the route (see the point positions shown in blue) had a “bypassing”
relation with the traffic jam. This relation cannot be discovered from a snapshot of the
positions of the taxi and the traffic jam; it builds over a time interval. Furthermore, this
relation can be seen as a composition of other basic relations (example: approaching,
keeping a distance, and moving away). The geographic context may expand over a wide
space such that it presents spatial dynamics in addition to temporal dynamics. In the
case of a traffic jam in Figure 1.1, the level of congestion at different locations along the
route may be different and change with time. These peculiarities call for an approach
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which takes the time dimension into account explicitly to relate the movement to its
embedding dynamic geographic context. Therefore, this thesis aims at integrating
into the analysis of movement the embedding dynamic geographic context to support
understanding of movement patterns. Relating movement to its embedding dynamic
geographic context will help understand where, when and why the objects move the
way they do. Though in some cases a moving entity may be wide and have some extent,
throughout this thesis it is considered to be a point object.

1.2 Research objectives
The main objective of this thesis is to develop a conceptual and methodological
framework for integrating a dynamic geographic context into the analysis of movement
data. The aim in integrating the geographic context into the analysis of movement
data is twofold: to understand the movement based on the context and to learn
about the context from the movement. As an object moves it interacts with the
environment in which it moves. With this consideration the thesis is guided by the
following hypothesis: Identifying and analysing interactions between a moving object
and the dynamic geographic context supports understanding of the movement patterns
and the movement context. To achieve the objective, the following research questions
are formulated:

• RQ 1: How can we model a dynamic geographic context so as to allow relating
it to the movement it embeds?

• RQ 2: What are the sources of geographic context data for movement analysis
and at which analysis step should these data be integrated?

• RQ 3: How can the relation between the movement and its embedding dynamic
geographic context be explored in space and time to support movement pattern
interpretation?

• RQ 4: How can the relation between the movement and its embedding dy-
namic geographic context be explored in space and time to support a deeper
understanding of the geographic context?
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1.3 Organisation of the thesis
This thesis consists of seven chapters as shown in Figure 1.2. After this introductory
chapter, which presents the motivation, objectives and the structure of the thesis,
subsequent chapters are organised as follows:

Chapter 2 presents important concepts used in the thesis and a review of related work.
The chapter begins with an introduction to geographic data and spatial relations
followed by an introduction to movement data. Then, the chapter presents a
review on movement data analysis starting with an introduction of the KDD
process and proceeding with different data mining methods for movement data.
The last sections of the chapter are dedicated to the analysis of movement data
taking into account the context.

Chapter 3 discusses an approach for modelling the dynamic geographic context of
movement and relating this context to the movement it embeds. Different types
of context elements and a model of interactions for linking them to movement
are discussed.

Chapter 4 presents an analysis framework based on the KDD process for exploiting
the relation between movement and its embedding geographic context to discover
and interpret movement patterns, and further describe the context.

Chapter 5 presents an evaluation of the analysis framework proposed in chapter 4
through three experiments using real world data. The first experiment focuses
on the temporal dynamics of the context while the second experiment focusses
on the spatial dynamics. The third experiment uses a different form of context
data and integrates these data at a different analysis step for comparison with
the first two experiments. The work presented in this chapter is based on the
papers published as contribution of this thesis.

Chapter 6 discusses the results with respect to the research questions that guided the
thesis. This chapter also discusses the limitation of the work done in the thesis.

Chapter 7 concludes and gives the direction for future work.
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Fig. 1.2 Thesis structure





Chapter 2

Literature review

This chapter reviews the literature related to the main themes dealt with in the thesis.
It is intended to introduce important concepts and provide the state-of-the-art on
related work. The chapter starts with a brief introduction of geographic data and spatial
relations, followed by an overview of movement data as a special type of geographic
data. After this overview, which presents the nature and characteristics of movement
data, the analysis of these data following the Knowledge Discovery (KD) process is
presented. The last section of the chapter presents the state-of-the-art on integrating
external data into the analysis of movement data. The last section includes also a
survey of the sources of these external data.

2.1 Geographic data and spatial relations

2.1.1 Geographic data

A geographic phenomenon is defined as “something of interest that can be named
or described, georeferenced, and assigned a time (interval) at which it is/was present”
(de By, 2011). A geographic phenomenon for which, at every point in the study area a
value can be determined, is called a field. Temperature and elevation are examples of
a continuous field; that is, a field for which the value changes gradually from location
to location. Land use and soil classifications are examples of a discrete field; that is,
a field for which there is an abrupt change of value at some location. A geographic
phenomenon which is not present everywhere in the study area is called an object.
Examples of objects are hospitals and roads. A geographic phenomenon exists in real
world. In order to study it using a computing system, a computer representation must
be produced for it.
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Geographic data (also known as spatial data) are data produced as computer
representations of geographic phenomena. The first step in producing a computer
representation of geographic phenomenon is to choose a model of the phenomenon.
There are object-based models (points, polylines and polygons) and the field-based
model (de By, 2011; Rigaux et al., 2001). Once a model for the geographic phenomenon
has been chosen, a data structure is also chosen to store corresponding geographic data.
There are two basic data structures to store geographic data: vector and raster (de By,
2011; Rigaux et al., 2001). A raster data structure is a grid with cells of equal size.
Each cell is associated with a single value of a given attribute and the size of the cells
defines the level of resolution. As a result, all variations within a cell are lost. The
vector data structure is made of a finite number of points. A vector is made of one
geometry attribute specifying the location and shape of the object, and other attributes
containing other descriptions. In the vector data structure, a point is specified by its
coordinates whereas lines and areas are usually represented by a sequence of points
that are connected by straight lines.

2.1.2 Spatial relations

The analysis of geographic data focuses especially on spatial information. Spatial
information includes the locations, shapes and sizes of geographic objects but also
spatial relations between them. Spatial relations are classified into three categories:
topological, directional, and distance relations.

Topological relations are relations that do not change under topological trans-
formations such as rotation, scaling and translation (Rigaux et al., 2001). Topological
relations have been widely studied. One of the important results of these studies
is a formal model developed by Egenhofer (1991). The model, called 9-intersection
model, uses three primitives: interior, boundary, and exterior to define all possible
topological relations. The object A being a point set, its interior is denoted by A0

while its boundary is denoted by ∂A. The exterior of A, defined as its complement,
is denoted by A-. The topological relationship between two objects A and B is then
described by the 9-intersection matrix I resulting from intersecting the elements in
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their corresponding sets {A0, ∂A, A-} and {B0, ∂B, B-}:

I(A, B) =


∂A ∩ ∂B ∂A ∩ B0 ∂A ∩ B-

A0 ∩ ∂B A0 ∩ B0 A0 ∩ B-

A- ∩ ∂B A- ∩ B0 A- ∩ B-


Based on the 9-Intersection model, there are eight possible topological relations

between two 2-dimensional areas with connected boundaries. Figure 2.1 shows these
relations together with their corresponding intersection matrices. Extended models
have been developed to describe relations between objects of different dimensions (e.g.,
an area and a line (Clementini et al., 1993)) and complex areas with holes (Egenhofer
et al., 1994).

Directional relations. A direction is commonly defined for a line segment to indicate
its angle with respect to a given fixed direction in the frame of reference, typically
geographic north or the positive x or y axis (Frank, 1992). The direction can be repre-
sented by a numeric function for which values are real numbers (e.g., in degrees) or
qualitatively by predicates based on the four cardinal directions (north, east, south,
west). Frank (1992) proposed an algebraic approach for reasoning on directional spatial
relations qualitatively.

A qualitative direction is a function that maps two points or a line segment onto a
symbolic direction. The n different symbols available for describing directions make
a set Cn and depend on the specific system of directions used. For example, C4={N,
E, S, W} where the symbols stand for North, East, South, and West respectively.
Papadias and Theodoridis (1997) proposed a generalisation of the directional relations
from points to areas for a projection-based cardinal reference system. They applied the
definitions of the relations between points using universally and existentially quantified
formulae on points of the areas. The quantified formulae allowed differentiating more
relations using the qualifiers strong, weak and just. For instance, the relation
strong_north(P,Q)means that all points of P are north to all points of Q.

Distance relations. A distance relation is represented by a function which maps
from a pair of points to a positive real number. The positive real number expresses the
distance in a suitable unit (e.g., meters). However, a distance can also be represented
qualitatively using predicates such as far and close. The predicates correspond to
symbols from a finite set such as D2={C, F} for ‘close’ and ‘far’ or D4 = {CC, C,
M, F, FF} for ‘very close’, ‘close’, ‘medium’, ‘far’, and ‘very far’.
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Fig. 2.1 The eight topological relations between two regions with connected boundaries
(based on Egenhofer (1991))

Euclidean distance. The Euclidean distance between two points a, b ∈ Rn is given by:

d(a, b) =
√√√√ n∑

i=1
(ai − bi)2

In case of lines and areas, the Euclidean distance is considered to be the shortest
distance between two points on either object. For the case of areas, the distance
between the centroids of the objects can also be used (see Figure 2.2). In case there
are obstacles between two objects the distance between them is often calculated as
the “travel distance”. The “travel distance” is the length of the shortest path in the
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Fig. 2.2 Distance between two areas: minimal distance (a) and centroid distance (b)

road network between two locations. For example, the distance between two buildings
located on both sides of a river is the distance along the shortest available path through
a bridge. Euclidean distance measure is not suitable for long distances on the surface
of the Earth due to the shape of the Earth. In this case, the Great-circle distance is
more suitable.

Great-circle distance on Earth. The great circle distance (or spherical distance) is
defined as “the shortest distance between points x and y on the surface of the Earth
measured along a path on the Earth’s surface” (Deza and Deza, 2009). It is the length
of the great circle arc, passing through x and y, in the spherical model of the planet.
Given the latitude and longitude of x (δ1 and ϕ1respectively) and the radius of the
Earth r, the great-circle distance between x and y is equal to

r arccos(sin δ1 sin δ2 + cos δ1 cos δ2 cos(ϕ1 − ϕ2))

2.1.3 Qualitative spatial representation and reasoning

Qualitative spatial relations are very common. However, since they are essentially on a
nominal scale they provide limited capabilities for making comparisons and analyses
beyond an exact matching. To overcome this limitation two models are widely used:
the composition table and the Conceptual Neighbourhood graph (CNG). These models
especially support qualitative reasoning. Qualitative reasoning is about deducing
new knowledge from existing qualitative knowledge. In qualitative reasoning the
existing knowledge is expressed by variables which can only take a small predetermined
number of values and the inference rules use these values and not numerical quantities
approximating them (Frank, 1991).
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Fig. 2.3 RCC-8 relations (based on Randell et al. (1992))

In a composition table different possible relations are represented as columns and
as rows. The intersection cell between a row and a column contains the relations that
can be inferred when the relations at the row and the column hold. The composition
table allows making a compositional inference; that is, from two relational facts of the
form R1(a,b) and R2(b,c), deducing a relational fact of the form R3(a,c) involving
only a and c (Cohn and Hazarika, 2001). For example, the region connection calculus
(RCC) describes regions by their possible relations to each other. It consists of eight
basic relations (see Figure 2.3): disconnected (DC), externally connected (EC), equal
(EQ), partially overlapping (PO), tangential proper part (TPP), tangential proper
part inverse (TPPi), non-tangential proper part (NTPP), non-tangential proper part
inverse (NTPPi). The composition table of these relations is shown in Table 2.1.
This composition table allows the following inference for example. If Region a is
Tangential Proper Part (TPP) of Region b and Region b is Tangential Proper Part
(TPP) of Region c then Region a is either Tangential Proper Part of Region c or
Non-Tangential Proper Part of Region c.

The idea of conceptual neighbourhood graphs has been introduced by Freksa (1991)
on interval relations where he linked two interval relations as conceptual neighbours
if a smooth transformation can be performed between them. Freksa (1991) states
that “two relations between pairs of events are conceptual neighbours if they can be
directly transformed into one another by continuous deformation (i.e., shortening or
lengthening) of the events”. After their introduction on interval relations (Freksa, 1991),
conceptual neighbourhood graphs have been used on other types of qualitative relations
such as topological relations (Egenhofer and Mark, 1995; Kurata and Egenhofer, 2006;
Reis et al., 2008), lines of sight relations (Galton, 1994), relations between moving
objects (Van de Weghe and De Maeyer, 2005), and line segment relations (Schlieder,
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R1(a, b)

∖
R2(b, c)

DC EC PO TPP NTPP TPPi NTPPi EQ
DC no info DC,

EC,
PO,
TPP,
NTPP

DC,
EC,
PO,
TPP,
NTPP

DC,
EC,
PO,
TPP,
NTPP

DC,
EC,
PO,
TPP,
NTPP

DC DC DC

EC DC,
EC,
PO,
TPP,
NTPPi

DC,
EC,
PO,
TPP,
TPPi,
EQ

DC,
EC,
PO,
TPP,
NTPP

EC,
PO,
TPP,
NTPP

PO,
TPP,
NTPP

DC,
EC

DC EC

PO DC,
EC,
PO,
TPP,
NTPPi

DC,
EC,
PO,
TPP,
NTPPi

no info PO,
TPP,
NTPP

PO,
TPP,
NTPP

DC,
EC,
PO,
TPPi,
NTPPi

DC,
EC,
PO,
TPP,
NTPPi

PO

TPP DC DC,
EC

DC,
EC,
PO,
TPP,
NTPP

TPP,
NTPP

NTPP DC,
EC,
PO,
TPP,
TPPi,
EQ

DC,
EC,
PO,
TPP,
NTPPi

TPP

NTPP DC DC DC,
EC,
PO,
TPP,
NTPP

NTPP NTPP DC,
EC,
PO,
TPP,
NTPP

no info NTPP

TPPi DC,
EC,
PO,
TPP,
NTPPi

EC,
PO,
TPPi,
NTPPi

PO,
TPPi,
NTPPi

PO,
TPP,
TPPi,
EQ

PO,
TPP,
NTPP

TPPi,
NTPPi

NTPPi TPPi

NTPPi DC,
EC,
PO,
TPP,
NTPPi

PO,
TPPi,
NTPPi

PO,
TPPi,
NTPPi

PO,
TPPi,
NTPPi

PO,
TPP,
NTPP,
TPPi,
NTPPi,
EQ

NTPPi NTPPi NTPPi

EQ DC EC PO TPP NTPP TPPi NTPPi EQ
Table 2.1 The composition table for RCC-8 relations (based on Cohn et al. (1997))
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Fig. 2.4 The Conceptual neighbourhood graph of topological relations between regions
with connected boundaries (based on Egenhofer and Al-Taha (1992))

1995). Figure 2.4 shows a conceptual neighbourhood graph of the topological relations
between two regions with connected boundaries (see Figure 2.1). The topological
relations meet and overlap are conceptual neighbours because a gradual change can
transform the meet relation into overlap relation without any other intermediate
relation. In contrast, the relations meet and covers are not conceptual neighbours
because a gradual change of the meet relation transforms it firstly into another relation,
namely overlap.

There are two approaches commonly used for deriving a conceptual neighbourhood
graph: the snapshot approach and the smooth transitions approach (Egenhofer and
Mark, 1995). The snapshot approach derives the neighbourhoods by comparing two
different relations without any knowledge about the potential transformations that
may have caused the change from one to the other. Neighbours are selected based on
least noticeable differences as indicated by a conceptual distance between the relations
(e.g., a topological distance computed on corresponding 9-intersection matrices). The
smooth transition approach develops neighbourhoods based on the knowledge of the
deformations that may change a relation (for example: knowing that one objects moves
towards the other).
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2.2 Movement data
Movement is change of position of an entity over time. The movement of different types
of entities such as people, vehicles, animals, and natural phenomena (e.g., hurricanes
and tornadoes) may be of interest and hence recorded. The data representing the
movement of an entity are commonly referred to as movement data. There are other
terms that have been used to refer to these data such as trace data or traces (Pan
et al., 2013), lifeline (Laube, van Kreveld and Imfeld, 2005), mobility data (Pelekis
and Theodoridis, 2014), and trajectory data or trajectories (Zheng and Zhou, 2011).
Although some authors (Spaccapietra et al., 2013) tried to differentiate between these
terms, they are sometimes used interchangeably. The common concept behind them
is a temporally ordered sequence of positions that the moving entity took during its
movement.

Movement is inherently continuous, but practical limitations dictate that movement
data are discrete; that is, only some positions of the moving entity are recorded. Since
each sampled position has a location and a time moment at which it is recorded,
movement data are spatio-temporal in nature. In its basic form, the trajectory of a
moving object can be formally represented as: T=<p1 ... pn> where pk=(idk,lock,
tk) is the kth position, idk is the position identifier, lock is the spatial location of the
position, and tk is the time at which the position was recorded. Figure 2.5 shows an
example of movement data. The figure shows a trajectory of one taxi moving in the
city of Rome. The trajectory is a temporally ordered sequence of points representing
some positions that the taxi occupied. The points are connected with line segments to
construct the trajectory as a polyline. The order of the points is indicated by their
timestamps as shown in the magnified small section of the trajectory in Figure 2.5.
As it can be seen from Figure 2.5, the distance and time interval between successive
sampled positions may be different.

The advances in sensor and communication technologies have led to different forms
of movement data depending on the technology used for recording the movement.
Spinsanti et al. (2013) differentiated GPS (Global Positioning System), GSM (Global
System for Mobile Communications), and Geo-social network based trajectory data.
Pelekis and Theodoridis (2014) differentiated two other forms; RFID (Radio Frequency
Identification) based and Wi-Fi based data. GPS based data are a temporally ordered
sequence of geographic coordinates recorded by a GPS-enabled device carried by the
moving entity. GSM based data are a temporally ordered sequence of identifiers of
the cells through which the moving object passed. Geo-social network based data are
content found on Internet social media websites to which geographic coordinates have
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Fig. 2.5 Example of movement data

been attached. RFID based data are made of a sequence of identifiers of RFID readers
through which the moving object passed, while Wi-Fi based data are a sequence of
identifiers of access points that communicated with the moving object.

The localisation technologies commonly used for recording movement are compared
in Table 2.2. The “accuracy” indicates how correct the location recorded is. For
example, from Table 2.2 it can be noted that the location of a moving entity may be
recorded up to 20 meters away from its actual position if the movement is recorded
using the WiFi technology. The “coverage” indicates the distance range (with respect
to reference object if any) in which the position of the moving entity can be recorded.
For example, with GPS technology the position can be recorded anywhere in outdoor
while with WiFi technology it can be recorded only in less than 100 meters of the
access point.

Movement data are inherently uncertain because of different types of impreciseness.
For example, the inaccuracy of the technology used for movement recording (see
Table 2.2) leads to trajectory points located away from the actual positions they
represent. Likewise, if the location is manually entered human errors may cause
incorrect point location with respect to the actual position. The uncertainty of
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Technology Location
data

Accuracy Coverage

GPS Geographic
coordinates

1 – 5 meters outdoors

WiFi Access point
ID

1 – 20 meters < 100 meters from an access
point

GSM Cell tower ID 50 – 200 meters in
cities

Cell coverage. 5 – 30 km from
a cell tower

Bluetooth Device ID Sensing range of
Bluetooth

5 – 10 meter for Class 1; 20 –
30 meters for Class 2

RFID Reader’s
ID/Position

Sensing range of
RFID

1 meter for passive RFID; 100
meters for active RFID

Table 2.2 Comparison of common localisation technologies for tracking moving entities
(source: Pan et al. (2013))

movement data can also be caused by the sampling frequency adopted for movement
recording. If the sampling frequency is low the intermediate positions of the moving
entity will be highly uncertain. The uncertainty due to low sampling frequency is
especially observed on GSM based and geo-social network based movement data. For
GSM based data, a position is recorded when the mobile phone interacts with a cell
tower (e.g., a call is made or received, a message is sent or received), which may
happen after a long time interval. For geo-social network based data, a position
may be recorded only at places selected by the user (e.g., when the user arrives at
specific places), which may happen with a time interval of several days. The inherent
uncertainty of movement data makes it necessary to pre-process the data for sanitising
them before the actual analysis.

