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We present a novel path-integral method for the determination of time-dependent and time-averaged
reaction rates in multidimensional, periodically driven escape problems at weak thermal noise. The so
obtained general expressions are evaluated explicitly for the situation of a sinusoidally driven, damped
particle with inertia moving in a metastable, piecewise parabolic potential. A comparison with data
from Monte-Carlo simulations yields a very good agreement with our analytic results over a wide
parameter range.

1 Introduction Thermally activated escape problems in the presence of an explicit time-dependent
driving are at the root of many timely transport processes. Typical examples comprise the control of
chemical reactions with tailored laser pulses [1, 2], ion transport through voltage-gated channels [3],
the pumping and shuttling of particles in Brownian environments [4–9], or the amplification of weak
information-carrying signals via the phenomenon of Stochastic Resonance [10–13], to name only a
few. In the absence of such a time-dependent driving and for the case of weak thermal noise the
escape time is governed – as commonly known – by an exponentially leading Arrhenius factor [14–
16]. Pioneered by Kramers [17] and extended to arbitrary dimensions in the works [18–23], this
scheme, however, meets formidable difficulties under far from thermal equilibrium conditions. This is
so because of an extremely complex interplay between the global properties of the metastable poten-
tial and the nonlinear noisy dynamics [14, 24–26]. The subject of our present paper is one of the
simplest and experimentally most natural such non-equilibrium descendants of Kramers’ original es-
cape problem [17], namely the thermally activated escape of a Brownian particle over a potential
barrier in the presence of periodic driving which modulates both the corresponding potential well
region and the activation barrier. While most previous attempts have been restricted to weak [27–29],
slow [30, 31], or fast [27, 30, 32] driving, we have addressed in recent analytical explorations [33, 34]
by means of a path-integral technique the most challenging intermediate regime of moderately strong
and moderately fast driving for a one-dimensional, overdamped escape problem. Closely related to our
recent works are the subsequent appealing efforts in Ref. [35], wherein on uses instead the method of
singular perturbation theory in the weak noise limit – a so termed WKB approximation – which,
however, also has been restricted to cover only the overdamped, one-dimensional case. The scheme in
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Refs. [35] yields results which are consistent with the findings in Ref. [33, 34]; but it remains on a
more formal and implicit level compared to ours.

The objective of this study is to extend these recent works of time-dependent rate theory put for-
ward in Refs. [33–35] to the case of many dimension of the underlying stochastic process. In particu-
lar, we shall consider the generic case of a driven inertial Brownian motion dynamics. Furthermore,
we shall derive for weak noise asymptotically exact results in analytically closed form for the escape
of an inertial, sinusoidally driven Brownian particle in a metastable, piecewise parabolic potential in
the regime of moderate forcing strengths and forcing frequencies. A comparison with data from
Monte-Carlo simulations yields very good agreement over a wide parameter range.

We anticipate here that the following presentation is on purpose kept rather concise. While we are
confident that the general idea of our approach remains more transparent in this way, it is nevertheless
advisable to consult the detailed discussion of the one-dimensional, overdamped (i.e. no inertial) dy-
namics in Ref. [34] for a more thorough and in-depth understanding. It must be pointed out, however,
that our present generalization to many dimensions in addition requires several conceptually new steps
and features as compared to the one-dimensional overdamped case.

In Sect. 2, we describe the model under investigation and define both the instantaneous and the
time-averaged escape rate. The path-integral formalism and its evaluation for weak-noise is described
in Sect. 3. Its application to the escape problem is demonstrated in Sect. 4. Our general findings are
then evaluated and discussed explicitly for the case of the driven Kramers problem with a piecewise
parabolic potential in Sect. 5. Concluding remarks are given in Sect. 6.

