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1.  INTRODUCTION
We develop a new approach that  could provide us

with a powerful means of discrete time series analysis
and processing. The subject of our study is human elec-
troencephalogram (EEG) records, because we address
our work to those who are interested in signal process-
ing in live complex systems. In studying natural com-
plex  systems,  very  little  is  usually  known about  their
internal  structure  and  the  relationship  between  their
components. The time series describing the dynamics
of  one  or  several  parameters  are  typically  used  for
obtaining  diagnostic  information.  The  received  infor-
mation is inadequate for describing all  the degrees of
freedom  of  this  system.  Quantitative  and  qualitative
methods  proposed  recently  allow  constructing  the
framework for the description of natural complex sys-
tems. It allows diagnosing diseases without going into
detail of the internal structure underlying natural com-
plex  systems.  A  similar  approach  can  be  used  to
describe and investigate diversified complex systems as
they are related only to the concepts of this framework.
Here, we present the results of applying a new frame-
work  involving  ideas  of  discrete  non-Markovian  sto-
chastic processes to the analysis of electric potentials of
brain. It turns out that discussing the results in terms of
demarkovization and markovization is the best way to
uncover the features of seizure dynamics.

Brain cells communicate by producing tiny electri-
cal impulses. In an EEG, electrodes are placed on the
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scalp  over  multiple  areas  of  the  brain  to  detect  and
record the electrical pulses within the brain. The EEG
is used to help diagnose the presence and type of sei-
zure disorders, confusion, head injuries, brain tumors,
infections, degenerative diseases, and metabolic distur-
bances that affect the brain.

It is well known that epilepsy is one of the most seri-
ous diseases of the human brain [1, 2]. The dynamics of
the electric signals accompanying it belongs to a class
of nonlinear,  nonstationary,  and nonergodic processes
of complex systems of a live nature [3, 4]. The discrete
and non-Markovian properties of time variation of the
signals  and  the  sudden  alternation  of  the  behavior
regimes  must  be  taken  into  account  in  analyzing  the
electrical activity of brain potentials. Together with the
fast change of chaotic and regular modes in the behav-
ior of the system, this creates serious problems for the
diagnosis  and treatment of  patients  with epilepsy sei-
zure.  This  is  why  traditional  methods  of  nonlinear
dynamics,  such  as  the  Lyapunov  exponent,  Kolmog-
orov–Sinai entropy, and correlation and fractal dimen-
sions,  are  not  sufficiently sensitive for  the purpose of
distinction  between  different  chaotic  regimes  in  epi-
lepsy.

2.  BASIC THEORY

Our approach is based on the recent theory for sta-
tionary [5] and nonstationary cases [6] of discrete sto-
chastic processes in complex systems. We analyze the
stochastic process on the basis of the chain of the cou-
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pled  non-Markovian  discrete  equations  for  the  initial
discrete time correlation function (TCF) a(t) (t = mt ),

(1)

where l n is the eigenvalue spectrum of the Liouville
operator i and L n are  the  general  relaxation  para-
meters,

The  kinetic  nonlinear  finite-difference  Eqs.  (1)  are
analogous to the well-known chain of kinetic equations
of the Zwanzig–Mori (ZM) type. These ZM equations
play  a  fundamental  role  in  the  modern  statistical
mechanics of nonequilibrium phenomena with contin-
uous  time.  Kinetic  Eqs.  (1)  can  be  considered  a  dis-
crete-difference  analogy  of  hydrodynamic  equations
for physical phenomena with discrete time. By analogy
with  [5–7],  we  define  the  generalized  nonlinear  non-
Markovity parameter in the frequency-dependent case
as

(2)

where i = 1, 2, … and m i(w ) is the power spectrum of
the ith  memory  function.  It  is  convenient  to  use  this
parameter  for  quantitative  description  of  long-range
memory effects in the system considered together with
memory functions defined above.  The values of e i(w )
allow us to obtain a quantitative estimate of non-Mark-
ovity effects and the statistical collective memory in the
chaotic changes of the experimentally measured EEG
data. The parameters e i(w ) allow classification of all the
observed  processes  into  three  important  types  [5].  A
Markov process corresponds to the situation where the
non-Markovity  parameter  takes  an  indefinitely  large
value e i(w ) ¥ ,  and  the  quasi-Markov  processes
correspond to the case where e i(w ) > 1. The limit case
e i(w ) » 1  describes  non-Markovian  processes.  In  this
case, the time scale of memory processes and the corre-
lation dynamics (or the nearest junior and senior mem-
ory function) coincide with each other.
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3.  EXPERIMENTAL DATA
We  quantitatively  demonstrate  the  stochastic