2.3 Movement data analysis
Movement data are voluminous in their nature due to a high rate and a long duration
of movement recording. Because of this voluminous nature a common approach of
analysing movement data follows the Knowledge Discovery (or Knowledge Discovery in
Database (KDD)) process (Fayyad et al., 1996; Maimon and Rokach, 2010), which is
designed to extract useful information from huge datasets.
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Fig. 2.6 The Knowledge Discovery in Database (adapted from Fayyad et al. (1996))

2.3.1 Knowledge Discovery

The Knowledge Discovery is a process aimed at extracting useful information (knowl-
edge) from a huge dataset. As shown in Figure 2.6, the process is iterative which means
that at any step in the process, it is possible to loop back to some previous step.

The Knowledge Discovery process starts with a preparation of data to be analysed.
Firstly, a subset of data from which knowledge is to be discovered is selected. Next,
the selected subset is pre-processed by carrying out operations aimed at sanitising the
data. The pre-processed data are then transformed to adapt them to the requirements
of the analysis method. At the core of the knowledge discovery process is the data
mining step. Data mining is the essential step where specific algorithms are applied on
the data to extract patterns Kamber et al. (2012). A pattern is an interesting structure
found in the data. When patterns are interpreted and evaluated, useful information
(also called knowledge) is obtained. Since the steps before “Data mining” comprise
preliminary operations that prepare the data for actual analysis they can be considered
together as one step called pre-processing.

2.3.2 Knowledge Discovery in movement data

The overall aim of analysing movement data is to extract and understand movement
patterns for some application. Based on the Knowledge Discovery process (Figure 2.6),
the analysis of movement data starts by selecting the part of data to be analysed.
The selected data are then pre-processed. After the pre-processing, one or more data
mining methods are applied on the pre-processed data to discover patterns, which are
finally interpreted and evaluated.
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Movement data pre-processing

The pre-processing of movement data is an important step especially because these
data are often not accurate. The pre-processing step includes, among others, tasks
such as data cleaning, data compression, map matching, and trajectory segmentation
(Zheng, 2015). Data cleaning aims at filtering noise from the data. For example, GPS
points that fall away from the study area due to signal recording errors are discarded.
Trajectory compression aims at reducing the amount of sample points to reduce the
volume of data to be processed. For example, in case the density of recorded GPS points
is not important several closely located points can be replaced by one representative
point. Map matching aims at matching trajectories to the road network (Brakatsoulas
et al., 2005). This is done in case the movement follows a road network to ensure
that the next steps use the right position of trajectory points with respect to the road
network. Trajectory segmentation divides a trajectory into meaningful sub-trajectories
required for subsequent operations.

Movement data mining

Data mining methods commonly applied on classical data have also been applied on
movement data. In this direction, clustering and classification methods are either used
alone or in combination with other analysis methods (e.g., statistical methods) to form
more complex mining methods.

Clustering

Movement data clustering aims at grouping trajectories into a finite set of categories,
also called clusters, based on their characteristics. The trajectories in the same cluster
exhibit movement characteristics that are similar and different from those of trajectories
in other clusters. State-of-the-art clustering algorithms for trajectories are extensions of
traditional clustering algorithms through a proper definition of distance (or similarity)
functions. The distance (or similarity) function is used to determine which trajectories
belong to the same cluster and its choice depends on the application (Rokach, 2010).
The similarity function can be, for example, having same route, same destination, same
origin, same route and destination, or same direction. Among traditional algorithms
that have been extended, two well-known algorithms can be mentioned: DBSCAN
(Density Based Spatial Clustering of Applications with Noise) (Ester et al., 1996) and
OPTICS (Ordering Points To Identify the Clustering Structure) (Ankerst et al., 1999).
As examples of such extensions, T-OPTICS (Nanni and Pedreschi, 2006) was developed
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as an extension of OPTICS by defining a spatio-temporal distance for comparing and
clustering trajectories while ST-DBSCAN (Spatial-Temporal DBSCAN) (Birant and
Kut, 2007) uses two parameters for similarity measure to improve the identification of
clusters and noise.

Trajectory clustering can be applied on either whole trajectories or sections of
trajectories depending on the goal of analysis and the similarity function applied. For
example, with “similar origin and similar destinations” as the similarity function, the
route followed is not important and therefore, the trajectories can be clustered as whole.
An example of this case can be seen in (Gaffney et al., 2007) where the interest is on
the overall directions of extra-tropical cyclone trajectories for obtaining clusters such
as south-to-north oriented and west-to-east oriented. On the other hand, if
the interest is on different locations traversed by the trajectories, for example the
similarity is defined as having visited the same types of places; the clustering is applied
on sections of trajectories and based on the clusters of sub-trajectories the cluster
membership of the whole trajectory is decided. This case is exemplified by the TraClus
clustering algorithm (Lee et al., 2007).

Classification

Trajectory classification aims at categorising trajectories into one of predefined cate-
gories based on some features of the trajectories. For example, the trajectory classifica-
tion may be aimed at labelling each trajectory from a large set with its transportation
mode, given a small set of trajectories assigned transportation modes.

Most trajectory classification algorithms follow a traditional train and test approach:
they first extract a set of discriminative features and then use them to train an exist-
ing standard classification model, which is finally used to perform the classification.
Among the standard classification models that have been commonly applied in trajec-
tory classification there are decision trees and Support Vector Machine (SVM). For
example, Zheng et al. (2010) used the Decision Tree to classify trajectories into different
transportation modes based on average velocity of a segment, heading change rate,
and velocity change rate as discriminative features. The same classification problem
has been addressed by Bolbol et al. (2012) using SVM on the speed and acceleration.

Pattern mining

The objective in trajectory pattern mining is to discover and describe the movement
patterns hidden in trajectories. The literature reports a large number of types of
movement patterns, which have also been put into an integrated view by some authors
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(Dodge et al., 2008). Likewise, several methods have been developed for mining these
patterns. The methods can be put into three categories: repetitive pattern mining,
frequent pattern mining, and group pattern mining.

Repetitive pattern mining concerns regular movement patterns such as the movement
of a commuter, which is repeated every day, or the movement of a migratory bird, which
is repeated every season. A common approach in discovering repetitive movement
patterns, also called periodic movement patterns, is to apply the mining on sequences
of regions. In earlier studies (Mamoulis et al., 2004; Cao et al., 2007), the period
(i.e., the duration after which the movement returns to the same location) had to
be specified for discovering the sequence of regions. Unlike the earlier studies, the
Periodica algorithm (Li, Ding, Han, Kays and Nye, 2010) detects automatically the
period.

Frequent pattern mining is about extracting (parts of) routes that have been
frequently followed by the moving objects in the trajectory dataset. Frequent trajectory
patterns can be defined using spatial or spatiotemporal characteristics of the trajectories.
The definition based on spatial characteristics considers only the sequence of the
locations visited (see Figure 2.7(a)). The frequent spatiotemporal sequential patterns
(Cao et al., 2005) and the Generalised Sequential Patterns (Orellana et al., 2012)
exemplify this case. The definition based on spatiotemporal characteristics considers,
in addition to the sequence of the locations visited, the transition time between the
locations. The T-Patterns (Giannotti et al., 2007), illustrated in Figure 2.6(b), are
an example of this second case. The T-Patterns shown in Figure 2.7(b) mean that
location B follows location A and the transition between these two locations takes
between 10 and 12 minutes. A common approach to mining frequent patterns consists
in finding important regions from the trajectories and then applying sequence mining
on a temporally annotated sequence of these regions (Giannotti et al., 2007; Kang and
Yong, 2010).

Group pattern mining aims at extracting movement patterns involving groups of
objects that move together. The objects that form a group must stay close in space for
a considerable period of time. Several group patterns have been defined based on the
general condition of spatio-temporal closeness, the internal structure of the group and
the characteristics of group members. The mostly studied group patterns are flocks
(Benkert et al., 2008; Wachowicz et al., 2011), convoy (Jeung et al., 2008), and swarm
(Li, Ding, Han and Kays, 2010). Figure 2.8 shows examples of these three patterns.
A flock is a group of at least m objects that travel together for at least k consecutive
timestamps such that at any of these timestamps they are found within a disc of radius
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Fig. 2.7 Examples of frequent patterns: a) a spatiotemporal sequential pattern, and b)
a T-pattern

r. The pattern is defined by the three parameters m, r, and k. The convoy pattern
relaxes the disc shape constraint to represent a group of moving objects forming any
shape. It is a group of at least m objects travelling together for at least k consecutive
timestamps such that at each of these timestamps the group can be found using a
density-based clustering with parameters d as the neighbourhood distance and m as the
minimum number of objects. The swarm pattern is an extension of the convoy pattern,
which further relaxes the constraint of consecutive timestamps. It is defined by the
same parameters as the convoy except that in a swarm k is the minimum number of
timestamps at which the group is found irrespective of whether the timestamps are
consecutive or not. For example, with m=4 and k=2 the pattern in Figure 2.8 (c) is
not a convoy because only three objects (O1, O2, and O3) are found in the group for
at least two consecutive timestamps. However, this pattern is a swarm because at
two timestamps (t1 and t3) the group includes four objects, which is the minimum
required and the swarm pattern does not require the timestamps to be consecutive.

The category of group patterns also includes patterns in which the members of the
group have some interaction in which each member has a specific role. An example
of such pattern is the leadership pattern (Andersson et al., 2008) in which the group
comprises a leader which moves ahead and followers for the time duration of the pattern.
Another example is the chasing pattern (de Lucca Siqueira and Bogorny, 2011) in
which the object moving ahead aims at escaping the follower, which tries to reach it.
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Fig. 2.8 Examples of group pattern: (a) Flock, (b) Convoy, and (c) swarm

Different examples of group patterns have been discussed under the general concept of
Relative Motion (REMO) (Laube, Imfeld and Weibel, 2005).

The common approaches for group pattern mining involve clustering methods and
checking the condition on parameters that define the pattern such as the minimum
number of group members and the minimum duration of the pattern.

Movement pattern interpretation/evaluation

The patterns mined in the previous step are further processed to turn them into useful
information (also called knowledge). Visual analytics tools have been developed to
support in interpreting and evaluating movement patterns. These tools support the
analyst to get insights into the movement patterns by providing a convenient interface
to explore trajectories and movement patterns. From this interface the analyst can
filter trajectories and patterns based on such criteria as a time interval, a spatial
window, and attribute values (Andrienko et al., 2008; Keler and Krisp, 2016). The
analyst can also explore the patterns from different views (Guo et al., 2011). Different
functionalities provided by visual analytics tools facilitate linking trajectories and
movement patterns to analyst’s prior knowledge and evidence from other sources. The
interpretation of the observed movement patterns comes from reasoning about the
patterns and the linked additional information. In order to support the analysis of
large movement dataset, the basic visual analytics methods such as those presented
in (Andrienko et al., 2008) are often supported by computational methods as done
in (Andrienko, Andrienko, Hurter, Rinzivillo and Wrobel, 2011) and (Andrienko and
Andrienko, 2013).
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2.3.3 Spatio-temporal analysis

The KDD process discussed in previous sections originated from the field where it
was applied on classical data in which the space and/or time dimensions are not
present or may be ignored. However, as discussed in section 2.2 movement data are
spatio-temporal in nature. In this section important methods that focus on combined
handling of the space and time dimensions are presented. They are put in two categories:
qualitative reasoning and visual analysis.

Van de Weghe (2004) developed the Qualitative Trajectory Calculus (QTC) for
representing and reasoning qualitatively about movements of objects. Unlike the theo-
ries presented in previous sections for qualitative spatial representation and reasoning
(e.g., see RCC-8 in section 2.1.3) QTC embeds consideration of the time dimension
in addition to the space dimension. Depending on the level of details, different types
of QTC are defined to describe the relationships between a pair of moving objects.
The basic form of QTC compares positions of objects at different time points. Based
on how the distance between the objects changes, QTC uses three symbols (+, -, 0)
to represent that an object moves away from or towards the other, or is stable with
respect to the other respectively. Other forms of QTC use more labels to represent
more details about the relationship between the objects. For example, a relationship
represented by (+ - 0) means that the first object is moving away from the second
(+), while the second object is approaching the first (-), and both objects have the
same speed. In that relationship, the first label represents the movement of the first
object with respect to the second object. The second label represents the movement
of the second object with respect to the position of the first object while the third
label represents the relative speed of the first object with respect to the second. An
example of qualitative reasoning about space and time using QTC is presented in
(Van de Weghe et al., 2006).

In the area of visual analysis of movement data, the space-time cube (Kraak, 2003)
is commonly used. It represents the geographic space with the X-Y plane and the
time with the Z-axis. Trajectories of moving objects are then shown as 3D polylines
in the cube. Tominski et al. (2012) developed a variant of the space-time cube called
“trajectory wall”, which stacks 3D color-coded bands on a 2D map. The major problem
of the space-time cube is the visual clutter that is observed in case of a large number of
trajectories. In order to address this problem, different methods have been developed
to aggregate trajectories and visualise their aggregate. For example, Demšar and
Virrantaus (2010) introduced the concept of space–time density of trajectories. This
concept generalises the standard 2D kernel density around 2D point data into 3D



2.4 Movement data analysis and context data 27

density around 3D polyline data (i.e., trajectories). The density around each trajectory
in space and time is calculated as a volume such that the value is assigned to each voxel
according to the distance of the central point of the respective voxel to the trajectory.
By adopting a different way of calculating kernels and based on the space–time density
of trajectories method, Demšar et al. (2015) developed a new method called stacked
space-time densities of trajectories. In the new method, kernels are calculated per voxel
layer producing probability layers which are then stacked one upon another to form
the stacked space-time density volume.

With the same idea of aggregating movement into densities, Krisp et al. (2013)
adopted a different approach which visualises moving 2D densities. This approach,
called directed kernel density estimation (DKDE) initially introduced in (Krisp and
Peters, 2011), considers the temporal dimension through the direction of movement.
For each moving object, a movement vector is computed from the point positions at
two different times. Density values are calculated using a kernel function defined as
a 2D projection of a cone constructed on the movement vector based on the speed
and direction of movement. Another approach used to alleviate the visual clutter
problem involves linking to the space time cube multiple displays which portray different
information for visual analysis (Zhao et al., 2008).

2.4 Movement data analysis and context data
Movement data in their basic form, as presented in section 2.2, lack semantic information
that would support their analysis, especially the pattern interpretation/evaluation
phase. In order to improve the analysis in general and the pattern interpretation in
particular, analysts integrate into the analysis other related data that we call context
data. This section introduces context data for movement and presents the state-of-the
art in incorporating them into movement data analysis.

2.4.1 Context data

The term “context” is used in many different applications with a meaning of situation.
For example, user information, device information and environment information are
used as context data for generating the appropriate interface in user interface design
(Hariri et al., 2008). In information retrieval, information on user’s on-going activity
is used as context data for retrieving information which is most relevant for the user
(Vallet et al., 2007). Likewise, in data repository management, information about users



28 Literature review

such as their locations and roles in the application concerned is used to tailor response
to data access queries (Bolchini et al., 2011). In a pervasive environment with a lot of
services, information such as location, time and life status of a user is used as context
data for selecting services relevant for the user (Goker and Myrhaug, 2002).

From the above meaning it follows that a context-aware system or process is one
that considers also situation data for achieving a desired objective. In a well-known
definition, Dey (2001) states that the context is “any information that can be used
to characterize the situation of an entity”. In the case of movement data analysis the
entity is the moving object while the context data are any data that can characterise
the situation in which the movement takes place. They can describe the characteristics
of the moving entity such as the gender of the moving human or the type of the moving
vehicle. Movement context data can describe the time at which the movement takes
place such as whether it is night or daytime. Movement context data can also describe
the geographic environment of movement such as the type of road on which a vehicle
moves and other entities moving in close proximity.

2.4.2 Semantic enrichment

The process of adding at some step of movement data analysis information that can
support interpreting movement patterns is known as semantic enrichment (Baglioni
et al., 2009). The semantic enrichment can be done by deriving the information directly
from the movement data or by incorporating context data. Semantic enrichment
directly from movement data has been done, for example, by detecting stops along the
movement using time and distance thresholds (Li et al., 2008). In another example,
Buchin et al. (2013) identified movement states (e.g., flight, stopover) directly from
movement data based on movement parameters (e.g., heading angular range, minimum
speed).

Different approaches have been followed for semantic enrichment using context
data. For example, Baglioni et al. (2009) encode Points of Interest (POIs) as classes
in an ontology and then run a reasoner on the ontology to infer the interpretation
of movement patterns. Yan et al. (2010) use spatial joins for integrating trajectory
episodes with regions of interest (e.g., land uses). They also integrate trajectory
episodes with lines of interest (e.g., roads), and points of interest (e.g., hotels) using
map matching, and hidden Markov model respectively. The system developed by
Yan et al. (2010) provides a good general framework for semantic enrichment. The
framework is general in the sense that it supports the integration of geographic context
elements of different dimensions (area, polyline, and point). However, the framework
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does not consider any dynamics of the context. For example, it can relate a trajectory
episode with a road but without considering any change on the road (e.g., its traffic
congestion level). Furthermore, the framework can relate only trajectory episodes
with context objects that spatially overlap with them. In some cases a context object
influences the movement of an entity which is not in its close proximity. For example,
a taxi moving towards a road junction may learn from a distance that the junction is
congested and decide to bypass it. Even if the taxi and the junction are not in close
proximity, in such case the trajectory of the taxi should be related to the junction to
analyse the movement pattern of the taxi.

2.4.3 Context-aware analysis of movement data

Since very little can be achieved in semantic enrichment of movement data and patterns
directly from movement data alone, the trend is a context-aware analysis of movement
data; that is, an analysis integrating the movement data with context data. In this line,
Wachowicz et al. (2013) integrated context data characterising visitors of a recreational
area to support interpretation of their flock patterns. Context data were in the form of
contextual variable such as the age category of the visitor, whether he is a local, and
the frequency of visit.

The larger literature on context-aware analysis of movement data is about the
integration of context data describing the geographic environment of the movement.
Considering that there are two objects being related, the moving entity and the object
concerned by the context data, this context integration has been commonly studied
under the concept of movement interaction. The movement is conceptualised based on
the interactions that happen between the moving entity and the environment in which
it moves (Orellana and Renso, 2010). For example, Orellana et al. (2012) integrated
pedestrians’ movement data with point locations of attractions and facilities in a park
to explore the interactions of pedestrians with a recreational area. This context data
integration supported an interpretation of the patterns of stopping and sequences of
stopping of pedestrians. Interactions between a moving entity and its environment
have been widely studied in ecology.

Movement data analysis in movement ecology

The field of ecology deals with the relations of leaving organisms to one another and to
their physical surroundings. This relation is reflected in the movement of the organisms.
Movement ecology seeks to understand fundamental questions about movement of
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living organisms in the context of their interactions among themselves and with the
geographic space.

The study of interactions between a moving animal and the geographic space enable
understanding of the influence of the environment on the movement pattern of the
animal. For example, Safi et al. (2013) integrated the movement data of migrating
birds with weather data to assess wind effect on the birds’ flight pattern determined
by the flight direction and speed. In another study relating the movement data of roe
deer with climatic (snow) and topographic (slope) data (Cagnacci et al., 2011), the
authors explored the impact of these factors on the patterns of migration of the roe
deer. They observed that the migration occurrence depended on winter severity and
topographic variability.

From the study of interactions between a moving animal and the environment, it is
also possible to derive information about the geographic space. In this line, real time
traces of tagged animals enable documenting ongoing environmental changes. This
is done, for example, by analysing the change in how species with large movement
use their habitat (Kays et al., 2015). In another example, instrumented seals have
been used to monitor changes in the Southern Ocean while common methods based on
Argo profilers would face the obstacle of sea ice (Roquet et al., 2013). Conductivity-
temperature-depth satellite relay data loggers, originally used to improve understanding
of seal foraging strategies, provided as a by-product a cost-effective method of sampling
hydrographic properties in Southern Ocean regions.

