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In the context of the phenomenon of stochastic resonance ~SR!, we study the correlation function, the
signal-to-noise ratio ~SNR!, and the ratio of output over input SNR, i.e., the gain, which is associated to the
nonlinear response of a bistable system driven by time-periodic forces and white Gaussian noise. These
quantifiers for SR are evaluated using the techniques of linear response theory ~LRT! beyond the usually
employed two-mode approximation scheme. We analytically demonstrate within such an extended LRT de-
scription that the gain can indeed not exceed unity. We implement an efficient algorithm, based on work by
Greenside and Helfand ~detailed in the Appendix!, to integrate the driven Langevin equation over a wide range
of parameter values. The predictions of LRT are carefully tested against the results obtained from numerical
solutions of the corresponding Langevin equation over a wide range of parameter values. We further present an
accurate procedure to evaluate the distinct contributions of the coherent and incoherent parts of the correlation
function to the SNR and the gain. As a main result we show for subthreshold driving that both the correlation
function and the SNR can deviate substantially from the predictions of LRT and yet the gain can be either
larger or smaller than unity. In particular, we find that the gain can exceed unity in the strongly nonlinear
regime which is characterized by weak noise and very slow multifrequency subthreshold input signals with a
small duty cycle. This latter result is in agreement with recent analog simulation results by Gingl et al. @ICNF
2001, edited by G. Bosman ~World Scientific, Singapore, 2002!, pp. 545–548; Fluct. Noise Lett. 1, L181
~2001!#.
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I. INTRODUCTION

Over the past 20 years or so, a large amount of work has
been devoted to the study of the dynamics of noisy nonlinear
systems driven by external periodic forces. One of the main
reasons for this interest is related to the phenomenon of sto-
chastic resonance ~SR! @1–5#, namely, the possibility of us-
ing the concerted action of noise and nonlinearity to augment
selectively, for some parameter values, the output of the non-
linear system with respect to what it would be for a linear
system dynamics.

The two common quantifiers for stochastic resonance are
the spectral amplification measure @2,6,7# and the signal-to-
noise ratio ~SNR! @2,8#. They are defined in terms of the
Fourier components of the correlation function associated to
the stochastic variable, x(t). Due to the periodicity of the
driving force, the stochastic process x(t) is explicitly nonsta-
tionary. Thus, the two-time function ^x(t1t)x(t)& depends
on both t and t . For very large values of t, this quantity is
periodic in t with the period of the external driving. Thus, its
cycle average over one period of t yields a function of just t:
the correlation function, C(t). The analysis of its structure
reveals that C(t) is the sum of two terms @2#: One term is
periodic in t with the same period as the driving force and it
is called the coherent part, Ccoh(t). The other term, the in-
coherent part C incoh(t), decays to zero for t→` . The SNR
of the output process x(t), denoted by Rout , is defined as the
ratio of the amplitude of the Fourier mode of the coherent
part at the driving frequency, and the power spectral density
1063-651X/2003/67~3!/036109~10!/$20.00 67 0361
of the incoherent part taken also at the driving frequency. By
definition, Rout is thus a dimensional quantity.

The SNR of an input signal, R inp , containing the sum of
the external driving and the Gaussian white noise, can easily
be evaluated. A convenient dimensionless parameter, the gain
G, defined by the ratio of Rout over R inp can then be intro-
duced. For the case that the Langevin dynamics is linear in x
driven by additive white Gaussian noise, the output SNR is
exactly the same as that of the input; that is, the gain assumes
precisely the value unity. In a general nonlinear case, neither
the output SNR nor the gain can be evaluated exactly by
analytical means. As a consequence, their evaluation neces-
sarily requires approximate procedures.

It was pointed out previously that the gain of a noisy
nonlinear dynamical system subject to subthreshold signals
cannot exceed 1 @9,10#. This feature has been rationalized
using the ideas of linear response theory ~LRT!, thought to
be valid for weak driving amplitudes and not too small noise
strengths. It should be pointed out, however, that the validity
of LRT critically depends also on the value of the frequency,
as has convincingly been demonstrated in recent works
@11,12#.

In the context of LRT theory it has been pointed out in
Ref. @9# that a corollary of LRT is that ‘‘for small amplitude
signals, the signal-to-noise ratio at the output of a system
driven by a stationary Gaussian noise does not exceed that at
the input, even if the system displays SR.’’ Moreover, in Ref.
@10#, the authors state that for ‘‘small signal in a Gaussian
noise background, it is a theorem that the SNR at the output
©2003 The American Physical Society09-1
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of a nonlinear device must be less than or equal to the SNR
at the input.’’ On the other hand, studies on nondynamical
systems @13–16#, on dynamical systems driven by large am-
plitude sinusoidal forces @17#, and on dynamical systems
driven by pulsed ~multifrequency! periodic forces with sub-
threshold amplitudes @18,19#, have reported gains larger than
unity. Clearly, for this to occur, the stochastic system must
operate in a regime where LRT does not apply. It is therefore
of interest to delineate carefully the limit of applicability of
the LRT description of the correlation function, the SNR, and
the gain of a nonlinear noisy driven system.