2 The escape problem
2.1 The general model The starting-point of our investigations is the following model for the
d-dimensional Brownian motion of a particle with coordinates xðtÞ in a time-dependent force field
Fðx; tÞ:

_xxðtÞ ¼ FðxðtÞ; tÞ þ
ffiffiffiffiffiffi
2 E

p
B xðtÞ : ð1Þ

Here, bold quantities denote d-dimensional vectors, while d � d -matrices are represented by sans-
serif fonts. The d-dimensional Gaussian uncorrelated, white noise xðtÞ is defined by the relations
(i; j ¼ 1; 2; . . . ; d)

hxiðtÞi ¼ 0 ; hxiðtÞ xjðt0Þi ¼ dij dðt � t0Þ ; ð2Þ

where dij is the Kronecker delta and dðtÞ Dirac’s d-distribution. The additive coupling of the noise to
the stochastic dynamics is determined by the matrix B, which we assume to be non-singular.

We restrict ourselves to the case of a time-periodic driving, i.e. Fðx; tÞ ¼ Fðx; t þ T Þ for a certain
period T . Furthermore, we assume that the deterministic dynamics, i.e. Eq. (1) for E ¼ 0, possesses
exactly one stable periodic orbit xsðtÞ ¼ xsðt þ T Þ with a time-dependent domain of attraction AðtÞ.
All other deterministic orbits, which start outside of AðtÞ and its boundary SðtÞ :¼ @AðtÞ are assumed
to diverge in the long time limit. The boundary SðtÞ then acts as a separatrix between these two kinds
of deterministic solutions. Moreover, we require that there is exactly one unstable periodic orbit
xuðtÞ ¼ xuðt þ T Þ, which then moves with the separatrix, i.e. xuðtÞ 2 SðtÞ for all times t. Finally, all
other deterministic solutions starting in a neighborhood of the unstable periodic orbit on the separatrix
are assumed to be bounded. All these assumptions can usually be taken for granted in typical periodi-
cally driven escape problems of practical interest.

A particularly prominent example is the Kramers problem [17], namely the escape of a particle
with mass m out of the bottom well of a static potential as cartooned in Fig. 1. Under the additional
influence of an additive sinusoidal driving this corresponds to the stochastic dynamics

m €xxþ h _xx ¼ �V 0ðxÞ þ A sin ðW tÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2hkBT

p
xðtÞ : ð3Þ

Here, h is the viscous friction coefficient, kB Boltzmann’s constant, T the temperature and W ¼ 2p=T
the angular frequency of the driving. We can rewrite the second order equation (3) in the form of
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Eq. (1), if we identify

x :¼ x
v

� �
; Fðx; tÞ :¼

v
1
m

Fðx; tÞ � gv

!
; B :¼

ffiffiffi
h

p

m
d 0
0 1

� �
; E :¼ kB T ; ð4Þ

where we have introduced the one-dimensional force field Fðx; tÞ :¼ �V 0ðxÞ þ A sin ðW tÞ and the
frequency g :¼ h=m. Furthermore, we have added an auxiliary noise source of a strength proportional
to d to ensure that B is non-singular. Eventually, we shall consider the limit d ! 0, in which Eq. (4)
reduces to the original dynamics (3). Figure 2 depicts the stable and unstable periodic orbits, the
domain of attraction AðtÞ, and the separatrix SðtÞ for a representative metastable potential.

A fully equivalent description of the stochastic dynamics (1) is provided by the Fokker–Planck
equation [36] for the probability distribution pðx; tÞ of an ensemble of particles xðtÞ,

@

@t
pðx; tÞ þ r � jðx; tÞ ¼ 0 ; ð5Þ

where the probability current density is given by

jðx; tÞ :¼ Fðx; tÞ pðx; tÞ � EDrrpðx; tÞ ð6Þ
with the positive semidefinite diffusion matrix D :¼ BBT .

2.2 Escape rates If we now consider our stochastic dynamics (1) for finite noise-strengths E, it is
well-known that a particle xðtÞ starting in AðtÞ will be able to escape out of this basin. To quantify
this escape of particles, we first introduce the population PAðtÞ in AðtÞ:

PAðtÞ :¼
Ð

AðtÞ
ddxpðx; tÞ : ð7Þ

A natural definition of an ‘‘instantaneous rate” GðtÞ for such escape events is then given by the
relative decrease of this population per unit time [33, 34],