The study of interactions between a moving animal and one or more other animals
supports understanding of the effect of the presence of one animal on the movement
pattern of the other, and the relationships between the animals. For example, Pettit
et al. (2013) studied the movement of a group of homing pigeons and found that
momentary changes in velocity of one pigeon were a response to the neighbour’s
orientation and position. This enabled further to understand how a route decision
emerges from the interaction between the group members. Different animal behaviours
(e.g., familial bonds and mating behaviour) or relationships between animals (e.g.,
predator-prey) have been interpreted from their interactions. The analysis of movement
data of wolves and moose (Eriksen et al., 2009) led to identifying a movement pattern
of prey seeking and predator avoidance. The study of interactions between three maned
wolves (an adult pair and their juvenile female offspring) revealed a movement pattern
showing constant close proximity (Bandeira de Melo et al., 2007). This movement
pattern was interpreted as a strategy to maintain familial bonds. In another study (Long
and Nelson, 2013), the analysis of the movement of a male-female bear combination
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revealed a highly cohesive movement pattern at specific periods, which was interpreted
as mating behaviour.

The interaction between animals has been widely studied in ecology. Long et al.
(2014) distinguish static interaction from dynamic interaction. Static interaction is
defined as the joint space use between two individuals as indicated by an index of home
range overlap. Dynamic interaction indicates the relation between the movements of
two individuals. While in the static interaction the time of space use is not considered,
the dynamic interaction implies a simultaneous space use. Dynamic interactions have
received a high research interest leading to different methods for measuring them. As
shown by the evaluation of these methods (Long et al., 2014; Long, 2015), they are
mainly defined based on the proximity (spatial and/or temporal) between the recorded
locations of the individuals.

In the study of animal movement, context data are commonly represented as a field
covering the whole study area as obtained through remote sensing or point interpolation
techniques. They represent environmental conditions that can influence the movement
of the animal. Discovering and understanding this influence is the main objective of
the study. With increasing access to large repositories of such environmental data in
different formats, there has been important work in movement ecology focusing on
linking animal tracks to these data. For example, the Environmental-Data Automated
Track Annotation (Env-DATA) system (Dodge et al., 2013) allows integrating animal
movement data with environmental data (e.g., weather, topography ...). Different
formats such as GRIB, GeoTIFF, and ASCII from different satellite sources are
supported. This system has been used to examine the influence of the wind on the
flight of Galapagos Albatrosses (Dodge et al., 2013). Likewise, Dodge et al. (2014)
integrated Turkey vulture tracks with NDVI1 data from MODIS2 to examine the
correlation of Albatrosses’ movement pattern and the availability of food for their
feeding.

2.4.4 Sources of geographic context data for movement anal-
ysis

Data about the geographic context in which the movement takes place can be obtained
in many different forms and from different sources. The important requirement is
that they are geo-referenced so that they can be overlaid with the movement data.
Furthermore, in case of dynamic context the time period in which the context data

1Normalized Difference Vegetation Index
2MODerate resolution Imaging Spectroradiometer (https://modis.gsfc.nasa.gov/data/)



32 Literature review

was collected should coincide with that of the movement data. The main sources of
geographic context data are discussed next:

Other georeferenced datasets of the same area: These data can be obtained
from mapping agencies (e.g., Ordnance Survey3 , USGS4 . . . ) and public data reposi-
tories on the Internet in different forms. For example, vector data such as Points of
Interest (POIs), infrastructure (e.g., road network) and administrative subdivisions
can be retrieved from the OpenStreetMap5 and GADM6 websites. Georeferenced data
on environmental conditions, especially for the analysis of animal movement, can be
obtained from MoveBank7 . Likewise, weather data can be obtained from weather
services (e.g., European Centre for Medium-Range Weather Forecasts (ECMWF)8).

Geo-social data: Geo-social media platforms enable users to share georeferenced
data about locations where they are or have been. These data include geographic
coordinates and descriptive information, which makes them rich in semantics. A process
called geo-tagging enables associating media data such as photographs and images with
geographical identification (Spinsanti et al., 2013). Geo-social data are available in
many different forms. Check-ins from Foursquare9 embed descriptions of places which
can inform about activities carried out in the places for example. Photos and associated
description from Flickr10 can inform about events occurring at the locations where
they have been taken. Geo-tagged tweets, which are short texts posted on Twitter11

inform about the situation at the locations they are associated with. For example, a
tweet may inform about the current situation of a rugby match that the sender of the
tweet is watching. Tweets may be associated with other type of data (e.g., pictures)
which make them richer in semantics.

Geo-social media platforms provide APIs (Application Programming Interfaces)
that are used to access the data. However, most of these data are associated with hard
access restrictions especially regarding the amount of data that can be continuously
acquired and the access to historical data. For example, Foursquare sets a limit of
5000 requests per hour and does not allow access to data of a selected user by another

3https://www.ordnancesurvey.co.uk/
4https://www.usgs.gov/
5https://www.openstreetmap.org/
6http://www.gadm.org
7https://www.movebank.org/
8http://www.ecmwf.int/
9https://foursquare.com/

10https://www.flickr.com/
11https://twitter.com/
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user. Likewise, Twitter allows at maximum 150 unauthenticated and 350 authenticated
requests per hour. Also, geo-social data require an appropriate method (e.g., natural
language processing methods (Dashdorj et al., 2016)) to automate the extraction of
the semantics they contain.

Data from other sensors. Geographic context data are sometimes acquired us-
ing other sensors that sense the environment where the object is moving. The sensors
can be in the same device that records the movement or in a different one. For example,
a smartphone embeds multiple sensors, some of which can provide geographic context
data for analysing the movement of the individual carrying the smartphone. The
Bluetooth sensor records the presence of other Bluetooth-enabled devices and hence
presence and number of other static or moving objects. The temperature sensor (or
thermometer) records the ambient temperature in the location where the phone carrier
moves while the microphone can record the noise level.

There are smartphone-based applications that access the GPS and other sensors
such that they can collect movement data and context data at the same time. For
example, “CenceMe” (Miluzzo et al., 2007) can record the user’s movement and the
temperature and noise in his surrounding using smartphone-based sensors. Likewise,
“LifeMap” (Chon and Cha, 2011) can use GPS, thermometer, and Bluetooth sensors
embedded in a smartphone to record the position of a moving user and attach the
ambient temperature and the number of Bluetooth-enabled devices in his surroundings.
Additional sensors can also be deployed while recording the movement of animals. For
example, Bleisch et al. (2014) present an analysis of fish movement data and associated
context data. The fish movement was recorded along with river environmental data
including water temperature and water level.

Trajectories of other moving objects. For each moving object, trajectories of
other objects that move in its spatial and temporal proximity constitute geographic
context data because the other objects can influence its movement (e.g., by slowing
it down). This is the case of group movement patterns presented in section 2.3.2.
Therefore, while analysing the movement of a vehicle which is part of a convoy or the
movement of a bird which is part of a flock of birds, the trajectories of other convoy
members respectively flock members are considered as geographic context data. The
trajectories of other moving objects need not be in the same dataset. For example,
trajectories of buses operating in the same area and same period as taxis constitute
geographic context data for the analysis of the trajectories of these taxis.
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Other sources. Information about events at specific POIs can be obtained from
event listing, reports and news webpages. This information forms semi-structured or
unstructured data that can be parsed and used as geographic context data for the
places and locations about which they are published. Analyst’ background knowledge
about places and locations can also be used as geographic context data linked to
movement data in the same locations and places. Like most of context data from event
listing, reports and news, context data from analyst’s background knowledge is not
structured. The unstructured nature of these types of context data makes it hard to
integrate them into movement data analysis.

2.5 Summary
This chapter presented the basic concepts and state-of-the-art pertaining to the themes
dealt with in the following chapters. It provides an overview of movement data and
movement data analysis. Since movement data are a special type of geographic data,
the chapter introduced geographic data and relations between geographic objects.
Special focus of the discussion has been put on qualitative relations including spatial
(e.g., topological) and spatio-temporal relations (e.g., QTC relations). The relations
discussed are defined for specific cases (e.g., a pair of static objects, a pair of moving
objects). Therefore, these relations are used in the following chapters as building blocks
for defining new relations appropriate to describe a moving object and the geographic
context in general. The notion of conceptual neighbourhood graphs (CNG) used to
structure the relations as discussed in this chapter is used in the following chapters to
structure new relations that are introduced. The qualitative reasoning introduced in
this chapter is proposed in the following chapters as one analysis approach possible
on the new relations introduced. The chapter discussed the nature of movement data
including their different forms and inherent issues associated with them. These issues
are taken into account in the following chapters while processing the evaluation data.
Though the methods presented in the next chapters are general, they are evaluated on
a specific form of movement data, namely GPS-based data, and at a specific scale.

This chapter presented the state-of-the-art on movement data analysis. It in-
troduced the KDD process with emphasis on the data mining and pattern interpre-
tation/evaluation phases. The following chapters build on the analysis approaches
discussed in this chapter to propose an analysis framework taking into account a
dynamic geographic context. In particular, the concept of movement interactions,
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presented in this chapter, has been generally defined between moving entities. This
concept is generalised on different types of geographic context elements defined in the
following chapters. Some of the data mining methods presented in this chapter (e.g.,
clustering and classification) are used to implement the analysis framework proposed in
the following chapters. Since the focus of this thesis is on a context-aware analysis of
movement data, this chapter discussed existing work in this area. The static context,
generally dealt with in the work presented in this chapter, is taken as reference in the
following chapters for identifying the factors that make a geographic context a dynamic
one. In this chapter, I surveyed the sources of context data that can support movement
data analysis. This survey contributes to answering the research question on the
approach of integrating context data into movement data analysis. The visual analysis
methods discussed in this chapter complete the discussion of the spatio-temporal nature
of movement data. However, a detailed discussion of these methods is beyond the
scope of this thesis. Therefore, computational methods and simple visualisations are
adopted in the following chapters.





Chapter 3

A conceptual model of movement
context and interactions

In this chapter, different concepts for modelling the context and relating movement
to it are presented. The chapter starts with a discussion of different categories of
contexts for moving objects, and then presents different approaches for modelling
the context. After, the discussion of the context in general, the chapter focuses on a
dynamic geographic context and presents an approach for relating it to movement.

Some authors explained the concept of context by establishing categories of context.
For instance, Goker and Myrhaug (2002) proposed a generic user context comprising five
sub-categories: environment context, personal context, task context, social context, and
spatio-temporal context. The environment context is made of entities that surround the
user. It includes for example things, services, temperature, light, humidity, noise, and
persons. The personal context category comprises internal elements that characterise
the person, which can be for instance the blood pressure, weight, and expertise. The
task context category describes what the persons are doing in this user context. The
description can include, for example, the goals and activities. The Social context
describes the social aspects of the current user context with information such as friends
and neighbours. The spatio-temporal context describes aspects relating to the time
and the spatial extent for the user context. The spatio-temporal context can contain
attributes such as the time and the spatial extent of the environment. It is important
to mention that it is hard to draw a clear boundary between the environment and
the spatio-temporal categories. In a recent study, Buchin et al. (2014) defined the
geographic context and categorised it into network, land cover, obstacles, terrain, and
ambient attributes.
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The focus of this thesis in regards to context is on the environment of a moving
entity. This corresponds to some elements of the “environment” and the “spatio-
temporal” sub-categories of the user context proposed by Goker and Myrhaug (2002).
These are the elements that have locations relative to the surface of the Earth. They
are found in the different categories of the geographic context proposed by Buchin
et al. (2014). Similar to the context studied by Buchin et al. (2014), the context made
of these elements is also called geographic context in this thesis. The definition of the
context as considered in this thesis is given in the following section.

3.1 Modelling the geographic context
There are several objects that have a geographic location at some time and hence are
part of the geographic context. These elements of the geographic context can be put
into the following categories: space, static objects, moving objects, and events.

Space. The geographic locations where the moving object passes have some properties
which characterise them. For instance, the movement space may be a road network
where different locations may be on different types of roads (e.g., highway and street)
and different road segments may be on different land use types. The movement space
may be a park where some locations are on open areas while others are on dense forest
areas. Environmental conditions such as wind speed and temperature at different
locations are other examples of geographic context of category “space”.

Static objects. Some objects have a fixed geographic location (i.e., that does not
change with time) and the movement may be related to them in some way (e.g., the
moving object stops at or passes by them). Examples of static objects are bus stops,
traffic lights, zebra crossings, and information boards. Static objects have been widely
considered in movement analysis under the general term of Points of Interest (POIs).

Moving objects. Unlike static objects, moving objects change their location with time.
Objects in this category are, for example, other moving cars, animals, or pedestrians
crossing the road followed by a car.

Events. In a general sense, an event is defined as “a temporally bounded happening”
(Galton, 2012). Under this general definition, the term event has been used to mean
an episode of movement with a specific characteristic (e.g., passenger pickup event of a
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taxi (Ding et al., 2015) and slowing down event (Vandecasteele et al., 2014)). It can be
used also to refer to happenings without explicit physical location (e.g., online student
registration). As this thesis is concerned with a geographic context, events considered
are temporally bounded happenings with physical geographic locations. This type of
events has particularly attracted attention for automatically detecting them based
on people’s response that they trigger. For example, Polous et al. (2015) developed
a general framework for detecting these events from social media. The scope of this
thesis is limited on events that can limit or motivate objects to move. For example,
social events (e.g., a concert, a football match . . . ) that attract a considerable number
of people and non-social events (e.g., traffic congestion, roadwork) that limit movement
are in the scope of this thesis. On the other hand, events such as a plane crash and a
volcanic eruption that occur in a remote place are not in the scope of this thesis as
they generally do affect the movement of objects.

Properties of geographic context elements

Geographic context elements have attributes, which provide the semantics needed
to support movement analysis. For example, a road segment has a type attribute,
which indicates the category of road being used for movement. In addition to the-
matic attributes attached to a geographic context element, this thesis considers three
attributes: location and extent derived from the spatial characteristics of the element,
and lifespan derived from its temporal characteristics. The location attribute indicates
whether the geographic location of the context element is fixed or changing while the
extent attribute indicates whether its size and/or shape are fixed or changing. The
lifespan attribute indicates whether the existence of the context element is bounded
or extended beyond the period being studied. In other words, the value bounded for
the lifespan attribute means that the element exists for a time interval shorter than
the time covered by the study such that the bounds of the time interval are known or
important in the study. The value extended means the opposite.

Based on the attributes of its elements, a geographic context may be characterised
as static or dynamic (see Table 3.1). A geographic context is dynamic if at least one
of the following four conditions is fulfilled: 1) the location attribute of the context
element has a value changing, 2) the lifespan attribute has a value bounded, 3) the
context element has a time-varying thematic attribute (also called a dynamic attribute)
which is being studied, 4) the extent attribute has a value changing. A geographic
context which is not dynamic is static. In other words, if a geographic context changes
with time it is dynamic, otherwise static. It follows that a moving vehicle (a context
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element of type moving object) makes always a dynamic context because the location
of the vehicle changes with time. Likewise, a football match (a context element of type
event) makes always a dynamic context because it has a bounded lifespan; i.e., it exists
only for a short time compared to the period covered by the analysis. On the other
hand, a road segment (as a context element of type space) makes a static context if
the interest is only on its location and the road type. The same road segment makes
a dynamic context in case the interest is on the level of congestion on it. Likewise,
a school is a static context element if the interest is only on its location, but it is a
dynamic context if the interest is on the number of people leaving it.

Context
element
type

Attributes Context
characteristicslocation lifespan extent thematic

attributes
static ob-
ject

fixed extended fixed /
changing

not varying
/ varying

Static / dy-
namic

moving
object

changing extended fixed /
changing

not varying
/ varying

dynamic

event fixed /
changing

bounded fixed /
changing

not varying
/ varying

dynamic

space fixed extended fixed /
changing

not varying
/ varying

Static / dy-
namic

Table 3.1 Properties of a geographic context

The integration of the geographic context into computational movement data
analysis requires that the context be represented in some form supported by existing
computational systems. Since a geographic context is a geographic phenomenon,
standard geographic data models (i.e., object-based and field-based) are selected in
this thesis. A combination of different geographic data models and types of context
elements results in different possible models of the geographic context as shown in
Figure 3.1. Figure 3.1 shows each type of geographic context element in different
models with an example of a context element – moving object pair. The moving object
is represented by its trajectory (see the dotted line).

The choice of the model to use for the geographic context depends on the application
case and the application field. For example, in ecology the study area is generally
wide, remotely located, and the movement is less restricted (e.g., seabirds commuting
between nesting and foraging areas (Tarroux et al., 2016)). In such situation remote
sensing techniques appear as the cost-effective method to collect geographic context
data with full spatial coverage. Since this method produces data in raster format,
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which fits well the field-based model, this model is especially adopted in ecology. Hence,
in the study of the influence of the wind conditions on the flight behaviour of an
Antarctic seabird (Tarroux et al., 2016) the field-based model was used. The wind
data, as geographic context data, were represented as a field covering the wide area
linking the nesting and foraging areas. Unlike in ecology, the movement of people in
transportation is generally restricted to road networks which are commonly represented
using object-based models. The study area in transportation is also relatively small and
application cases require a higher spatial resolution than in ecology (e.g., for relating
transportation vehicles to road segments and road infrastructure elements (Wang et al.,
2014)). Therefore, in transportation the object-based models are commonly adopted.
Furthermore, for a given context element different aspects of multiple representation
(Timpf and Devogele, 1997) also contribute to the choice of the model to use. Among
others, the scale considered by the application determines the appropriate model to
use.

Static objects are modelled as shown in the first column of Figure 3.1. A static
object can be for example a school considered with respect to movement of a car on
the road network of the whole city, in which case it is better modelled as a point. The
same movement of a car can be related to a river going through the city. In this case,
the river is a static object better modelled as a linear object. For a bus operating only
in the neighbourhood of a university campus, the university campus is a static context
element better modelled as a polygon. It can be further represented in a field-based
model; for example if the data are collected using remote sensing techniques.

Moving objects can be modelled in different ways as shown in the second column of
Figure 3.1. A pedestrian is a moving object because his position changes with time.
With respect to movement of a car, a pedestrian can be modelled as point at any
time instant of his movement. On the other hand, a sea wave appears as a moving
one dimensional object. Therefore, with respect to ship movement it can be better
represented as a line. An oil spill on the sea appears as a moving surface. Therefore,
with respect to ship movement it can be better modelled as a polygon and possibly as
a field.

Events may have different extents and hence modelled differently as shown in the
third column of Figure 3.1. For instance, with respect to the movement of a car on
the city-wide road network, a concert in a specific theatre can be modelled as a point
with same location as the theatre. A demonstration taking place along a street has a
linear extent at any time instant during its progress. Therefore, with respect to the
car movement a street demonstration can be better modelled as a line. Some events
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Fig. 3.1 Different types of geographic context, their different models and examples
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can take place on a wide area or around a wide area such that the whole area may
be considered as the event location. For example a city marathon may be organised
to use streets in and around a neighbourhood such that the whole neighbourhood is
sealed off for the duration of the event. In this case, with respect to a car movement
in the city, the marathon can be better modelled as a polygon, and possibly a field,
with the extent equal to the neighbourhood it covers.

The Space in which movement takes place is non-zero dimensional because it
includes at least two different positions of the moving object. Therefore, as shown
in the fourth column of Figure 3.1 it cannot be modelled as a point because a point
is zero-dimensional. On the scale of a city, the road on which a car moves is better
modelled as a line. The space can also be extended on a surface. Environmental
conditions attached to the geographic extents in which they are measured form also
the space. For example, the level of noise in different urban areas where a car moves
forms a geographic context. The noise level can be modelled as a field or sometimes as
polygons representing different noise classes.

In this section, the geographic context in general has been described and a general
approach for modelling it presented. The next section is about a dynamic geographic
context because this is the focus of the thesis. However, the terms “geographic context”
and “context” will continue to be used where it is not important to differentiate between
a geographic context which is dynamic and one which is static. The different properties
that make a geographic context dynamic may imply specific considerations in some
analysis cases. For example, the change of the extent of a context element implies that
the uncertainty should be considered while referring to its boundary. Nevertheless, the
next sections present a general approach applicable irrespective of the type of changes
that the context element undergoes. The particularities due to types of changes can be
handled as slight adjustments while implementing the general approaches.

