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We consider phononic heat transport through molecular chains connecting two thermal reservoirs.
For relatively short molecules at normal temperatures we find, using classical stochastic simulations,
that heat conduction is dominated by the harmonic part of the molecular force-field. We develop a
general theory for the heat conduction through harmonic chains in three-dimensions. Our approach
uses the standard formalism that leads to the generalized ~quantum! Langevin equation for a system
coupled to a harmonic heat bath, however the driving and relaxation terms are considered separately
in a way that leads directly to the steady-state response and the heat current under nonequilibrium
driving. A Landauer-type expression for the heat conduction is obtained, in agreement with other
recent studies. We used this general formalism to study the heat conduction properties of alkane. We
find that for relatively short ~1–30 carbon molecules! the length and temperature dependence of the
molecular heat conduction results from the balance of three factors: ~i! The molecular frequency
spectrum in relation to the frequency cutoff of the thermal reservoirs, ~ii! the degree of localization
of the molecular normal modes and ~iii! the molecule–heat reservoirs coupling. The fact that
molecular modes at different frequency regimes have different localization properties gives rise to
intricate dependence of the heat conduction on molecular length at different temperature. For
example, the heat conduction increases with molecular length for short molecular chains at low
temperatures. Isotopically substituted disordered chains are also studied and their behavior can be
traced to the above factors together with the increased mode localization in disordered chain and the
increase in the density of low frequency modes associated with heavier mass substitution. Finally,
we compare the heat conduction obtained from this microscopic calculation to that estimated by
considering the molecule as a cylinder characterized by a macroscopic heat conduction typical to
organic solids. We find that this classical model overestimates the heat conduction of single alkane
molecules by about an order of magnitude at room temperature. Implications of the present study to
the problem of heating in electrically conducting molecular junctions are pointed out. © 2003
American Institute of Physics. @DOI: 10.1063/1.1603211#
I. INTRODUCTION

The investigation of the electrical conductance of
nanowires is in the focus of the quest for developing novel
submicron and nano-size electrical devices. Molecular de-
vices already demonstrated include molecular wires, field ef-
fect transistors, single electron transistors, molecular diodes,
rectifiers, and switches.1,2 Localized Joule heating poses a
crucial question over the functionality and reliability of such
devices. The combination of small molecular heat capacity
and inefficient heat transfer away from it may cause a large
temperature increase that will affect the stability and integ-
rity of the molecular junction. The rate at which heat is trans-
ported away from the conducting junction is, therefore, cru-
cial to the successful realization of nano electronics devices.

As in macroscopic solids conductors heat can be carried
away from the junction by electrons and phonons. In metals
heat flow is dominated by electrons, while in insulators heat
is transmitted solely by phonons. This study focuses on the
phononic mode of heat transfer. Theoretical interest in this

a!Electronic mail: nitzan@post.tau.ac.il
6840021-9606/2003/119(13)/6840/16/$20.00
mode of heat transfer in solids goes back to Peierls’ early
work.3 Recently it was found that thermal transport proper-
ties of nanowires can be very different from the correspond-
ing bulk properties. For example, Rego and Kirczenow4 have
shown theoretically that in the low temperature ballistic re-
gime, the phonon thermal conductance of a one-dimensional
~1D! quantum wire is quantized, and have obtained g
5p2kB

2T/3h as the universal quantum conductance unit,
where kB and h are the Boltzmann and Planck constants,
respectively, and T is the temperature. Also of considerable
interest are attempts to derive the macroscopic Fourier law of
heat conduction in one-dimensional systems from micro-
scopic considerations. The Fourier law is a relationship be-
tween the heat current J per unit area A and the temperature
gradient ¹T

J/A52K̃¹T , ~1!

where A is the cross-section area normal to the direction of
heat propagation and K̃ is the thermal conductivity ~the ther-
mal conductance K is defined as K5J/DT). Perfect har-
monic chains were theoretically investigated by Rieder and
0 © 2003 American Institute of Physics
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Lebowitz5 and by Zürcher and Talkner6 who found that heat
flux in these systems is proportional to the temperature dif-
ference and not to the temperature gradient. Consequently,
the thermal conductivity diverges with increasing chain
length. Anomalous heat conduction was also found in one-
dimensional models of colliding hard particles.7,8 Different
models that potentially avoid this divergence and yield Fou-
rier law conduction were discussed. Some invoke impurities
and disorder,9,10 others11,12 consider anharmonicity as the
source of normal heat conduction. Numerical simulations for
chains with a random potential were performed by
Mokross,13 and the role of phonon–lattice interaction was
studies by Hu et al.14 Still, there is yet no convincing and
conclusive result about the validity of Fourier law in 1D
systems.

Experimentally, remarkable progress has been achieved
in the last decade in nanoscale thermometry, and measure-
ments on the scale of the mean free path of phonons and
electrons are possible. Using scanning thermal microscopy
methods one can obtain the spatial temperature distribution
of the sample surface, study local thermal properties of ma-
terials, and perform calorimetry at nanometric scale.15,16 The
thermal conductivity and thermoelectric power of single car-
bon nanotubes were studied both experimentally17 and
theoretically.18,19 In a different experiment, Schwab et al.20

have observed the quantum thermal conductance in a
nano fabricated 1D structure, which behaves essentially
like a phonon waveguide. Their results agree with the
theoretical predictions.4 These and other experimental and
theoretical developments in this field have been recently
reviewed.21

In a recent paper22 we have estimated the rate of heat
generation in a model of a current carrying molecular junc-
tion. We have found that a substantial ~;0.1–0.5! fraction of
the voltage drop across the junction is dissipated as heat on
the molecule, implying that a power of the order of 1011 eV/s
may be released as heat on a molecular bridge carrying a
current of 10 nA under a bias of 1 eV. This would cause a
substantial temperature rise in the molecule unless heat is
effectively carried into the metal leads. This motivates a
study of molecular heat conduction. In Ref. 22 we have used
a simple classical continuum model ~Fig. 1! in which the
molecular bridge is represented by a cylinder characterized
by a heat conduction coefficient ;sh51024 cal/~s•cm•K),
typical to solid saturated alkanes. However, classical heat

FIG. 1. A schematic representation of a molecular chain connecting two
heat reservoirs.
conduction theory is expected to overestimate the heat flux
through a single molecule that has a discrete vibrational fre-
quency spectrum, and a molecular level treatment is needed
for a correct description of this process.

In the present paper we address this problem, focusing
on the steady-state phononic heat transfer through a mol-
ecule connecting two macroscopic thermal reservoirs of dif-
ferent temperatures. The calculation is based on the general-
ized Langevin equation ~GLE! approach6,23–25 which is
recast for a model of single molecule junction. The resulting
expression for the heat current through harmonic molecules
is analogous to the Landauer expression for electrical
conductance.26 We apply our formalism to realistic models of
molecular systems: Alkane chains of varying lengths, using
the HYPERCHEM package to generate molecular structures
and obtain their vibrational ~normal mode! spectrum, and
using a Debye model for the thermal reservoirs. This enables
us to study the dependence of the heat transfer on the bridge
length, the temperature and molecular composition, as well
as on the spectral properties of the reservoirs.

Section II introduces our formal model for phononic heat
transfer through molecular bridges, and Sec. III describes our
theoretical approach that yields Langevin-type equations of
motion for the molecular subsystem and an expression for
the heat transfer rate. Section IV presents some numerical
results for the heat conduction by alkane and alkanelike
bridges connecting Debye solids, and discusses their impli-
cations. Section V concludes.

II. MODEL

We consider a molecule connecting two independent
macroscopic solids, L and R, which are held at fixed tem-
peratures TL and TR , respectively. In steady state there is a
constant heat flow between these two heat reservoirs through
the molecule. A schematic representation of the model is
depicted in Fig. 1. The Hamiltonian of this system is a sum
of the molecular Hamiltonian, HM , the Hamiltonian of the
solid baths, HB , and the molecule–bath interaction HMB

H5HM1HB1HMB . ~2!