In this paper, we have tackled this challenge by carrying
out a detailed numerical evaluation of the correlation func-
tion C(t) and its components, Ccoh(t) and C incoh(t), of the
SNR and the gain of a bistable noisy system which is driven
by time-periodic forces. The numerical predictions have been
compared with those provided by the LRT approximation
that accounts for the full spectrum of all relaxation modes.

As it is well known, LRT requires the knowledge of the
system susceptibility, or alternatively, of the correlation func-
tion of the noisy system in the absence of driving, K(t)
@2,11,12,20–22#. None of these quantities are known exactly
for nonlinear systems. For sufficiently small values of the
noise strength, suitable analytical approximations to K(t)
can been used @2,11,12,20,21#. On the other hand, for large
values of the noise intensity, we have evaluated K(t) from
the numerical solution of the Fokker-Planck equation using
an adaptation of the split operator technique of Feit et al.
@23#, as it has been detailed in Ref. @24#. In this paper, we
also present a detailed proof of the statement that within
LRT, the gain G (LRT)<1, by use of the full spectral ap-
proach; this proof differs from alternative attempts in Refs.
@9,10# which use additional restrictions such as a linear re-
sponse theory for the fluctuations themselves.

The ‘‘typical’’ procedure to evaluate the SNR involves the
Fourier analysis of a very long record of the stochastic tra-
jectory, x(t). Using the fast Fourier transform ~FFT! of the
record, the corresponding periodogram is constructed. There
are several drawbacks with this procedure. There are subtle-
ties inherent to the interpretation and evaluation of the peri-
odogram ~see for instance the critical comments in Ref.
@25#!. There are also major problems associated with the fact
that the power spectrum contains d peaks at the driving fre-
quency and its higher harmonics arising from the coherent
part of the correlation function. The contribution of the inco-
herent part at those frequencies is embedded in those peaks,
and it is not a simple task to estimate the separate contribu-
tion to the peaks of the coherent and incoherent parts of the
periodogram. The evaluation of the SNR gain requires a
good knowledge of both contributions, and any small error in
the estimation of the incoherent contribution yields unrea-
sonable values for the gain. Indeed, in our opinion, a much
better estimate would be obtained if the periodic part of the
output signal were subtracted from the data before perform-
ing its FFT.

In this work, we propose such an alternative procedure.
The Langevin equation is numerically integrated for a large
number of noise realizations. The time evolution of the cor-
relation function and its coherent part are directly evaluated
03610
from the numerical solution after averaging over the noise
realizations. The incoherent part is obtained from the differ-
ence C incoh(t)5C(t)2Ccoh(t). As the definition of the
SNR involves the amplitude of the Fourier mode of Ccoh(t)
and the spectral density of C incoh(t) just at the driving fre-
quency, the evaluation of Rout requires just two numerical
quadratures; that is, there is no need to construct the full
spectrum.

The paper is organized as follows. In the following sec-
tion, we introduce the model and provide definitions of the
quantities of interest. In Sec. III, the main points of the LRT
description of the correlation functions are detailed. We also
present in this section a different and straightforward proof
of the fact that G (LRT)<1, based on the spectral properties of
the Fokker-Planck operator, and its adjoint, in the absence of
driving. In Sec. IV, we present the numerical procedure used
to obtain the correlation function, the SNR, and the gain
from the numerical solution of the Langevin equation. The
very efficient algorithm used in this work is summarized in
the Appendix. The numerical results are compared with the
predictions of LRT for a variety of parameters and two dis-
tinct types of driving forces: a monochromatic force and a
periodic sequence of pulses. Finally, we present conclusions
for the main findings of our work.

II. CORRELATION FUNCTION, SIGNAL-TO-NOISE
RATIO, AND GAIN

Let us consider a system characterized by a single degree
of freedom, x, subject to the action of a zero average Gauss-
ian white noise with ^j(t)j(s)&52Dd(t2s) and driven by
an external periodic signal F(t) with period T. In the Lange-
vin description, its dynamics is generated by the equation

ẋ~ t !52U8@x~ t !#1F~ t !1j~ t !. ~1!

The corresponding linear Fokker-Planck equation ~FPE! for
the probability density P(x ,t) reads

]

]t P~x ,t !5L̂~ t !P~x ,t !, ~2!

where

L̂~ t !5
]

]x FU8~x !2F~ t !1D
]

]xG . ~3!

In the expressions above, U8(x) represents the derivative of
the potential U(x). The periodicity of the external driving
F(t) allows its Fourier series expansion in the harmonics of
the fundamental frequency V52p/T , i.e.,

F~ t !5 (
n51

`

@ f ncos~nVt !1gnsin~nVt !# , ~4!

with the Fourier coefficients, f n and gn , given by

f n5
2
T E

0

T
dt F~ t !cos~nVt !,
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gn5
2
T E

0

T
dt F~ t !sin~nVt !. ~5!

Here, we are assuming that the cycle average of the external
driving over its period equals zero.

The two-time correlation function ^x(t1t)x(t)&` in the
limit t→` is given by

^x~ t1t !x~ t !&`5E
2`

`

dx8 x8P`~x8,t !