3.2 Relating the movement to a dynamic geographic
context

In this section I describe an approach for relating movement to a dynamic geographic
context. I consider the movement to be represented by its trajectory made of a
chronologically ordered list of points recorded along the movement. The geographic
context is modelled according to one of the models presented in section 3.1. The
approach proposed for relating movement to the geographic context is based on the
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concept of movement interactions. I first introduce this concept and then discuss how
it is applied.

3.2.1 Movement interactions

Both the moving object and the geographic context are geographic phenomena. It
implies that at some point in time there exists a spatial relation between them (e.g., a
car is outside of a park). As the object moves, this spatial relation may change (e.g.,
the car that was outside of the park is now inside). We call movement interaction (or
simply interaction) the process in which a spatial relation between a moving object
and the geographic context changes over time. This concept of interactions, which has
also been used in (Orellana and Renso, 2010), has been called spatio-temporal relations
by Andrienko, Andrienko and Heurich (2011) and patterns by Dodge et al. (2008).

The concept of “interaction” generally means a reciprocal action or influence.
This makes it suitable for use in addressing the two-fold objectives of the thesis: to
understand movement from the context and to learn about the context from movement.
The effect of the context on the moving object is expected to be observed as a different
movement pattern when the context or its properties change. For example, an animal
initially running in zigzag to escape from a predator will stop or move normally when
the predator goes away. The effect of the moving object on the context is reflected in
the characteristics of the context element which are expected to be different in case
there is a moving object compared to the case there is none. For example, walkers
form trails on a deformable terrain which can in turn influence the motion of walkers
on this terrain (Helbing et al., 2001).

Movement interactions can be defined based on the change of any of the three
basic spatial relations discussed in section 2.1.2 (namely, topological, directional, and
distance relations). For example, we can define an interaction “bypassing” based
on a sequence of changes of distance relations and changes of directional relations.
In this case, the moving object decreases its distance to the context element till a
certain minimum value, then changes its direction while in the proximity of the context
element, and finally increases the distance from the context element. The approach I
follow to define interactions is closely related to some previous work on modelling the
motion of objects. The Qualitative Trajectory Calculus (Van de Weghe, 2004), QTC
in short, defines relations between two moving point objects. The basic version (QTC
Basic or QTCB) defines the relations by comparing differences in distance between the
objects over time. Another closely related work is (Salamat and Zahzah, 2012) which
defines spatiotemporal relations comparable to the movement interactions defined in
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this thesis. Different spatiotemporal relations are defined based on a combination of
topological and directional relations that hold over a time interval.

In this thesis I define movement interactions based on the change of distance relations
only in a way closely similar to the approach of QTCB in (Van de Weghe, 2004). QTC
relations (Van de Weghe, 2004) and the spatiotemporal relations presented in (Salamat
and Zahzah, 2012) are defined between two moving point and two-dimensional objects
respectively. Unlike these relations, the movement interactions defined in this thesis
concern one moving point object and one context object which may be moving or
not. Also, I define the interactions in a systematic way based on a continuous motion
such as in (Van de Weghe, 2004) and a categorisation of objects involved. This allows
taking into account specific properties of involved objects. The focus is on a small
set of basic interactions and how they vary among different context element types.
In order to define the basic interactions I assume the change of distance between the
moving object and the context element to be continuous and linear; that is, the distance
decreases progressively to become zero before increasing progressively. In other words,
the distance can be represented by a signed number from the set of real numbers (R)
where negative (-) means “decreasing” while positive (+) means “increasing”. The
distance decreases till the minimum value (theoretically zero) before increasing. I
define basic interactions for three cases based on the context element involved. The
first case concerns interactions with a zero-dimensional (0D) context element having a
fixed location. The second case concerns interactions with a one-dimensional (1D) or
two-dimensional (2D) context element having a fixed location. The third case concerns
interactions with a moving zero-dimensional geographic context element.

The movement interactions are defined and named based on the semantics of motion
verbs such as those presented in (Asher and Sablayrolles, 1994). The notations that
are used to formalise the definition of interactions are introduced in the following.

• A represents a moving object.

• C represents a context element with which A interacts.

• d(A,C,t) denotes the distance between A and C at time instant t sampled for
position recording.

• nParam denotes a nearness parameter. That is; when d(A, C, t) <= nParam,
A is said to be at C. For a given object, this parameter determines a small area
around it in which all positions can be approximated by the position of the
object. It serves as a tolerance area for locating another object which can be
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considered to be in contact with the target object or in a negligible distance from
it. The parameter can be set based on domain knowledge. For example, on a
road network it can be set to the distance between the object and the nearest
road junction, or simply the positioning accuracy (e.g., 20 m for GPS positions).

• Smin denotes the minimum amount of time that a valid stop of the moving object
should last.

• td(A,t1,t2) denotes the distance travelled by A during the time interval [t1,t2].

Case 1: A moving object and a zero-dimensional geographic context with
a fixed location

In the case of a moving object and a zero-dimensional geographic context element with
a fixed location, five basic movement interactions are defined: approaching, arriving,
stopping, leaving, and moving-away. These interactions are depicted in Figure 3.2.
The moving object is drawn using three small circles with different radii to indicate
the progress of movement. The bigger the circle is the more recent is the position
it represents. So, the biggest circle represents the latest position while the smallest
dotted circle represents the earliest position. The five movement interactions depicted
in Figure 3.2 are defined next.

Definition 1 (stopping) . A stopping interaction happens when the initially moving
object stays in the neighbourhood of the context element for a certain time threshold.
This is formalised as follows:

∃ti, tj, tk|ti < tj < tk

∀t, tj < t < tk : d(A, C, t) ≤ nParam ∧ tk − tj ≥ Smin

Definition 2 (approaching) . The approaching interaction is observed when the
distance between the moving object and the context element decreases. The
approaching interaction is formalised as follows:

∃tg, th|th > tg

d(A, C, th) − d(A, C, tg) < 0 ∧ d(A, C, th) > nParam

Definition 3 (moving-away) . The moving-away interaction is observed when the
distance between the moving object and the context element increases. This is
formalised as follows:
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Fig. 3.2 Basic interactions between a moving object and a 0D context with a fixed
location

∃tl, tm|tm > tl

d(A, C, tm) − d(A, C, tl) > 0 ∧ d(A, C, tl) > nParam

Definition 4 (arriving) . Arriving is observed when the distance between the moving
object and the context element deceases till the object reaches the neighbourhood
of the context element. This nteraction is formalised as follows:

∃ti, tj|ti < tj ∧ j = i + 1

d(A, C, ti) > nParam ∧ d(A, C, tj) ≤ nParam

Definition 5 (leaving) . Leaving is observed when the distance between the moving
object and the context element increases such that the object initially located in
the neighbourhood of the context element is no longer in its neighbourhood. This
interaction is formalised as follows:

∃ti, tj|ti < tj ∧ j = i + 1

d(A, C, ti) ≤ nParam ∧ d(A, C, tj) > nParam
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It is important to note that the set of basic interactions does not constitute an
exhaustive list of interactions. Other interactions can be defined by considering the
variation of other spatial relations or even by combining some basic interactions. For
example, an interaction “passing” can be defined as sequence of arriving and leaving.
Interactions such this can be considered as second degree interactions because they
can be defined as a composition of basic interactions.

Case 2: A moving object and a 1D or 2D geographic context with a fixed
location

A context element of type “space” extends over an infinite set of point locations
which make either a linear feature (1D) or an areal feature (2D). Some of the basic
interactions defined for the case of a 0D context with a fixed location are still valid for
the current case. The names of these interactions can change for better reflecting the
higher dimensional nature of the context. For example, the arriving interaction can
be called “entering” while the leaving interaction can be called “exiting”. Alternative
terms for naming interactions can be identified based on the semantics of motion verbs
in natural language such as presented in (Asher and Sablayrolles, 1994). In this thesis,
the same naming is kept in the different cases as long as the semantics of the interaction
is the same. The higher dimensional nature of the context element in this case also
introduces a new basic interaction, which is named passing. It is important to note
that passing on a 1D or 2D context element is not equivalent to a sequence of arriving
and leaving because in this case there is a time interval between the two.

Definition 6 (passing) . The passing interaction occurs when the distance between
the moving object and the context element of type space changes as follows: it is
initially greater than a specified nearness parameter, then it drops and remains
below a certain threshold close to zero within some time interval before increasing
again above the value of the nearness parameter.This is formalised as follows:

∃tk, tl, tx, ty|tx < tk < tl < ty

d(A, C, tx) > nParam ∧ d(A, C, ty) > nParam∧

∀t, tk ≤ t < tl : d(A, C, t) < nParam

The basic interactions in case of a 1D or 2D context with a fixed location are
depicted in Figure 3.3. In Figure 3.3, the context element is represented by a rectangle
to reflect its higher dimension compared to the zero-dimension of the previous case.
However, the actual context element can be a linear feature (e.g., a road for a car or a
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Fig. 3.3 Basic interactions between a moving object and a 1D or 2D context with a
fixed location

canal for a boat) or an areal feature (e.g., city neighbourhood). The symbol used to
represent the moving object has the same meaning as in the first case.

Case 3: A moving object and a moving zero-dimensional geographic context

In case the context element also moves, interactions basically similar to those defined
in previous cases may have a different semantics. For example, the term arriving is
appropriate in case there is a fixed location at which the moving object arrives. In
the current case a new term, which reflects the movement of both objects, is used.
The new term, named encounter, means that the moving object reaches the context
element (which is also moving). The opposite interaction, which is similar to leaving,
is called separating. These two interactions represent both the cases of same and
different directions. If the objects encounter and stay together in the same location for
some time, the interaction is not called stopping but meeting. The meeting interaction
reflects the fact that the objects arrive in a location at the same time. Since both
the target and context objects move, other interactions can differentiate whether they
move together or separately. This leads to two new interactions: jointly-moving and
separately-moving.
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The basic interactions considered for the case of a moving context element are
illustrated in Figure 3.4. In the figure, the symbols used have the same meaning as
the symbol for the moving object in the preceding cases. Though the meaning of the
two symbols gives an impression of a specific movement direction these interactions
represent both cases of same and different movement directions. A specific direction is
selected simply for making the illustration easy to understand. The new interactions
are defined next.

Definition 7 (meeting) . The meeting interaction occurs when the target moving
object enters the neighbourhood of the moving context element and they stay
together for a specified time threshold. In other words, the distance between the
target moving object and the moving context element deceases below a predefined
nearness parameter. The distance remains below the nearness parameter for some
time. The distance travelled while staying together does not exceed the value of
the nearness parameter, which means that once they are together the two objects
do not move. This is formalised as follows:

∃ti, tj, tk|ti < tj < tk

d(A, C, ti) > nParam∧

∀t, tj ≤ t ≤ tk : d(A, C, t) ≤ nParam ∧ tk − tj ≥ Smin∧

dt(A, tj, tk) ≤ nParam ∧ dt(C, ti, tj) > nParam

Definition 8 (encounter) . A moving object encounters a moving context element
when it enters its neighbourhood. This interaction is a step towards the “meeting”
interaction. If after the encounter the two objects stay together for some time
then the interaction is transformed into a “meeting” one. For the “encounter”
interaction the only condition is that the distance between the target moving object
and the moving context element deceases below a predefined nearness parameter.
This is formalised as follows (Note that in the formalisation the last condition
ensures that also the context object is moving):

∃ti, tj|ti < tj ∧ j = i + 1

d(A, C, ti) > nParam ∧ d(A, C, tj) ≤ nParam∧

dt(C, ti, tj) > nParam

Definition 9 (separating) . The moving object separates from the moving context
element when it goes outside its neighbourhood. In other words, the distance be-
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tween the two objects increases above a specified value of the nearness parameter.
This is formalised as follows:

∃ti, tj|ti < tj ∧ j = i + 1

d(A, C, ti) ≤ nParam ∧ d(A, C, tj) > nParam∧

dt(C, ti, tj) > nParam

Definition 10 (jointly-moving) . A moving object moves jointly with a moving
context element when the distance between them does not exceed the value of a
predefined nearness parameter throughout their movement. The jointly-moving
interaction is formalised as follows:

∃tstart, tend|tstart < tend

∀t, tstart ≤ t ≤ tend : d(A, C, t) ≤ nParam ∧ dt(A, tstart, tend) > nParam

Definition 11 (separately-moving) . A moving object moves separately from a
moving context element when the distance between them exceeds the value of a
predefined neighbourhood parameter throughout their movement. The separately-
moving interaction is formalised as follows:

∃tstart, tend|tstart < tend

∀t, tstart ≤ t ≤ tend : d(A, C, t) > nParam ∧ dt(A, tstart, tend) > nParam∧

dt(C, tstart, tend) > nParam

Case 3 conceptually generalises situations of two or more moving entities. This
case covers restricted movement (e.g., vehicle movement following a road network) and
less restricted movement (e.g., animal movement in ecology). The implementation of
this case may have to take into account situation specific characteristics. For example,
while the Euclidean distance can be used to implement this case for animal movement
in ecology, the implementation for vehicle movement has to use the distance measured
along the road network.

This case (Case 3) of the conceptual model resembles the concept of dynamic
interaction (Long et al., 2014) in movement ecology and the concept of relative motion
(Laube, Imfeld and Weibel, 2005). The similarity is that both this case and these
concepts indicate how the movement of two or more individuals are related. However,
the conceptual model case presented differs from the dynamic interaction methods
used in ecology in the way the relation between the movements is computed. In this
conceptual model a qualitative approach is adopted while the methods of dynamic
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Fig. 3.4 Basic interactions between a moving object and a moving zero-dimensional
geographic context

interaction adopt a quantitative approach. For example, the conceptual model proposed
in this chapter determines that two moving entities are approaching each other based
on the decrease of the distance between them, without caring about how much this
decrease is. On the other hand, the dynamic interaction methods in ecology determines
that two animals are engaged in attraction based on some quantitative variable (e.g.,
prox1, Cr2 (Long et al., 2014)) which indicates also the degree of attraction.

Although the qualitative approach adopted by the current conceptual model causes
a loss of precision, some situations do not need the precision provided by the dynamic
interaction methods. Furthermore, the quality of available tracking data may not allow
such precision. For example, having tracking data with a lot of missing fixes, it may
be enough to determine that two vehicles are approaching each other without trying

1Proportion of simultaneous fixes that are spatial proximal
2Correlation index
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to find their exact locations. In this situation, the locations of the vehicles may not be
accurately determined due to the low quality of available tracks. Therefore, case 3 of
the proposed conceptual model provides an alternative method to dynamic interaction
methods used in ecology. The alternative method is particularly useful in situations of
low quality traces (e.g., low sampling rate) and where the requirement of proximity
precision can be relaxed.

3.2.2 Conceptual neighbourhood graphs of movement inter-
actions

As discussed in section 2.1.3, using conceptual neighbourhood graphs (CNG) to
organise qualitative relations between spatial objects helps understanding how they are
related and supports reasoning on them. Like other qualitative relations, movement
interactions exhibit different degrees of closeness between them, which need to be
understood for reasoning on the interactions. Therefore, in order to show how far two
interactions are apart from each other, I organise them in conceptual neighbourhood
graphs. The conceptual neighbourhood graphs are developed based on the concept of
smooth transformation (Freksa, 1991). This means that two interactions are conceptual
neighbours if a temporal shortening or extension of the first causes a direct transition
to the second. The conceptual neighbourhood graphs show between which interactions
a gradual change can cause a direct transition, which can in turn support qualitative
reasoning on the interactions. Considering the general duration of an interaction, I
differentiate interval interactions from instant interactions. An interval interaction
lasts for a time interval while an instant interaction occurs at a certain time moment
and does not hold after that time moment.

The conceptual neighbourhood graph of the basic interactions between a moving
object and a zero-dimensional context with a fixed location (the first case of interactions
presented in section 3.2.1) is depicted in Figure 3.5. A real example of the interactions
shown in this CNG is the case of interactions between a car and a traffic light located
on the road on which this car is moving. The nodes in the graph are the interactions
represented by their abbreviations as introduced in Figure 3.2. An edge between two
nodes shows that the interactions represented by the nodes are conceptual neighbours,
which means that a direct transition between them is possible. The conceptual
neighbourhood Graph shows that approaching and arriving are conceptual neighbours
because if a moving object keeps approaching the context element it will end up by
arriving at it and no other interaction will happen in between. The concept of smooth
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Fig. 3.5 A conceptual neighbourhood graph of interactions with a 0D context having a
fixed location

Fig. 3.6 A conceptual neighbourhood graph of interactions with a 1D or 2D context
having a fixed location

transformation implies that once the moving object arrives at the context element it
can either stop at it or directly leave it. Further, when it has stopped it can cut this
stop short to leave the context element. After leaving the context element, the moving
object moves away from it as it is shown by the distance between them which keeps
increasing. The arriving and leaving interactions are instant interactions while the
others are instant interactions.

In Figure 3.6, the conceptual neighbourhood graph of interactions between a
moving object and a 1D or 2D context (e.g., a context element of type “space”) is
shown. This CNG organises the movement interactions depicted in Figure 3.3. These
interactions can be observed, for example, between a moving car and a road segment.
This conceptual neighbourhood graph has a lot of similarities with the CNG shown in
Figure 3.5. The similarities are due to the fact that in both cases the context element
does not change its location. However, the fact that the context element involved in
the case of Figure 3.6 extends over multiple point locations leads to some differences
including the new interaction of passing the context element.

The interactions between a moving object and a moving zero-dimensional context
element depicted in Figure 3.4 are organised in the conceptual neighbourhood graph
shown in Figure 3.7. This CNG is very different from the previous two cases. The
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Fig. 3.7 A conceptual neighbourhood graph of interactions with a moving 0D context

differences are mainly due to the fact that the context element also moves. As shown in
Figure 3.7, if the target moving object keeps approaching the moving context element
it ends up by encountering it. If the encounter is extended, it leads to the meeting
interaction. Otherwise, the objects separate or jointly move. The meeting interaction
is characterised by staying together in the same location for some time. The meeting
interaction can be cut short leading to separating or jointly moving. The separating
interaction occurs at the moment the target moving object leaves the neighbourhood
of the context element. This interaction is an instant interaction because immediately
after separating, the objects move separately. At any time while jointly moving, the
objects may separate and start moving separately. The encounter interaction is also
an instant interaction because immediately after encountering, the objects either stay
together in the same location (meeting), or move jointly or separates.

3.3 Summary
This chapter presented a conceptual model relating the movement of a moving object
to its embedding dynamic geographic context. Firstly, the chapter explained the
dynamic geographic context to delineate it from the broad concept of context. Then a
classification of the geographic context was established and approaches for modelling
the different geographic context types proposed. After the clarification of the movement
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context as considered in this thesis, the chapter introduced the concept of movement
interactions. I defined and formalised a small set of movement interactions that
abstract the change of spatial relations between the moving object and a context
element as the object moves. Finally, I organised the movement interactions into
conceptual neighbourhood graphs which can support qualitative reasoning on the
interactions. The next chapter develop an analysis framework that exploits the link
between the movement and its embedding dynamic geographic context as expressed by
the conceptual model presented in this chapter.



Chapter 4

A methodological framework for
contextualised pattern discovery
and analysis

This chapter provides a discussion of the framework proposed for discovering and
analysing contextualised movement patterns. The proposed framework exploits the
conceptual model of movement context and interactions presented in chapter 3. The
chapter starts with a presentation of the general overview of the framework, and then
discuss its phases in detail.

4.1 Introduction
The proposed framework is based on the KDD (Knowledge Discovery in Database)
process (Fayyad et al., 1996) reviewed in section 2.3.1. The steps of the KDD process
previously shown in Figure 2.6 are shown again in Figure 4.1 with added labels to
show the part corresponding to the proposed framework. In Figure 4.1, the phases
before data mining are considered together as the data preparation phase. While the
analysis goes through the whole KDD process, the proposed framework corresponds to
the steps after the data preparation phase.