GðtÞ :¼ � _PPAðtÞ=PAðtÞ : ð8Þ
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Fig. 1 Sketch of a typical metastable potential
VðxÞ, namely the piecewise parabolic potential (75)
with DV ¼ 0:9, mw2

s ¼ 0:6, and mw2
u ¼ �0:3

in arbitrary, dimensionless units.
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Fig. 2 Phase space diagram for a typical metastable po-
tential with additive sinusoidal driving (3), namely the
piecewise parabolic potential (75) with �xxs ¼ w2

u ¼ �1,
�xxu ¼ w2

s ¼ m ¼ DV ¼ W ¼ 1, h ¼ 0:5, A ¼ 0:2. Solid
line: Stable (left) and unstable (right) periodic orbit.
Dashed lines: Separatrix at different times t1 ¼ 0,
t2 ¼ T =3, and t3 ¼ 2T =3. Grey area: Domain of attrac-
tion Aðt1Þ of stable periodic orbit xsðtÞ at time t1.

                    
  

            
                        

        
                                

                  
          

      
                                           

                                         
        

     
                      

      
                                 

 
                                                     

 
           



We remark that – except for transients at early times – this quantity is independent of the initial
conditions at time t ¼ t0, provided we start with a distribution that is concentrated within the basin
AðtÞ. We thus make the convenient choice pðx; t0Þ ¼ dðx� xsðt0ÞÞ. Furthermore, on the time scale of
these transients, GðtÞ will approach a time-periodic limit, permitting a meaningful definition of the
time-averaged rate

�GG :¼ 1
T

ðtþT

t

dt0 Gðt0Þ : ð9Þ

In the sequel of the present paper we will deduce analytic expressions for both the instantaneous and
the time-averaged rate in the limit of small noise-strengths E.

To make progress in this direction, we first note that for weak noise E the typical time scale of the
escape events 1= �GG is well separated from the time scale of the just mentioned transients [14]. We can
thus approximate PAðtÞ by its initial value PAðt0Þ ¼ 1 in the denominator of Eq. (8). Using the Fok-
ker–Planck equation (5) and the divergence theorem, the instantaneous rate reads

GðtÞ ¼
Ð

SðtÞ
dd�1n � jðx; tÞ � _xx pðx; tÞ½ � : ð10Þ

Here, the integration is over the entire time-dependent separatrix SðtÞ and n denotes their outer normal
vector. Furthermore, the time derivative in _xx refers to the t-dependence of the points on this separa-
trix, which is determined by the deterministic equation of motion, i.e. Eq. (1) with E ¼ 0. Taking this
and the definition (6) of the current density into account, one obtains the general result

GðtÞ ¼ �E
Ð

SðtÞ
dd�1n � Drrpðx; tÞ : ð11Þ

As expected on naive grounds, a crossing of the separatrix is possible via a diffusive process only.

3 Path integrals and the saddle-point approximation Let us briefly summarize the path integral
description of the dynamics generated by a stochastic differential Eq. (1). It is well-known from the
literature [24–26, 37–45] that one can represent the conditional probability density pðxf ; tf j x0; t0Þ to
find the particle at time tf at position xf if it has started at time t0 at position x0 as weighted sum over
all paths between these two points,

pðxf ; tf jx0; t0Þ ¼
Ðxðtf Þ¼xf

xðt0Þ¼x0

DxðtÞ e�S½xðtÞ�=E : ð12Þ

Here, S½xðtÞ� is the effective action or the Onsager–Machlup functional, i.e.

S½xðtÞ� :¼
Ðtf
t0

dt LðxðtÞ; _xxðtÞ; tÞ ; ð13Þ

with the corresponding Lagrangian

Lðx; _xx; tÞ :¼ 1
4 _xx� Fðx; tÞ½ � � D�1 _xx� Fðx; tÞ½ � : ð14Þ

We remark that a prepoint-discretization scheme [43–45] (not to be confused with the Ito-scheme in
stochastic calculus [36]) has been implicitly adopted in the path integral (12) implying the measure
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ð4p E DtDÞ

p
. Other ‘‘discretization schemes” [43–45] would give rise to a somewhat modified

path-integral formalism but would – of course – lead to identical results as far as the actual stochastic
dynamics (3) is concerned.