3E
2`

`

dx xP1u1~x ,t1tux8,t !, ~6!

where P`(x ,t) is the time-periodic, asymptotic long time
solution of the FPE and the quantity P1u1(x ,t1tux8,t) de-
notes the two-time conditional probability density that the
stochastic variable will have a value near x at time t1t if its
value at time t was exactly x8. It can been shown @2,7# that,
in the limit t→` , the two-time correlation function ^x(t
1t)x(t)&` becomes a periodic function of t with the period
of the external driving. Then, we define the one-time corre-
lation function C(t) as the average of the two-time correla-
tion function over a period of the external driving, i.e.,

C~t !5
1
TE0

T
dt^x~ t1t !x~ t !&` . ~7!

The correlation function C(t) can be written exactly as the
sum of two contributions: a coherent part Ccoh(t), which is
periodic in t with period T, and an incoherent part which
decays to 0 for large t . The coherent part Ccoh(t) is given
by @2,7#

Ccoh~t !5
1
TE0

T
dt^x~ t1t !&`^x~ t !&` , ~8!

where ^x(t)&` is the average value evaluated with the
asymptotic form of the probability density P`(x ,t).

It is possible to carry out a formal analysis of C(t) and its
coherent and incoherent components by making use of the
spectral analysis of the Floquet operator associated with the
Fokker-Planck dynamics. But an explicit evaluation of the
correlation function is generally impossible; thus, one has to
rely on numerical results obtained from integrating either the
Langevin or the FPE, or by use of approximate analytical
descriptions.

According to McNamara and Wiesenfeld @8#, the output
SNR is defined in terms of the Fourier transform of the co-
herent and incoherent parts of C(t). As the correlation func-
tion is even in time and we evaluate its time dependence for
t>0, it is convenient to use its Fourier cosine transform,
defined as

C̃~v !5
2
pE0

`

dt C~t !cos~vt !,
03610
C~t !5E
0

`

dv C̃~v !cos~vt !. ~9!

The value of the output SNR is then obtained from

Rout5

lim
e→01

E
V2e

V1e

dvC̃~v !

C̃ incoh~V !
. ~10!

Note that this definition of the SNR differs by a factor 2,
stemming from the same contribution at v52V , from the
definitions used in earlier works @2,7#. The periodicity of the
coherent part gives rise to d peaks in the spectrum. Thus, the
only contribution to the numerator in Eq. ~10! stems from the
coherent part of the correlation function. The evaluation of
the SNR requires the knowledge of the Fourier components
of Ccoh(t) and C incoh(t) at the fundamental frequency of
the driving force. Thus, rather than the entire Fourier spec-
trum, just two well defined numerical quadratures are
needed. Namely,

Rout5
Qu

Q l
, ~11!

where

Qu5
2
TE0

T
dt Ccoh~t !cos~Vt ! ~12!

and

Q l5
2
pEo

`

dt C incoh~t !cos~Vt !. ~13!

The signal-to-noise ratio for an input signal F(t)1j(t) is
given by

R inp5
p~ f 1

21g1
2!

4D . ~14!

The so-called gain is defined as the ratio of the SNR of the
output over the SNR of the input; namely,

G5
Rout

R inp
. ~15!

III. LINEAR RESPONSE THEORY BEYOND
THE TWO-MODE APPROXIMATION

The linear response theory provides a general procedure
to describe the correlation function in an approximate way.
The basic quantity of LRT is the system response function,
x(t). It is related to the equilibrium time correlation function
of the system in the absence of external driving, K(t), via
the fluctuation-dissipation theorem ~FDT! @2,7,20,21#, i.e.,

x~ t !5H 0, t<0

2
1
DK̇~ t !, t.0.

~16!

The equilibrium time correlation function K(t) is defined as
9-3



CASADO-PASCUAL et al. PHYSICAL REVIEW E 67, 036109 ~2003!
K~ t !5E
2`

`

dx8 x8P (eq)~x8!E
2`

`

dx xP1u1
(0)~x ,tux8!, ~17!

where P (eq)(x) is the equilibrium distribution of the non-
driven system,

P (eq)~x !5Ne2U(x)/D, ~18!

and P1u1
(0)(x ,tux8) is the conditional probability density to

find, in the absence of driving, the variable near x at time t, if
it was initially at exactly x8. Here we are assuming that the
potential U(x) is even in x, so that ^x&eq50.

Within LRT, the long time average value ^x(t)&`
(LRT) is

given by

^x~ t !&`
(LRT)5E

0

`

dt x~t !F~ t2t !. ~19!

Insertion of the Fourier expansion Eq. ~4! into Eq. ~19! leads
to

^x~ t !&`
(LRT)5 (

n51

`

@M n
(LRT)cos~nVt !1Nn

(LRT)sin~nVt !# ,

~20!

where the coefficients M n
(LRT) and Nn

(LRT) are given by

M n
(LRT)5 f nxn

(r)2gnxn
(i) , Nn

(LRT)5 f nxn
(i)1gnxn

(r) .
~21!