description of the time–frequency peculiarities of epi-
lepsy. We use experimental data [8] on human EEGs.
These files show tonic–clonic seizures of two subjects
recorded  with  a  scalp-right-central  (C4)  electrode
(linked earlobes reference). It contains a total of 3 min
with  about  1  min  preseizure,  the  seizure,  and  some
postseizure activity. The sampling rate is 102.4 Hz (see
the papers cited in [8] for more details).

4.  NUMERICAL CALCULATIONS
We  consider  a  discrete  time  series  of  the  electric

activity as a one-point stochastic process

(3)

It is convenient to introduce the normalized time corre-
lation function for the quantitative description of time
series,

(4)

where s
2 is the variance, N is the number of measure-

ments, and t  is a finite discretization time. The key ele-
ment  of  the theory consists  in  transition from contin-
uum values, variables, and equations to discrete ones.
We then obtain a Liouville-like equation of motion for
multidimensional state vectors. We can use the method
of  projection  operators  in  a  finite-dimensional  vector
space. This allows splitting the Liouville-like discrete
equation of motion into two mutually orthogonal sub-
spaces, one of which is relevant and the other is irrele-
vant to discrete time correlations. We have also devel-
oped  the  method  for  obtaining  the  set  of  dynamic
orthogonal variables by the Gram–Schmidt orthogonal-
ization procedure.

Dynamical  orthogonal  variables  were  calculated
from initial time series (3) by the formulas (see [5, 6])
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where the parameters li and Li were calculated using (2).
Simple, but cumbersome calculations show that the first
short-memory  function mn(t)  represents  a  normalized
TCF of the first dynamic variable Wn ,

(6)

We then obtain a chain of finite-difference discrete
non-Markovian  kinetic  equations  for  the  initial  time
correlation function and memory functions of various
orders. We note that all the involved kinetic and relax-
ation parameters, the time correlation function, and the
memory functions can easily be found and calculated
directly from the experimental time series. The spectra
of  memory  functions  were  calculated  using  the  fast
Fourier transform.
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5.  NON-MARKOVIAN PROPERTIES  OF  EEGs

We have analyzed the time and frequency evolution
of the signals during tonic–clonic seizure by means of
the time-window technique. We find that the memory
function spectra and the statistical spectrum of the non-
Markovity parameter are valuable for quantitative and
qualitative  analysis  of  epileptic  seizures.  Numerical
parameters based on the theory of discrete non-Mark-
ovian processes provide quantitative information about
the state of the brain before, during, and after the sei-
zure.

Non-Markovian  properties  are  known  to  play  an
essential role in the time dynamics of complex systems.
On the basis of our theory [5, 6], we can calculate mem-
ory functions Mi(t), i = 0, 1, 2, 3 directly from experi-
mental data by Eqs. (2.41)–(2.46) in [6]. We analyze the
properties  of  memory  functions  by  calculating  their
power frequency spectra. For a quantitative estimation
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Fig. 1. Time record of the first four orthogonal variables W0 (a), W1 (b), W2 (c), and W3 (d) of the sampling of electric activity during
the tonic–clonic seizure under study. The difference in the dimensions of the four variables must be taken into account in analyzing
the scales. The general form of all signals has definite similarity. Simultaneously, some differences in time behavior, Wi(t), are made
evident, especially for the states before and after the seizure. We emphasize that the whimsical entanglement of regular and chaotic
components is omnipresent in the time-recording window of all the signals. We also note that the difference between the raw EEG
data before, during, and after the seizure is sufficiently dramatic. However, simple registration of this fact does not allow us to reveal
such subtle features of EEG spectra as the presence or absence of the chaotic or regular components in the signal.
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Fig. 2. The window-time behavior of the power spectra m i(w ), i = 0 (a), 1 (b), 2 (c), and 3 (d), for the considered sampling with the
tonic–clonic seizure from the short-time window dynamics of the human brain electric activity. The sharp reduction (by almost one
order) of intensity of the low-frequency components of the spectra (in the region of d  and J  rhythms) attracted our attention at the
transition from m 0 to m 1, m 2, and m 3. The spectra m i(w ), i = 1, 2, 3, contain rather strong noises distributed at regular intervals in the
entire frequency region. The intensity in the region of d  and J  rhythms sharply decreases in the first half of the seizure (7th, 8th, 9th
and, in part, 10th windows) in all m i, i = 0, 1, 2, 3. The sharp increase in the intensity in the low-frequency region of the spectrum
by almost 100 times (in the regions of d  and J  rhythms) is observed in the second half of the seizure (11th, 12th, and 13th windows).
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of the non- degree of Markovity, we use the frequency-
dependent generalized non-Markovity parameter e i(w )
introduced by us previously [5]. From the theory in [5,
6], we can also calculate the quantitative values of the
kinetic and relaxation parameters l 1, l 2, l 3, L 1, and L 2
that give additional information on the properties of the
complex system under study.