Even though the heat flow in our system is one-
dimensional, the thermal reservoirs and the molecular bridge
are three dimensional objects. The reservoirs are represented
as systems of independent harmonic oscillators at thermal
equilibrium. In what follows we consider a harmonic mol-
ecule coupled linearly to these thermal environments. Anhar-
monic effects will be discussed in Sec. IV where we show
that for the relative short chains considered here and at room
temperature they are relatively small. For simplicity we as-
sume that only the end atoms, i51 and i5N , of the molecu-
lar chain are coupled ~linearly! to the solids. To simplify our
presentation we write the molecule–bath coupling in one-
dimension ~the analogous three-dimensional expressions that
are used in the computations are given in Appendix A!. The
Hamiltonian associated with the environment and its cou-
pling to the molecule is then given by25
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HB1HMB5(
l

H 1
2 m lv l

2S x l2 g1,lx1

m lv l
2 D 2

1
p l

2

2m l
J

1(
r

H 1
2 m rv r

2S x r2 gN ,rxN
m rv r

2 D 2

1
p r

2

2m r
J

5HL1HR1HMB , ~3!

where

HL5(
l

H 1
2 m lv l

2x l
21

p l
2

2m l
J ,

~4!

HR5(
r

H 1
2 m rv r

2x r
21

p r
2

2m r
J ,

HMB5HML1HMR5(
l

1
2

g1,l
2 x1

2

m lv l
22(

l
g1,lx1x l

1(
r

1
2

gN ,r
2 xN

2

m rv r
2 2(

r
gN ,rxNx r ,

~5!

and where x j , p j , m j , and v j ( j5l ,r) are coordinates, mo-
menta, masses, and frequencies associated with the degrees
of freedom of the reservoirs, and where the subscripts l and r
are used for the left ~L! and right R reservoirs, respectively.
The molecule–solids coupling is characterized by the con-
stants g1,l and gN ,r , and x1 and xN are the coordinates of the
molecule end atoms.

In what follows we use a generic description of the mo-
lecular bridge, representing it as a set of N independent-
collective harmonic oscillators

HM5 (
k51

N H 1
2 vk

2x̄ k
21

p̄ k
2

2 J , ~6!

where x̄ k and p̄ k are the ~mass weighted! displacement and
momentum associated with the normal mode k. The normal
mode representation ~6! is obtained from the atomic ~local!
coordinate representation by the standard procedure of first
transforming the local coordinates x i and p i (i51,...,N ) into
mass weighted coordinates x iAm i→x i and p i /Am i→p i ,
then diagonalizing the molecular Hessian matrix. This de-
fines a linear transformation

x5Cx̄, ~7!

that relates the N-vector x of mass weighted local coordi-
nates to the N-vector x̄ of molecular normal modes. The N
3N matrix C is assumed in what follows to be known. Note
that the coordinates x1 and xN that appear in ~3! and ~5! are
local, corresponding to the positions of the first and last at-
oms in the linear molecular chain, and when re-expressed in
terms of the molecular normal modes results in coupling
terms that connect all normal modes to the thermal reser-
voirs. A similar transformation to mass weighted representa-
tion is done also on the normal modes of the macroscopic
solids. The Hamiltonian terms ~3!–~5! then become
HL5(
l

H 1
2 v l

2x̄ l
21

p̄ l
2

2 J ; HR5(
r

H 1
2 v r

2x̄ r
21

p̄ r
2

2 J ,

~8!

HMB5 (
l ,k ,k8

1
2v l

2 V l ,kV l ,k8x̄ k x̄ k82(
l ,k

V l ,k x̄ lx̄ k

1 (
r ,k ,k8

1
2v r

2 V r ,kV r ,k8x̄ k x̄ k82(
r ,k

V r ,k x̄ r x̄ k , ~9!

where the mass weighted bath coordinates are denoted by x̄
and p̄ . In Eq. ~9!, the sums over k and k8 go over the N
molecular normal modes, while the indices l and r denote, as
before, the modes of the L and R solids, respectively. The
transformed molecule–baths coupling constants are given by

V l ,k[V lC1,k , where V l5
g1,l

Am1m l
,

~10!

V r ,k[V rCN ,k , where V r5
gN ,r

AmNm r
.

The total Hamiltonian is the sum of the terms in Eqs. ~6!, ~8!,
and ~9!. In this representation all the molecular information
is contained in its normal modes frequencies, the transforma-
tion matrix C and the coupling constants V l and V r . It
should be evident that the same treatment can be
done for three-dimensional molecule–bath coupling ~see Ap-
pendix A!.

In the following section we use this harmonic model to
calculate the heat transport properties of molecular junctions.
This assumes that heat transport in such junctions is domi-
nated by the harmonic part of the molecular nuclear poten-
tial. The extent to which this assumption holds will be ex-
amined later.

III. CALCULATION OF THE STEADY-STATE
HEAT FLUX

Here we use the model outlined in Sec. II to calculate the
steady-state phonon energy transfer between the two thermal
baths through the molecular link. Starting from the coupled
classical equations of motion for all ~molecular and baths!
modes, we derive a set of classical Langevin equations for
the molecular modes by projecting out the baths degrees of
freedom. Then, using the classical equations as a guide, we
construct the corresponding quantum Langevin equations for
the molecular system. Transformation to the frequency do-
main makes it possible to extract steady-state information
and finally yields the steady-state heat current from the trans-
formed equations.

A. Equations of motion

The classical equations of motion for all modes are ob-
tained from the Hamilton equations of motion 2]H /] q̄ i
5pG i ; ]H /] p̄ i5qG i . Here H is the sum of Eqs. ~6!, ~8!, and
~9!. This leads after rearrangement to
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xJ k52vk
2x̄k1(

l
V l ,kx̄ l1(

r
V r ,kx̄ r

2(
l ,k8

1
v1

2 V l ,kV l ,k8x̄k82(
r ,k8

1
v r

2 V r ,kV r ,k8x̄k8 ~11!

xJ l52v l
2x̄ l1(

k
V l ,kx̄k ,

~12!

xJ r52v r
2x̄ r1(

k
V r ,kx̄k .

Note that different molecular modes are coupled to each
other through their interaction with the baths.

B. Langevin equations

Next we follow a standard procedure25 in which Eqs.
~12! are formally integrated and used in ~11! to yield a set of
generalized Langevin equations for the molecular modes. In
the resulting equations the effect of the thermal environments
appears in new driving forces and damping terms. This pro-
cedure ~Appendix B! leads to

xJ k52vk
2x̄k1(

l
V l ,kx̃ l1(

r
V r ,kx̃ r

2(
l ,k8

V l ,kV l ,k8

v1
2 E

t0

t
xG k8~t !cos~v l~ t2t !!dt

2(
r ,k8

V r ,kV r ,k8

v r
2 E

t0

t
xG k8~t !cos~v r~ t2t !!dt , ~13!

where x̃ l and x̃ r evolve according to

ẍ̃ l52v l
2x̃ l and ẍ̃ r52v r

2x̃ r ~14a!

or

x̃ l~ t !5 x̃ l~ t0!cos~v l~ t2t0!!1
ẋ̃ l~ t0!

v l
sin~v l~ t2t0!!,

~14b!

where x̃ l(t0)5 x̄ l(t0) and ẋ̃ l(t0)5 ẋ̄ l(t0), and similarly for
the r modes.

Equation ~13! is a generalized Langevin equation for the
molecular mode k. The terms

M L~ t ![(
l ,k8

V l ,kV l ,k8

v l
2 E

t0

t
xG k8~t !cos~v l~ t2t !!dt

5(
k8

E
2`

t
xG k8~t !gk ,k8

L
~ t2t !dt ~15!

~we take t0→2` because we are interested in the long-time,
steady-state situation!, with the memory kernel or time-
dependent friction

gk ,k8
L

~ t !5(
l

V l ,kV l ,k8

v l
2 cos~v lt !, ~16!
and the similar terms with R and r replacing L and l are the
damping terms that result from eliminating the degrees of
freedom of the L and R baths. The corresponding ‘‘random
forces’’ are

FL
~k !~ t !5(

l
V l ,kx̃ l ; FR

~k !~ t !5(
r

V r ,kx̃ r . ~17!

