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Abstract. Given a data set, a top-k Skyline query returns the k most interesting elements of the
Skyline query based on some kind of user-defined preference. That means, sometimes not only the
Pareto frontier is of interest, but also the stratum, the level, behind the Skyline to get exactly the
top-k objects from a partially ordered set stratified into subsets of non-dominated tuples. In this paper,
we extend the definition of top-k Skyline to form multi-level Skyline sets. Multi-level Skylines are a
variant of top-k Skylines which do not stop after k tuples, but compute all Skyline levels. We present
a parallel algorithm for multi-level Skyline computation on multi-core architectures and demonstrate
through extensive experimentation on synthetic and real data sets that our algorithms can result in a
significant performance advantage over existing techniques.
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1 Introduction

Skyline and Pareto preference queries [BKS01,CCM13,Kie02, KEW11,DPEQ8] are well known in the database
and artificial intelligence community. The Skyline contains the objects that are not dominated by any others
based on a user’s defined preference. However, the drawback of this approach is that the output size cannot be
controlled. As a result the output can contain too few or too many objects. While too few objects can result
in the user choosing none, too many make it harder for the user to make any decision. Therefore, top-k and
multi-level Skylines were introduced [EP15,PE15]. This approach selects only the k best objects and further
retrieves the objects directly dominated by those of the Skyline if more are needed. Hence, the multi-level
Skyline consists of levels, each containing a different “Skyline”. Skyline objects will only be dominated by
objects in lower levels.

Example 1.1. Let us search for a hotel that is cheap and close to the beach. Unfortunately, these two goals

are conflicting as the hotels near the beach tend to be more expensive. Interesting are all hotels that are not
worse than any other hotel in these both dimensions. Table 1 presents a sample data set.

Table 1: Sample data set of hotels.

hotel| id|beach dist. (km)|price (€)|board

pl 2.00 25|none
p2 1.25 50|breakfast
p3 0.75 75(half board
p4 0.50 150|full board
p5 0.25 225|full board
p6 1.75 110|half board
p7 1.10 120|breakfast
p8 0.75 220|full board
P9 1.60 165|half board

pl0 1.50 185 |breakfast
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The hotels pg, p7,p9, P10 are dominated by hotel p3. The hotel pg is dominated by p4, while the hotels
P1, P2, P3, P4, P5 are not dominated by any other hotels and build the Skyline S, cp. Figure 1.

In our example above maybe five hotels are not enough, so we have to present the next Skyline level called
S}, (Skyline, multi-level 1, dashed line in Figure 1): pg, p7, ps. Also, the third best result set S, might be of
interest: P9, P10-

Distance to the beach [km]

50 100 150 200
Price [Euro]

Fig. 1: Multi-level Skylines.

In [EP15,PE15] we presented how to evaluate such multi-level Skylines exploiting the lattice structure con-
structed by a Skyline query over low-cardinality domains. However, many Skyline applications involve do-
mains with high cardinalities, such that computing the [-th Skyline level must be processed efficiently. In
this technical report we propose an efficient strategy for multi-level Skylines computation on multi-core ar-
chitectures. Our algorithm consists of two parallel and one sequential phase and shows its advantage to other
existing approaches.

The remainder of the paper is organized as follows: Section 2 presents related work and their approaches for
the mentioned problem. Section 3 defines the Skyline, the multi-level Skyline and top-k Skylines. Section 4
explains the basics of the parallel algorithm based on a sequential variant. Section 5 provides the details and
a pseudo code for our parallel algorithm. Section 6 shows comprehensive experimental results and how the
algorithm copes with existing approaches. The last Section, Section 7, provides a conclusion and future work
on how to improve the parallel version.

2 Related Work

A Skyline or Pareto preference result set can be identified for example with one of the following algorithms:
Block-Nested-Loop (BNL) [BKS01], Divide & Conquer [BKS01], Sort-Filter-Skyline (SFS) [CGGLO03] or LESS
(Linear Elimination Sort for Skyline) [GSG07]. Many of these algorithms have been adapted for parallel
Skyline computation, e.g., [SLB10,LVDN,CSAB15]. There are also algorithms utilizing an index structure
to compute the Skyline, e.g., [PTFS03,LZLL07,EW17], just to name a few. Another approach exploits the
lattice structure induced by a Skyline query over low-cardinality domains. Instead of direct comparisons of
tuples, a lattice structure represents the better-than relationships. Examples for such algorithms are Lattice
Skyline [MPJ07] and Hezagon [PKO07], both having a linear time complexity. There is also work on parallel
preference computation exploiting the lattice structure [EK14,EK15]. The authors of [ERK15] present how
to handle high-cardinality domains and therefore makes lattice algorithms available for a broad scope of
applications, see also [EP17]. Further work and variants on Skylines are, e.g., [End15,EK11,ERK14].