In these formulas, we have introduced the quantities xn
(r) and

xn
(i) defined as

xn
(r)5E

0

`

dt x~t !cos~nVt !, ~22!

xn
(i)5E

0

`

dt x~t !sin~nVt !. ~23!

The use of the FDT in the above expressions allows us to
write immediately

xn
(r)5

^x2&eq2nVE
0

`

dt K~ t !sin~nVt !

D , ~24!

xn
(i)5

nV

D E
0

`

dt K~ t !cos~nVt !. ~25!

It then follows from Eq. ~8! that within LRT, the coherent
part of the correlation function is given by

Ccoh
(LRT)~t !5

1
2 (

n51

`

@~M n
(LRT)!21~Nn

(LRT)!2#cos~nVt !.

~26!

As discussed in Refs. @2,7,20#, LRT amounts to keeping the
leading term in the perturbation treatment of the dynamics of
the stochastic process x(t) in powers of the driving ampli-
03610
tude. Then, within the spirit of perturbation theory, the lead-
ing term in the expansion of the incoherent part corresponds
to the correlation function of the system in the absence of
driving force, i.e., C incoh

(LRT)(t)5K(t).
Taking into account that Ccoh

(LRT)(t) is periodic in t , it
follows from Eqs. ~9! and ~26! that

C̃coh
(LRT)~v !5

1
2 (

n51

`

@~M n
(LRT)!21~Nn

(LRT)!2#

3@d~nV2v !1d~nV1v !# . ~27!

Thus, it follows from the definition of the SNR, Eq. ~10!,
that, within LRT, we have

R (LRT)5
Qu

(LRT)

Q l
(LRT) , ~28!

where

Qu
(LRT)5

1
2 @~M 1

(LRT)!21~N1
(LRT)!2#

5
1
2 ~ f 1

21g1
2!@~x1

(r)!21~x1
(i)!2# , ~29!

and

Q l
(LRT)5K̃~V !5

2Dx1
(i)

pV
, ~30!

with K̃(V) being the Fourier cosine transform of K(t), de-
fined according to Eq. ~9!. In arriving at Eqs. ~28!–~30! we
have also used Eqs. ~21!–~23! and ~25!.

Taking into account Eqs. ~14!, ~15! and ~28!–~30!, one
readily finds that the gain within LRT is given by

G (LRT)5
Rout
(LRT)

R inp
5

V@~x1
(r)!21~x1

(i)!2#

x1
(i) . ~31!

This is a general expression for G (LRT) valid for any shape of
the periodic driving signal.

The last expression will allow us to show that G (LRT) can,
indeed, not exceed unity. Although this assertion has been
discussed previously in Refs. @9,10#, we next will present a
detailed and hopefully very clear proof for this prominent
assertion.

As shown in the Appendix of Ref. @2#, see also in Refs.
@11,12#, the susceptibility x(t) can be expressed as

x~ t !52 (
p51

`

e2lpt^0uxup&^pu
]

]x u0&, ~32!

where up&5cp(x), ^pu5cp
†(x) and lp are the eigenfunc-

tions and eigenvalues of the FP operator L̂0 associated to the
undriven dynamics and its adjoint, L̂0

† , i.e.,

L̂0cp~x !52lpcp~x !, L̂0
†cp

†~x !52lpcp
†~x !. ~33!
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Using the above representation of the susceptibility in Eqs.
~22! and ~23! with n51, we find

x1
(r)52 (

p51

`
lp

lp
21V2 ^0uxup&^pu

]

]x u0&

5 (
p51

`
lp

lp
21V2U^0uxup&^pu

]

]x u0&U, ~34!

x1
(i)52 (

p51

`
V

lp
21V2 ^0uxup&^pu

]

]x u0&

5 (
p51

`
V

lp
21V2U^0uxup&^pu

]

]x u0&U. ~35!

Here, we have used the inequality

^0uxup&^pu
]

]x u0&<0, ~36!

which can be proved as follows. Multiplying the first equa-
tion in Eq. ~33! by x and carrying out an integration by parts,
one obtains

2lp^0uxup&5E
2`

`

dx x L̂0cp~x !

52E
2`

`

dx U8~x !c0~x !cp
†~x !

5DE
2`

`

dxcp
†~x !

]

]x c0~x !5D^pu
]

]x u0&,

~37!

where we have taken into account that c0(x)5P (eq)(x) and
cp(x)5c0(x)cp

†(x), so that c0
†(x)51. Therefore, ^0uxup&

3^pu]/]xu0&52lp(^0uxup&)2/D<0. Using in Eqs. ~34!
and ~35! the Cauchy-Schwarz inequality, we find

~x1
(r)!25F (

p51

` lpU^0uxup&^pu
]

]x u0&U1/2
lp
21V2

3U^0uxup&^pu
]

]x u0&U1/2G 2

< (
p51

` lp
2U^0uxup&^pu

]

]x u0&U
~lp

21V2!2
(
q51

` U^0uxuq&^qu
]

]x u0&U,
~38!
03610
~x1
(i)!25F (

p51

` VU^0uxup&^pu
]

]x u0&U1/2
lp
21V2

3U^0uxup&^pu
]

]x u0&U1/2G 2

< (
p51

` V2U^0uxup&^pu
]

]x u0&U
~lp

21V2!2
(
q51

` U^0uxuq&^qu
]

]x u0&U.
~39!

