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1. INTRODUCTION

We develop a new approach that could provide us
with a powerful means of discrete time series analysis
and processing. The subject of our study is human elec-
troencephalogram (EEG) records, because we address
our work to those who are interested in signal process-
ing in live complex systems. In studying natural com-
plex systems, very little is usually known about their
internal structure and the relationship between their
components. The time series describing the dynamics
of one or several parameters are typically used for
obtaining diagnostic information. The received infor-
mation is inadequate for describing all the degrees of
freedom of this system. Quantitative and qualitative
methods proposed recently allow constructing the
framework for the description of natural complex sys-
tems. It allows diagnosing diseases without going into
detail of the internal structure underlying natural com-
plex systems. A similar approach can be used to
describe and investigate diversified complex systems as
they are related only to the concepts of this framework.
Here, we present the results of applying a new frame-
work involving ideas of discrete non-Markovian sto-
chastic processes to the analysis of electric potentials of
brain. It turns out that discussing the results in terms of
demarkovization and markovization is the best way to
uncover the features of seizure dynamics.

Brain cells communicate by producing tiny electri-
cal impulses. In an EEG, electrodes are placed on the
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scalp over multiple areas of the brain to detect and
record the electrical pulses within the brain. The EEG
is used to help diagnose the presence and type of sei-
zure disorders, confusion, head injuries, brain tumors,
infections, degenerative diseases, and metabolic distur-
bances that affect the brain.

It is well known that epilepsy is one of the most seri-
ous diseases of the human brain [1, 2]. The dynamics of
the electric signals accompanying it belongs to a class
of nonlinear, nonstationary, and nonergodic processes
of complex systems of a live nature [3, 4]. The discrete
and non-Markovian properties of time variation of the
signals and the sudden alternation of the behavior
regimes must be taken into account in analyzing the
electrical activity of brain potentials. Together with the
fast change of chaotic and regular modes in the behav-
ior of the system, this creates serious problems for the
diagnosis and treatment of patients with epilepsy sei-
zure. This is why traditional methods of nonlinear
dynamics, such as the Lyapunov exponent, Kolmog-
orov—Sinai entropy, and correlation and fractal dimen-
sions, are not sufficiently sensitive for the purpose of
distinction between different chaotic regimes in epi-

lepsy.

2. BASIC THEORY

Our approach is based on the recent theory for sta-
tionary [5] and nonstationary cases [6] of discrete sto-
chastic processes in complex systems. We analyze the
stochastic process on the basis of the chain of the cou-
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The kinetic nonlinear finite-difference Eqs. (1) are
analogous to the well-known chain of kinetic equations
of the Zwanzig—Mori (ZM) type. These ZM equations
play a fundamental role in the modern statistical
mechanics of nonequilibrium phenomena with contin-
uous time. Kinetic Egs. (1) can be considered a dis-
crete-difference analogy of hydrodynamic equations
for physical phenomena with discrete time. By analogy
with [5-7], we define the generalized nonlinear non-
Markovity parameter in the frequency-dependent case
as
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where i = 1, 2, ... and . (» ) is the power spectrum of
the ith memory function. It is convenient to use this
parameter for quantitative description of long-range
memory effects in the system considered together with
memory functions defined above. The values of : (o )
allow us to obtain a quantitative estimate of non-Mark-
ovity effects and the statistical collective memory in the
chaotic changes of the experimentally measured EEG
data. The parameters : (» ) allow classification of all the
observed processes into three important types [5]. A
Markov process corresponds to the situation where the
non-Markovity parameter takes an indefinitely large
value : (o ) — =, and the quasi-Markov processes
correspond to the case where : (o ) > 1. The limit case
¢{o ) = 1 describes non-Markovian processes. In this
case, the time scale of memory processes and the corre-
lation dynamics (or the nearest junior and senior mem-
ory function) coincide with each other.
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3. EXPERIMENTAL DATA

We quantitatively demonstrate the stochastic
description of the time—frequency peculiarities of epi-
lepsy. We use experimental data [8] on human EEGs.
These files show tonic—clonic seizures of two subjects
recorded with a scalp-right-central (C4) electrode
(linked earlobes reference). It contains a total of 3 min
with about 1 min preseizure, the seizure, and some
postseizure activity. The sampling rate is 102.4 Hz (see
the papers cited in [8] for more details).