Their random character follows from the random distribution
of the initial conditions in Eq. ~14!. These random forces and
memory kernels are related to each other by a fluctuation–
dissipation type relation,

^FL
~k !~ t !FL

~k8!~0 !&5(
l ,l8

V l ,kV l8,k8K F x̃ l~0 !cos~v lt !

1
xG l~0 !

v l
sin~v lt !G x̃ l8~0 !L . ~18!

Using the classical relationships ^ x̃ l(0) x̃ l8(0)&
5d l ,l8kBTL /v l

2 and ^xG l(0) x̃ l8(0)&50 this becomes
^FL

(k)(t)FL
(k8)(0)&5kBTLgk ,k8

L (t). Similar relations hold for
the R quantities.

The above procedure is a standard derivation of a gen-
eralized Langevin equation usually used to describe a system
coupled to its thermal environment. In our case, when the
system is driven by different environments out of equilib-
rium with each other, it is useful to look at the resulting
equations as describing a driven system. To this end we note
that Eqs. ~13! and ~14!, viewed as a set of deterministic lin-
ear equations, describe a system $xk ;k51,...,N% of damped
harmonic oscillators, driven by a set of oscillators $x j ; j
PL ,R% that move independently of the driven system @in our
case—according to Eq. ~14! with initial conditions that will
be averaged on at the end of the calculation#. These oscilla-
tors act on the system additively, and the effect of each may
be considered separately. Our following derivation is facili-
tated by considering a version of Eq. ~13! with only one
driving mode x0 of frequency v0 ,

xJ k52vk
2x̄k1V0,kx̃02(

k8
E

2`

t
@gk ,k8

L
~ t2t !

1gk ,k8
R

~ t2t !#xG k8~t !dt; k51,...,N , ~19!

x̃0~ t !5 x̃0~ t0!cos~v0~ t2t0!!1
xG 0~ t0!

v0
sin~v0~ t2t0!!.

~20!

At long time a system described by these equations ap-
proaches a steady state in which the external mode 0, which
may belong to either the L or the R bath, drives all other
system modes to oscillate at frequency v0 with amplitude
derived from that of the driving mode.

The formulation of our problem in terms of Eqs. ~19!
and ~20!, with Eq. ~20! representing one of the external bath
modes that drives the molecular system, makes it possible to
address the system in nonequilibrium situations. For ex-
ample, Eqs. ~19! and ~20! describe the physics of a system in
which only external mode 0 is excited while the others are at
T50. Moreover, the motion of mode 0, determined by the
choice of x̃0(0) and xG (0) does not have to be thermal. Fur-
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thermore, this formulation makes it possible to calculate the
flux distribution into the different bath modes given that the
mode 0 drives the system. To do this one needs to use the
solution of Eq. ~19! @obtained under the driving ~20!# in Eqs.
~12! to find the response of other bath modes to the driving
by mode 0. Such a calculation is facilitated by replacing Eqs.
~12! by their damped analogs:

xJ l52v l
2x̄ l1(

k
V l ,kx̄k2hxG l ; lPL

xJ r52vr
2x̄ r1(

k
V r ,kx̄k2hxG r ; rPR h→01 . ~21!

The long time solution to Eqs. ~19!–~21! is a steady state in
which energy flows from the driving mode 0 into the $l% and
$r% modes through the molecular modes $k%. In particular, the
steady-state heat flux channeled through, e.g., the mode r is
given by the rate of energy dissipation out of this mode

J0→r5h^xG r
2& t . ~22!

The integrated fluxes, J0→L5( lJ0→l and J0→R5(rJ0→r
from the driving mode 0 into the left and right baths should
not depend on h. For the case where mode 0 belongs to the
left bath, J0→R and J0→L correspond to the transmitted and
reflected fluxes, respectively.27

The above formulation portrays in a somewhat new light
the familiar double role, driving and damping, assumed by
bath modes in such problems. In equilibrium these two ac-
tions are balanced by the fluctuation–dissipation theorem. In
nonequilibrium situations it is sometime useful to consider
these two roles separately. Indeed, later below we will cal-
culate the energy ~heat! flux induced by one driving mode
throughout the system. The net heat flux at frequency v0 is
obtained as the difference between such fluxes originated in
the two baths and weighted by the corresponding density of
modes. The total heat flux is obtained by integrating over all
frequencies. Before that, however, we construct the quantum
equations of motion equivalent to ~19!–~20!.

C. Quantum equations of motion

For a system of harmonic oscillators the equations rep-
resenting the classical dynamics, Eqs. ~11!–~20!, may be also
viewed as quantum EOMs for the Heisenberg position and
momenta operators. The formal connection is made as usual
by first defining linear transformation on the position and
momentum variables

x̄ j~ t !5A 1
2v j

~a j*~ t !1a j~ t !!,

p̄ j~ t !5iAv j

2 ~a j*~ t !2a j~ t !!, ~23!

j50,$k%,$l%,$r%,

where we use \51. Equation ~20! then yields

a0~ t !5a0e2iv0t; a0*~ t !5a0*e iv0t, ~24!
where a0 is the classical complex initial amplitude of the
driving mode, and Eq. ~19! is equivalent to the following
coupled equations:

d2

dt2 ~ak*~ t !1ak~ t !!

52vk
2~ak*~ t !1ak~ t !!1V0,kAvk

v0
~a0*~ t !1a0~ t !!

2i(
k8

Avkvk8E
2`

t
dt@gk ,k8

L
~ t2t !1gk ,k8

R
~ t2t !#

3~ak8
* ~t !2ak8~t !!, ~25!

d
dt ~ak*1ak!5ivk~ak*2ak!. ~26!

Equations ~25! and ~26! constitute the classical EOMs for the
variables ak , ak* defined by ~23!. Quantization is now
achieved by replacing a j* by a j

† ( j50,$k%) and regarding
Eqs. ~25! and ~26! as equations of motions for the Heisen-
berg representation of the creation and annihilation operators
a j(t) and a j

†(t). The thermal information then enters via

^a0
†a0&L5nL~v0!5~ebLv021 !21,

~27!
^a0

†a0&R5nR~v0!5~ebRv021 !21,

where b51/kBT .
In what follows we will also require the quantum equa-

tions of motions for the bath modes. Using Eq. ~23! into ~21!
we obtain29

ȧ r
†5ivra r

†2i(
k

V r ,k

2Avkvr
~ak

†1ak!2~h/2!~a r
†2a r!,

~28!

and its complex conjugate, and similar equations for the l
modes.

D. Frequency domain equations

Because our system is linear, at steady-state all the
modes oscillate with the driving frequency v0 . Accordingly
we seek a solution of the form

~a j
†1a j!5A je iv0t1B je2iv0t; jP$k%,$l%,$r%, ~29!

which has to satisfy B j5A j
† . Also, the need to satisfy

(d /dt)(a j
†1a j)5iv j(a j

†2a j) @same as Eq. ~26!# implies

~a j
†2a j!5~A je iv0t2B je2iv0t!

v0

v j
; jP$k%,$l%,$r%

~30!

or



a j
†5
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v0

v j
D1

B j

2 e2iv0tS 12
v0

v j
D

; jP$k%,$l%,$r%. ~31!
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Note that Eq. ~31!, taken with j50, is consistent with Eq.
~24!. Inserting Eqs. ~29! and ~30!, for j5k , into ~25! and
equating separately the coefficients of e iv0t and e2iv0t leads
to

2v0
2Ak52vk

2Ak1V0,kAvk

v0
a0

†2i(
k8

Avkvk8

v0

vk8
Ak8

3E
0

`

dte2iv0t@gk ,k8
L

~t !1gk ,k8
R

~t !# ~32!

or

~vk
22v0

21iv0@gk ,k
L ~v0!1gk ,k

R ~v0!# !Ak~v0!

1iv0 (
k8Þk

Avk

vk8
@gk ,k8

L
~v0!1gk ,k8

R
~v0!#Ak8~v0!