Due to the fact that the output size cannot be controlled in the above mentioned algorithms, many approaches
were invented to return the best k objects, e.g., [BG04,GV05a,LYLC06,BGG07], or to cluster Pareto optimal
results [KEK17]. They combined the Skyline and top-k approach to reduce the result to &k tuples. This can be
done by computing the Skyline and applying some sort of post-processing afterwards. In [GV05b] and [BGGO7]




the authors calculate the first stratum/level of the Skyline with some sort of post-processing. Afterward, they
define the k best objects or continue Skyline computation without the first level. The authors of [LYHO09]
abstract Skyline ranking as a dynamic search over Skyline subspaces guided by user-specific preferences.

In [TXP07,GV09] and [PP09] an index based approach is used for top-k Skyline computation. However, index
based algorithms in general cannot be used if there is a join or Cartesian product involved in the query. Su
et al. [SCL10] consider top-k combinatorial Skyline queries, and Zhang et al. [ZZL*11] discuss a probabilistic
top-k Skyline operator over uncertain data. Top-k queries are also of interest in the computation of spatial
preferences [YDMV07,RJVDN10], where the aim is to retrieve the k best objects in a spatial neighborhood
of a feature object. Yu et al. [YAY12] consider the problem of processing a large number of continuous
top-k queries, each with its own preference. The authors of [VDNVO08] present a framework for top-k query
processing in large-scale P2P networks, where the data set is horizontally distributed to peers. For this they
compute k-skyband sets as a pre-processing step, which are aggregated to answer any incoming top-k queries.

Another approach which addresses the top-k problem is to use multi-Level preference queries [EP15,PE15],
where all levels “behind” the Skyline are computed to solve the top-k approach. The idea of multi-level
preferences was already mentioned by Chomicki [Cho03] under the name of iterated preferences. However,
Chomicki has never presented an algorithm for the computation of multi-level preferences. The algorithms
presented in [EP15,PE15] rely on the lattice structure constructed by a Pareto preference query over low-
cardinality and support multi-level preference queries as well as top-k Skylines. However, this approach cannot
exploit modern multi-core architectures. Thus, our report will present a parallel algorithm which not only
supports multi-level preference query evaluation, but is also more efficient for high dimensional data sets than
previous attempts.

3 Preliminaries

A Pareto preference or Skyline query selects those tuples from a data set that are optimal with respect to a
user defined multicriteria function. Hence, a Skyline is a subset where every tuple is not dominated by any
other tuple in the original data set. A tuple dominates another one if it is better in one dimension and at
least equally good in all other dimensions. Thus, the dominance is defined as follows:

Definition 3.1 (Dominance and Indifference). Assume a set of vectors D € R%. The so called Pareto
ordering (®) is defined for all x = (x1,...,24), Y = (Y1, .-, Ya) € D with d dimensions:

x<®y<:>Vj€{1,...,d}:xj§yj/\ (1)
Ji € {1,...d} : z; <y,

z and y are called indifferent on D, denoted as x ~ y if and only if ~(z <g y) N =(y <g ).

On basis of the dominance the Skyline can be defined as follows:

Definition 3.2 (Skyline). The Skyline S of D is defined by the mazima in D according to the ordering
<g, or explicitly by the set

SD)={teD|PueD:u<gt} (2)

In this sense the minimal values in each domain are preferred and are written as x <g y if © is better than
Y.

If more tuples are needed than available in the Skyline, succeeding multi-level Skylines need to be considered.
These Skylines will be determined in the same way as the original one but without considering tuples from
previous Skyline sets. Each Skyline will be added to a level starting at level 0. Thus, the multi-level Skyline
can be retrieved by assigning every tuple to its appropriate level.
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Definition 3.3 (Multi-Level Skyline [EP15]). The multi-level Skyline set of level l (i.e., the I-th stratum)
for a data set D is defined as

-1
anl =38 (D\ U S’Z:nl(D)> (3)

=0

Thereby S°,(D) is identical to the standard Skyline S(D), and S'me* denotes the non-empty set with the

ml

highest level.