The framework (see Figure 4.2) comprises two phases, namely extraction of move-
ment interactions and analysis of movement interactions, which together correspond to
the data mining and pattern interpretation/evaluation phases of the KDD process. The
input to the analysis framework is a set of trajectories and corresponding geographic
context data that have undergone necessary preparation operations. Both types of data
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Fig. 4.1 Steps of the KDD process and the focus part of the proposed framework (based
on Fayyad et al. (1996))

Fig. 4.2 Proposed framework for contextualised pattern discovery and analysis

have been discussed in chapter 2 (trajectories in section 2.2 and geographic context
data in section 2.4.4). The output from the proposed analysis framework is either a
pattern interpretation or new knowledge about the geographic context or both. The
pattern interpretation is a high level description of the movement pattern observed,
which can explain why or how the pattern appeared. The new knowledge about the
context is a description of some characteristics of the context that were not known at
the beginning of analysis.

4.2 Extraction of movement interactions
The first step of the proposed analysis framework aims at extracting movement inter-
actions from movement data and associated context data. These interactions represent
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movement patterns embedding context information. For example, instead of discovering
simply a stop pattern a stopping interaction is extracted (e.g., instead of discovering
that a taxi made a stop, it is discovered that it stopped at a traffic light, which can
further help to understand why it stopped). In addition to the stop pattern, which is
purely geometric and represents a part of a trajectory, the stopping interaction includes
information about the spatial object at which the pattern is found. The extraction of
movement interactions is performed using spatial analysis and data mining methods.
For example, clustering methods (e.g., density-based clustering) can be applied to
identify areas of high concentration of recorded positions of the moving objects which
can hint to stops. The movement data or clusters of positions of the moving object
can be overlaid with context data for computing distance relations based on which
interactions are defined. Other spatial analysis operations (e.g., buffer computation)
and spatial relation predicates (e.g., intersection) can be computed to filter out invalid
interactions.

There are different data mining methods that can be used in this step. As part of this
thesis work, we carried out a review of the literature on generic data mining methods
for movement data and their applications. This review, published in (Mazimpaka
and Timpf, 2016a), has shown that the choice of a method to use depends on the
task to be performed, which in turn depends on the application case. Some tasks can
be accomplished using one method while others may require a sequence of methods.
Furthermore, some methods are related such that a method can be used as standalone
to accomplish a task, but also as part of another more complex method. For example,
a clustering method can be enough to extract stop patterns (and hence stopping
interactions) while it can be used as part of a group pattern mining for extracting
jointly-moving interactions. To concretise this example, we can consider the following
analysis cases. In (Jahnke et al., 2017), density-based clustering is used to extract taxi
stops as origin and destination hotspots. The stops are then semantically enriched
using POIs. With this semantic enrichment we can consider that there are stopping
interactions between taxis and the POIs. In a second case, Kalnis et al. (2005) extract
moving clusters, which can be considered as jointly-moving interactions. To this end
they use the same clustering as in the first case but they extend it with a method
that checks the connectivity of extracted clusters. Therefore, the choice of the data
mining method to use depends on the task or the sequence of tasks to be performed
for extracting the interactions that occurred.

At the end of interaction extraction, each extracted interaction instance is uniquely
identified and has associated attributes such as its start and end times and the identifier
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of the context element involved in it. These attributes are used for the analysis of
interactions in the next step. In addition to static attributes, movement data may
also have time-varying (or dynamic) attributes. Some of these dynamic attributes
reflect the dynamics of the context element involved. For example, usually a bus has a
schedule indicating the time at which it should reach specific locations along a road
segment. The movement data of the bus may contain a dynamic attribute indicating
the amount of time by which the bus is delayed at any recorded position. In this case,
the values of the attribute while traversing a road segment (an instance of the passing
interaction involving a specific road segment) reflects the “congestion level” attribute
of the road segment.

4.3 Analysis of interactions
The movement interactions extracted in the preceding phase represent movement
patterns embedding context information. In this phase, these interactions are analysed
to help understanding the movement patterns that they represent. To this end,
statistical methods and further data mining methods are applied. The aim is to
quantify the interactions and explore the variation of movement attributes during the
interactions to detect and describe any link with the variation of the attributes of the
context. The link may be in the form of a correlation, a dependency, or a frequent
correspondence between a movement attribute and a context attribute.

In order to take into account the dynamic nature of the context element a temporal
window is selected and the analysis of interactions is carried out on time intervals
defined based on this temporal window. In the following, some analytical operations
are proposed. The proposed analytical operations are based on static and dynamic
attributes of the movement and context elements.

1. Extracting summary statistics of attributes in different time intervals and using
the statistics to detect correlations, and dependencies.

For each time interval of the study period, the following summary statistics can
be computed for example:

• the number of interactions involving a specific context element

• the minimum and maximum values of dynamic attributes during interaction
(e.g., maximum speed while approaching the context element)

• the mean values of dynamic attributes during interaction
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• the standard deviations of dynamic attributes during interactions

Based on the summary statistics, the extrema of dynamic attributes can be
identified. These are the time intervals with highest or lowest values of the
considered attributes. Within the time period covered by the analysis, summary
statistics of interactions, dynamic attributes of the movement, and dynamic
attributes of the context vary. One way to use the geographic context to support
understanding of movement patterns can be to explore these variations. The
exploration checks the relation between the variation of a dynamic attribute of
the context and the variation of summary statistics of interactions or dynamic
attributes of movement. The identification of this relation leads to interpretation
of the movement pattern and can also reveal previously unknown characteristics
of the context element.

The relation between the variations of two variables can be, for example, that
an increase of the first always corresponds to an increase of the second. If
both variables are numeric, such dependence or correlation can be checked by
computing the Pearson correlation coefficient between them. If one variable
is nominal, the values of the numeric variable can be classified to check the
correspondence between different classes of values and the different values of
the nominal variable. In some cases, the analysis may focus on abnormal values
(exceptional high or low) of one of the variables; which becomes an outlier
detection approach. Let X and Y be two variables, x̄ and ȳ the mean of X and Y
respectively, sx and sy the standard deviation of X and Y respectively.

The outlier detection approach involves finding values of the second variable
that go out of the bounds established around the normal trend. The relation
between the variables is found if there is a regular correspondence between the
outliers found and specific values of the other variable. The normal trend can be
computed as the mean value. The upper and lower bounds of Y are given by:

Y upper = ȳ + αsy and

Y lower = ȳ − αsy respectively

The outlier of Y is: yi>Yupper or yi<Ylower

In the computation of bounds, α is a scaling factor, which controls the uncertainty
associated with the length of the time period analysed. The value of the scaling
factor defaults to 1 but it should be increased for a long term analysis (say weeks
or longer). In other words, a longer period covered by analysis increases the
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uncertainty about the range of deviation from the normal values. In order to
take into account the increased uncertainty, the scaling factor pushes bounds
away from the normal trend hence considering a wider range for deviation. The
idea of using bounds and their computation come from Bollinger bands (Dobson
and Bollinger, 1994) often used in finance. Bollinger bands are bands of standard
deviation plotted above and below the moving average of market prices. They
help in understanding the market volatility by providing a relative definition of
“high” and “low”. This allows traders to take advantage of high and low prices.
The consideration is that a standard deviation is a good indicator of how the
values in a sample fluctuate around the average value. Like in Bollinger bands,
the values of a given dynamic attribute of the movement is considered to be high
or low (and hence outlier) only with reference to the average value and to how
values usually change around this average.

The Pearson correlation coefficient approach detects dependence between
two variables if the computed correlation coefficient shows that the increase of
the value of one tends to correspond to an increase of the value of the other
(positive correlation) or the increase of the value of one tends to corresponds
to a decrease of the value of the other (negative correlation) (Ross, 2014). The
correlation coefficient between X and Y is given by:

r =
∑n

i=1(xi−x̄)(yi−ȳ)√∑n

i=1(xi−x̄)2
∑n

i=1(yi−ȳ)2

The Pearson correlation coefficient is appropriate when the two variables are
numeric. In case any of the variables is nominal the outlier detection approach
can be used instead.

2. Sequence analysis

Another analysis operation is the analysis of sequences of interactions. As shown
by the conceptual neighbourhood graphs presented in section 3.2.2, movement
interactions are related through possible transitions between them. This implies
that, given an interaction in which a moving object is participating, it is possible to
predict the next interaction in which the object is likely to participate. Therefore,
the comparison of the sequence of interactions in which a trajectory is involved to
expected sequences can reveal abnormalities. Sequence analysis aims at detecting
these anomalies and possibly tracing them back from the values of some attributes
of the context element through a qualitative reasoning on the interactions.
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4.4 Summary
In this chapter an analysis framework for trajectories and associated dynamic geographic
context has been discussed. The framework exploits the conceptual framework presented
in chapter 3, which relates the movement to the context. The framework comprises two
steps, namely interaction extraction and interaction analysis, which are together aimed
at discovering and interpreting movement patterns. Some methods that can be used
under each step have been presented. In particular, under interaction analysis different
analysis operations have been proposed. They include the detection of correlation and
dependence between dynamic attributes of movement, number of interactions, and the
dynamic attributes of the context. Also sequence analysis of interactions has been
proposed for movement prediction. The next chapter evaluates the applicability of the
proposed analysis framework using real data.





Chapter 5

Experiments

This chapter provides a summary of experiments executed to evaluate the applicability of
the proposed framework. As discussed on modelling the geographic context (section 3.1),
the geographic context can be modelled in many different ways. Moreover, its dynamics
are based on the change of its location, its lifespan, time-varying attributes, or change
of extent. The experiments presented in this chapter address different aspects regarding
the dynamics of the geographic context and the analysis framework proposed. For
each experiment, the data used are briefly described and then the analysis framework
applied.

5.1 Experiment 1 – temporal dynamics of a dy-
namic geographic context

The main objective of this experiment is to demonstrate the applicability of the
proposed analysis framework on a geographic context which has a lifespan shorter than
the time period covered by the analysis. Within the period covered by the analysis the
context element comes into existence and ceases to exist. This defines three phases
“before”, “during”, and “after” such that the beginning and the end of the lifespan may
need to be discovered. Once the beginning and end of the lifespan are known, their
characteristics as well as effect on the movement may need to be determined. Therefore,
the main focus is on the time dimension related issue: whether the times of appearance
and disappearance of the context element can be discovered from movement data and
whether different phases of the lifespan of the context element can be characterised in
terms of movement patterns. This section (5.1) is based on (Mazimpaka and Timpf,
2017).
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Social events have been selected as context elements because they are a good
example of the type of context dealt with in this experiment. The lifespan of a social
event is shorter than the time period covered by the analysis. During its time of
existence, a social event goes through different phases which can be reflected differently
on human mobility pattern. Alternatively, other types of spatial events that occur
in the geographic space of movement such as a roadwork and road accident could be
considered. The aim of the case studies in this experiment is to support understanding
of the dynamics associated with big events and human mobility. That is, given mobility
data in the neighbourhood of a venue known to host big social events, can we detect
the occurrence of events at the venue? If an event is detected can we learn from
the movement data its characteristics which explain in turn the movement patterns
observed?

5.1.1 Datasets

The movement data analysed in this experiment are trajectories of buses in Dublin.
The dataset is a subset of the Dublin bus GPS dataset1 from the Dublin City Council’s
traffic control. Each bus produces a record about its location and status every 20
seconds on average. The record includes a timestamp, latitude and longitude of the
location, the bus line ID, the vehicle ID, the journey pattern (an indication of the
direction), an identifier of the closest bus stop, the delay (number of seconds for which
the bus is behind the schedule, which is negative if the bus is ahead of schedule),
whether the bus is at a bus stop, and whether the bus is in a congestion. Specifically,
this experiment analyses trajectories of buses following bus lines 4 and 44.

The data about context elements include the locations of bus stops along the routes
used by the two bus lines, and the locations of the Aviva stadium and the National
Concert Hall where events take place. The study area is shown in Figure 5.1. The left
part of the figure (a) shows the route used by bus line 4. This route has a length of
approximately 20 km and includes 65 bus stops in one and 61 in the other direction.
The right part of the figure (b) shows the route used by bus line 44, which includes
80 bus stops in one and 76 in the other direction. Figure 5.1 also shows the location
of the Aviva stadium and a neighbourhood of 650 meters around it (left part), and
the location of the National concert hall and a neighbourhood of 350 meters around it
(right part). The sizes of these neighbourhoods are selected to enclose all bus stops
that serve directly the venues such that a passenger dropped there may not take any

1https://data.dublinked.ie/dataset/dublin-bus-gps-sample-data-from-dublin-city-council-insight-
project
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other bus to reach the venue. For each bus stop the data include a unique identifier, a
name, GPS coordinates and the distance at which it is located from the beginning of
the route.

Fig. 5.1 Location of context elements: a) line 4 bus stops and Aviva stadium, and b)
line 44 bus stops and the National Concert hall

As ground truth, we retrieved from the Website of the National Police Service of
Ireland2 and Wikipedia information about the occurrence of big events in the Aviva
stadium in the time period covered by the movement data. This event occurrence
information is shown in Table 5.1. Likewise, we retrieved from an event archive Website3

2http://www.garda.ie/News/default.aspx
3https://issuu.com/nationalconcerthall/docs/sept-nov2012calendar
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information about the concerts that took place in the National Concert hall in the
period covered by the movement data.

Date Event Planned
stiles open-
ing time

Planned
start
time

Planned
end
time

Actual
end
time

Number
of atten-
dees

10/11/2012 Rugby match
(Ireland V
South Africa)

16:00 17:30 19:00 19:20 49,781

14/11/2012 Football
match (Ire-
land V
Greece)

18:15 19.45 21:45 21:42 16,256

24/11/2012 Rugby match
(Ireland V Ar-
gentina)

12:30 14:00 15:40 15:49 43,406

Table 5.1 Occurrences of big events in the stadium during the study period

We prepared the bus movement data through the following pre-processing operations.
We performed time format and coordinate system transformations. Next, we discarded
unrealistic GPS points. These were identified as points to which the travel from
preceding point was found to have been done with a speed higher than 50 km/h.
We recomputed, for each GPS point, the nearest bus stop because we found wrongly
assigned nearest bus stops. We discarded GPS points that were causing oscillation
back and forth along the movement of the bus. These were identified by comparing
the distances between three consecutive points. In the following step individual bus
journeys were identified and assigned unique identifiers. We then discarded journeys
with a large gap in space or in time between any two consecutive recorded positions.
Likewise, incomplete journeys on their start or end were identified by checking the
closest bus stop associated with their first and last recorded positions respectively and
discarded. The final clean bus data for the bus line 4 contained 2,249 journeys made
on 28 days between November 2012 and January 2013. This period includes 3 days
(10th, 14th, and 24th November 2012) with big events in the Aviva stadium. The same
cleaning operations were carried out on the data of bus line 44.

5.1.2 Extraction of movement interactions

After the data preparation we extracted interactions between the bus and bus stops,
and between the bus and potential events at the selected venues. Bus stops constitute
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Fig. 5.2 Extraction of stopping interactions

a static geographic context while events constitute a dynamic context. In this case
study, the intended analysis needs only three types of interactions: stopping (at a bus
stop or at an event), approaching an event, and moving-away from an event.

Although a bus stops at pre-defined locations (called bus stops) along its route, in
most cases the bus stops only when there are passengers who want to enter or exit the
bus. Therefore, it cannot be assumed that each time a bus reaches a bus stop there is
a stopping interaction. We computed the interactions as actual stop at the pre-defined
stop point. From the definition of a stopping interaction given in section 3.2.1, the
task is to check if the initially moving bus stays in the neighbourhood of a bus stop
for at least a specified amount of time. This can be implemented in different ways.
Our implementation works in two steps like the approach used in (Palma et al., 2008):
detecting a stop and checking that the detected stop is in the neighbourhood of a bus
stop. Considering that staying in a location for some time leads to densely located
GPS points, we detected a stop using a density-based clustering. The second step
checked each candidate stopping detected in the first step to see if it is located within
a pre-defined buffer around a known bus top. Candidate stoppings found outside the
buffer were discarded. This process is illustrated in Figure 5.2.

Since the detection of event occurrence is one of the objectives of the analysis, the
approaching and moving-away interactions were extracted with reference to a potential
event represented by the event venue. It means that the event occurrence was to be
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detected by identifying the interactions (approaching and moving-away) that relate
to actual event. For each journey, the extraction of approaching and moving-away
interactions aims at identifying the section where the moving object is approaching the
event and the section where it is moving away from the event. From each route end
we identified the known stop point closest to the event location taking into account
the road segment providing access to the event location from the route. These two
stop points form reference points in the two directions of the route for identifying
journey sections. Based on the journey direction and the variation of the distance
along the route to the respective reference point we marked the journey points. When
the distance decreased, the point was marked to be on an approaching section and
when it increased, it was marked to be on a moving-away section. When the distance
did not change marking was deferred until following change. This process followed the
definitions of approaching and moving-away given in section 3.2.1.

After the extraction of interactions each journey position is marked as whether it is
part of a stopping interaction or not. In case it is part of a stopping interaction, the
position is also marked as whether it is on the approaching or moving-away section
of the journey. Figure 5.3 shows an example of interactions extracted from a journey
segment. The neighbourhood of a bus stop (nParam) was defined by a buffer of 20
meters. The value was selected based on the fact that a GPS point could be recorded
up to 20 meters away from the actual position due to the GPS accuracy of 20 meters.
The neighbourhood distance and the minimum number of points for density-based
clustering were set to 20 meters and 2 respectively based on experimentation with
different values and the need to detect even short stops. With the same reasoning, the
minimum stop duration (Smin) was set to 10 seconds.

5.1.3 Analysis of movement interactions

The analysis of extracted interactions was performed using the analytical operations
proposed in chapter 4. Specifically, we extracted summary statistics on the interactions
and used them to detect outliers. The assumption is that different phases of an event
affect the movement patterns of buses differently and this is reflected in the interactions.
In other words, the movement pattern observed when there is no event is different from
the one observed when an event is about to start and different from the one observed
when it has just ended. So we wanted to learn from the interactions about events
(occurrence, start time, end time ...). The challenge was to find an appropriate way of
quantifying the interactions over the period studied to reveal these dynamics of events.
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Fig. 5.3 Interactions extracted on a journey segment

We proposed to quantify interactions at multiple temporal granularity levels to
detect global and local patterns from the interactions. It means that we had to define
multiple time windows based on which we could aggregate the interactions. At the
larger time window we detect outliers that correspond to a change in the general
mobility pattern, and a possible indication of the occurrence of event. At the smaller
time window, we refine the rough estimation from larger time window by focusing on
local patterns over a shorter time period. To this end, we considered a 1-hour interval
and computed summary statistics on interactions in each 1-hour interval between 6:00
and 23:00 on each day of the study period.

The assumption that a bus stops at the pre-defined stop points generally when
there are passengers that want to enter or exit it leads to a positive correlation between
the number of stoppings and the situation at the event venue. Likewise, the duration of
a stopping correlates positively with the number of passengers entering and/or exiting
the bus such that in case of an event attracting a lot of people the average stopping
duration is likely to increase. With these considerations, we explore the variation of
the number of stoppings to infer the dynamics of events at the selected venue.

We defined the following variables that were aggregated in the time intervals studied:

• The number of stoppings near the venue (P): to capture all stoppings that can be
directly attributed to the venue irrespective of the bus line. They are stoppings
occurring in the venue neighbourhood (see Figure 5.1).
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• The stoppings balance (V): The difference of the proportions of stoppings while
approaching the venue and stoppings while moving away.

For each of these two variables, we defined a corresponding normal variable deter-
mined in experimental conditions where no event was occurring:

• The normal number of stoppings near the venue (Q)

• The normal stoppings balance (W).