5Avk

v0
V0,ka0

† , ~33!

where

gk ,k8
L

~v !5E
0

`

e2ivtgk ,k8
L

~ t !dt

5(
l

V l ,kV l ,k8

2v l
2 H pd~v l2v !1iPS 1

v l2v D J , ~34!

and a similar expression for gk ,k8
R (v), where P denotes the

principal part. To obtain ~34! we have used ~16! and have
disregarded terms containing (v1v l)21 factors. For sim-
plicity we further invoke a standard approximation by which
we disregard the imaginary part of g ~i.e., terms affecting
small frequency shifts!, representing it by its real part

gk ,k8
L

~v !5
p

2

V l ,kV l ,k8uv l5v

v2 rL~v !. ~35!

For future reference we also rewrite this function, using Eq.
~10!, in the form

gk ,k8
L

~v !5gL~v !C1,kC1,k8 , ~36!

where gL(v) is defined from this expression. Again, an
equivalent expression defines gR(v).

Equation ~33! can be solved to yield the set of operators
$Ak% associated with the Heisenberg operators for the mo-
lecular bridge modes according to Eq. ~29!. In a similar way,
the amplitudes $A l% and $Ar% associated with the bath modes
according to Eq. ~29! can be obtained. For this purpose we
use Eqs. ~29!–~31! in ~28! and again consider separately co-
efficients of exp(iv0t) and of exp(2iv0t). This leads to
Ar5
vr

~vr
22v0

21ihv0!
(
k

Vr ,k

Avrvk
Ak ; Br5Ar

† , ~37!

with k going over all bridge modes. A similar equation is
obtained for the operators A l of the left-side bath.

E. Calculation of the heat flux

Equations ~37! and ~33! lead to linear relationships be-
tween the operators A l ~or Ar) that describe the driven out-
going bath modes and between the operators a0 and a0

† that
describe the driving mode. This can be used to compute the
heat flux through a system subjected to such driving. Differ-
ent approaches to calculating the heat flux through a system
of linear oscillators can be found in the literature6,30–33 and a
common method suitable in particular to one-dimensional
systems is based on calculating the work done by atom i on
its neighbor i21.6 For our model this leads to, e.g., at the
right side metal–bath contact

J5
gNr

2mr
^xNpr1prxN&, ~38!

where the coupling parameters g were introduced in Eq. ~3!
and the symmetrized form is needed for quantum mechanical
calculations.34 Obviously, at steady state the heat flux is in-
dependent of the position along the chain. A more general
systematic derivation of the energy flux operator, based on
conservation laws and valid for all phases of matter, is given
in Refs. 31 and 35. Our present approach is different and, for
example, makes it possible to study the energy resolved flux.
The equivalence between our approach and that based on Eq.
~38! is shown in Appendix C.

For definiteness we take the driving mode 0 to belong to
the bath L. At steady state the energy flux into ~and out of!
the mode r of the bath R is given by the quantum analog of
~22!, i.e.,

J0→r5hvr^ar
†ar1arar

†2arar2ar
†ar

†& t/2 ~39!

is the flux transmitted through mode r,36 where again ^ & t
denotes time average ~in our application we also require av-
eraging over the initial distribution of the driving mode
states!. Note that all operators here and below are Heisenberg
representation operators at time t. Using Eq. ~28! we obtain29

d
dt ~ar

†ar!52i(
k

Vr ,k

2Avkvr
@~ak

†1ak!ar2ar
†~ak

†1ak!#

2h/2@~ar
†2ar!ar1ar

†~ar2ar
†!# , ~40a!
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d
dt ~a ra r

†!52i(
k

V r ,k

2Avkvr
@a r~ak

†1ak!2~ak
†1ak!a r

†#

2h/2@a r~a r
†2a r!1~a r2a r

†!a r
†# . ~40b!

At steady state, the time average of Eq. ~40! vanishes. This
yields, using ~39!

J0→r5ivr(
k

V r ,k

4Avkvr
^~ak

†1ak!~a r
†2a r!

1~a r
†2a r!~ak

†1ak!& t . ~41!

Note that the dependence on the driving mode 0, while not
explicit in ~41!, enters through the forms of the Heisenberg
operators ak and a r that are solutions to Eqs. ~33! and ~37!.
The energy flux carried by modes in the range v0 . . . v0
1dv0 is given by JL→r(v0)dv0 where

JL→r~v0!5ivrrL~v0!(
k

V r ,k

4Avkvr
^~ak

†1ak!~a r
†2a r!

1~a r
†2a r!~ak

†1ak!&, ~42!

where rL(v0) is the density of modes of the left heat bath at
frequency v0 . Using Eqs. ~29!–~31! this leads to

JL→r~v0!5v0rL~v0!Im (
k

V r ,k

2Avkvr
@^B rAk&1^AkB r&# ,

~43!

where terms such as ^AkA r&e2iv0t or ^BkB r&e22iv0t that will
yield zero average flux were disregarded. Next, using ~37! to
express A r and B r in terms of the $Ak% and $Bk%5$Ak

†% op-
erators, and taking the damping term h there to zero, Eq.
~43! leads to

JL→r~v0!5
p

2 rL~v0!d~vr2v0!(
k ,k8

V r ,kV r ,k8

2Avkvk8

3@^Ak~v0!Ak8
†

~v0!&1^Ak8
†

~v0!Ak~v0!&# .

~44!

To obtain ~44! we have used the fact that
(k ,k8(vkvk8)

21/2V r ,kV r ,k8^AkBk8& is real and have disre-
garded a term that contains d(vr1v0). We have also noted
explicitly the fact that the $Ak% operators, obtained from
~33!, depend on the driving frequency.

Equation ~44! shows, as expected in a linear system, that
a driving ~incoming! mode at frequency v0 can excite out-
going modes only at this same frequency. The overall current
per unit frequency range, transmitted from L to R at fre-
quency v0 , is obtained by summing ~44! over all final
levels $r%:
JL→R~v0!5(
r

JL→r~v0!

5
p

2 rL~v0!rR~v0!(
k ,k8

~V r ,kV r ,k8!vr5v0

2Avkvk8

3@^Ak~v0!Ak8
†

~v0!&1^Ak8
†

~v0!Ak~v0!&# .

~45!

Note that the only attribute of this expression that makes it a
‘‘left-to-right’’ current is our initial designation of the driving
mode as belonging to the left heat reservoir. The expectation
values in ~45!, therefore, depend on the temperature TL of
the left bath. A similar expression with TR replacing TL ap-
plies for the right-to-left heat current.

From Eq. ~33! it follows that one can write

Ak~v0!5Āk~v0!V0,ka0
†Avk

v0
, ~46!

where Āk(v0) is a scalar function of the driving frequency
that depends only on molecular parameters. The total heat
current is obtained as the integral over all frequencies of the
net current J[JR→L2JL→R . Denote

T~v !5
p

2 rL~v !rR~v !

3(
k ,k8

~V r ,kV r ,k8!vr5v~V l ,kV l ,k8!v l5v

v2

3~ Āk~v !Āk8
†

~v !1Āk8
†

~v !Āk~v !!/2. ~47!

Using the definition of the friction from ~35!, we get

T~v !5
2v2

p (
k ,k8

gk ,k8
R

~v !gk ,k8
L

~v !@ Āk~v !Āk8
†

~v !

1Āk8
†

~v !Āk~v !#/2. ~48!

The directional heat currents are, therefore,

JL→R5E T~v !~nL~v !11/2!vdv ,

~49!

JR→L5E T~v !~nR~v !11/2!vdv ,

and the net heat flux is

J5E T~v !@nR~v !2nL~v !#vdv . ~50!

Which is our final result, similar to results recently derived in
Refs. 4 and 30. The advantage of the present derivation ~to
be explored elsewhere! is that it can be easily generalized
to any kind of initial boson distribution in the two baths,
including driving by an external photon field. Expression
~50! is similar to the Landauer result Jel5*T(E)@ f R(E)
2 f L(E)#dE for the electrical current in a junction connect-
ing two electron reservoirs characterized by Fermi distribu-
tions f R(E) and f L(E) and a transmission function T(E).
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We conclude this section with two remarks: First, as al-
ready noted, the same result as given by Eqs. ~45!–~50! can
be obtained from the more conventional approach based on
Eq. ~38! ~see Appendix C!. Second, even though our treat-
ment was described in the framework of a one-dimensional
molecule–bath coupling, the results are valid for a three-
dimensional coupling model: The needed input are the cou-
pling elements between all the molecular normal-modes $k%
and the phonons of the thermal baths $l% and $r%. See Ap-
pendix A for details.