Taking into account that ^0uxu0&50, the complete-
ness relation yields (q51

` u^0uxuq&^qu]/]xu0&u
52(q50

` ^0uxuq&^qu]/]xu0&52^0ux]/]xu0&51. Thus, by
adding Eq. ~38! to Eq. ~39!, one obtains

~x1
(r)!21~x1

(i)!2< (
p51

` U^0uxup&^pu
]

]x u0&U
lp
21V2 5

x1
(i)

V
. ~40!

Finally, inserting Eq. ~40! into ~31!, we obtain the seminal
inequality that G (LRT)<1.

Put differently, the gain of a nonlinear system operating in
a regime where LRT provides a valid description cannot
reach values greater than 1. This result is valid for any pe-
riodic external driving. Notice that this finding does not pre-
clude the possibility of obtaining values for the SNR gain
larger than unity when the conditions are such that the use of
LRT is not sensible.

IV. NUMERICAL RESULTS

In this section, we will carry out the numerical evaluation
of the different magnitudes defined above. Our goal is to
compare the predictions of LRT with the results obtained
from the numerical solution of the Langevin equation, Eq.
~1!. We will consider the dynamics in the bistable potential
U(x)52x2/21x4/4 driven by time-periodic forces.

The evaluation of the different magnitudes using LRT re-
quires the knowledge of K(t) @cf. Eqs. ~21!, ~26!, and ~28!–
~31!#. For nonlinear problems, explicit expressions for K(t)
are unknown, but useful approximations have been presented
in the literature. For the bistable potential, U(x)52x2/2
1x4/4, Jung and Hänggi @21# have used the two-mode ap-
proximation. It is based on the existence of a large difference
in the time scales associated to interwell and intrawell mo-
tions, and it is expected to be valid for small values of the
noise strength D. With this model, one finds

K~t !5g1e2l1t1g2e2at, ~41!

where @2#

l1'
A2
p

~12 3
2 D !exp@21/~4D !# , ~42!
9-5
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and a52. The weights g1 and g2 can be obtained from the
moments of the equilibrium distribution in the absence of
driving using the expressions

g25
l1^x2&eq

l12a
1

^x2&eq2^x4&eq

l12a
, ~43!

g15^x2&eq2g2 . ~44!

To leading order in D, we can replace l1 by lK
5A2/pexp@21/(4D)# , g1'1 and g2'D/a . This is the
limit considered in Ref. @26#. In the results reported below,
we have also considered values of D so large that the two-
mode approximation becomes inadequate. Therefore, the
correlation function in the absence of driving has been evalu-
ated numerically from the FPE in the absence of driving
following the procedure discussed in Ref. @24#.

The numerical evaluation of the correlation function C(t)
and its coherent and incoherent parts proceeds as follows.
Stochastic trajectories x ( j)(t) are generated by numerically
integrating the Langevin equation for every realization j of
the white noise j(t), starting from a given initial condition
x0. The numerical solution is based on the algorithm devel-
oped by Greenside and Helfand @27,28#. The essence of the
algorithm is briefly sketched in the Appendix. After allowing
for a relaxation transient stage, we start recording the time
evolution of each random trajectory for many different tra-
jectories. Then, we construct the two-time (t and t) correla-
tion function, i.e.,

^x~ t1t !x~ t !&`5
1
N (

j51

N

x ( j)~ t1t !x ( j)~ t !, ~45!

as well as the product of the averages

^x~ t1t !&`^x~ t !&`5S 1N (
j51

N

x ( j)~ t1t !D S 1N (
j51

N

x ( j)~ t !D ,
~46!

where N is the number of stochastic trajectories considered.
The correlation function C(t) and its coherent part Ccoh(t)
are then obtained using their definitions in Eqs. ~7! and ~8!,
performing the cycle average over one period of t. The dif-
ference between the values of C(t) and Ccoh(t) allows us to
obtain the values for C incoh(t). It is then straightforward to
evaluate the Fourier component of Ccoh(t) and the Fourier
transform of C incoh(t) at the driving frequency by numerical
quadrature. With that information, the numerator and the de-
nominator for the output SNR @cf. Eqs. ~11!–~13!#, as well as
the gain @cf. Eq. ~15!#, are obtained.

We shall analyze two different types of periodic driving
forces. First, let us consider the well known situation with a
monochromatic, single-frequency force, A cos(Vt), with am-
plitude strength A and angular frequency V @2#. In this case,
the formulas in Sec. III simplify considerably because f 1
5A , while all the other Fourier components of the driving
force vanish. The second case corresponds to a periodic force
with period T, with a sequence of pulses of length tc,T/2,
namely,
03610
F~ t !5H A , 0<t,tc

2A ,
T
2 <t,

T
2 1tc

0, otherwise.

~47!