For the observed EEG spectra, we divide the entire
time  evolution  data  into  nonoverlapping  epochs  of
1024 data  points  each.  The dynamics  of  the  first  four
dynamical orthogonal variables W0, W1, W2 , and W3 of
the entire data set is presented in Fig. 1. For each epoch,
we have calculated the power spectra of the first four
memory functions m 0(w ), m 1(w ), m 2(w ), m 3(w )  and the
                                           
first three points of statistical spectra of the non-Mark-
ovity  parameter  e 1(w ), e 2(w ),  and e 3(w )  [5].  The time
evolution of the spectra is shown in three-dimensional
diagrams  (Figs.  2  and  3).  The  time  evolution  of  the
numerical parameters l 1, l 2, l 3, L 1, L 2 is presented in
Fig. 4.

We  emphasize  that  strong  demarkovization  of  the
stochastic  changes  of  brain  electrical  potentials  with
decreasing numerical values e i to the point of unity is
exhibited  during  a  tonic–clonic  seizure.  The  chaotic
regime of the system is then replaced by the steady non-
Markovian-state regime.

It can be seen from Figs. 1a–1d that the time evolu-
tion of the dynamic orthogonal variables Wi , i = 0, 1, 2,
Fig. 3. The window-time behavior of the first three points of the non-Markovity parameter e i(w ), i = 1 (a), 2 (b), and 3 (c), for the
long sampling including the tonic–clonic seizure during epilepsy. For the state before the seizure, the quasi-Markovian behavior
(e 1 ~ 10) of the first point e 1(w ) in the low-frequency region (with d  and a  rhythms) is obvious. The beginning of the seizure (7th,
8th, 9th, and 10th windows) exhibits a strong non-Markovity (e 1 ~ 1) on all frequencies of the full spectrum. A weak non-Markovity
in the region of d  and J  rhythms (e   4) is found during the seizure. A strong non-Markovity on all frequencies is established
immediately after termination of the seizure (14th window). The frequency behavior of e 3(w ) is characterized by steady non-Mark-
ovity (e 3  1) in all the windows and in the entire frequency region. A weak quasi-Markovian noise (in the region of a  and b

rhythms) appears before the seizure (2nd and 5th windows) and at the end of the seizure (12th, 13th, and 14th windows). The behav-
ior of parameter e 2(w ) is rather peculiar. A strong non-Markovity (e 2 ~ 1) appears long before the seizure (3rd, 4th, 5th, and 6th
windows). Further development of the seizure is accompanied by a slight noise in e 2(w ) in the region of a  and b  rhythms. The ter-
mination of the seizure results in a strong non-Markovity (e 2 ~ 1) in the 13th window. Noisiness in the entire frequency range of the
14th window then occurs. The steady non-Markovity (e 2 ~ 1) is appreciable in the 15th, 16th, and 17th windows, appearing after
termination of the seizure. The low-frequency (in the region of d  rhythms with e 2 ~ 1) and high-frequency (in the top border of the
g -spectrum with e 2 ~ 3) sites of the spectrum are intensely noisy.
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Fig. 4. The window-time behavior of the kinetic (l 1 (a), l 2 (b), and l 3 (c)) and relaxation (L 1 (d) and L 2 (e)) parameters for the
time sampling at epilepsy with the tonic–clonic seizure. The kinetic parameters l 1, l 2, and l 3 are always negative and increase with
seizure. The relaxation parameters L 1 and L 2 change sharply with the sign change from the beginning of the seizure. The most dra-
matic changes in the behavior of L 1 and L 2 occur during the seizure in the opposite directions.
3, can be smoothed. Therefore, the scales of these vari-
ables before and during the seizure are practically iden-
tical. The beginning of the seizure (see Figs. 2a–2d) is
characterized  by  a  sharp  recession  of  low-frequency
peaks in the spectrum m 0(w ) (7th–10th windows); these
peaks in m 0(w ) rise sharply at the end of the seizure and
immediately after the seizure. The spectra of m j(w ), j =
1, 2, 3, differ by white noise and low-frequency bursts
on the tail of the seizure. These bursts are most appre-
ciable in the behavior of the spectra m 2(w ) and m 3(w ).