It should be clear that in general an exact evaluation of the path integral (12) is impossible. Never-
theless, it represents an advantageous starting-point for a systematic weak-noise approximation: For
small E, the main contributions to the path integral (12) stem from the surrounding of action minimiz-
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ing paths. Carrying out a infinite-dimensional saddle-point approximation around these paths, one
arrives at

pðxf ; tf j x0; t0Þ ¼
P
k

e�fkðxf ;tf Þ=E

det ð4p EQ*kðtf ÞÞ
� �1

2

½1þOðEÞ� ; ð15Þ

where the sum runs over all paths x*kðtÞ that (locally) minimize the action (13). These obey the Euler–
Lagrange equations

€xx*kðtÞ þ D ðrrFðx*kðtÞ; tÞÞT D�1 � rrFðx*kðtÞ; tÞ
� �

_xx*kðtÞ

�D ðrrFðx*kðtÞ; tÞÞT D�1 Fðx*kðtÞ; tÞ �
@

@t
Fðx*kðtÞ; tÞ ¼ 0 ð16Þ

together with the boundary conditions

x*kðt0Þ ¼ x0 ; x*kðtf Þ ¼ xf : ð17Þ
Here and in the following, rrFðx; tÞ denotes the Jacobian matrix with components
ðrrFðx; tÞÞij :¼ @Fiðx; tÞ=@xj and the transpose of a matrix M is written as MT . Introducing the canoni-
cal momentum

p :¼ @L
@ _xx

¼ 1
2

D�1 _xx� Fðx; tÞ½ � ; ð18Þ

we can, via the usual Legendre transformation, pass to the equivalent Hamiltonian dynamics, defined
by the Hamiltonian

Hðx; p; tÞ :¼ p � _xx� L ¼ p � D pþ p � Fðx; tÞ ð19Þ
and the corresponding canonical equations

_xx*kðtÞ ¼ Fðx*kðtÞ; tÞ þ 2D p*kðtÞ

p*kðtÞ ¼ � rrFðx*kðtÞ; tÞ
� �T

p*kðtÞ :
(20)

The value of the action fkðxf ; tf Þ of a path x*kðtÞ is then given by

fkðxf ; tf Þ :¼ S½x*kðtf Þ� ¼
Ðtf
t0

dt p*kðtÞ � D p*kðtÞ ; ð21Þ

where we have suppressed in favor of notational brevity the dependence on the initial condition x0 at
time t0. It is noteworthy to point out that in Eq. (19) the momentum enters both quadratically and
linearly: the latter linear contribution mimics a magnetic field-like, time-dependent vector potential
contribution. For later use, we also recall the well-known result from classical mechanics [46] that the
derivative of the extremal action with respect to its endpoint xf equals the canonical conjugate mo-
mentum at time tf ,

p*kðtf Þ ¼
@fkðxf ; tf Þ

@xf
: ð22Þ

The yet unspecified prefactor term Q*kðtf Þ in (15) is given by the solution at time tf of the following
second order differential equation

€QQ*kðtÞ � rrFðx*kðtÞ; tÞ _QQ*kðtÞ � _QQ*kðtÞQ*kðtÞ�1 D ðrrFðx*kðtÞ; tÞÞT D�1 Q*kðtÞ

þ
�
rrFðx*kðtÞ; tÞD ðrrFðx*kðtÞ; tÞÞT D�1 � D ðrrFðx*kðtÞ; tÞÞT D�1 rrFðx*kðtÞ; tÞ

� d
dt

rrFðx*kðtÞ; tÞ þ D ðrrFðx*kðtÞ; tÞÞT D�1� �
þ 2 ðD p*kðtÞÞ � ðrrrrFðx*kðtÞ; tÞÞ

	
Q*kðtÞ ¼ 0

ð23Þ
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with initial conditions

Q*kðt0Þ ¼ 0 ; _QQ*kðt0Þ ¼ D : ð24Þ
Here, we have introduced the tensor of third order ðrrrrFðx; tÞÞijl :¼ @2Fiðx; tÞ=@xj@xl, whereby the
scalar product with a matrix appearing in Eq. (23) is defined as

½ðD p*kðtÞÞ � ðrrrrFðx*kðtÞ; tÞÞ�ij ¼
P
l
½D p*kðtÞ�l

@Flðx*kðtÞ; tÞ
@xi @xj

: ð25Þ

The derivation of Eqs. (23, 24) in the framework of the time-discretized version of the path integral (12)
proceeds along the same general lines as in the one-dimensional case presented in Ref. [34]. However,
the rather technical details are beyond the scope of the present paper.