In this case, we have

f 15
2A
p

sin~Vtc!, g15
2A
p

@12cos~Vtc!# , ~48!

where V52p/T is the fundamental frequency. This force is
characterized by its amplitude, its period, and its duty cycle,
which is defined as 2tc /T . Recently, Gingl et al. @18,19#
have carried out analog simulations of systems that are sub-
jected to wideband Gaussian noise and driving forces of this
second type. They report values for the gain that greatly
exceeds unity, for driving amplitudes below its threshold
value. If this is the case, then strong deviations from the LRT
should be observed as well.

A. Monochromatic driving

In Fig. 1, we depict the results obtained for a monochro-
matic driving force with angular frequency V50.1, noise
strength D50.2, and several values of the amplitude. In the
deterministic dynamics (D50), an external periodic force
with the indicated frequency induces sustained oscillations
between the minima of the potential for A>A th.0.419.
Note that this nonadiabatic frequency raises the threshold

FIG. 1. The dependence of several SR quantifiers vs the square
of the driving amplitude, A2, given by LRT ~solid line! and by the
numerical solution of the Langevin equation ~circles!. In panels ~a!
and ~b!, we plot, respectively, the numerator and denominator ap-
pearing in the definition of output SNR, cf. Eqs. ~11! and ~28!. The
behaviors of the output SNR and the gain are depicted, respectively,
in panels ~c! and ~d!. The driving force is monochromatic with
frequency V50.1 and the white noise strength is kept constant at
the value D50.2. In all panels, the vertical dashed line indicates the
square of the value of the dynamical threshold amplitude A th at the
angular driving frequency V . In panel ~d!, a dotted horizontal line
is drawn at the gain value of 1 as a guide to the eye.
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value for superthreshold driving beyond its adiabatic lower
limit of A th

(ad)5A4/27.0.3849. Thus, we will take this value
as the amplitude threshold value at the frequency V50.1. In
panel ~a!, we plot the numerators, Qu and Qu

(LRT) , of the
output SNR given by Eqs. ~12! and ~29! vs A2. The solid
straight line represents the LRT result, while the circles cor-
respond to the numerical results. The graph reveals that for
amplitude strengths A,0.1 the predictions of LRT match
well the numerical results, as can be expected. When the
amplitude increases, the deviations of LRT from the precise
numerical results are large. LRT predicts a much larger am-
plification of the output amplitude than the one obtained nu-
merically. In panel ~b!, we plot the denominators, Q l and
Q l

(LRT) , of the output SNR given by Eqs. ~13! ~circles! and
~30! ~solid line! vs A2. In LRT, the denominator is indepen-
dent of A. Once again, the predictions of LRT match the
numerical results for A,0.1. For larger values of A, the
influence of the driving amplitude on the relaxation of
C incoh(t) is very strong and the numerical results for the
denominator are much smaller than the ones obtained within
LRT. It is then clear that LRT will yield a valid description of
the signal-to-noise ratio for small driving amplitudes only as
depicted in panel ~c!. We notice that the values of Rout pro-
vided by the numerics are larger than those of Rout

(LRT) . This
is so although linear response theory predicts larger spectral
amplifications, see in Ref. @7#, of the average output than
what really occurs. The modifications in the behavior of the
incoherent part of the correlation function with respect to its
behavior in the absence of driving are more than enough to
compensate for the behavior of the numerators. In panel ~d!,
we plot the gain vs A2. There exists an optimum value for
the driver amplitude (A;0.8) at which the gain becomes
maximized. Nonetheless, the gain is always smaller than
unity. LRT requires that G (LRT)<1. These strong deviations
of the predictions of LRT about the behavior of the two
components of the correlation function with respect to the
numerical results tell us that LRT cannot be invoked to ex-
plain the fact that the gain is smaller than 1 for the range of
parameter values considered in this figure; that is, a gain
below 1 occurs here within the nonlinear regime.

In Figs. 2 and 3 we analyze the same quantities as in Fig.
1, but now for larger noise values, D50.6 and D51.0, re-
spectively. The most important difference with respect to the
plots in Fig. 1 is that for these larger values of the noise, the
gain can exceed unity for values of the amplitude well above
its threshold value. This superthreshold feature has been cor-
roborated already in Ref. @17#; a gain above 1 seemingly
does not occur for monochromatic subthreshold driving.

B. Pulsed, multichromatic periodic driving

Next, we proceed to consider the case of pulsed driving
forces. In Figs. 4 and 5, we compare the dependence of the
output on the driving amplitude as given by the LRT ap-
proximation with the numerical precise results. The system is
forced by a multifrequency driver with a period T52p/0.1
.63 and a duty cycle of 10%. As in the case of a single-
frequency driving, the values of the different quantities ob-
tained from the numerics deviate significantly from the pre-
03610
dictions of LRT as the amplitude of the driver is increased.
Nevertheless, perhaps the most relevant difference with re-
spect to the monochromatic case is that we again do not find
gains larger than 1 in the range of parameter values consid-
ered in these figures.