IV. RESULTS AND DISCUSSION

We next apply the formalism described above to the cal-
culation of phonon induced heat transfer thermal conduc-
tance of a molecular bridge connecting two identical thermal
reservoirs at different temperatures. We study alkane chains
of variable length, and compare their heat transport proper-
ties to other ordered and disordered chains. The information
needed for any given molecular bridge is the normal mode
spectrum of the molecular system and the corresponding
transformation matrix C @cf. Eq. ~7!#. These were obtained
using the HYPERCHEM 6 computer package, with the isolated
molecular geometry optimized using the Restricted Hartree–
Fock method with the semiempirical PM3 parameterization
method. The index N that denotes the molecule length is the
number of backbone atoms, i.e., the carbones for the alkane
systems. The parameters that characterize the reservoirs are
the Debye cut-off frequency vc , which is taken in the range
vc5200– 800 cm21, and the temperatures TL and TR5TL
1DT which are studied in the range 10–1000 K. Unless
otherwise stated, DT itself is taken small, typically DT
51023 K, so T represents the average temperature of the two
reservoirs.

Next consider the molecule–reservoirs coupling. We as-
sume, as in Eq. ~5!, that it is affected by the extreme end-
atoms on the two molecular edges. This coupling is com-
monly characterized by the spectral density function, e.g.,
between atom 1 and the left reservoir

dL~v !5
p

2 (
l

g1,l
2

m lv l
d~v2v l!5

p

2
gL

2~v !rL~v !

vmL~v !
, ~51!

where rL(v) is the mode density. The spectral density
dL(v) is related to the frequency dependent friction on atom
1, Eq. ~34!, by

gL~v !5
dL~v !

m1v
, ~52!

where gL(v) was defined by Eq. ~36!. In what follows we
will assume that the spectral properties and coupling
strengths are the same on left and right contacts and omit the
indices L and R from g(v), g~v!, r~v!, and m(v). We use a
Debye-type model defined by

r~v !5NB
v2

2vc
3 e

2v/vc, ~53!

where NB is the number of reservoir modes. This leads to

d~v !5am1ve2v/vc; g~v !5ae2v/vc, ~54!
where @from ~53! and ~51!#

a5
pg2~v !NB

4m1m~v !vc
3 . ~55!

Here m15mN is the mass of the end atom on the molecular
chain. Further simplification is achieved by considering
atomic baths for which m(v)5mB and by assuming that
g(v)5g does not depend on v. The magnitude of g mea-
sures the strength of the molecule–bath coupling. In a model
where we take the coupling between the molecular chain and
the thermal reservoirs to be dominated ~or gated! by the cou-
pling between the end chain atoms ~1 and N! and their near-
est neighbor atoms ~L and R, say! in the corresponding res-
ervoirs, we may write this coupling @in correspondence with
Eqs. ~3! and ~5!# as ~focusing for definiteness of notation on
the left reservoir!

HML52g1,Lx1xL52(
l

g1,lx1x l . ~56!

The second equality results from expanding the local coordi-
nate xL of the reservoir atom in the reservoir normal modes,
xL5( la lx l (( lua lu251). This implies

g1,l5g1,La l , ~57!

so that ( lg1,l
2 5g1,L

2 , or, if g1,l5g ,

g5
g1,L

ANB
. ~58!

With these simplifications Eq. ~55! takes the form

a5
p

4
g1,L

2

m1mLvc
3 . ~59!

In the calculations described below this constant is taken
in the range 104 – 105 cm21.

Once the normal mode spectrum and the transformation
matrix C @Eq. ~7!# have been calculated, Eqs. ~10!, ~33!, ~35!,
~47!, and ~50! are used to calculate the heat flux and the heat
conductance. The latter is defined by

K5 lim
DT→0

J/DT . ~60!

The thermal conductivity of one-dimensional atomic
chains and its dependence on the chain length was studied
before by several groups.5,6,30 It was found5,6 that in a perfect
harmonic chain the heat flux is not proportional to the tem-
perature gradient (TR2TL)/N , as inferred from Fourier law,
but to the temperature difference TR2TL . The thermal con-
ductance, J/DT , was predicted to be independent of the
chain length, and the thermal conductivity for unit cross-
sectional area, J/¹T , therefore, diverges as the chain length
goes to infinity. Motion in our molecular chains is not re-
stricted to one dimension, still the proximity of these chains
to the one-dimensional models suggests perhaps a similar
behavior.

Figure 2 shows the dependence of the calculated heat
conductance on chain length for linear alkanes of 2–25 car-
bon atoms at different temperatures. The molecule–reservoir
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coupling parameter was taken a58000 cm21. The conduc-
tance becomes length independent for N.15, while for short
chains, N52 – 4, we see an unexpected rise of the conduc-
tance with chain length. The inset shows a similar result for
the strong coupling case, a51.2•105 cm21, and T
51000 K. Here the heat conductance appears to decrease
like K}1/N for large N.

The asymptotic dependence of the heat conductance on
the chain length is of particular interest. Fourier’s law of heat
conductance would imply a 1/N dependence on chain length,
while simple arguments based on Eq. ~47! suggest that the
conductance should be length independent for long chains.
The argument is that the phononic transmission T~v! de-
pends on the coupling strength with a fourth power, contrib-
uting the factor 1/N2, while the double sum in ~47! yields the
factor rM(v)2, where rM(v), the molecular density of
states, increases linearly with the molecule length. If the pos-
sibility that the factor (Āk(v)Āk8

† (v)) in ~47! may depend on
this length is disregarded, the heat flux J is expected to be
length independent. The actual answer to this issue depends
on the density and the localization properties of the molecu-
lar normal modes.

Figures 3 and 4 display some properties of the normal
modes in alkane chains. Figure 3 depicts the density of
modes for chains with N515 and N530 atoms. Three do-
mains, separated by gaps, are seen in the spectrum. A group
of low-frequency modes in the range below 600 cm21, inter-
mediate frequency modes with v5700–1500 cm21 and
high-frequency modes of v52950–3200 cm21. Note that the
modes in the intermediate region have the highest density of
states, and that the mode density increases linearly with the
molecular size.

In order to gain a better understanding of these normal
modes we follow previous work on heat transfer in disor-
dered harmonic media.35,37 In particular, the ability of any

FIG. 2. The thermal conductance calculated as a function of chain length for
alkane molecules at different temperatures, using vc5400 cm21 and a
58000 cm21. Full line: T550 K; dotted line: T5300 K; dashed line: T
51000 K. The inset shows the T51000 K result in the case of strong
molecule–reservoirs coupling a51.2•105 cm21 ~and same vc5400 cm21).
 mode to transfer energy across the molecule depends on its

spatial extent, which may be characterized by the participa-
tion ratio Pk . In the present application we use a variation of
the measure suggested by Ref. 38. Define the weight associ-
ated with normal mode k on the carbon segment n as the sum

pk ,n5(
an

u~C21!k ,an
u2, ~61!

where an goes over all atoms ~hydrogens and carbon! asso-
ciated with a given carbon atom. Note that (npk ,n51. The
participation ratio is given by

Pk5F(
n

pk ,n
2 G21

. ~62!

FIG. 3. The spectral distribution of normal modes of alkane chains of
lengths N515 and N530.

FIG. 4. Measures of mode localization in alkanes plotted as functions of
molecular length. ~a! The function eS where S is the information entropy,
Eq. ~63!, averaged over a group of modes as indicated below. ~b! The
average participation ratio, Eq. ~62!, for the same groups. Dashed line: Low-
frequency modes ~v,600 cm21!; full line: Intermediate frequency
modes, 700<v<1500 cm21; dotted line: High-frequency modes,
v52950<v<3200 cm21.
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This is a good measure for the number of carbon sites on
which the collective mode k has a significant amplitude. For
a chain of N carbon atoms, Pk5N for a ballistic mode that
extends over the entire molecule, and it decreases as local-
ization becomes more significant. An alternative measure is
the information entropy39

Sk52 (
n51

N

pk ,n ln~pk ,n!, ~63!

which satisfies Sk5ln(N) for a completely delocalized mode,
and Sk50 for a mode localized on a single site.