In the same conditions the normal variables are determined, corresponding standard
deviations (SQ, SW) are also determined such that we obtain the bounds of P and V
as follows:

• Upper bound of P: UPi = Qi + αSQ

• Upper bound of V : UVi = Wi + αSw

• Lower bound of V : LVi = Wi − αSw

where α is a scaling factor which defaults to 1. We recall from section 4.3 that this
scaling factor controls the uncertainty associated with the length of the time period
analysed. That is; the longer the time period, the more uncertain the location of the
bounds. To cater for this uncertainty we push the bounds away from the normal to
consider a wider range of deviation from normal values. This is done by increasing the
scaling factor above 1.

The interpretation of the relations between these variables is as follows. The normal
variables indicate the mobility pattern in normal conditions; i.e., without influence of
an event which attracts unusual number of passengers. The outliers of P and V; i.e.,
values beyond their corresponding bounds (UP,UV,LV), indicate an unusual mobility
pattern caused by an event at the event venue. The characteristics of the event (e.g.,
starting phase, ending phase) that cause the unusual mobility are determined from
the type of outlier (i.e., below lower bound vs. above upper bound). Specifically, a
higher value of V above the upper bound UV means exceptionally more approaching
stoppings than moving-away stoppings, which corresponds to arrival of event attendees.
Conversely, a lower value of V below the lower bound LV means exceptionally more
moving-away stoppings than approaching stoppings, which corresponds to departure of
event attendees. Figure 5.4 shows the variation of P and its related variables Q and
UP on a sample day without event while Figure 5.5 shows the variation of V and its
related variables W, UV, and LV on the same day.
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Fig. 5.4 Temporal variation of the number of stoppings near the venue (P), its normal
value (Q) and, and its upper bound (UP) on a day without event

From the variation of P with respect to its related variables we get candidate event
indicators that need to be confirmed using the variation of V with respect to its related
variables. That is; the peaks of P that exceed the corresponding upper bound values
are candidate event delimiters in time (arrival and departure) that can be confirmed
by checking the variation of stoppings balance between approaching and moving-away.
From the example shown in Figure 5.4, we have four candidate event delimiters: 10:00,
12:00, 15:00, and 19:00. For each candidate we take the interval from the last day
hour (before it) at which P was below the upper bound to the first day hour (after the
candidate) at which P was below the upper bound. This interval allows us to take into
account uncertainties due to aggregating data into 1-hour intervals; hence we call it
the ‘uncertainty interval’.

We search for a peak in the variation of V (see Figure 5.5) within each uncertainty
interval. We distinguish two types of peaks. If the value at a certain time in the
interval is higher than all preceding and following values in the interval we have a
‘positive peak’. If the value at a certain time in the interval is less than all preceding
and following values in the interval we have ‘a negative peak’. The time corresponding
to a positive peak is a candidate arrival time because it corresponds to an exceptionally
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Fig. 5.5 Temporal variation of the difference of stoppings proportions between approaching and
moving-away (V), its normal value (W) and its upper and lower bounds (UV, LV) on a day without
event

high number of approaching stoppings. On the other hand, the time corresponding to a
‘negative peak’ is a candidate departure time because it corresponds to an exceptionally
high number of moving-away stoppings. The search for peaks in the variation of V (see
Figure 5.5) within the four uncertainty intervals obtained from the variation of P (see
Figure 5.4) results in no peak, which means that the four candidate event delimiters
were minor abnormalities in the mobility pattern near the stadium. No event occurred
because the global mobility pattern shows no exceptional change (no outliers).

While Figure 5.4 and Figure 5.5 show the variation of the variables on a day without
event, Figure 5.6 and Figure 5.7 show the variation of the same variables on a day
with event. As seen in Figure 5.6, there are four candidate event delimiters: 9:00,
13:00, 16:00, and 20:00 located in the uncertainty intervals: 8:00 to 11:00, 11:00 to
14:00, 15:00 to 18:00, and 19:00 to 21:00 respectively. The search for peaks in these
intervals from the data presented in Figure 5.7 finds a positive peak in the interval
containing 13:00 and a negative peak in the interval containing 16:00. Therefore, an
event is confirmed to have occurred and the peaks at 13:00 and 14:00 indicating arrival
and departure of attendees respectively are taken as the event start and end times
respectively.
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Fig. 5.6 Temporal variation of the number of stoppings near the venue (P), its normal
value (Q) and, and its upper bound (UP) on a day with event

In order to refine the estimation of event start and end times and to explore the
temporal patterns of arrival and departure of event attendees, we perform a local
analysis of stopping interactions at a finer temporal granularity level. To this end,
we explore the variation of the number of stoppings near the venue using a temporal
window of 15 minutes for aggregating the variables. The focus is on the uncertainty
intervals containing the estimated event start and end times. Figure 5.8 shows the
temporal variation of the variables within the uncertainty intervals 11:00 to 14:00 and
15:00 to 18:00. This analysis allows us to refine the answer to the question of estimating
the start and end times of the event assuming that the highest peak corresponds to
the start or end of the event. From Figure 5.8(a) we see that the start time estimated
in the previous step to be 13:00 is refined to be around 13:30. Similarly, Figure 5.8(b)
shows a refinement of the end time from 16:00 to around 16:15.

The analysis further shows the temporal patterns of arrival and departure of event
attendees. The temporal pattern of arrival presented in Figure 5.8(a) shows that some
event attendees have been arriving earlier before the event start time as shown by
the shorter peaks that exceed the upper bound between 11:00 and 13:00. After the
start of the event (approximately after 15 minutes) the number of stoppings at the
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Fig. 5.7 Temporal variation of the difference of stoppings proportions between approaching and
moving-away (V), its normal value (W) and its upper and lower bounds (UV, LV) on a day with event

venue sharply dropped below the upper bound becoming almost normal. This suggests
that in general event attendees arrived on time. The temporal pattern of departure
shown in Figure 5.8(b) suggests that it has taken less than 30 minutes after the end of
the event for the stoppings near the venue to return to normal; meaning that event
attendees did not spend much time at the venue after the end of the event.

Different big events may show different temporal patterns of arrival and departure
of attendees. For example, unlike the attendees of the event on 24/11/2012 who arrived
on time and departed as soon as the event ended (see Figure 5.8), the attendees of the
event on 14/11/2012 kept arriving after the start of the event as shown by the number
of stoppings near the venue that remained above the upper bound for some time after
the peak (see Figure 5.9(a)). Attendees of the latter event also departed progressively
as shown by the number of stoppings near the venue, which remained above the upper
bound during a long time interval after the peak (see Figure 5.9(b)).

Case of a medium scale event as a dynamic geographic context

In this section we present the results of analysis on a case involving a medium scale
event so that we can compare with the case involving a large scale event. Compared
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Fig. 5.8 Temporal variation of the number of stoppings near the venue (P), its normal
value (Q) and, and its upper bound (UP) during the period around arrival (a) and
departure (b) times on 24/11/2012
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Fig. 5.9 Temporal variation of the number of stoppings near the venue (P), its normal
value (Q) and, and its upper bound (UP) during the period around arrival (a) and
departure (b) times on 14/11/2012
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Fig. 5.10 Variation of the number of bus stoppings at the National Concert hall on a day with event

to a large scale social event such as the one already presented, a medium scale social
event attracts fewer people. We carried out the second case study following the same
steps explained in detail on the case of large scale event. For this case of medium
scale events (see the study area in Figure 5.1(b)), events were organised at the same
hour of the same day every week during the period studied. This led to difficulty
in finding a model of the normal condition. Therefore, we analysed only two days
(17th and 28th November 2012) for which a model of the normal mobility could be
obtained. The analysis results for the 17th November 2012, on which an event was
organised at a different hour (14:30) compared to other days (20:30), are presented
here as an example. Figure 5.10 shows the variation of the number of bus stoppings
in the neighbourhood of the concert hall while Figure 30 shows the variation of the
balance between the number of approaching stoppings and moving-away stoppings. A
candidate event occurrence was found at 15:00 in the uncertainty interval of 13:00 to
16:00 (see the peak in Figure 5.10). This candidate was confirmed to be the start of an
event (see the positive peak in the corresponding uncertainty interval in Figure 5.11).
Through the analysis of the uncertainty interval at a finer granularity level, the event
start time was refined to be around 15:45 (see Figure 5.12).
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Fig. 5.11 The variation of the balance of stoppings while approaching the event venue and stoppings
while moving away on a day with event

5.1.4 Summary and discussion of results of experiment 1

In this experiment, the proposed framework for context-aware movement data analysis
has been applied to cases involving a dynamic geographic context having a bounded
lifespan. The context element comes into existence and ceases to exist within the period
covered by the analysis. Typical such context elements are spatial events. Specifically,
social events attracting a considerable number of people have this characteristic and
have been selected as case studies. Three types of movement interactions have been
studied: stopping, approaching and moving-away.

The interactions have been extracted from the movement data of buses running on
two bus lines (4 and 44) in the city of Dublin. Line 4 bus data were analysed with
the context of large scale events that take place in the Aviva stadium while line 44
bus data were analysed with the context of medium scale events that take place in
the National Concert hall. The interactions were extracted using data mining and
spatial analysis methods. Stopping interactions were extracted using clustering, buffer
creation and topological relations checking. Approaching and moving-away interactions
were extracted using distance measurement. Some stopping interactions relate the
bus to pre-defined bus stop locations while others relate the bus to a potential event
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Fig. 5.12 The variation of the number of bus stoppings at the National Concert hall during the
period around the arrival time of event attendees

(i.e., a location where an event is taking place or where it is expected to take place).
Approaching and moving-away interactions relate the bus to a potential event.

The extracted interactions were analysed to interpret the bus movement patterns
that they represent. The objective was to show the relation between the dynamics of
events and the movement pattern of the bus. Since the event is not always present,
the analysis had to detect it first. To this end, we performed the analysis at multiple
granularity levels on both the spatial and temporal dimensions. Spatially, the interac-
tions were analysed for the whole bus line and locally at the event venue. Temporally,
the interactions were analysed on a day (6.00 to 23.00) with a one-hour time window
and on a shorter focus interval with a 15-minutes time window. This approach of
analysis at multiple granularity levels supports a correct understanding of patterns as
demonstrated by Laube and Purves (2011). The analysis involved computing summary
statistics on interactions aggregated by time intervals defined by the time window
considered. Then, we used these statistics to identify outliers which point to the
boundaries of the event lifespan.

Firstly, the number of stoppings near the event venue and the balance between
approaching and moving-away stoppings were computed for each 1-hour interval. From
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the variation of these two variables the occurrence of an event, if any, has been detected
and its start and end time estimated. Each estimated time was associated with an
uncertainty time interval. Then, we computed the number of stoppings near the event
venue for each time sub-interval defined by a shorter (15-minutes) time window within
the two event start and end time intervals. By comparing the variation of current
number of stoppings near the event venue and the corresponding normal values we
refined the estimated event start and end times. The same comparison allowed revealing
the temporal patterns of arrival and departure of event attendees.

The application of the analysis framework on the bus data and the two categories of
events (large scale and medium scale) allowed answering the analysis questions we had
formulated. We were able to detect both categories of events on the days they occurred
(see Figure 5.6 and Figure 5.7 for a large scale event, Figure 5.10 and Figure 5.11 for a
medium scale event). We were able to confirm the absence of events on days where they
did not occur (17/11/2012 for a large scale event shown in Figure 5.4 and Figure 5.5,
and 28/11/2012 for a medium scale event that was not shown). Also, we were able
to estimate the start and end times of a detected event with some error margin of
around 30 minutes and reveal the temporal patterns of arrival and departure of event
attendees (see Figure 5.8 and Figure 5.12). However, the results from this experiment
show that the success level of the framework in detecting the two categories of events
differs. The bigger the event, the easier it is detected. For example, while the rugby
match on 24/11/2012 in the Aviva stadium was detected with its start and end time
well estimated (see Figure 5.7), the concert on 17/11/2012 in the National concert hall
was detected and its start time estimated but the end time was not (see Figure 5.11).

The application of the proposed analysis framework in this experiment required a
prior knowledge of the event location and the event to be of large scale. Regarding
event detection, this case appears simplified compared to a general case aiming at
detecting events of any size without prior knowledge of the location. Such general case
has been commonly handled using social media data such as in (Sklar et al., 2012;
Dashdorj et al., 2016). However, the objective in this experiment was a wider analysis
of mobility pattern. Despite the requirement to have prior knowledge of event location,
this wider analysis generates knowledge that is useful in the neighbourhood of the
known location. For example, the knowledge about the temporal pattern of arrival
and departure of event attendees can be useful in the planning and management of
future events.
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5.2 Experiment 2 – spatial dynamics of a dynamic
geographic context

In this experiment we aim at demonstrating the applicability of the proposed analysis
framework to cases in which the context element cannot be considered to be zero-
dimensional. In such cases, spatial dynamics of the context need to be considered in
addition to its temporal dynamics. This is the case of a geographic context of type
“space” (e.g., a road network, a polygonal subdivision representing the temperature in
different regions). Specifically, the experiment intends to discover some characteristics
of the geographic context from the movement patterns. The case studied in the
experiment determines the traffic congestion characteristics of a bus route over time
by analysing a dynamic attribute of the bus movement. This section (5.2) is based on
(Mazimpaka and Timpf, 2016b).

5.2.1 Datasets

In this experiment, a subset of movement data that have been used in experiment 1 and
described in section 5.1.1 is analysed. The subset considered is made of trajectories of
buses on bus line 4, which has been shown in Figure 5.1(a). We prepared the movement
data through a series of transformation and cleaning operations. The operations include
discarding GPS points located far away from the bus route, computing missing values,
and identifying journeys. A journey is a sub-trajectory from one route end to the other.
The final dataset contained 2,249 journeys made on 28 days between November 2012
and January 2013 including weekdays and weekends. Each journey was assigned a
unique identifier and labelled with its direction. The route of bus line 4 represented by
a sequence of road segments and bus stops along them is used as geographic context
data for analysing the bus movement data.

5.2.2 Extraction of movement interactions

The main geographic context in this experiment is the road on which buses move. A
road is one-dimensional and covers several point positions. Considering it as a dynamic
context means that it has a dynamic attribute in which the analysis is interested. In
this case, the dynamic attribute can have different values at different locations on
the same road. Extracting interactions of the bus with the entire road would be very
inaccurate because of these spatial dynamics. Therefore we started with a further
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pre-processing in which we partition the route into small segments on which local
mobility patterns can be discovered.

Since bus stops are distributed along the route, they can be used to partition it. We
partitioned the route by splitting the road segment between two successive bus stops
as follows. Let R denote the bus route containing n bus stops, and Mid(ŝt) denotes
the midpoint of the curve between two points s and t.

R =< p1, p2, . . . , pn > , where pi is the ith bus stop

The jth route segment is represented as:

Sj =


p̂1q , with q = Mid(p̂jpj+1) if j = 1
q̂pn , with q = Mid(p̂j−1pj) if j = n

q̂q′ , with q = Mid(p̂j−1pj), q′ = Mid(p̂jpj+1) otherwise

The operation of partitioning the route resulted in 65 road segments corresponding
to the 65 bus stops of the route. After partitioning the route into small road segments,
each labelled with the identifier of the bus stop on it, we extracted instances of the
interactions of passing these road segments. To this end, the closest bus stop of each
journey point has been used to assign the point a road segment. On each journey, the
chronologically ordered list of points assigned a specific road segment constitute the
interaction of passing it. Each passing interaction has the following attributes: start
time, end time, identifier of the road segment being passed and the identifier of the
journey (and implicitly identifier of the bus) passing the road segment. The start and
end times of each passing interaction are the timestamps respectively of the first and
last points of the sequence making it.

5.2.3 Analysis of movement interactions

The analysis of interactions involved the selection of a dynamic attribute of the
movement and the analysis of its variation during interactions. We selected the delay
attribute, which contains the number of seconds by which the bus is delayed at each
position recorded. From the delay attribute we derive a new attribute delayChange,
which is the difference between the delay value at the current position and its immediate
predecessor. The delayChange attribute reflects the characteristics of a location and
time period better than the delay attribute. The reason is that the change in delay
is more closely related to the current location and time than the delay, which might
have been accumulated from far previous locations and times. The delay change has
one the following three meanings: the just travelled road segment negatively affected
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the movement (delayChange>0 ), or did not affect the movement (delayChange=0 ),
or affected the movement positively (delayChange<0 ). In this experiment, the first
case (i.e., delay increase) was considered potential to reflect important characteristics
of road segments.

In order to explore the variation of the dynamic attribute delayChange during
passing interactions, we aggregated its values on the route segments and within one hour
time intervals. The aggregation was done by averaging available values. The aggregated
values can be explored from different temporal granularity levels. For example, we
proposed different views that can support a visual analysis of the aggregated values.
These views show the values in a binary encoding (delay increase vs. no delay
increase) to simplify the visual analysis while emphasising the importance attached
to the case of delay increase. The Hour-Location view shows the variation in different
hours and among the route segments on a selected day. The Day-Location view
aggregates the passing interactions that occurred in one hour on each route segment
for different days of the week for a selected one hour interval.

The Hour-Location view is used in Figure 5.13 to show the variation of delay
change in different hours and among the route segments (represented by corresponding
bus stop numbers) on the 13/12/2012. From the bus movement pattern shown in
Figure 5.13 we can note that the segments represented by bus stops 13 and 31 were
passed with an increase of delay for almost the whole day as indicated by the red dot
on different hours of the day. Another observation is that the buses passed the route
segments represented by the first bus stops (1-5) generally without increase of delay.
The movement patterns shown in this view can be compared to the patterns shown
in the Day-Location view. The Day-Location view in Figure 5.14 shows the variation
of delay change among road segments and days of the week within three one-hour
intervals (7:00 to 7:59 (a), 8:00 to 8:59 (b), and 9:00 to 9:59 (c)). It can be noted that
the same route segments represented by bus stops 13 and 31 are passed with a delay
increase within these three one-hour intervals on all the days of the week (shown on Y
axis labelled with 0 to 6 for Sunday to Saturday).
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We have discussed an approach for exploring the variation of a dynamic movement
attribute during interactions of the bus and its route. However, the overall problem
addressed in this analysis is to discover general characteristics of locations along the bus
route based on the variation of a dynamic movement attribute. We turned this overall
problem into a classification problem: we considered five classes of traffic congestion
situation into which we had to classify the different route segments for the different
one-hour intervals of the day. The solution approach follows the standard steps of
classification: extraction of discriminative features and classification based on these
features.

We put the days of the week into three categories exhibiting different mobility pat-
tern (Weekday, Saturday, and Sunday) to which we associate three features; wdweight,
satweight, and sunweight respectively. These features are weights of the congestion
level on a specific day category. For each “one hour – one route segment” unit we
compute each of the three features using the following equation:

dweight = nd

n
. (n−nmin)

n
, n ≥ nmin

where dweight is the feature corresponding to a certain day category k (i.e., dweight
is wdweight or satweight or sunweight), and nd is the number of days of category k on
which the unit was passed with a delay increase. In this equation, n is the total number
of days of category k on which the unit was passed (including both with and without
delay increase). The parameter nmin is a selected minimum number of days of category
k the unit must have been passed to be considered for analysis. This parameter is used
to ensure that we discover a general pattern. In case an analysis unit has been passed
on a few days (e.g., one or two) all with a delay increase, the value of dweight would
be the maximum while the passing frequency is not enough for decision. Therefore,
nmin is used to avoid this bias. It ensures that if a unit has been passed on a few days
(a parameter to be set), it is not considered in the analysis. The equation implies that
the more the days a unit is passed with a delay increase, the higher the weight will be.

Based on the three features and a selected threshold value wmin we devised a set of
eight (23) rules that we use in a rule-based classification for classifying each “one hour
– one route segment” unit into one class of traffic congestion situation:

IF wdweight > wmin AND satweight > wmin AND sunweight > wmin THEN sclass=’Always’

IF wdweight > wmin AND satweight > wmin AND sunweight ≤ wmin THEN sclass=’Weekdays and Saturdays’

IF wdweight > wmin AND satweight ≤ wmin AND sunweight > wmin THEN sclass=’Always’
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IF wdweight > wmin AND satweight ≤ wmin AND sunweight ≤ wmin THEN sclass=’Weekdays only’

IF wdweight ≤ wmin AND satweight > wmin AND sunweight > wmin THEN sclass=’Weekend only’

IF wdweight ≤ wmin AND satweight ≤ wmin AND sunweight > wmin THEN sclass=’Weekend only’

IF wdweight ≤ wmin AND satweight > wmin AND sunweight ≤ wmin THEN sclass=’Weekend only’

IF wdweight ≤ wmin AND satweight ≤ wmin AND sunweight ≤ wmin THEN sclass=’Rarely/never’

Each rule compares each of the three features with the threshold value to decide
the class to which the unit is assigned. For example, the first rule means that a unit
is classified as always congested if all weights (weekday, Saturday, and Sunday) are
above the threshold value.