Though in principle, the prefactor Q*kðtf Þ is completely determined by Eqs. (23, 24), it will turn out
to be more convenient to consider the following quantity:

G*kðtÞ :¼ 1
2 ½D

�1 _QQ*kðtÞQ*kðtÞ�1 � ðrFðx*kðtÞ; tÞÞT D�1 � D�1 rrFðx*kðtÞ; tÞ� : ð26Þ
With the help of Eq. (23) one can then verify that G*kðtÞ fulfills for t > t0 the matrix Riccati equation

_GG*kðtÞ ¼ �2G*kðtÞ DG*kðtÞ � ðrrFðx*kðtÞ; tÞÞT G*kðtÞ
�G*kðtÞ rrFðx*kðtÞ; tÞ � p*kðtÞ � rrrrFðx*kðtÞ; tÞ : ð27Þ

However, as can be inferred from Eqs. (24, 26), there is no well defined initial condition for G*kðtÞ at
time t0. Instead, we have to content ourselves with the relations

lim
t!t0

½G*kðtÞQ*kðtÞ� ¼ 1
2 1 and G*kðt0Þ�1 ¼ 0 : ð28Þ

By tracing over both sides of Eq. (26) one obtains a linear first order differential equation for the
determinant detQ*kðtÞ from Eq. (15):

d
dt

detQ*kðtÞ ¼ 2 Tr ½ðrrFðx*kðtÞ; tÞÞT þ DG*kðtÞ� detQ*kðtÞ : ð29Þ

The initial condition detQ*kðt0Þ ¼ 0 follows immediately from Eq. (24).
We conclude this section with two remarks on the above mentioned two different approaches for

the calculation of the prefactor in Eq. (15). First, we want to point out that one can identify G*kðtf Þ
with the Hessian of the action function fkðxf ; tf Þ:

G*kðtf Þ ¼
@2fkðxf ; tf Þ
@xf @xf

: ð30Þ

The proof of this relation proceeds analogously to that presented in Ref. [34] for the one-dimensional
case, though the calculational details are by far more involved. Thus, Eq. (27) is equivalent to the
matrix Riccati equation for the second derivatives of the action used elsewhere in the literature [26].
However, while there this equation is derived by inserting a WKB-type ansatz in the Fokker–Planck
equation (5), we entirely work here within the path integral formalism. In particular, we avoid pro-
blems commonly encountered due to the non-analytic nature of the WKB-action near the separatrix
[24, 26]. As a second remark, we note that an advantage of Eqs. (27, 29) over Eq. (23) lies in the fact
that in the former set of equations no D�1 terms appear. Since later on we will be interested in the
case of singular D, this fact presents a favorable feature from a technical point of view.

4 Evaluation of the escape rate for weak noise For small noise strengths E, we can now insert the
saddle-point approximation (15) into the rate expression (11). Using Eq. (22), this yields

Gðtf Þ ¼
ð

Sðtf Þ

dd�1n � D
P
k
p*kðtf Þ

e�fkðx�kðtf Þ;tf Þ=E

det ð4pEQ*kðtf ÞÞ
� �1

2

½1þOðEÞ� : ð31Þ
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Note that for the integrand the boundary condition (17) with xf being the integration variable on the
separatrix Sðtf Þ is implicitly understood. Parametrizing the surface integral (31) by the d � 1 dimen-
sional vector s ¼ ðs1; . . . ; sd�1ÞT, i.e. Sðtf Þ ¼: fxsepðs; tf Þjs 2 Ud�1g for a certain subset Ud�1 � Rd�1