If there aren’t enough tuple in level 0, the next level of the multi-level Skyline needs to be computed to
specify the best k tuples.

Definition 3.4 (Top-k Skyline). A top-k Skyline query Sk (D) on an input data set D computes the top
k elements with respect to the Skyline preferences. Formally:

1. If|S(D)| > k, then return only k tuples from S(D), because not all elements can be returned due to result
set size limitations. Any k tuples are a correct choice.

2. If |S(D)| = k, then Sk(D) = S(D). That means return all tuples of S,(D). In this case there is no
difference between the Skyline set and the top-k result set.

3. If |S(D)| < k, then the elements of S(D) are not enough for an adequate answer. We have to find a value
j which meets the following criterion:

<k<

=1
U Sm(D)
i=0

U%(D)‘ (4)

That means, not only all elements of S(D) = S0 ,(D) are returned, but also some of S%I(D), and if
the number of result tuples is still less than k, then S2,(D), and so on. Note that from S’ (D) exactly

k— UZ;& i (D) elements will be returned, which might not be all of it.

4 Sequential Multi-Level Skyline Algorithm

Before we explain our parallel algorithm, a sequential variant is introduced to explain the overall idea of the
algorithm. Our algorithms are extensions of the multi-core Skyline algorithm presented in [CSAB15] with
adaptations for multi-level Skyline evaluation.

Our sequential approach is depicted in Algorithm 1. First of all the data set will be sorted by the Manhattan
norm, also called L;. This ensures that no succeeding tuples in the data set dominates preceding objects.
However, it can happen that following tuples are indifferent to all tuples in a prior level and therefore will be
placed in earlier levels. Due to this reason the algorithm can only be stopped, without computing the whole
multi-level Skyline, if the first level has &k points. This can be checked after each tuple iteration (after line 22).
After sorting, each tuple in the data set will be compared to each level and tuple of the multi-level Skyline.
If the point is not dominated by all the points of a level, it will be added to this specific level. Otherwise, it
will be compared to all following levels until one is found which contains no points which dominate it.

Given the data set in Table 2 (left) the sequential algorithm generates the output next to it (right table).
The left column of the right table corresponds to the different levels of the multi-level Skyline (S,,,;), whereas
the right column contains the ID of the tuples assigned to this level.




Algorithm 1 Sequential Multi-Level Skyline Algorithm based on L,

Input: Data set D, top-k value k
Output: & Multi-level Skyline sets w.r.t. MIN preference

1: Sort D according to L; := Ele Ti, v €D

2: Spulk] + [<list>] // initialize array (size k) of lists to store Sy, sets
3: // Smi[0] is the first level, i.e., S(D)
4: level < 0 // Maximum index of known Skyline level

5: for all p e D do

6 for i =0 to level do
T isSkylinePoint <— TRUE
8: for all ¢ € Syuli] do // Check each point in the i-th level
9: if ¢ <g p then // q dominates p
10: isSkylinePoint +— FALSE // p is dominated by any ¢ in Sp,[i]
11: break ’for all’ loop line 8 // Goto line 14
12: end if
13: end for
14: if isSkylinePoint then
15: Smili]-add(p) // Add p to the i-th level
16: break ’for all’ loop line 6 // Goto line 19
17: end if
18: end for
19: if lisSkylinePoint and level < k — 1 then // k multi-levels, 0,--- &k —1
20: level4+
21: Smillevel].add(p)
22: end if
23: end for

24: return the first k elements from S,,;

[ID[Distance (meter)[Price (€)[ L]

1 100 40[140
2 150 200(350
3 300 140[440
4 200 280480 o T35
5 400 100[500 S’"” 7 : ’7”
6 350 220(570 S””Q { 5 9
7 500 120(620 S"”S 0
3 600 160[760 mia| {10}
9 550 240[790