C. The case of strong nonlinearity

A particularly interesting situation arises in the analog
studies of pulsed driving forces with a very small fundamen-
tal frequency: in Refs. @18,19# Gingl et al. report gains that
significantly exceed the value 1 for a subthreshold, multifre-
quency driving force of very large period T52p/0.0024
.2618 and a small duty cycle of 10%. This large gain is
accompanied by a nonmonotonic behavior of the SNR with
the noise strength D. Therefore, this situation must corre-
spond to a very sensible discrepancy of the actual behavior
with respect to the LRT predictions. We have carried out
detailed and careful numerics of the Langevin equation in
this extreme regime for such a driving force with a sub-

FIG. 2. The same as in Fig. 1 but now for V50.1 and
D50.6.

FIG. 3. The same as in Fig. 1 but now for V50.1 and
D51.0.
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threshold amplitude A50.35 and a noise strength D50.02.
With the parameters considered, the problem becomes com-
putationally very demanding indeed: this is so because of the
very large period of the driving force. Moreover, in order to
obtain reliable numerical results for the incoherent part of the
correlation function a large number of stochastic trajectories
needs to be generated. Our findings are summarized in
Table I.

To obtain a reliable convergence of the corresponding SR
quantifiers, at least up to 50 000 random trajectories need to
be considered. A smaller sampling size can induce severe
errors, see in Table I. The main result is a numerically evalu-
ated gain of 8.62; in clear contrast, the result predicted by
LRT is the very small value of 0.018; that is, LRT strikingly
fails, cf. in Table I for the corresponding values of SNR and
its constituents. The SNR value of the analog simulation in
Refs. @18,19# carried out with a pulsed input signal with the
same characteristics as the one considered here, and wide-

FIG. 4. The same as in Fig. 1, for the case of a pulsed, driving
force with period T.63, duty cycle 2tc /T50.1, cf. Eq. ~47!, and a
noise strength D50.6.

FIG. 5. The same as in Fig. 1 for a pulsed driving force with
period T.63, duty cycle 2tc /T50.1, cf. Eq. ~47!, and a noise
strength D51.0.
03610
band Gaussian noise with a related strength roughly similar
to ours, yields an experimentally determined gain of ca. 19,
cf. Fig. 4 in Ref. @19#. This value is again significantly larger
than 1 and compares favorably with our results in Table I.
Note, however, that the sampling size of ca. 1000 realiza-
tions used in Refs. @18,19# has been chosen substantially
smaller than the number of realizations needed to achieve
good numerical convergence, cf. Table I; this in turn may
explain the overshoot of the experimentally determined gain
value.

V. CONCLUSIONS

Let us summarize the main results of this work.
~i! First, we have provided an analytical proof based on

LRT beyond the commonly employed two-mode approxima-
tion that the gain of a noisy, periodically driven nonlinear
system which operates within the regime of validity of LRT
cannot exceed unity. This result holds for arbitrary noise
strength D and is independent of the shape of the input sig-
nal.

~ii! We have implemented a very efficient algorithm due
to Greenside and Helfand @27,28# to numerically integrate
the Langevin equation. From the numerical solution, we
have evaluated the time evolution of the correlation function
and its coherent and incoherent components.

~iii! We have also put forward a procedure, alternative to
the usual one, to calculate the SNR. The numerator and de-
nominator of the SNR are calculated by use of only two
numerical quadratures.

~iv! A detailed comparison between the predictions of
LRT and the numerical results have been carried out. We
have assessed regions of parameter values where LRT gives
an erroneous description, yet the gain, nevertheless, is less
than unity. On the other hand, there exist regions in param-
eter space where the gain indeed exceeds 1 if driven with a
superthreshold amplitude strength; this finding is in agree-
ment with prior results in Ref. @17#. These regions are again
characterized by substantial deviations from LRT.

Moreover, as previously established by use of analog
simulations by Gingl et al. @18,19# we also find the surpris-
ing result, valid for dynamical systems, that SNR gains larger
than unity can indeed occur for subthreshold multichromatic
input signals: For this feature to occur one seemingly needs,
however, weak noise and a slow periodic driving signal with
a very small duty cycle. In this context, the necessity of a
sufficiently large number of sampling trajectories in order to
obtain reliable, convergent results has also been stressed. It is

TABLE I. Numerically obtained values of several quantities for
different numbers of noise realizations and their LRT results.

Trajectories Qu Q l Rout G

Numerics 1000 0.78 0.33 2.32 12.16
5000 0.78 0.35 2.26 11.84
10000 0.78 0.47 1.67 8.77
50000 0.78 0.48 1.65 8.62

LRT 0.00061 0.177 0.0034 0.018
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in this very regime of small frequency driving and weak
noise where the LRT description indeed fails notably @11,12#.
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APPENDIX: THE METHOD OF GREENSIDE
AND HELFAND

The procedure proposed by Greenside and Helfand for
numerically integrating stochastic differential equations has
been discussed in detail by them in Refs. @27,28#. For the
sake of completeness, we will briefly sketch in this appendix
the main reasoning of their procedure. By analogy with de-
terministic Runge-Kutta algorithms, Greenside and Helfand
developed schemes to estimate the value of the stochastic
variable at time t1h if its value at time t is known. This is
achieved by evaluating the right hand side of the Langevin
equation at selected points within each interval of length h,
so that all moments of x(t1h)2x(t) are correct to order hk.