We extracted discriminative features (wdweight, satweight, and sunweight) on each
“bus stop – one-hour” unit and performed a classification of the units. Considering
that the value of each feature varies between 0 and 1, we took wmin=0.5 as a threshold
to separate high feature values (indicating high weights) from low ones. We also
considered that our analysis unit should have been passed on more than two days
to be considered for classification. Therefore, we took nmin=2. The classification
was done by evaluating the classification rules on the three features for each unit.
The classification gave the final analysis result, which is a characterisation of the
segments that make the bus route. We had pre-defined five classes of traffic congestion
situation: Always (always congested), Weekdays and Saturdays, Weekdays only,
Weekend only, and Rarely/never (rarely or never congested). Each segment of the
route at each hour of the day is classified in one of these traffic congestion situations.
Finally, the result of this classification can be visualised to facilitate understanding of
the overall analysis result (e.g., see Figure 5.15) and possibly initiate a further analysis.

The Hour-Location view is used in Figure 5.15 to show a classification of differ-
ent locations and time periods according to their traffic congestion situation. This
classification represents discovered characteristics of the context element. For exam-
ple, Figure 5.15 shows some route segments that are almost always congested (e.g.,
segments represented by bus stop 31 and 34). The figure further shows that in early
morning hours (between 6:00 and 7:59) only few route segments are congested and this
congestion happens on weekdays only. The location characteristics discovered and the
interpretation given to movement patterns can be crosschecked by visualising the data
of a selected time period in the Map view, which is a geographical view. For example,
the time periods shown by the snapshots of Figure 5.16 conform to the finding that
segments represented by bus stops 37 and 41 are congested between 9:00 and 10:00 in
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weekends. Furthermore, in the framework of supporting the crosschecking of results
the Map view allows adding other available geographic data that were not initially
considered as part of context data. For example, the snapshots shown in the Map view
in Figure 5.16 show also the location of recreation facilities (the Aviva stadium in the
current extent). Figure 5.16 shows that the stadium is located near the road segment
represented by bus stop 42. After adding the location of recreation facilities we can
note that most of the locations that are identified as congested only in weekends (see
Figure 5.15) are near the Aviva stadium. This hints to weekend events in the stadium
and its neighbourhood as the possible cause for traffic congestion in these locations.
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5.2.4 Summary and discussion of results of experiment 2

This experiment has focused on exploring the spatial dynamics of a dynamic geographic
context in addition to its inherent temporal dynamics. A study case involving a
geographic context element of type “space” has been chosen. The reason behind the
choice is that a context element of type “space” is a good example that presents spatial
and temporal dynamics, both being equally important. Specifically, the study case
aimed at analysing bus movement data taking into account the dynamics of the bus
route. Unlike a big social event, which can be considered to have one point position
as done in experiment 1 (section 5.1), a route (represented by a sequence of road
segments) extends over several point positions that can have different characteristics.

We analysed the bus movement data by applying the analysis framework proposed
in chapter 4. In order to take into account the spatial dynamics of the context we
proposed partitioning the context element into small units for which local characteris-
tics can be considered. Specifically, we partitioned the bus route into small segments
such that each segment is allocated one bus stop which serves to identify it. Instead
of extracting interactions with the entire route, we extracted interactions between
the bus and the route segments. We identified the passing interaction (i.e., the bus
passing a route segment) as suitable for the analysis case in this experiment. We
extracted the passing interactions and attached to each interaction the start and end
times, the identifier of segment being passed and the identifier of the journey (and
hence the bus) passing it. In the next step, the analysis of extracted interactions
was carried out by exploring the variation of a dynamic movement attribute dur-
ing interactions. To this end, the values of the dynamic attribute “delay change”
have been aggregated per route segment and per one-hour time interval. We have
then extracted three features from the aggregated values and used them to perform
a classification. The classification was intended to categorise each route segment
at each hour of the day in one of five predefined classes of traffic congestion situ-
ations: always congested, congested on weekdays and Saturdays, congested
on weekdays only, congested on weekend only, and rarely or never congested.

The analysis carried out in this experiment produces the two results expected from
the proposed analysis framework (see Figure 4.2). These are an interpretation of the
movement pattern observed and a description of some characteristics of the geographic
context. The classes of traffic congestion situation to which each route segment is
assigned at different hours of the day constitute characteristics of the context that
the analysis discovers. The association of a movement pattern with route segments
having a specific characteristic (revealed by the classification) is part of interpreting the
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movement pattern. For example, a slow movement in weekends along route segments
found to be congested only on the weekend and located near a stadium can be observed.
The association of this movement pattern with the locations having such characteristics
allows interpreting the pattern as a traffic congestion caused by weekend events in
the stadium and its neighbourhood. Likewise, in the experiment it has been found
(from the classification) that route segments that are congested in early morning hours
(6:00 to 7:59) are congested only on weekdays. This can lead to interpreting a slow
movement on some route segments within this period as congestion mainly caused by
the movement of people to workplaces.

The study case considered analysed movement data of buses with predefined route.
While this case can be seen as simple compared to other cases involving context elements
of type “space” the approach proposed is general to be applied to these other cases.
For example, the analysis carried out in this experiment can be done on movement
data of other vehicles without predefined route (e.g., taxis and private cars). In this
case, a route can be defined as a sequence of road segments between a fixed origin and
destination. Then, the route can be partitioned into segments of equal length or based
on background knowledge, and a suitable dynamic movement attribute (e.g., speed)
selected. In the next step, aggregation (spatial and temporal) can be performed on the
movement data recorded on the selected route only. Although the delay attribute used
in the study case was an existing attribute recorded along the movement, the dynamic
attribute to be analysed can be a derived attribute. For example, the delay attribute
could be derived from the position timestamp and the bus schedule. Likewise, the
speed can be derived from the distance travelled between two successive positions and
the time used.

The dynamic geographic context may cover an area instead of being a linear feature
such as the road considered in this experiment. For example, we can think of a
study case investigating the link between the mobility pattern of vehicles and the air
pollution level in a city. In this case the context element can be modelled as a polygon
representing an urban region and the level of air pollution in the region. It is this “air
pollution level” attribute, which makes this context dynamic. A common approach
for measuring air pollution over an area (e.g., a city) involves installing monitoring
stations which take measurements to be considered for the surrounding area (Sharker
and Karimi, 2014). For the whole city, a simple approach would take the average of
the values at different stations. However, as explained earlier in this experiment, the
wider or the longer the context element is the more inaccurate will be the result of
analysis considering it as one unit. Therefore, our approach based on partitioning the
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context element into small units is also applicable to this case of an urban area. The
urban area can be partitioned into small regions (represented as polygons) based on
the distribution of air pollution measurement stations. Then, the passing interactions
of vehicles with these small regions can be extracted and analysed. During the analysis,
the values of the pollution level (a dynamic attribute of the context) are taken from
local measurements. For the analysis of interactions, the speed with which the small
regions are passed can be considered for a dynamic movement attribute.

5.3 Experiment 3 – Using context data for post-
processing of movement patterns

The preceding experiments have used context data at the pattern discovery step of the
movement data analysis. In the direction of answering the research question about the
analysis step at which context data should be integrated, we use in this experiment
context data at a different step for comparison. The context data are used for supporting
the interpretation of already discovered movement patterns. Furthermore, while the
preceding experiments used as context data information from event listing webpages
and public geographic data, we use geo-social media data in this experiment for
comparison purposes. It is important to note that, unlike the preceding experiments,
this experiment deals with a static context. The focus is not on the dynamics of the
context but on experimenting with a different form of context data and a different
analysis step at which context data are integrated into the analysis process. This
section (5.3) is based on (Mazimpaka and Timpf, 2015).

5.3.1 Datasets

In this experiment the movement data of taxi cabs in San Francisco are analysed. The
dataset was downloaded from the CRAWDAD website (Piorkowski et al., 2009). It
includes trajectories of 536 taxi cabs recorded in 22 days, from 18 May to 8 June 2008.
For each point position in the trajectories, the recorded data are geographic coordinates
(latitude and longitude), timestamp, and the taxi occupancy status. The data were
recorded at an average sampling rate of 60 seconds. The whole dataset contained
around 11 million GPS points, which were pre-processed through outlier removal,
coordinate system transformation, and restriction to San Francisco Bay area. Since
only the GPS points corresponding to a change of taxi occupancy status (pick-up and
drop-off) are useful for the case study, this subset was selected for further processing.
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The subset contained 432,618 pick-up points and 425,996 drop-off points. Furthermore,
considering that the mobility pattern is generally repeated every week, a one-week
subset was selected for analysis in order to avoid unnecessary heavy computation. In
order to keep the mobility coverage of the whole study area, the final subset included
the data of all taxis in operation during the time period considered.

The context data are georeferenced Flickr photos taken in the same area and
same time period as the movement data. Each photo is associated with descriptive
information (title, description, and tags) which carry the semantics needed to support
movement data analysis. The application case intends to discover and explain taxi
frequent stop patterns. That is, to detect if in the study area there are regions where
taxi cabs often stop, to locate these regions and explain the reason of frequent stops.
We argue that frequent stop patterns can be discovered and located from the trajectories
alone but that there are different reasons of frequently stopping in different regions.
The reason of frequently stopping in a specific region can only be found by integrating
context data of the study area into the analysis process.

5.3.2 Pattern discovery

The frequent stop patterns of taxi cabs are detected using a clustering method, which
groups closely located taxi pickup and drop-off points irrespective of their timestamp.
A density based clustering method, namely DBSCAN (Ester et al., 1996), has been
selected for the following reasons. The number of regions where stopping frequently
occurs is not initially known and these regions generally have irregular shapes. DBSCAN
meets these requirements because it does not require the number of clusters to be
specified as input and it can discover irregularly shaped clusters.

The selected sub-dataset was stored in PostgreSQL/PostGIS DBMS and clustered
using the DBSCAN algorithm implemented in the Weka data mining toolkit. For
clustering parameters, we selected 0.02 and 5 for the neighbourhood distance (Eps)
and the minimum number of points (MinPts) respectively. The results of this clus-
tering are shown in Figure 5.17. Since the density of points in the downtown area is
very high, the points in this area produced one very big cluster which needs to be
disaggregated to identify different small clusters hidden in it. The very big cluster
was disaggregated by a second level clustering with different parameter values (0.015
and 10 for Eps and MinPts respectively). The values of clustering parameters were
selected based on the exploration of the dataset and after experimenting with dif-
ferent values. The final clusters were transformed into regions by creating concave
hulls enclosing cluster points. These regions (see Figure 5.18) represent the frequent
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stop patterns that were discovered. In order to make these patterns useful for some
application (e.g. updating land use maps, decision support for infrastructure develop-
ment . . . ), they need to be interpreted. The interpretation is done by adding to each
region the information that can explain why taxi cabs frequently stop in it. This calls
for integrating geographic context data, which is done in the next step; pattern analysis.

Fig. 5.17 Intermediate clustering results

5.3.3 Pattern analysis

In order to interpret the frequent stop patterns discovered in the preceding step we
acquired and used geographic context data in the extent of the regions representing the
patterns. In this experiment we used context data from a social media platform with
the aim of exploring the feasibility of its use as a source of geographic context data
for movement analysis. Among the available social media platform we selected Flickr
for the following reasons. The San Francisco Bay area is among the best represented
geographic regions in Flickr as it has been reported in previous work (Rattenbury et al.,
2007). Among Geo-social media platforms, Flickr presents the fewest restrictions to
data access (Spinsanti et al., 2013). We wrote a PHP script that uses Flickr API to
download descriptive information associated with photos in a specified geographic area.

We defined some categories of common functions of regions in urban area (Educational,
Commercial, Residential, Recreational, and Institutional). Then, we selected
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Fig. 5.18 Regions representing the frequent stop patterns discovered

in each category some common concepts based on which photos were downloaded.
For example, under the category “Educational” photos with tags such as university,
school, kindergarten, classroom, and faculty were downloaded in all regions.
For each photo Pi retrieved under the specification of functional category Fj, we
computed a variable we called functional weight as follows:

wPi
= d/e

where d is the number of tags on Pi which are concepts under functional category
Fj and e is the total number of tags on photo Pi.

We defined the functional vector of a region as a vector made of normalised value of
different function categories in it. For each region Rk, the entry in the functional vector
corresponding to the functional category Fl is computed as follows:

vkl =
∑n

i=1 wi∑m

j=1 wj

where n is the number of photos in region Rk which are associated with the
functional category Fl and m is the total number of photos of all functional
categories in Rk while wi (or wj) is the weight functional of respective photo Pi

(or Pj).

Finally, we classified each region in a functional category based on the values in its
functional vector. In this experiment the region was assigned the category with the
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highest value in the functional vector. Alternatively, a fuzzy classification could be
performed. In this case, the region is assigned a ranked list of the first two or three
functional categories with highest value. The classification of regions produces function
concentration areas; i.e., areas where specific urban functions are concentrated (see
Figure 5.19). These classified regions provide the needed interpretation of the frequent
stop patterns that were discovered. For example, a region labelled as a residential area
means that frequent stopping in it is for bringing people home or taking them from
home to other places.

Fig. 5.19 Categorised regions as an interpretation of the discovered patterns

5.3.4 Summary and discussion of results of experiment 3

In this experiment, the potential of integrating geographic context data at the pattern
interpretation level of movement data analysis has been explored. Unlike previous ex-
periments, this experiment discovered movement patterns without involving geographic
context data and then used geographic context data for post-processing the discovered
patterns. Specifically, the case study of the experiment was intended to discover
frequent stop patterns of taxi cabs (i.e., locations where taxi cabs recurrently stop)
and to interpret them. The frequent stop patterns were discovered using a data mining
method, namely clustering. For interpreting the frequent stop patterns, geographic
context data from a geo-social media platform, namely Flickr were used. Geo-Social
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media contain descriptive information potential for interpreting movement patterns.
However, their distribution in regions is skewed with some areas having no data while
some others have a lot of data. The skewed distribution of social media has many
different causes including the skewed technology penetration and the different level
of interest in different regions. For example, Flickr photos are largely taken in places
with known attractions. On the other hand, they are rarely taken in residential areas
and most of those taken in residential areas are not shared publicly. This explains
why movement patterns discovered in some regions may not get matching social media
and hence cannot be interpreted using social media from a selected geo-social media
platform. For example, the regions classified as uncategorised in Figure 5.19 could
not be interpreted using Flickr photos.



Chapter 6

Discussion

The different experiments presented in chapter 5 addressed different aspects of integrat-
ing the geographic context into movement data analysis. These aspects include different
types of context elements, different models for these context elements, different types
of sources of geographic context data, and different analysis steps at which the context
data are integrated into the analysis. These aspects reflect the research questions
addressed in this thesis. In this chapter, I revisit the research questions and discuss
how they were addressed by reflecting on the aspects dealt with in the experiments
and the overall framework proposed in chapters 3 and 4. The chapter ends with a
discussion of the limitations of the work done.

6.1 Results in relation to research questions

6.1.1 Modelling a dynamic geographic context and relating
it to movement

The context for movement is very broad such that a study considering it needs to set
the scope. For this thesis, the scope has been set to dynamic geographic context. The
first task in the thesis was about clarifying, representing and relating this context to
movement as expressed in the first research question:

RQ 1: How can we model a dynamic geographic context so as to allow relating it to
the movement it embeds?

Even the dynamic geographic context presents varieties. With this consideration, I
started by categorising the elements that make the geographic context and identifying
the properties that can make it a dynamic one. Four categories were distinguished:
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static objects, moving objects, events and space. Considering that an element in each
of these categories is a geographic phenomenon, I adopted the standard geographic
data models (vector-based and field-based) for modelling the geographic context. The
application of these different models on the four categories provides a general modelling
approach, which include common cases and cases that are not common but possible.
For example, while a moving object modelled as a point is common, a moving polygon
and a moving line have been rarely studied. The modelling approach proposed in this
thesis covers also these uncommon cases as context for movement with examples such as
an oil spill and sea waves. The context elements in the proposed categories except the
space category are commonly represented using vector-based models. The modelling
approach proposed in this thesis is more general as it considers also the field-based
model. This allows accommodating cases where the context data are acquired in the
form of images. The modelling approach proposed in chapter 3 is general and therefore,
the choice of the model to use depends on the size and shape of the element, and the
scale considered by the application.

The modelling approach proposed for a dynamic geographic context does not reflect
the dynamic nature of the context as it considers a snapshot; i.e., it represents the
context at a specific time instant. Therefore, this dynamic nature had to be considered
in the approach of relating the context to the movement it embeds. To this end, I
adopted a qualitative approach that uses the change of spatial relations over time,
termed as movement interaction, to relate the context to movement. I proposed and
formalised a small set of interactions depending on the type of context element involved.
The very basic interactions proposed are observed between a moving object and a
zero-dimensional (point) context element with a fixed location. These are: approaching,
arriving, stopping, leaving and moving-away. By considering a higher dimension (line
and area) and the change of location for the context element new interactions appear
or existing ones change the meaning and hence the naming. The extension to the
basic interactions contains the following interactions: passing, encounter, meeting,
separating, jointly-moving, and separately-moving.

6.1.2 Sources of geographic context data and their integra-
tion into analysis

Movement data and geographic context data are generally acquired as different datasets.
One of the objectives of this thesis was to identify sources of geographic context data
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and the analysis step at which they should be integrated. This objective was expressed
in the following research question:

RQ 2: What are the sources of geographic context data for movement analysis and at
which analysis step should these data be integrated?

In order to answer the first part of this question, I performed a literature review
on different geo-referenced data and used different types of data identified in the
experiments presented in chapter 5. The main forms of geographic context data that
I identified based on their sources are presented in section 2.4.4. They are other
georeferenced datasets of the same area as the movement data, geo-social data, data
from other sensors, trajectories of other moving objects, and other unstructured or
semi-structured data. In order to assess the feasibility of using these geographic context
data to support movement analysis, I used them in the experiments presented in
chapter 5. I used roads and bus stops as “other georeferenced data of the same region
as movement data”, and events data as “other unstructured data” in section 5.1. Data
about different static objects have been used as “geo-social data” in section 5.3.

The literature review and the experiments showed that the sources identified
contain specific types of geographic context elements and not the others. Georeferenced
datasets of the region generally contain context data about static objects and space.
For example, roads, points of interests, administrative subdivisions and environmental
conditions of regions are available from this source. Social media contain a wide
range of geographic context data mainly because several social media platforms exist
with different foci. For example, social media platforms that focus on locations and
their descriptions (e.g., Foursquare and Flickr) are a common source of data about
static objects (e.g., POIs). On the other hand, social media platforms that focus on
sharing latest information (e.g., Twitter and Facebook) are a common source of data
about events. Other unstructured or semi-structured data commonly available on
webpages are also a source of data about events and POIs. Data from sensors other
than trajectory recorders constitute also a wide range of context data because several
sensors recording different things can be used. For example, while the smartphone
records the trajectory using the GPS sensor, it may record also the temperature (as
environmental conditions) using a thermometer, and the presence of other moving
objects using the Bluetooth sensor. As the name suggests, trajectories of other moving
objects are context data about moving objects.

Another observation from the experiments is that human effort, needed in preparing
the context data, varies among the identified sources. Structured context data (other
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georeferenced data of the region, trajectories of other moving objects, and geo-social
media) require less background knowledge compared to unstructured data from web-
pages and the analyst’s mind. As a result, the integration of the former can be more
easily automated than the integration of the latter.