10 600 320[920

Table 2: Sequential algorithm example

5 Parallel Multi-Level Skyline Algorithm

This section provides details on our parallel algorithm which is based on the sequential approach presented
in Section 4. The algorithm is shown in Algorithm 2. Again, we sort the data by the Manhattan norm (line
1). Afterwards the data will be divided into b blocks. Each block will be processed successively in two parallel
and one sequential phase. The first phase (CompareToSml) compares each tuple of the block with the current
multi-level Skyline. In the second phase (CompareToPeers) each tuple will be compared to all preceding
tuples of the same block. In the final sequential step (UpdateGlobalSkylineSml) each tuple of a block will
be added, based on the results of the previous phases, to the appropriate level of the multi-level Skyline.
After every block was processed, the first k elements starting from level 0 will be returned.
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Algorithm 2 Parallel Multi-Level Algorithm

Input: Data set D, k, block size b

Output: &k Multi-Level Skyline sets w.r.t. MIN preference
Sort D according to L; := Ele Ti, v € D
Smilk] + [<list>]

while D # () do

1:

—_

B < next b points from D

D+« D\B

B = CompareToSml(Sm, B)

B = CompareToPeers(B)
UpdateGlobalSkylineSml(S,,;, B)

end while
: return the first k elements from S,.;

// initialize global multi-levels Sy
// Read data in blocks
// Parallel Phase I

// Parallel Phase II
// Phase III

During the CompareToSml phase (see Algorithm 3) a tuple will be compared to all levels and all tuples in the
multi-level Skyline. If it is not dominated by all tuples of one of the levels, this level will be assigned to the
tuple (line 11). Otherwise, it will be marked as pruned and won’t be considered anymore.

Algorithm 3 CompareToSml

Input: S, B

Output: B

1: parallel for each b € B do

2 for j =0 to k do

3 mark b as not dominated

4: for all g in level S;,[j] do

5: if ¢ <g b then

6: mark b as dominated

7 break ’for loop’ line 4
8: end if

9: end for

10: if b is not marked as dominated then
11: b.level + j

12: break ’for loop’ line 2

13: end if

14: end for

15: if b is marked as dominated then
16: mark b as pruned

17: end if

18: end parallel for each
19: return B

// Goto line 10

// b is not dominated by any ¢ in Smi[j]
// Goto line 15

// all k multi-levels are done

The second phase CompareToPeers (see Algorithm 4) compares all tuples in the block to its predecessors. If
one of them dominates the tuple, it will be added to a list of dominator (line 9). Only predecessors need to
be considered because due to the sorting no following tuple in the same block will dominate it.

Unlike the other phases UpdateGlobalSkylineSml (see Algorithm 5) runs sequential and adds each tuple of
a block to its respective level. There are two cases which needs to be considered to assign a tuple its correct
level. Firstly, the level needs to be higher than the level of all tuples in the multi-level Skyline which dominate
it. This level was assigned to the tuple as a result of the CompareToSml phase. Secondly, the level should
be higher than the level of every tuple in the same block dominating it. The levels of the dominator can be
retrieved from the dominator list computed in the CompareToPeers phase.




With this list, the maximum level from the dominator can be identified (line 6). If the tuple’s level is smaller
than this maximum level plus one, maximum level plus one is its new level. Afterwards it will be checked if
its level is smaller than k. In this case it will be added to this level of the multi-level Skyline. Otherwise, the
tuple will be discarded. For an more efficient runtime it can be checked if level 0 contains already k tuples
(after line 8 of Algorithm 2). However, this only works with the lowest level because it can happen that later
tuples still will be added to this level. Thus, returning tuples from the next lowest level before computing
the whole multi-level Skyline, can falsify the results.

Algorithm 4 CompareToPeers

Input: B

Output: B

1: parallel for each b € B do

2 if b is not marked as pruned then

3 for j =1 to b.index do // index corresponds to the position w.r.t. Li norm, i.e., BJi]
4 if B[j] <g b then // b = BJi] at position i
5: if B[j].level ==k — 1 then // k multi-levels from 0 to k — 1
6: mark b as pruned // b is worse than any predecessor in level k — 1
7 break ’for loop’ line 3 // Goto line 13
8: else

9: b.dominator.add(B[j]) // Blj] dominates b
10: end if
11: end if
12: end for
13: end if
14: end parallel for each
15: return B

Algorithm 5 UpdateGlobalSkylineSml
Input: S,.;, B

1: for i =0 to b do

2 if B[i] is not marked as pruned then

3 if Bli].dominator.size() != 0 then // There are dominator
4: maxlevel = max{q.level | ¢ € B[i].dominator}