4. NUMERICAL CALCULATIONS

We consider a discrete time series of the electric
activity as a one-point stochastic process

X = (x(T), x(T+:). x(T+2:). ..,

3)
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It is convenient to introduce the normalized time corre-
lation function for the quantitative description of time
series,
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where - 2 is the variance, N is the number of measure-
ments, and - is a finite discretization time. The key ele-
ment of the theory consists in transition from contin-
uum values, variables, and equations to discrete ones.
We then obtain a Liouville-like equation of motion for
multidimensional state vectors. We can use the method
of projection operators in a finite-dimensional vector
space. This allows splitting the Liouville-like discrete
equation of motion into two mutually orthogonal sub-
spaces, one of which is relevant and the other is irrele-
vant to discrete time correlations. We have also devel-
oped the method for obtaining the set of dynamic
orthogonal variables by the Gram—Schmidt orthogonal-
ization procedure.

Dynamical orthogonal variables were calculated
from initial time series (3) by the formulas (see [5, 6])
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where the parameters A, and A; were calculated using (2).
Simple, but cumbersome calculations show that the first
short-memory function m,(¢) represents a normalized
TCF of the first dynamic variable W,

(W, OW,(0)

> (6)
(W,(0)

m,(t) =

We then obtain a chain of finite-difference discrete
non-Markovian kinetic equations for the initial time
correlation function and memory functions of various
orders. We note that all the involved kinetic and relax-
ation parameters, the time correlation function, and the
memory functions can easily be found and calculated
directly from the experimental time series. The spectra
of memory functions were calculated using the fast
Fourier transform.
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5. NON-MARKOVIAN PROPERTIES OF EEGs

We have analyzed the time and frequency evolution
of the signals during tonic—clonic seizure by means of
the time-window technique. We find that the memory
function spectra and the statistical spectrum of the non-
Markovity parameter are valuable for quantitative and
qualitative analysis of epileptic seizures. Numerical
parameters based on the theory of discrete non-Mark-
ovian processes provide quantitative information about
the state of the brain before, during, and after the sei-
zure.

Non-Markovian properties are known to play an
essential role in the time dynamics of complex systems.
On the basis of our theory [5, 6], we can calculate mem-
ory functions My(¢), i = 0, 1, 2, 3 directly from experi-
mental data by Egs. (2.41)—(2.46) in [6]. We analyze the
properties of memory functions by calculating their
power frequency spectra. For a quantitative estimation
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Fig. 1. Time record of the first four orthogonal variables W, (a), W (b), W, (c), and W3 (d) of the sampling of electric activity during
the tonic—clonic seizure under study. The difference in the dimensions of the four variables must be taken into account in analyzing
the scales. The general form of all signals has definite similarity. Simultaneously, some differences in time behavior, W(#), are made
evident, especially for the states before and after the seizure. We emphasize that the whimsical entanglement of regular and chaotic
components is omnipresent in the time-recording window of all the signals. We also note that the difference between the raw EEG
data before, during, and after the seizure is sufficiently dramatic. However, simple registration of this fact does not allow us to reveal
such subtle features of EEG spectra as the presence or absence of the chaotic or regular components in the signal.
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Fig. 2. The window-time behavior of the power spectra u {» ), i =0 (a), 1 (b), 2 (c), and 3 (d), for the considered sampling with the
tonic—clonic seizure from the short-time window dynamics of the human brain electric activity. The sharp reduction (by almost one
order) of intensity of the low-frequency components of the spectra (in the region of s and s rhythms) attracted our attention at the
transition from u ( to u 1, u 5, and u 3. The spectra u (o ), i =1, 2, 3, contain rather strong noises distributed at regular intervals in the
entire frequency region. The intensity in the region of s and s rhythms sharply decreases in the first half of the seizure (7th, 8th, 9th
and, in part, 10th windows) in all « ;, i =0, 1, 2, 3. The sharp increase in the intensity in the low-frequency region of the spectrum
by almost 100 times (in the regions of s and 9 rhythms) is observed in the second half of the seizure (11th, 12th, and 13th windows).
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of the non- degree of Markovity, we use the frequency-
dependent generalized non-Markovity parameter « (o )
introduced by us previously [5]. From the theory in [5,
6], we can also calculate the quantitative values of the
kinetic and relaxation parameters » |, 2 5, » 3, 4 |, and a ,
that give additional information on the properties of the
complex system under study.