In order to identify the step at which the geographic context data should be
integrated into the analysis, I executed experiments with context data integration at
different steps of the KDD process so as to compare the results. The steps of the KDD
process were grouped into three main phases: data preparation, data mining or pattern
discovery, and pattern interpretation and evaluation. Since the two datasets come
from different sources they are prepared differently. Therefore, the data preparation
phase is not concerned by the context data integration. The experiments in sections 5.1
and 5.2 integrated context data at the pattern discovery step while the experiment
in section 5.3 used context data at the pattern interpretation and evaluation phase.
When context data are integrated at pattern discovery phase, only patterns that can be
interpreted in the subsequent analysis step are discovered because each pattern embeds
context information. On the other hand, when patterns are discovered first and then
context data integrated for interpreting them some of the discovered patterns may
find no match in the available context data. In that case, they remain non-interpreted
despite the processing effort that has been put in their discovery. For example, in
the experiment presented in section 5.3 some regions of frequent stop patterns were
discovered but could not be interpreted (see uncategorised regions in Figure 5.19).

In this thesis, context data have been considered essential for discovering meaningful
patterns and therefore the proposed framework integrates them at the pattern discovery
step. However, it is acknowledged that in some cases context data can be integrated at
the pattern interpretation phase; especially in case the movement data contain some
additional attributes that provide semantics useful in pattern discovery. For example,
the additional attributes can support the filtering of input to focus on data that are
likely to contain the sought pattern such as done in experiment 3 with the “occupancy
status” attribute (see section 5.3). This approach of using geographic context data for
post-processing discovered patterns has been generally used for a geographic context
which is static (e.g., the POIs in (Furletti et al., 2013) and (Siła-Nowicka et al., 2016)).

Different geographic phenomena located in the proximity of a moving object
constitute the geographic context for its movement. The decision on which geographic
context element to consider depends on the analysis aimed at. The major objective of
movement analysis integrating geographic context data is to explore the relation (e.g.,
influence) between the movement and the context element. With this objective, the
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analyst generally knows on which movement and which context element his interest
is. Based on this knowledge, suitable context data are acquired or the only available
context data decide the type of analysis and the context element involved. In an
exploratory study without predefined context element of interest, based on background
knowledge the analyst may consider the context element most likely to influence the
movement. For example, a big social event (e.g., a concert) is likely to influence the
movement of a public transportation vehicle while a small social event (e.g., a group
meeting) is not. Again, the context element is considered only if related data can be
obtained.

6.1.3 Contextualised pattern discovery and analysis

The overall aim in relating movement to its embedding dynamic geographic context
is to support interpretation of movement patterns and further understanding of the
context. After proposing a conceptual model for relating movement to its embedding
dynamic geographic context, the next task was to use this model to reach the overall
aim. This task was expressed in the following two research questions:

RQ 3: How can the relation between the movement and its embedding dynamic
geographic context be explored in space and time to support movement pattern
interpretation?

RQ 4: How can the relation between the movement and its embedding dynamic
geographic context be explored in space and time to support a deeper understanding
of the geographic context?

In order to address these research questions, I proposed an analysis framework
based on the KDD process for movement data and related dynamic geographic context
data. This framework is presented in chapter 4 and evaluated in the experiments
presented in chapter 5. The framework comprises two phases, namely extraction
of movement interactions and analysis of movement interactions, which together
correspond to the last two phases of the KDD process (data mining, and pattern
interpretation/evaluation).

In the phase of interaction extraction, spatial analysis and data mining methods are
used to compute interactions as movement patterns embedding context information.
For example, in the experiment presented in section 5.1, instead of simple stop patterns,
stopping interactions are extracted. They represent stop patterns at specific context
elements (e.g., a bus stop, or an event venue). The stopping interactions have been
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extracted using a density-based clustering and a computation of spatial proximity.
Each interaction extracted is associated with attributes including the identifier of the
context element involved in the interaction and zero or more dynamic attributes. For
example, the passing interaction extracted in section 5.2 is associated with an identifier
of the road segment being passed and a dynamic attribute “delay change” indicating
the change of delay incurred while passing the road segment.

In the phase of interaction analysis, statistical and/or data mining methods are
used to quantify the extracted interactions and explore the variation of any associated
dynamic attributes. The thesis proposed different methods for carrying out this
quantification and exploration. The methods proposed include aggregation per space
and time, computation of summary statistics, detection of outliers, and sequence
analysis. For example, in section 5.1.3 the variation of summary statistics of interactions
has been compared to established bounds to identify temporal outliers.

The proposed analysis framework leads to one or two results. The first result is a
high level description of movement patterns that allows answering questions such as
why the objects move the way they do or how the objects move given some physical
constraints. By producing this result, the proposed framework is an answer to the
third research question (RQ 3). For example, the unusually frequent stopping of the
buses at bus stops in one direction and not the other in a specific period (see the
experiment presented in section 5.1) was interpreted to be caused by the movement
of event attendees. The second possible result from the framework is new knowledge
about the geographic context. This result makes the framework an answer to the fourth
research question (RQ 4). For example, the exploration of the variation of the dynamic
attribute “delay change” associated with the interaction of “passing” a road segment
(see the experiment presented in section 5.2) found that this variation correlates with
the traffic congestion level of the road segment. This analysis resulted in characterising
each road segment by identifying periods in which it is generally congested. This
characteristic of the road segment constitutes new knowledge generated about the
geographic context element (road segment) because the input context data were only
the geometry of the road segment and the identifier of the bus stop on it.

The thesis proposed a general analysis framework that uses the conceptual model
presented in chapter 3. However, the implementation of the framework may raise issues
specific to the case being handled, which is defined by the type of context element
involved and the model selected for it. Important issues and how the thesis addressed
them are discussed next:
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The dynamic geographic context element of type “space” may be too long or too
wide such that aggregate functions on interactions involving it hide local patterns. For
example, averaging different speed values recorded while passing a road may result in
an average speed which is very different from the actual speed at many locations along
the road. The thesis proposed alleviating this problem by subdividing the long or wide
geographic context element into small units on which aggregation functions can be
applied. This approach has been applied in the experiment presented in section 5.2 for
identifying locations of recurring traffic congestion and corresponding congestion time.
The approach is applicable to both the case of a linear “space” (e.g., experiment in
section 5.2) and an areal “space”. An example of the latter case can be investigating
the link between the mobility pattern of vehicles and the air pollution level in a city.
A way of applying the proposed approach to this case has been briefly discussed in the
last paragraph of section 5.2.4.

The dynamic geographic context element of type “event” exists for a time interval
shorter than the time period covered by the study. This leads to the challenge that at
some time instants the movement cannot be related to it because it does not exist. The
main objective in relating the movement to an event is to understand the effect of the
event on the mobility pattern. The objective can be also to learn characteristics of the
event from the mobility pattern (e.g., given the origin of event attendees, determine
the type of event (Calabrese et al., 2010)). These objectives generally require studying
and comparing the mobility pattern “before”, “during”, and “after” the event, in a way
similar to how Bagrow et al. (2011) studied the effect of events on phone call activity.
For the “during” phase the movement is related to the event, while for the phases
“before” and “after” it is related to the event location. Some analysis cases involve
first discovering the event and proceeding to studying its effect or characteristics. In
this case, the event location can be discovered from suitable context data such as news
from webpages (as done in (Bagrow et al., 2011)) and social media (as done in (Sklar
et al., 2012)). Once the event location and a rough estimation of its time (e.g., the
day) are known, the movement can be related to the event location and the relation
explored in time intervals covering a long period (e.g., a whole day). The experiment
presented in section 5.1 exemplifies and demonstrates this case where the event has to
be discovered first.
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6.2 Limitations and issues remaining to be addressed
The thesis has answered the initially defined research questions as presented in sec-
tion 6.1. However, some issues remain. These issues are discussed next.

6.2.1 Completeness of the interaction set

The set of movement interactions proposed in this thesis is not complete for representing
more complex changes of spatial relations between the movement and a dynamic
geographic context. The thesis focused on a small set of interactions that can be
unambiguously defined and differentiated. However, there are other complex changes
of spatial relations that cannot be expressed using the interactions defined in the thesis.
For example, the change in which the moving object bypasses the context element
cannot be expressed using the interactions defined.

The common characteristic to the interactions defined so far in this thesis is that
the moving object moves in 1D. This does not mean that it follows a straight line. It
means that at any time there are only two directions in which the object can move. As
real cases, it is assumed that a vehicle follows the road that passes closest to the event
venue. Likewise, it is assumed that the predator is aware of the location of the prey
and follows the shortest path that can lead to catching it. The proposed conceptual
model covers all the possible interactions in such a 1D-based movement. In order to
cover the remaining interactions there is a need to increase the number of degrees
of freedom of movement such that at any time the moving object can move in any
direction. This extension will cover cases where, at a road crossing, the vehicle can
take any possible road. It will cover also cases where an animal can move freely with
respect to another (hence covering for example the diverging movement).

6.2.2 Consideration of all types of dynamics of a dynamic
geographic context

Different aspects that can make a geographic context dynamic have been discussed in
section 3.1. In the conceptual framework proposed and the experiments carried out,
the dynamics due to change of location of the context element, change of attribute
value, and bounded lifespan have been considered. However, the dynamics due to
change of the extent of the context element (its size and/or shape) have not been
considered. As an example of such case, one can think of the movement of a ship and
an oil spill expanding on the sea around its epicentre. Similarly, one can think of the
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movement of a car and a street demonstration which expands as more people join or
shrinks as some people leave. The change of size and/or shape of the context element
add another challenge to relating the context to movement. Furthermore, the change of
the extent of the context element may be associated with the other changes that have
been discussed and considered in this thesis. One of the issues to be addressed is to
choose the suitable temporal window for aggregation operations such as those proposed
in the analysis framework (see section 4.3). The uncertainty in the representation
of the boundary of the context element also needs to be considered. As discussed
by Von Groote-Bidlingmaier and Timpf (2012), the change of extent of moving areal
features is influenced by the elements or characteristics of the local geography (e.g.,
wind direction for an oil spill). Therefore, the consideration of further geographic
context elements can support the choice of parameters for handling uncertainties (e.g.,
the size of tolerance area for the boundary of the context element).

6.2.3 Consideration of all models of the dynamic geographic
context

The conceptual framework proposed in this thesis considers both vector-based and field-
based models for the context. However, the experimental evaluation has been carried
out on vector-based models of the context only. An evaluation on the context modelled
as a field is missing. This evaluation would uncover issues specific to this model and
propose necessary adjustments to the implementation of the general framework for
addressing them.





Chapter 7

Conclusions and outlook

This chapter summarises the contribution of the thesis and gives the direction for future
work. In section 7.1, the main contribution of the thesis is summarised. Section 7.2
revisits the research hypothesis with reference to the main contribution while section 7.3
discusses how the work will be extended in the future.

7.1 Main contribution
With the increased capabilities for tracking moving entities, the analysis of movement
data has become a hot research topic. The discovery of movement patterns hidden
in large volumes of movement data is one of the major themes that have attracted
attention. While the initial work considered movement data in a pure geometric form,
the trend is now on integrating context data to make the discovered pattern more
relevant to application fields. It is in this direction that this thesis aimed to contribute.
Specifically, the thesis aimed at proposing a comprehensive approach for integrating a
dynamic geographic context into the analysis of movement data.

The analysis methods proposed in this thesis can be usefully applied in different
fields where the movement environment needs consideration, especially because of
its dynamics. For example, location based services (e.g., traffic information and
routing services) can benefit from predictions and updates on local traffic conditions.
By integrating changes occurring on road segments and their neighbourhood, these
methods can enable such predictions and updates.

With the initial aim of the thesis, its main contribution can be summarized in the
following points.
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A conceptual framework for modelling a dynamic geographic context and
relating it to movement

This thesis has clarified a dynamic geographic context and delineated its meaning from
the general concept of context. A context which has a geographic location and a time at
which it exists or existed is geographic. When the geographic context is associated with
changes over time, it becomes a dynamic geographic context. The thesis discussed the
different types of changes that can be associated with a dynamic geographic context.
Considering the varieties that exist in things that can be considered as a dynamic
geographic context, the thesis established a typology of dynamic geographic context
elements. Then, based on the standard models for geographic data, the thesis proposed
an approach for modelling the different types of geographic context elements. The thesis
proposed a conceptual model of movement interactions to account for the dynamics
of context elements. The concept of movement interactions abstracts the change of
spatial relations between the moving entity and the context element. A set of basic
movement interactions has been proposed and these interactions have been organized
in conceptual neighbourhood graphs. The conceptual neighbourhood graphs can support
qualitative reasoning during movement data analysis.

A methodological framework for exploiting the relation between the move-
ment and the context to support: a) the interpretation of movement pat-
terns, and b) a deeper understanding of the context

The relation between the movement and the context implies that they can affect each
other. This thesis has proposed a methodological framework for exploring this relation
to identify and describe the mutual effect between the movement and the context. The
framework, based on the knowledge discovery process (KDD), comprises two main
phases: interaction extraction and interaction analysis. The thesis proposed different
methods that can be used in each of these phases and some analysis operations that
can be carried out on movement interactions. The output from the analysis framework
comprises two results. The first result is a high level description of the observed
movement patterns which constitute the interpretation of the pattern. The second
result is a description of the movement context which constitutes new knowledge about
it and hence provides a deeper understanding of the movement context.

In addition to proposing an analysis framework, the thesis made two further related
contributions. Firstly, the thesis surveyed the sources of geographic context data for
movement analysis. Context data from some of the sources identified have been
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used in experimental evaluation of the framework. From the experimental evaluation,
challenges associated with some sources have been identified and some approaches
for addressing them discussed. Secondly, the thesis studied the suitability of different
analysis phases as a step for integrating context data. The phases assessed are data
mining, at which context data are intended to support pattern discovery, and pattern
interpretation/evaluation, at which they are intended to support the post-processing of
patterns already discovered. The suitability study was done by executing experiments
in which the context data were integrated at the respective analysis phases. The
results showed that in some cases patterns can be discovered first and then context
data used for post-processing them. Such cases are common for stop patterns (also
called movement suspension patterns (Orellana and Wachowicz, 2011)) which can
be easily discovered from movement parameters (Dodge et al., 2008). However, in
such case some of the patterns discovered may find no match in the available context
data which will make their interpretation difficult or impossible. Furthermore, some
patterns can be discovered only if context data are considered. For example, group
patterns (see section 2.3.2) cannot be discovered from the trajectory of one moving
entity; trajectories of other moving entities have to be considered. Therefore, both
the pattern discovery and the pattern interpretation/evaluation are potential steps
for integrating geographic context data into movement analysis. The choice of the
integration step depends on the data being analysed and the type of pattern being
mined.

7.2 Revisiting the hypothesis
The work carried out in this thesis tested the following hypothesis which was stated at
the beginning of the research:

Identifying and analysing interactions between a moving object and the dynamic
geographic context supports understanding of the movement patterns and the
movement context.

Based on the results achieved which have been discussed in chapter 6, I can confirm
the statement of the hypothesis. The conceptual framework presented in chapter 3
formalises interactions between a moving object and the dynamic geographic context.
The analysis framework discussed in chapter 4 extracts and analyses these interac-
tions. The evaluation of the applicability of the framework, as presented in chapter 5,
demonstrated that the framework correctly produces the two expected results (see
Figure 4.2).
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The first experiment (see section 5.1) extracted and analysed stopping, approaching,
and moving-away interactions between buses and context elements (bus stop points,
and a big social event). The analysis discovered, for example, a bus movement pattern
characterised by increased frequency of stopping at some bus stop points and normal
frequency at others within a specific time period. The consideration of a known big
event location allowed interpreting this movement pattern as the movement of event
attendees. At the same time, the context which was initially a potential big event
(represented by the event location) was later confirmed to be an event occurrence. The
detected event was further described by discovering its start and end times and the
pattern of arrival and departure of its attendees (i.e., progressive, on time, delay . . . ).
This demonstrates the possibility of supporting understanding of movement patterns
through the resulting interpretation. It demonstrates also the possibility of supporting
understanding of the movement context through the new knowledge generated about
it (e.g., the start and end time of the event, the pattern of arrival and departure of its
attendees).

The second experiment (see section 5.2) extracted and analysed the passing interac-
tion of buses with route segments. The analysis assigned each route segment a class of
traffic congestion situation for each one-hour interval (e.g., between 9:00 and 10:00 the
route segment identified by 37 is “congested only in weekends”). At the same time the
analysis discovered a bus movement pattern characterised by a slow motion always in
weekends. The consideration of the route segments on which these locations are found
showed that they are segments congested always on the weekend and located near a
stadium. This allowed interpreting the slow movement pattern as a traffic congestion
caused by events in the stadium or its neighbourhood. As in the first experiment, this
interpretation supports understanding the movement pattern. The congestion situation
class assigned to each route segment constitutes knew knowledge about the context
(route segment) which allows further understanding of the context.

7.3 Outlook
On the basis of the limitations and issues remaining to be addressed as discussed in
section 6.2, the following points are proposed for future work.

Extending the set of movement interactions

In order to model and analyse more complex changes of relations between movement
and the dynamic geographic context, the set of basic interactions proposed in this
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thesis needs to be extended. The extension will enable representing and modelling
complex change of relations such as a moving entity bypassing a context element,
and a moving entity converging with another moving entity. The interactions in the
proposed conceptual model have been defined based on changes of distance relations
only. A direction to be explored for extending this set of interactions is to consider
other spatial relations (e.g., directional relations) in addition to distance relations.
Directional relations have been combined with topological relations in (Salamat and
Zahzah, 2012) to model motion events between two moving objects. Some of the motion
events modelled in (Salamat and Zahzah, 2012) are similar to the interactions defined
in this thesis between a moving object and a moving context element. Therefore, future
work can explore how the notion of F-histograms (Matsakis and Wendling, 1999), used
in (Salamat and Zahzah, 2012), can be applied and generalised on different types of
context elements.

Evaluating the proposed analysis framework on the context modelled as a
field

The different standard models for geographic phenomena have been proposed for
modelling the geographic context. These are the object-based and field-based models.
However, all the experiments executed to evaluate the analysis framework have used
geographic context data in object-based models. Nevertheless, some context elements
such as temperature and wind speed are better modelled as a field. Although a
conversion from field-based to vector-based representation is possible, future work
should evaluate the framework on a geographic context modelled as a field. In this case
the best way of measuring distances needs to be identified; for example between the
Euclidean distance and the Manhattan distance (Deza and Deza, 2009). The change
of attribute value is a common cause of the dynamics of a field-based context. While
exploring the variation of the attribute within time intervals as proposed in the analysis
framework, a missing value problem may be observed. This problem can be addressed
using interpolation methods such as those used in (Mitas et al., 1997; Dragicevic and
Marceau, 2000).

Extending the conceptual model to consider the dynamics due to change
of the extent of a context element

The thesis has identified different factors that cause the dynamics of a dynamic
geographic context. These are; the change of location, a bounded lifespan, the change
of value of a thematic attribute, and the change of extent. However, the dynamics due
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to changing extent have not been considered in the thesis. Future work should study
the dynamics due to changing extent (e.g., changing size and changing shape) both
alone and combined with the other dynamics that have been considered in the thesis.
One of the challenges to be addressed in this case is the uncertainty of the boundary
of the context element. For addressing this challenge, the concept of a spatial range
used in (Praing and Schneider, 2007) and the uncertainty threshold used in (Mokhtar
and Su, 2004) are an important direction to explore.

Supporting the integration of geographic context data

Different sources of context data have been identified in this thesis. It is common that
a specific source may not contain context data for a specific region (e.g., Flickr has no
photos for some regions as shown in section 5.3). It would be interesting if a tool can
be developed to support the integration of context data from multiple sources. If for a
specific region no context data are available from a specific source, the tool can switch
to a different source to find data with same properties for the same region. The tool
could further prepare the data to fit the format used. For example the tool developed
for downloading data from Flickr (see section 5.3 ) can be extended to download data
from different social media platforms (e.g., Flickr and Foursquare).
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