5: if Bli].level < maxlevel + 1 then

6: B.level <— maxlevel + 1

7 end if

8 end if

9: if Bl[i].level < k then /0. k-1
10: Smi[Bli].level].add(B]i])
11: end if
12: end if

13: end for
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6 Experiments

In this section we compare our parallel multi-level algorithm with two already existing approaches: EBNL
and ESFS [BGGO7]. For the EBNL every tuple will be compared to a window which keeps all non-dominated
tuples. After comparing every tuple to the window, removing all dominated tuples and adding all non-
dominated tuples, the window only holds the best tuples which form the Skyline. Thereafter, the window
will be cleared and the remaining tuples will be processed in the same fashion yielding the next Skyline. This
process terminates if the size of all computed Skylines in sum is higher or equal to k. ESFS on the other hand
first sorts the data due to the entropy function E(t) = Zle In(z; + 1). Afterwards it compares the tuples to
the window in the same fashion as EBNL. However, due to the sorting a tuple doesn’t need to be checked if
it dominates a tuple from the window anymore (cp. [BGGOT]).

Our experiments were performed on a server running Debian GNU/Linux 7.11 with 44 GB of free RAM.
Furthermore, it is equipped with an Intel(R) Xeon(R) E5540 with 16 cores each with 2,53 GHz and a cache
size of 8 MB. The parallel algorithm was tested with different block, thread and input sizes. In addition,
all algorithms were compared by varying the input parameters & and the number of dimensions. To enable
experiments with different input sizes, a data generator as mentioned in [BKS01] was developed. It generates
correlated, anti-correlated and independent data with different input parameters. Moreover, benchmark tests
on real data were realized. For this the free data sets NBA, House and Zillow were used.

6.1 Influence of the Blocksize

We analyze the behavior of the block size to assist in selecting the most efficient size for a specific input data
set. Figure 2 shows two benchmark tests with different top-k values on an anti correlated data which consists
of 100.000 tuples and 5 dimensions. Figure 2(a) has its most efficient block size at 1.000, whereas Figure
2(b) has its own at 10.000. The different runtimes and block sizes can be explained by the value of k. While
Figure 2(a) has a low value, Figure 2(b) has a high value for k exceeding the size of the first level of the
multi-level Skyline. Therefore, the algorithm will never find & tuples in level 0 and thus needs to determine
further multi-level Skyline sets which causes a higher runtime.

datFileBlockSize-antiData-n100000-k1000 datFileBlockSize-antiData-n100000-k30000
423 ' j j Init === 20 Init ==
03 Phasel Phasel |
’ Phase2 m==m 25 ¢ Phase? m==m
Phase3 m=m Phase3 m==m
0.25
—_ Rest 50 | Rest
wn _—
T 0.2 &
@
= £ 15
S 015 =
£ &
0.1 10 ¢
0.05 \_‘ 5t —
[ [
0
%z 2 2 0
(7 (2) )
7 (N o \’000 \’000 3000
BlockSize BlockSize © @
(a) Top-k: 1.000 (b) Top-k: 30.000

Fig. 2: Block size - n: 100.000
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For an input size of 1.000.000 objects the best performing block size is the same. Figure 3 shows that a higher
block size leads to a longer phase 2 and a faster phase 1. This is intuitive since the data will be divided into
less blocks resulting in less comparisons in phase 1 and more in phase 2. The more tuples need to be compared
in phase 2 the larger the dominator lists. Since these lists are kept in memory, it can be possible that they
exceed the available memory. Therefore, block sizes which exceed 100.000 or more are very inefficient.

datFileBlockSize-anti-n 1000000-d5-n1000000-k1000 datFileBlockSize-anti-n 1000000-d5-n1000000-k80000
% 131 —] 1200 Init ===
12 | Phase1 Phasel
Phase2 m==m 1000 ¢ Phase? m==m
11 Phase3 mmmm T — Phase3 ==
= Rest _ 800 | Rest
— L wn
E 0.8 .g
= . 600 |
S 06} =
o =1
04 | “ a0t
0.2 200 |
0
) (» ) 0
“ (2 (2
7] 2 2, ?000 \’000 \’000
BlockSize BlockSize © %
(a) Top-k: 1.000 (b) Top-k: 80.000