As our Langevin equation contains an explicit time de-
pendent driving force, it is convenient to rewrite it as a two-
dimensional problem with variables (y1 ,y2)5yW , where y1
5x and y25t . The Langevin equation, Eq. ~1!, is then writ-
ten in vector form as

dyW

dt 5GW ~yW !1JW ~ t !, ~A1!

where GW 5 (G1 ,G2)5 „2U8(x)1 F(t), 1… and JW (t)
5„j(t),0….

The formal solution of Eq. ~A1! yields

yk~h !5yk~0 !1E
0

h
dsGk„yW ~s !…s1wk

(0)~h ! ~k51,2!

~A2!

with

wk
(0)~h !5E

0

h
dsJk~s !. ~A3!

The right hand side of Eq. ~A2! can be expanded as

yk~h !5yk~0 !1hGk„yW ~0 !…1
1
2 h2(

m

]Gk„yW ~0 !…

]ym
Gm„yW ~0 !…

1•••1Sk~h !. ~A4!

The last term Sk(h) represents the stochastic part. It is a
series in h1/2 with the order of the terms determined in prob-
ability.
03610
By analogy with the Runge-Kutta procedures for deter-
ministic differential equations, Greenside and Helfand pro-
pose an l-stage algorithm to write the solution of Eq. ~A1! as

yk~h !5yk~0 !1h~A1g1k1•••1A lg lk!1h1/2Jk
1/2Y 0k ,

~A5!

with

g1k5Gk„$ym~0 !1h1/2Jm
1/2Y 1m%…,

g2k5Gk„$ym~0 !1hb21g1m1h1/2Jm
1/2Y 2m%…,

A

g lk5Gk„$ym~0 !1hb l1g1m1•••1hb l ,l21g l21,m

1h1/2Jm
1/2Y lm%…. ~A6!

Here, ($ym%) is the set (x ,t). The Y lm are Gaussian stochas-
tic variables with zero average, which are numerically gen-
erated by writing

Y ik5(
j51

m

l i jZ jk , ~A7!

where Z jk are m independent Gaussian random variables of
zero average and unit variance. The parameters A i , b i j , and
l i j appearing in Eqs. ~A5!–~A7! are independent of the com-
ponent index k . They are obtained by expanding Eq. ~A5! to
the desired order hk. This expansion gives rise to a determin-
istic and a stochastic part, S̃k . Equating the coefficients of
this expansion with those of the deterministic part in Eq.
~A4! leads to a set of equations for the parameters A i , b i j ,
and l i j . Further equations are obtained by equating the mo-
ments of ^S̃k

n& with those of the stochastic part in the expan-
sion in Eq. ~A4! ^Sk

n&.
A procedure correct to order hk in the step size h, involv-

ing l stages and m Gaussian independent variables, is termed
a kOlSmG algorithm. In this paper, we have integrated the
Langevin equation using a 3O4S2G algorithm with the values
for A i , b i j , and l i j given in Table II taken from Ref. @28#.
With this choice of parameters, the deterministic part is of
order h4, as in the fourth-order Runge-Kutta procedure for
ordinary differential equations.

TABLE II. Parameter values given by Greenside and Helfand
@28# for their 3O4S2G algorithm.

A1 0.0 A2 0.644468
A3 0.194450 A4 0.161082
b21 0.516719 b31 20.397300
b32 0.427690 b41 21.587731
b42 1.417263 b43 1.170469
l01 1.0 l02 0.0
l11 0.0 l12 0.271608
l21 0.516719 l22 0.499720
l31 0.030390 l32 20.171658
l41 1.0 l42 0.0
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Hänggi, Fluct. Noise Lett. 2, L127 ~2002!.

@13# K. Loerincz, Z. Gingl, and L.B. Kiss, Phys. Lett. A 224, 63
~1996!.

@14# F. Chapeau-Blondeau and X. Godivier, Phys. Rev. E 55, 1478
~1997!.
036109
@15# Z. Gingl, R. Vatjai, and L.B. Kiss, Chaos, Solitons Fractals 11,
1929 ~2000!.

@16# F. Liu, Y. Yu, and W. Wang, Phys. Rev. E 63, 051912 ~2001!.
@17# P. Hänggi, M. Inchiosa, D. Fogliatti, and A.R. Bulsara, Phys.

Rev. E 62, 6155 ~2000!.
@18# Z. Gingl, R. Vajtai, and P. Makra, in ICNF 2001, edited by G.

Bosman ~World Scientific, Singapore, 2002!, pp. 545–548.
@19# Z. Gingl, P. Makra, and R. Vajtai, Fluct. Noise Lett. 1, L181

~2001!.
@20# P. Hänggi and H. Thomas, Phys. Rep. 88, 207 ~1982!, see Sec.

5, pp. 275–287 therein.
@21# P. Jung and P. Hänggi, Z. Phys. B: Condens. Matter 90, 255

~1993!.
@22# M. Morillo and J. Gómez-Ordóñez, Phys. Rev. E 51, 999
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