Figure 4 depicts the average participation ratio ^P& and
the average function ^exp(S)& for each group of modes plot-
ted against the chain length. Both measures increase linearly
with chain length in all cases, indicating some ballistic na-
ture for at least some modes in each group, yet the high-
frequency modes are, on the average, more localized. In con-
trast, the low-frequency modes show a substantial
delocalized character.

The interplay between the number of modes in each fre-
quency group, their ability to transfer energy as derived from
their localization property, and the frequency dependence of
the mode population in the thermal reservoirs combine to
affect the chain-length dependence of heat transport in our
model junction. This can be seen by studying separately the
heat conduction behavior of the three frequency groups. It
should be emphasized that the contributions of different
modes to the heat conduction is not additive, as can be seen
from the presence of cross terms in Eq. ~47!. Still, looking at
these separate contributions provides useful insight, and in
fact describing the overall heat conduction as an additive
combination of contributions from the three frequency
groups defined above is found ~see below! to be a good ap-
proximation for long enough chains.

Figures 5 and 6 show the heat conductance versus alkane
chain-length for the low and intermediate frequency modes
respectively, at different temperatures, using vc5400 cm21

FIG. 5. Thermal conductance vs chain length for alkane chains in which
only the low-frequency modes ~v,600 cm21! are taken into account. vc
5400 cm21, a51.2•105 cm21. Dashed line: T510 K; Full line: T
5100 K; dotted line: T5300 K; dash–dotted line T53000 K.
and a51.2•105 cm21 ~same parameters as in the inset of
Fig. 2!. The following observations can be made:

~1! The conductance associated with the low frequency
modes ~Fig. 5! does not depend on the chain length at
low temperatures ~T!, however, it decreases with chain
length in the high temperature regime.

~2! The intermediate frequency modes ~Fig. 6! show a very
different behavior: For low temperature the conductance
decreases exponentially, while for high temperature, it
becomes length independent.

~3! The high-frequency modes ~figure not shown! basically
show the same behavior as that of the intermediate fre-
quency group, with stronger variations about the system-
atic trend. However, the absolute contribution of these
modes to the heat transfer is negligible as compared to
the other two groups.

These different modes of behavior can be understood as
transitions between two modes of transport: tunnelinglike
and resonant. Consider, for example, Fig. 6. At very low
temperatures modes of the thermal reservoirs that are in reso-
nance with the intermediate molecular modes considered
here are not populated. Only low-frequency modes of the
reservoirs are excited, and the transmission of the energy
between these reservoirs through the molecule is a transfer of
low-frequency phonons through a bridge of relatively high-
frequency vibrations. This leads to a tunneling type behavior
with an exponential decrease of the transmission with bridge
length, in analogy with the super-exchange mechanism of
electron transfer.40 When the temperature increases, higher
frequency modes of the reservoirs, which are in resonance
with the intermediate molecular modes are excited and con-
tribute to resonance transmission which is distance indepen-
dent. Similar considerations apply in principle to the high-
frequency modes, but the contribution of these modes to the
heat transfer is small because the Debye cut-off vc of the
reservoir spectra is considerably below these modes.

Consider now Fig. 5, which shows the chain-length de-
pendence of the heat conduction by the low frequency mo-

FIG. 6. Same as Fig. 5, except that only the intermediate-frequency modes
~700<v<1500 cm21! are taken into account.
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lecular mode. Here we see an opposite behavior, where the
heat conductance does not depend on chain-length at low T,
while it decreases with chain length at high T. The same
arguments as before apply also in this case. At low tempera-
tures heat transfer involves low-frequency reservoir modes
that are in resonance with the molecular frequencies of this
group, hence the length independence of the transmission.
For high T, the high-frequency reservoir modes are activated,
however, transmission involving these modes is a nonreso-
nance process that decreases with chain length. The depen-
dence on length in this case is weaker than exponential be-
cause the thermal shift of population from low- to high-
frequency reservoir modes is very gradual.

We emphasize these observations by comparing the heat
conductance from the low and intermediate frequency mo-
lecular modes, calculated at the unphysical temperature T
53000 K where their relative contributions are comparable,
see the dashed–dotted lines in Figs. 5 and 6. ~The contribu-
tion of the high-frequency molecular modes is small even at
this unphysically high temperature.! In this temperature
range the conductance due to the low-frequency modes ~Fig.
5! decreases with chain-length, that of the intermediate
modes ~Fig. 6! is length independent and their superposition
is, therefore, expected to show a relatively weak length de-
pendence. We have verified numerically that taking a simple
superposition of these two contributions is indeed a good
approximation to the full calculation for chains longer than 6
to 7 carbon atoms, and therefore this analysis holds. For very
long chains the nonresonant contributions die out and heat
transmission becomes length independent, though because
only a few modes may be extended enough it may be small.
The turnover to length dependence at smaller chain-lengths
and the actual length dependence of the overall conduction
for relatively short chains depends on the molecule–reservoir
coupling strength, on the temperature and on phonon spectra
of both molecule and reservoirs.

The dependence of the heat conductance on the tem-
perature is depicted in Fig. 7. The system parameters used
here are a58000 cm21 and vc5800 cm21. At the high-
temperature limit, shown in the inset, the conductance satu-
rates to the value kB* T(v)dv , that corresponds to the high-
temperature limit of Eq. ~50!. In this limit the conductance
decreases with the chain length N. At the very low tempera-
tures, main graph, the trend is reversed: The conductance
increases with chain lengths for short chains.

The conductance increase with longer chain length, seen
in Fig. 7 and also on the short chain ~left! sides of Figs. 2 and
5, seems at first counter intuitive, however, Fig. 8 reveals its
origin. Here we show the thermal conductance as a function
of chain length at several temperatures. Variation of the chain
length affects the molecular normal mode spectrum in two
ways. First, the overall density of states is increased linearly.
Secondly, the lower bound on this density is shifted to lower
values. For example, for a pentane (N55) the lowest vibra-
tional frequency mode is v584 cm21, for decane (N510) it
is v528 cm21, while for N520 it is v57 cm21. At low
temperatures the heat current is carried mostly by low fre-
quency phonons, and when the chain becomes longer, more
molecular modes come into resonance with these incoming
phonons. This causes an increase in the heat flux. Obviously,
this effect should be significant only at very low tempera-
tures, as indeed seen in Fig. 8.

A. Disordered chains

Figure 9 compares the heat conduction of pure alkane
chains to similar chains with a random distribution of two
masses with 1:1 component ratio. vc5400 cm21, a
58000 cm21, and T5300 K were used in these calculations.
The chains are normal alkanes in which the atomic masses of
half the carbon atoms have been set artificially to 28. We see
that for a long enough chain, the heavy atom chains with
smaller normal mode frequencies conduct less effectively
than their light atom analogs. This results from the balance
of three effects. First, the contributions of modes of different

FIG. 7. Thermal conductance calculated as a function of temperature for
alkane chains using vc5800 cm21 and a58000 cm21. Dashed line: N
52; Dotted line: N55; Full line: N514. Inset shows the high-temperature
regime.

FIG. 8. Thermal conductance calculated as a function of length for alkane
chains, using vc5400 cm21 and a58000 cm21. Dashed line: T50.1 K;
dotted line: T51 K; full line: T510 K; dash–dotted line: T5100 K; line
with filled circles: T51000 K.
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frequencies depend on the corresponding reservoirs density
of mode spectra. Secondly, it depends on the thermal popu-
lations of these modes. Finally, the energy carried by a mode
of frequency v is proportional to v. The effect of disorder
also involves balancing factors: Starting from, e.g., the 28C
chain and replacing some of these heavy atoms with the 12C
isotope would reduce heat conduction because of localization
@for example, in a 20 carbon chain the localization measure
^exp S&, Eq. ~63! averaged over all modes, is 14.1 for a pure
12C chain, 12.5 for 28C system, and only 7.5 for the random
12C– 28C chain#. This is partly balanced by the shift of the
mixed structures spectrum into frequencies above those of
the pure 28C chain. In Fig. 9 this results in little difference in
the heat conduction of a pure 28C chain and a 12C/28C mixed
chain.