Fig. 3: Block size - n: 1.000.000

These findings can also be seen in Figure 4, in which the block size benchmark was applied to a data set with
10.000.000 tuples. In summary, the smaller k£ and the input size, the smaller the block size. Due to the limit
of the available memory higher k& and input sizes result in an optimal block size of 10.000.

datFileBlockSize-anti-n 10000000-d5-n10000000-k1000 datFileBlockSize-anti-n 10000000-d5-n10000000-k89841
Ty k E E # Init 100800 . : : & Init ==
60 Phasel 90000 Phasel 1
Phase? === 80000 [ | Phase? ===
Phase3 === Phase3 ===
50 Rest 70000 Rest
Lg, 40 % 60000
£ E 50000
3 =0 Z 40000
20 ] 30000
20000
10 10000
0 P 0
% *’000 \’000 3000 2, \’000 *’000 \7000
D 2 D 2,
BlockSize 4 BlockSize 4
(a) Top-k: 1.000 (b) Top-k: 89.841

Fig. 4: Block size - n: 10.000.000
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6.2 Influence of the Number of Threads

This section discusses how the thread size and different k& values affect the runtime of the parallel algorithm.
Figure 5(a) shows that for a input size of 100.000 and a low k, a thread size of 4 is optimal. For a k which is
higher than the number of tuples in level 0, the optimal size of the threads equals the number of CPU cores,
cp. Figure 5(b). It can also be noticed that a higher number of threads than the number of cores increases
the runtime. The cause for this is the overhead of the threads since threads need to be created and need to
wait for others to finish. Therefore, a trade-off between parallelism and the overhead need to be inspected,
to select the optimal thread size. In Figure 6 we see that for an input size of 1.000.000 the optimal thread

size equals to the numbers of cores available.

0.35

datFileThreads-antiData-n100000-k100

T
Threads

(a) Top-k: 1.000

45

datFileThreads-antiData-n100000-k30000

S 2 v & ‘;‘5“%6;’@&%@‘9\’9
Threads

(b) Top-k: 80.000
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0.05 |_|D 5 | —'.4._.1—”_'
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Fig. 5: Thread size - n: 100.000
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Fig. 6: Thread size - n: 1.000.000

Based on the overhead and the limit to the number of cores a higher thread size than the core numbers
has always an increasing runtime. A lower thread size causes less parallel computation resulting in a higher
runtime. Therefore, it can be concluded that neither a too low thread size nor a too high thread size results
in the best runtimes. It is always recommended to use a thread size equal to the number of CPU cores.
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6.3 Influence of the Top-k Value

Figure 7 shows that the parallel algorithm is very efficient for low k values compared to the sequential
approaches. This can be explained by the fact that our algorithm runs in parallel and can be stopped after
each block instead of each Skyline. After k exceeds the size of the first level, the whole multi-level Skyline
needs to be computed. The parallel algorithm stays at the same runtime for higher k& because the runtime can’t
increase since computing the whole multi-level Skyline is the only procession work to do. However, EBNL
and ESFS need more iterations and comparisons for large ks. This leads to a better efficiency for higher k.
Furthermore, it is shown that our parallel algorithm is more efficient for anti-correlated than correlated or
independent data. This follows from the fact that anti-correlated data has more tuples which do not dominate
each other and thus more comparisons need to be done in EBNL and ESFS.

ebnl —a— esfs —a— parallel +~—&— ebnl —a— esfs —a— parallel ~—&— ebnl —a— esfs —a— parallel —s—

datFileparallelK-anti-n1000000-d5-n1000000 datFileparallelK-corr-n1000000-d5-n1000000 datFileparallelK-ind-n1000000-d5-n1000000
100000 10000 10000

10000
1000 -
1000 gl eca /._{
—————————————

: : 100 | r : 100
100
10 10
10 / /

10 100 1000 10000 100000  1x10° 10 100 1000 10000 100000 10 100 1000 10000 100000

Runntime(s)
3
)
Runntime(s)
Runntime(s)

1

TopK TopK TopK
(a) anti (b) corr (c) ind

Fig. 7: Top-k - n: 1.000.000

6.4 Influence of the Number of Dimensions

As can be seen in Figure 8(a) the parallel algorithm is always more efficient than EBNL and ESFS for anti-
correlated data and a small k. Increasing the number of dimensions causes the parallel algorithm to outperform
the other algorithms. Similar insights can be found for correlated (see Figure 8(b)) and independent data
(see Figure 8(c)).