For the observed EEG spectra, we divide the entire
time evolution data into nonoverlapping epochs of
1024 data points each. The dynamics of the first four
dynamical orthogonal variables W, W,, W,, and W; of
the entire data set is presented in Fig. 1. For each epoch,
we have calculated the power spectra of the first four
memory functions u o(o ), u 1(o ), u2(e ), n 3(o ) and the
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first three points of statistical spectra of the non-Mark-
ovity parameter « (o ), ¢ (o ), and ¢ 3(o ) [5]. The time
evolution of the spectra is shown in three-dimensional
diagrams (Figs. 2 and 3). The time evolution of the
numerical parameters » 1, 1 5, 2 3, A 1, A 5 18 presented in
Fig. 4.

We emphasize that strong demarkovization of the
stochastic changes of brain electrical potentials with
decreasing numerical values :; to the point of unity is
exhibited during a tonic—clonic seizure. The chaotic
regime of the system is then replaced by the steady non-
Markovian-state regime.

It can be seen from Figs. 1a—1d that the time evolu-
tion of the dynamic orthogonal variables W;,i =0, 1, 2,
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Fig. 3. The window-time behavior of the first three points of the non-Markovity parameter . ;( ), i = 1 (a), 2 (b), and 3 (c), for the

long sampling including the tonic—clonic seizure during epilepsy. For the state before the seizure, the quasi-Markovian behavior
(=1 ~ 10) of the first point . {(» ) in the low-frequency region (with s and « rhythms) is obvious. The beginning of the seizure (7th,

8th, 9th, and 10th windows) exhibits a strong non-Markovity (: | ~ 1) on all frequencies of the full spectrum. A weak non-Markovity

in the region of s and s rhythms (- — 4) is found during the seizure. A strong non-Markovity on all frequencies is established
immediately after termination of the seizure (14th window). The frequency behavior of : 5(» ) is characterized by steady non-Mark-

ovity (.3 — 1) in all the windows and in the entire frequency region. A weak quasi-Markovian noise (in the region of « and s

rhythms) appears before the seizure (2nd and 5th windows) and at the end of the seizure (12th, 13th, and 14th windows). The behav-
ior of parameter : 5(» ) is rather peculiar. A strong non-Markovity (: , ~ 1) appears long before the seizure (3rd, 4th, 5th, and 6th

windows). Further development of the seizure is accompanied by a slight noise in : 5(» ) in the region of « and p rhythms. The ter-
mination of the seizure results in a strong non-Markovity (. , ~ 1) in the 13th window. Noisiness in the entire frequency range of the
14th window then occurs. The steady non-Markovity (. , ~ 1) is appreciable in the 15th, 16th, and 17th windows, appearing after
termination of the seizure. The low-frequency (in the region of s rhythms with . , ~ 1) and high-frequency (in the top border of the
y-spectrum with . , ~ 3) sites of the spectrum are intensely noisy.
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Fig. 4. The window-time behavior of the kinetic (» | (a), » , (b), and » 5 (¢)) and relaxation (1 | (d) and 4 , (e)) parameters for the
time sampling at epilepsy with the tonic—clonic seizure. The kinetic parameters » 1, » 5, and » 5 are always negative and increase with
seizure. The relaxation parameters | and 1 , change sharply with the sign change from the beginning of the seizure. The most dra-
matic changes in the behavior of » | and 1 , occur during the seizure in the opposite directions.