Finally we note that a similar behavior is seen for the
realistic 12C– 14C chains, however, the difference between
the heat conductions of the pure and the mixed chains in this
case is quite small and are hardly resolved on the scale of
Fig. 9 ~see inset!.

B. Anharmonic effects

In macroscopic systems and in fact whenever the system
size is larger than the localization length and/or mean free
path ~determined by disorder and scattering by anharmonic
interactions! heat conduction is dominated by anharmonic
coupling. In our short molecular chains such effects are ex-
pected to play a much lesser role, at least at low temperature.
To examine this issue we have carried out classical numeri-
cal simulations of heat conduction through a one-
dimensional model of alkane chains without invoking the
harmonic approximation. Details of the model and the calcu-
lation are provided in Appendix D.

Figure 10 shows the heat current obtained from such a
calculation. For a long harmonic chain the heat flux is bal-
listic and does not depend on chain length. The result for the

FIG. 9. Thermal conductance vs alkane chain length. vc5400 cm21, T
5300 K, a58000 cm21. Dashed line: 12C chains; full line: 28C chains;
dotted line: Disordered 12C– 28C chains with 1:1 component ratio. The inset
depicts similar results for the case where 14C replaces 28C.
full alkane model ~dashed line! and the corresponding har-
monic approximation ~full line! are seen to behave in this
way and to be very close to each other. Only when the mo-
lecular anharmonicity is taken unphysically large ~dashed–
dotted line! we see deviation from this behavior and a de-
crease of the current with chain length. Similar deviations
from the harmonic behavior ~not shown! are seen at elevated
temperatures, but only when T is unphysically high, say T
>2000 K.

C. Comparison to classical heat transfer

Finally, we compare the heat conduction properties
of the harmonic chains considered in this paper with the
continuum heat transport model used in Ref. 22. In that
paper the molecule was represented by a cylinder connec-
ting the two heat reservoirs ~Fig. 1! and a continuum model
was employed to estimate the heat conduction, using for
the thermal conductivity coefficient the value sh53.5
•1024 cal/~s•cm•K) typical of bulk organic solids. For a
model in which the molecular cylinder of length 60 Å is
suspended in vacuum between the two heat reservoirs at 300
K a modest temperature rise of a few degrees was found
when heat was deposited uniformly on the cylinder at a rate
of 1010 eV/s ~corresponding to about 1 nA electron current
flowing across a potential bias of 1 V!. Clearly, however,
macroscopic heat conduction, dominated by impurity scatter-
ing and anharmonic interactions cannot reliably represent
heat conduction of molecular junctions that is characterized
by harmonic ~ballistic! transport on one hand, and by re-
stricted geometry and the availability of conducting modes
on the other.

For definiteness we assume that the coupling between
the molecular chain and the thermal reservoirs is dominated
~or gated! by the coupling between two nearest-neighbor al-

FIG. 10. Heat current vs chain length obtained from a classical simulation
of heat transport through one-dimensional model alkane chains character-
ized by different anharmonic interactions. Full line: Harmonic chain; dashed
line: Anharmonic chain using the alkane force field parameters; dash–dotted
line: anharmonic chain with unphysically large anharmonicity @j of Eq. ~D2!
taken 36 times the alkane value#. g510 ps21 ~g is the friction coefficient
defined in Appendix D!, TR5300 K, TL50 K were used in this simulation.
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kane carbon atoms. This is expected to overestimate the ac-
tual thermal coupling in most molecular junctions. This im-
plies that in Eq. ~59! we take g1,L5gCC[g ~similarly we
take gN ,R5g). Also for definiteness we assign carbon masses
to the baths, i.e., take mL5mR5mC . The corresponding nu-
merical values are g57.2•1023 dyne/Å ~from the Hyper-
chem force field! and mC52•10226 kg. This implies @from
Eq. ~59!# a52•107 cm21 for vc5400 cm21, a52.5
•106 cm21 for vc5800 cm21 and a55•105 cm21 for vc
51400 cm21. The latter vc is the order of the Debye fre-
quency of diamond.

Numerical results obtained from this model are com-
pared to the classical cylinder model of Ref. 22 are shown
in Fig. 11. The classical calculation was done using K̃
53.5 1024 cal/~s cm °K) @51.5 10211 W/~Å °K)] for the
heat conductivity coefficient, and a cross-sectional area
A53.5 Å2 for the ‘‘molecular’’ cylinder. The length of
the cylinder that corresponds to an alkane chain with N
carbon atoms was taken L51.2N Å. Note that the heat
conductance of this classical object K5K̃A/L decreases as
N21 with chain length. For N55 – 20 we get that K
510211– 10212 W/°K.

The results displayed in Fig. 11 show that the heat con-
duction of the macroscopic cylinder overestimates that of the
molecular model by about an order of magnitude at room
temperature, while they are very similar at T51000 K.
These observations are not very sensitive to details of the
chosen coupling and reservoir cutoff parameters within a rea-
sonable range. In view of the different mechanisms involved,
one should not take the similar transport properties at 1000 K
as an approach to the classical limit at high T. More signifi-
cant is the finding that at room temperature the classical
model strongly overestimates the heat conduction properties
of the individual molecule, an observation of important po-
tential consequences for estimating heating in conjunction
with electrical conduction in molecular junctions.

FIG. 11. Heat conduction vs alkane chain length. Full line: vc
5400 cm21, a52•107 cm21, T5300 K. Dashed line: vc5400 cm21, a
52•107 cm21, T51000 K. Dashed–dotted line: vc5800 cm21, a52.5
•106 cm21, T5300 K. Dotted line: vc5800 cm21, a52.5•106 cm21, T
51000 K. Line with circles: Results of the classical continuum calculation
~see text!.
V. CONCLUSIONS

The heat conduction properties of molecular chains
connecting two thermal reservoirs were investigated the-
oretically and numerically, focusing on saturated alkane
chains as a primary example. It was found that heat con-
duction in relatively short chain is dominated by harmonic
interactions. The harmonic approximation utilized yields a
Landauer-type expression @Eq. ~50!# for the heat current,
where energy is carried ballistically through the wire. The
principal factors that determine heat conduction in such mo-
lecular junctions are the molecular vibrational spectral den-
sity, the localization properties of molecular normal modes
in the different spectral regimes, the coupling of the mol-
ecule to the reservoirs and the cut-off frequency that charac-
terizes the reservoirs spectral densities. The dependence of
the heat conduction on molecular length varies with tempera-
ture and reflects the different localization properties of
different molecular spectral regimes. Mode localization
also causes disordered chains to be less effective heat con-
ductors. A classical heat conduction model was found to
overestimate the microscopic result by about one order of
magnitude, an observation of potential importance for the
estimate of heating associated with electrical conduction in
molecular junction.
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APPENDIX A: THE THREE-DIMENSIONAL CASE

Generalization of the formulation presented in Sec. II
and III into three dimensions is trivial. Since both molecule
and reservoirs are described in terms of their normal modes,
the dimensionality enters explicitly only in the form of the
molecule–reservoir coupling. In three dimensions the Hamil-
tonian, Eq. ~3!, takes the form

HB1HMB5(
l

H 1
2 m lv l

2S rl2 g1,lr1

m lv l
2D 2

1
pl

2

2m l
J

1(
r

H 1
2 mrvr

2S rr2 gN ,rrN
mrvr

2 D 2

1
pr

2

2mr
J ,

~A1!

where r and p are three components vectors. For simplicity
we take the coupling strength g to be the same for the three
directions. The transformation matrix C @Eq. ~7!# in this case
is a 3N33N matrix, r5Cr̄, where any consecutive three
components of the vector r represent the x ,y , and z coordi-
nates of an atom in the molecule. The coupling terms are
defined similarly to Eq. ~10! as
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The real parts of the damping terms, Eq. ~34!, are given by
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and the operators A k satisfy the equation
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where the average of the driving operators, the analog of Eq.
~27!, is given by

^a0,j
† a0,j8&L5nL~v0!d j , j8 ,

~A5!
^a0,j

† a0,j8&R5nR~v0!d j , j8 j , j85$x ,y ,z%.