of the d � 1 dimensional parameter space, we obtain

Gðtf Þ ¼
ð
dd�1s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðs; tf Þ

q
nðs; tf Þ � D

P
k
p*kðtf Þ

e�fkðx�kðtf Þ;tf Þ=E

detð4p EQ*kðtf ÞÞ
� �1

2

½1þOðEÞ� ; ð32Þ

where we have introduced the measure

gðs; tf Þ :¼ det
@xsepðs; tf Þ

@sn
� @xsepðs; tf Þ

@sn0

� �
n; n0¼1;...; d�1

: ð33Þ

For weak noise, the main contribution to the integral (32) comes again from the surrounding of the
minima of the actions fkðx*kðtf Þ; tf Þ, and we can evaluate the integral in a saddle-point approximation.
The corresponding extremal condition which determines the values s*k then assumes the form, cf. also
Eq. (22),

@fkðxsepðs*k; tf Þ; tf Þ
@s*k;n

¼ p*kðtf Þ �
@xsepðs*k; tf Þ

@s*k;n
¼ 0 ðn ¼ 1; . . . ; d � 1Þ : ð34Þ

Consequently, the momentum p*kðtf Þ has to be perpendicular to the separatrix Sðtf Þ at the end point
xsepðs*k; tf Þ. Furthermore, we need the Hessian of the action as a function of the parameter vector s.
Via Eqs. (22) and (26) it can be expressed as

@2fkðxsepðs*k; tf Þ; tf Þ
@s*k;n@s*k;n0

¼ @xsepðs*k; tf Þ
@s*k;n

�G*kðtf Þ
@xsepðs*k; tf Þ

@s*k;n0

þ p*kðtf Þ �
@2xsepðs*k; tf Þ
@s*k;n@s*k;n0

ðn; n0 ¼ 1; . . . ; d � 1Þ : ð35Þ

Later on, we shall evaluate the last equation within a linearization around the unstable periodic orbit
of our deterministic dynamics. In that case, the second term on the r.h.s of Eq. (35) vanishes. The
determinant of the Hessian is thus given by the first term, which can be written as (cf. Appendix):

det
@xsepðs*k; tf Þ

@s*k;n
�G*kðtf Þ

@xsepðs*k; tf Þ
@s*k;n0

� �
n;n0¼1;...; d�1

¼ gðs*k; tf Þ nðs*k; tf Þ �G*kðtf Þ�1 nðs*k; tf Þ detG*kðtf Þ : ð36Þ

Using the fact that the momentum p*kðtf Þ is parallel to the normal vector nðs*k; tf Þ (cf. Eq. (34)), we
then obtain for the rate (32) the important intermediate result

Gðtf Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2dþ1pE
p

P
k

p*kðtf Þ � D p*kðtf Þ e�fkðxsepðs�k ;tf Þ;tf Þ=Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p*kðtf Þ �G*kðtf Þ�1 p*kðtf Þ detQ*kðtf Þ detG*kðtf Þ

q ½1þOðEÞ� : ð37Þ

4.1 The action minimizing paths To proceed further in the evaluation of the rate formula (37), it is
necessary to gain more insight about the nature of the action minimizing paths x*kðtÞ, whose dynamics
is governed by the Hamiltonian Eq. (20) supplemented by the boundary conditions (17). In view of
our choice for the initial conditions (cf. discussion after Eq. (8)) and our result (37), the latter assume
the form