3, can be smoothed. Therefore, the scales of these vari-
ables before and during the seizure are practically iden-
tical. The beginning of the seizure (see Figs. 2a-2d) is
characterized by a sharp recession of low-frequency
peaks in the spectrum u o(o ) (7th—10th windows); these
peaks in . ¢(» ) rise sharply at the end of the seizure and
immediately after the seizure. The spectra of u (o ),/ =
1, 2, 3, differ by white noise and low-frequency bursts
on the tail of the seizure. These bursts are most appre-
ciable in the behavior of the spectra . 5(» ) and u 3(o ).

The behavior of the first three points in the statistical
spectrum of the non-Markovity parameter : (» ), i = 1,
2, 3 (see Fig. 3), turn out to be most indicative and
demonstrative. The state before the seizure can be con-
sidered quasi-Markovian in the 1st-6th windows for
the first level in the low-frequency region (here, = ;(o )
reaches a value of 10) and in the 1st and 2nd windows

for the second level (: (o ) ~ 1.5). The beginning of the
seizure (the 7th and 8th windows) is accompanied by
the strong non-Markovity of the first level (c (o ) = 1).
The increase in low-frequency non-Markovity on the
first (: | ~ 3.8), second (: , ~ 1.5), and the third (. 5 ~ 1.5)
relaxation levels is visible at the end of the seizure
(10th—13th windows). The behavior on the third level
with a value of :; = 1 can be considered non-Mark-
ovian.

Non-Markovian relaxation behavior on the second
level is noteworthy (see Fig. 3b). The strong non-Mark-
ovity (=, ~ 1) in the entire frequency region appears
long before the seizure in the range from the third to the
sixth windows. The weak noise at the mean frequencies
is appreciable during the seizure (10th—12th windows).
The ending of the seizure coincides with the non-Mark-
ovian 13th and quasi-Markovian 14th windows. The
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appearance of a strongly pronounced non-Markovian
state on the second level with a value of =, ~ 1 is there-
fore a clear precursor to the seizure. It is significant that
a similar precursor is absent in other non-Markovian
markers.

The relaxation (. |, » ,, and » 3) and kinetic (a ; and
A ») parameters calculated with the formulas of the the-
ory (see Fig. 4) are very sensitive to approaching the
seizure. All the parameters » ;, i = 1, 2, 3, always remain
negative and change within wide limits: (—<0.97 < » | <
-0.15,-1.03 < », < —0.74, and -1.03 < »; < —0.89) in
units of . ~!. Parameters  ; and a , change sign at the
time of the seizure. This corresponds to alternation in
the type of solution to the discrete nonlinear kinetic sto-
chastic equation (see Egs. (2.56)—(2.58) in [6]). All of
the above parameters are sensitive to approaching the
seizure. A sharp decrease in the values and the sign
alternation of ». ; and 4 ; can also be considered a quan-
titative precursor to a seizure.

Therefore, the increase in parameters « (o ) can be
considered a markovization of the stochastic process. It
may signify an increase in the chaotic components of
EEG signals. Simultaneously, a decrease in : (o ) to
unity is related to demarkovization of the process under
study and to an increase in the regular components of
the signals. It is obvious from Figs. 14 that the specific
alternations, fast and sudden changes of chaotic and
regular regimes, are inherent features of the stochastic
variation of electric potentials during epileptic seizure.

6. CONCLUSIONS

We have clearly demonstrated that the set of kinetic,
relaxation, dynamic, and spectral parameters and char-
acteristics of a discrete stochastic process are valuable
for quantification of stochastic processes of markoviza-

tion and demarkovization in EEG data and for predic-
tion of and precursor to epileptic seizure. Because a
similar situation is typical of the majority of the phe-
nomena in live systems, our findings are most relevant
for life sciences.
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