Finally the transmission is given by summing the coupling to
the reservoirs in Eq. ~47! over the three spatial dimensions

T~v !5
p

2 rL~v !rR~v !

3(
j , j8

(
k ,k8

~V r ,k
j V r ,k8

j
!vr5v~V l ,k

j8 V l ,k8
j8 !v l5v

v2
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and the net heat current is given by the same expression as
Eq. ~50!.

APPENDIX B: THE GENERALIZED
LANGEVIN EQUATION

The derivation of the generalized Langevin equation
~GLE! starts with Eq. ~12!. Laplace transforming with t0 as
the initial time yields

~s21v l
2!x̄ l~s !5xG l~ t0!1s x̄ l~ t0!1(

k
V l ,k x̄ k~s !, ~B1!

where
x̄~s !5E
t0

`

e2s~ t2t0!x̄~ t !dt . ~B2!

Rearrangement of ~B1! leads to

x̄ l~s !5
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s21v l
2 1
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s21v l
2 1(

k

V l ,k

s21v l
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and transforming back into the time domain produces

x̄ l5 x̄ l~ t0!cos~v l~ t2t0!!1
xG l~ t0!sin~v l~ t2t0!!

v l

1(
k

V l ,k

v l
E
t0

t
x̄ k~t !sin~v l~ t2t !!dt . ~B4!

The last equation was derived using the convolution relation

E
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`

e2s~ t2t0!dtE
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t
g~t ! f ~ t2t !dt5g~s ! f ~s !. ~B5!

Integrating Eq. ~B4! by parts leads to

x̄ l5 x̄ l~ t0!cos~v l~ t2t0!!1
xG l~ t0!sin~v l~ t2t0!!

v l
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k
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k
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k
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t
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Now insert ~B6! into Eq. ~11!. For clarity we ignore for the
moment the coupling to the right reservoir. This yields

xJ k52vk
2x̄ k1(

l
V l ,kF x̄ l~ t0!cos~v l~ t2t0!!

1
xG l~ t0!sin~v l~ t2t0!!
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G
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l
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1(
k8

V l ,k8
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2 E
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t
xG k8~t !cos~v l~ t2t !!dtJ . ~B7!

Because we will be interested in the steady state of a linear
system affected by damping interactions the term involving
x̄ k8(t0) can be ignored, since the initial conditions of the
system are not relevant, see also Refs. 41 and 42. The terms
containing x̄ l(t0) and xG l(t0) are recognized a harmonic driv-
ing force

x̃ l~ t ![ x̄ l~ t0!cos~v l~ t2t0!!1
xG l~ t0!sin~v l~ t2t0!!

v l
,

~B8!

that obeys the harmonic oscillator equation of motion ẍ̃ l
52v l

2x̃ l . Similar contributions are obtained for the right
reservoir, yielding finally
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where

x̃ r~ t ![ x̄ r~ t0!cos~vr~ t2t0!!1
xG r~ t0!sin~vr~ t2t0!!

vr
,

~B10!

obeys ẍ̃ r52vr
2x̃ r .

The procedure outlined above is a standard derivation of
a generalized Langevin equation to be used in the long time
limit of the system–bath interaction where initial system in-
formation can be neglected. A different approach can be used
to get directly the steady-state equations for a driven quan-
tum system. This formulation uses the ideas of Sec. II and
III: The quantization of the momentum and displacement,
Eqs. ~23!–~27!, driven steady-state dynamics, Eq. ~29! and
working in the frequency domain. We focus on the left res-
ervoir and start again from Eq. ~12!, but replaced by its
damped analog, Eq. ~21!: xJ l52v l

2x̄ l1SkV l ,kx̄k2hxG l . Us-
ing Eqs. ~23! and ~29! leads to an equation for the ~left! bath
amplitudes A l in the frequency domain

A l5
v l

~v l
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21ihv0!
(
k

V l ,k

Av lvk
Ak . ~B11!

Repeating the same procedure on Eq. ~11! for the molecule
normal modes, and disregarding for clarity the right reservoir
we get
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Here, the driving mode (a0 ,v0) appears explicitly. Substi-
tute next ~B11! into ~B12! yields
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Note that ~ignoring terms containing 1/(v01v l))
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~B14!
Thus, Eq. ~B13! is ~after supplementing similar terms arising
from the right reservoir! the same as Eq. ~33!.

APPENDIX C: CALCULATING THE HEAT FLUX
FROM EQ. „38…

The classical power transfer through harmonic chain as
given in Ref. 6 is calculated here between the last ~N! atom
of the molecular chain and the atoms of the right reservoir.

J0→r5
gN ,r

m r
^xNp r&, ~C1!

where 0 is a driving mode in the left reservoir and the ve-
locity and displacement are calculated at this driving fre-
quency v0 . The analogous quantum expression is derived
from the symmetric form

J0→r5
gN ,r

2m r
^xNp r1p rxN&. ~C2!

Transforming the coordinates into their mass weighted ana-
logs, then expressing the local molecular coordinate in terms
of molecular normal modes @Eq. ~7!# yields

J0→r5
gN ,r

2AmNm r
(
k

CN ,k^ x̄k p̄ r1 p̄ rx̄k&. ~C3!

Using Eq. ~10! and transforming ~C3! into its second quan-
tized form using ~23!, leads to

J0→r5i(
k

V r ,kvr

4Avkvr
^~ak

†1ak!~a r
†2a r!

1~a r
†2a r!~ak

†1ak!&, ~C4!

which is the same as Eq. ~41!.

APPENDIX D: MOLECULAR CHAIN MODEL

The procedure for calculating the heat conduction
through one-dimensional model of alkane chains without in-
voking the harmonic approximation is presented here. The
model consists of a one-dimensional anharmonic carbon
chain of length N linking two reservoirs whose temperatures
are denoted by TL and TR . The model Hamiltonian is given
by

H5Hchain1Hcontact ,

Hchain5 (
i51

N21

H i21,i5D~e2a~x i112x i2 x̃ !21 !21(
i51

N 1
2 mẋ i

2,

~D1!

Hcontact5D~e2a~x12x02 x̃ !21 !21D~e2a~xN112xN2 x̃ !21 !2,

where the atoms indexed by 0 and N11 are the left and right
reservoirs atoms, respectively. In the classical simulation the
positions of these atoms are taken constants, and the dynami-
cal effect of the reservoir is represented by Langevin forces
and damping terms as described below. The Morse param-
eters a and D and the equilibrium bond lengths x̃ are taken to
characterize the alkane C–C stretch motion ~implying that in
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our classical model calculation the first bath atoms are taken
to be carbons!: x̃51.538 Å, D588 kcal/mole, and a51.876
Å21.43 These force field parameters imply the spectroscopic
anharmonicity coefficient ~that enters in the oscillator levels
En5(n1 1

2)\v2(n1 1
2)2\jv)

j5Aa2/8Dm50.009, ~D2!

where m5(1/2)mC is the reduced mass. The classical equa-
tions of motions for this system are given by

ẍ i52
1
m

]H
]x i

; i52,3,...N21,

ẍ152
1
m

]H
]x1

2gLẋ11FL~ t !, ~D3!

ẍN52
1
m

]H
]xN

2gRẋN1FR~ t !,

where m5mC . In ~D3! gL and gR are friction constants and
FL and FR are fluctuating random forces that represent the
effect of the thermal reservoirs. In the anharmonic calcula-
tions described in Sec. IV we have used white reservoirs for
which the damping and noise terms satisfy ^FB(t)FB(0)&
52gBmkTBd(t); B5R ,L . The set of equations ~D3! is in-
tegrated using the fourth order Runge–Kutta method, and the
local heat flux is calculated from J i5^2 ẋ i(]H i11,i /]x i)&14

where the average is done over long enough time such that
the heat current is the same at all sites. Note that the expres-
sion for the heat flux is reduced in the harmonic limit into
~C1!, where the force constant between adjacent atoms is
given by 2Da2.
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