The behavior of the first three points in the statistical
spectrum of the non-Markovity parameter e i(w ), i = 1,
2,  3  (see  Fig.  3),  turn  out  to  be  most  indicative  and
demonstrative. The state before the seizure can be con-
sidered  quasi-Markovian  in  the  1st–6th  windows  for
the first level in the low-frequency region (here, e 1(w )
reaches a value of 10) and in the 1st and 2nd windows
                                           
for the second level (e 2(w ) ~ 1.5). The beginning of the
seizure (the 7th and 8th windows) is accompanied by
the strong non-Markovity of the first level (e i(w ) »  1).
The  increase  in  low-frequency  non-Markovity  on  the
first (e 1 ~ 3.8), second (e 2 ~ 1.5), and the third (e 3 ~ 1.5)
relaxation  levels  is  visible  at  the  end  of  the  seizure
(10th–13th windows). The behavior on the third level
with  a  value  of  e 3 »  1  can  be  considered  non-Mark-
ovian.

Non-Markovian relaxation behavior on the second
level is noteworthy (see Fig. 3b). The strong non-Mark-
ovity  (e 2 »  1)  in  the  entire  frequency  region  appears
long before the seizure in the range from the third to the
sixth windows. The weak noise at the mean frequencies
is appreciable during the seizure (10th–12th windows).
The ending of the seizure coincides with the non-Mark-
ovian  13th  and  quasi-Markovian  14th  windows.  The
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appearance  of  a  strongly  pronounced  non-Markovian
state on the second level with a value of e 2 »  1 is there-
fore a clear precursor to the seizure. It is significant that
a  similar  precursor  is  absent  in  other  non-Markovian
markers.

The relaxation (l 1, l 2, and l 3) and kinetic (L 1 and
L 2) parameters calculated with the formulas of the the-
ory (see Fig.  4)  are  very sensitive  to  approaching the
seizure. All the parameters l i, i = 1, 2, 3, always remain
negative and change within wide limits: (–0.97 £  l 1 £

- 0.15, –1.03 £  l 2 £  –0.74, and –1.03 £  l 3 £  –0.89) in
units  of  t –1.  Parameters L 1  and L 2  change sign at  the
time of the seizure. This corresponds to alternation in
the type of solution to the discrete nonlinear kinetic sto-
chastic equation (see Eqs. (2.56)–(2.58) in [6]). All of
the above parameters are sensitive to approaching the
seizure.  A  sharp  decrease  in  the  values  and  the  sign
alternation of l i and L i can also be considered a quan-
titative precursor to a seizure.

Therefore,  the  increase in  parameters  e i(w )  can be
considered a markovization of the stochastic process. It
may signify an increase in the chaotic components of
EEG  signals.  Simultaneously,  a  decrease  in  e i(w )  to
unity is related to demarkovization of the process under
study and to an increase in the regular components of
the signals. It is obvious from Figs. 1–4 that the specific
alternations,  fast  and  sudden  changes  of  chaotic  and
regular regimes, are inherent features of the stochastic
variation of electric potentials during epileptic seizure.

6.  CONCLUSIONS
We have clearly demonstrated that the set of kinetic,

relaxation, dynamic, and spectral parameters and char-
acteristics of a discrete stochastic process are valuable
for quantification of stochastic processes of markoviza-
                       
tion and demarkovization in EEG data and for predic-
tion  of  and  precursor  to  epileptic  seizure.  Because  a
similar situation is typical of the majority of the phe-
nomena in live systems, our findings are most relevant
for life sciences.
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