ebnl —a— esfs —a— parallel —e— ebnl —a— esfs r—a— parallel —e— ebnl —e— esfs r—a— parallel —e—
datFileparallelD-big-anti-n1000000-d10-n1000000-k10 datFileparallelD-big-corr-n1000000-d10-n1000000-k4000 datFileparallelD-big-ind-n1000000-d10-n1000000-k14653
100000 10000 100000
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I I I
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e m————m————f
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(a) anti - k: 10 (b) corr - k: 4000 (c) ind - k: 14653

Fig. 8: Dimension - n: 1.000.000
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6.5 Influence of the Input Size

Since EBNL and ESFS run too long for an input size of 10.000.000, we solely tested the behavior of our
parallel algorithm on increasing data. As shown in Figure 9(a) and 9(c), the runtime is linear to an increase
of the input size. However, as seen in Figure 9(b) the runtime for 1.000.000 can be higher than the one for
10.000.000 if £ is higher than the size of the first level of the multi-level Skyline for 1.000.000 tuples.

parallel —s— parallel —ea— parallel —e—
datFileparallelBigN-anti-n10000000-d5k-10 datFileparallelBigN-anti-n10000000-d5k-39038 datFileparallelBigN-anti-n10000000-d5k-145826
100 1000 100000
10000
- 10 = 100 =
5 5 o 1000
£ £ £
= = =
s 5 5 100
@ 1 @ 10 @
10
0.1 1 1
100000 1le+06 le+07 100000 le+06 le+07 100000 1e+06 le+07
Input-Size Input-Size Input-Size
(a) Top-k: 10 (b) Top-k: 39038 (c) Top-k: 145826

Fig.9: Different input size - anti - d: 5

6.6 Experiments on Real World Data

This section shows experiments on real data. For our benchmarks we used the well-known data sets NBA,
House and Zillow. The data set NBA consists of 5 dimensions and 17265 entries. House is a data set with 6
dimensions and 127931 entries, and Zillow has 6 dimensions and 2245108 entries.

Influence of the Block Size For small data sets and small k, a block size of 100 or 1000 is the most efficient
one as can bee see in Figures 10, 11, and 12(a). However, higher ks on larger data sets have an optimal block
size of 10.000. This insight was found in Section 6.1. The experiment on the Zillow data set, cp. Figure 12(b),
support this insight on real data.
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Fig. 10: Block size - NBA
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Fig. 12: Block size - Zillow
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Influence of the Number of Threads In Section 6.2 we found out that the optimal thread size should
be equal to the number of CPU cores. However, for small data sets this can be lower since there is less

computation to do. Our experiments support these claims on real data as can be seen in Figures 13 - 15.
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Fig. 15: Threads - Zillow
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Influence of the Top-k Value Figure 16(a) shows that, for the NBA data set, the parallel algorithm
performs better than the EBNL or ESFS for small & but worse for high k. For House (see Figure 16(b)) and
Zillow (see Figure 16(c)) the parallel algorithm is even for k, which are higher than the size of the first level
of the multi-level Skyline, more efficient than the other ones.

ebnl —a— esfs —a— parallel —s— ebnl —a— esfs —a— parallel —s— ebnl —a— esfs —a— parallel —e—

datFileparallelK-nba-n 100000 datFileparallelK-house-n100000 datFileparallelK-zillow-n100000
10 100 10000

100

0.1 1
10

0.01 0.1 i
1 10 100 1000 10000 100 1000 10000 100000 10 100 1000 10000

TopK TopK TopK

(a) NBA (b) House (c) Zillow

10

Runntime(s)
Runntime(s)
Runntime(s)

Fig. 16: Top-k on real data.

7 Summary and Outlook

In this technical report we presented a novel parallel algorithm for multi-level Skyline computation. Our
algorithm rely on two parallel and one sequential phase. Our comprehensive approaches have shown that our
parallel algorithm for multi-core architectures is more efficient for large data sets than existing approaches.
For future work we will extend our algorithm such that it is able to compute multi-level Skylines in distributed
environments as described in [MKEK15].
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