x*kðt0Þ ¼ xsðt0Þ ; x*kðtf Þ ¼ xsepðs*k; tf Þ ; ð38Þ

where the parameter values s*k are restricted by the relations (34).
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For given values of t0 and tf , in the generic case only one of the solutions x*kðtÞ of this boundary
problem will represent a global minimum of the action (21). Denoting this path for the moment by
x*�kkðtÞ, it is clear that for large time differences tf � t0 owing to the form of the action (13) and (14)
this path x*�kkðtÞ will spend most of its time near a deterministic trajectory, i.e., _xx*�kkðtÞ � Fðx*�kkðtÞ; tÞ. With
regard to the boundary conditions (38), this means that after its start at time t0 the path will closely
follow the stable periodic orbit xsðtÞ for some time. Subsequently it switches over into the vicinity of
the separatrix SðtÞ, thereby accumulating the main part of its action, to remain there until its end at
time tf . With respect to the position of the end point on the separatrix, if we assume that ultimately
all deterministic trajectories on the separatrix converge to the unstable periodic orbit xuðtÞ, the same
will also hold true for the path x*�kkðtÞ, which will thus end nearer and nearer to xuðtÞ the more time it
is able to spend in a close vicinity of the separatrix. Since the duration of the sojourns near the
periodic orbits is long compared to that of the transition in between, the path x*�kkðtÞ is often called an
‘‘instanton” in the literature.

If we consider now the limiting case t0 ! �1 and tf ! 1 (in the following abbreviated as
tf � t0 ! 1), there exists a well defined limit of x*�kkðtÞ, in the sense that this path follows ever closer
the periodic orbits, while retaining the shape of the intermediate segment. At the same time, its action
S½x*�kkðtÞ� converges from above to a finite value. We observe that in the limit tf � t0 ! 1 owing to the
time-periodicity of the force field Fðx; tÞ the action S½x*�kkðt þ nT Þ� is the same for all integers n. In
other words, the global minimum of the action becomes countable infinitely degenerate. However, one
can still safely assume that these minima are well separated in the space of all the paths appearing
in (12), provided that the driving is neither too weak, too slow nor too fast. These limiting cases are
thus not covered by our theory. We remind the reader of the situation in the static case, where the
global minimum is also degenerate. However, while the degeneracy there is continuous in time (Gold-
stone mode), we are dealing here with a discrete degeneracy.

As a consequence of the fact that the minimizing paths x*kðtÞ remain well separated, our rate-formu-
la (37) becomes asymptotically exact for any (arbitrary but fixed) finite values of the driving ampli-
tude and period as the noise strength E tends to zero. Apart from this fact that in the limit E ! 0 the
OðEÞ correction in the saddle point approximation (15) and thus in (37) vanishes, a more detailed
quantitative statement seems difficult. On the other hand, for a given (small) noise strength E, we have
to exclude extremely small driving amplitudes and extremely long or short driving periods since this
would lead us effectively back to the static (undriven) escape problem, which requires a completely
different treatment (especially of the (quasi-) Goldstone mode [29, 40, 41, 47–49]) than in (15). Put
differently, in any of these three asymptotic regimes, the error OðEÞ from (15, 37) becomes very large.

For the following, we introduce the symbol x*optðtÞ for the limit of the path x*�kkðtÞ for tf � t0 ! 1,
always keeping in mind that this path is only defined modulo time shifts by integer multiples of the
driving period T . The corresponding action is defined analogously by

fopt :¼ S½x*optðtÞ� : ð39Þ

Furthermore, all other quantities related to x*optðtÞ inherit the subscript ‘‘opt”, for instance p*optðtÞ to
name only one.

Coming back to the case of finite times t0 and tf , we expect that as precursors of the limit
tf � t0 ! 1 there exist besides the global minimum x*�kkðtÞ additional, relative minima x*kðtÞ with an
only slightly larger action. After a suitable relabeling, each of them closely resembles an appropriately
shifted ‘‘master path” x*optðt þ kT Þ (see Fig. 3). For finite tf � t0, we have a finite number of the order
tf � t0=T of such paths. Thus, again without restriction of generality, we can assume that the sum in
the rate formula (37) runs from 0 to a maximal value Kðtf ; t0Þ:

0 � k � Kðtf ; t0Þ ¼ Oððtf � t0Þ=T Þ : ð40Þ

Especially, the path x*0ðtÞ is the one that stays as long as possible in the vicinity of the stable periodic
orbit xsðtÞ and starts with its transition towards the separatrix at the latest possible moment.
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4.2 Linearization scheme around periodic orbits The discussion in the last section has shown that
the paths x*kðtÞ spend most of their time near the periodic orbits xs;uðtÞ of the deterministic dynamics.
Thus, we may gain further insight in their behavior if we linearize the time-dependent force field
around these orbits:

Fðx; tÞ � Fðxs;uðtÞ; tÞ þ rrFðxs;uðtÞ; tÞðx� xs;uðtÞÞ : ð41Þ
Within this approximation, the Hamiltonian equations (20) assume the form

D _xx*kðtÞ ¼ rrFðxs;uðtÞ; tÞDx*kðtÞ þ 2D p*kðtÞ
_pp*kðtÞ ¼ � rrFðxs;uðtÞ; tÞ

� �T
p*kðtÞ ;

(42)

where we have introduced the deviations from the periodic orbits,

Dx*kðtÞ :¼ x*kðtÞ � xs;uðtÞ : ð43Þ
As we shall see later, for the evaluation of the rate formula (37), one only needs the solution for the
momentum equation in the second line of Eq. (42). According to Floquet’s theory [50], this solution
can be obtained from the eigenvalues and the left eigenvectors of the eigenvalue problem

d
dt

þrrFðxs;uðtÞ; tÞ

 �

Fa
s;uðtÞ ¼ las;u F

a
s;uðtÞ ; Fa

s;uðt þ T Þ ¼ Fa
s;uðtÞ ; a ¼ 1; . . . ; d

ð44Þ
together with the corresponding right eigenvectors Fy;a

s;u ðtÞ, i.e. the solutions of Eq. (44) with
rrFðxs;uðtÞ; tÞ
� �T

. Upon proper normalization of these eigenvectors at equal times, i.e.

Fy;a
s;u ðtÞ �Fb

s;uðtÞ ¼ dab ; ð45Þ

we are able to write the solution for the momentum equation as

p*kðtÞ ¼
P
a
e�las;uðt�t1Þ Fa

s;uðt1Þ � p*kðt1ÞFy;a
s; uðtÞ ; ð46Þ

where t1 are arbitrary reference times for which the linearization (41) is valid. Since for the master
path we have Dx*optðtÞ ! 0 for t ! 	1, it follows with Eq. (42) that lim

t!	1
p*optðtÞ ¼ 0. Conse-

quently, we must require Re lau > 0 (Re las < 0) for all a with Fa
u;sðt1Þ � p*optðt1Þ 6¼ 0. In the following,

we denote sums over this subset of eigenvectors by an apostrophe on the sum sign.
With respect to the prefactor quantities G*kðtÞ and detQ*kðtÞ, we first observe that within the linear-

ization (41) the matrix Riccati Eq. (27) assumes the form

_GG*kðtÞ ¼ �2G*kðtÞ DG*kðtÞ � ðrrFðxs;uðtÞ; tÞÞT G*kðtÞ �G*kðtÞ rrFðxs;uðtÞ; tÞ : ð47Þ
A transformation to the inverse matrix G*kðtÞ�1 yields the linear matrix differential equation

d
dt

G*kðtÞ�1
h i

¼ 2DþG*kðtÞ�1 ðrrFðxs;uðtÞ; tÞÞT þrrFðxs;uðtÞ; tÞG*kðtÞ�1 ; ð48Þ
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Fig. 3 Action minimizing paths x*kðtÞ,
k ¼ 0; . . . ;Kðtf ; t0Þ ¼ 3 (solid) and corresponding
master paths x*optðt þ kT Þ (dashed) between stable
and unstable periodic orbits (dotted). Depicted is
the one-dimensional, overdamped case d ¼ 1 with
an additively, harmonically driven piecewise para-
bolic potential from Ref. [33, 34].
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where the initial condition is given by Eq. (28) as

G*kðt0Þ�1 ¼ 0 : ð49Þ
Furthermore, multiplication of Eq. (47) with G*kðtÞ�1 shows that

Tr ½ _GG*kðtÞG*kðtÞ�1� ¼ �2 Tr ðrrFðxs;uðtÞ; tÞÞT þ DG*kðtÞ
� �

: ð50Þ

With the help of the linearized version of Eq. (29) we then find for the last two terms of the product
appearing in the denominator of our rate expression (37) the result

detG*kðtÞ detQ*kðtÞ ¼ const: ¼: ms;u : ð51Þ
Note that while ms is fixed for all paths x*kðtÞ by the initial condition (28) to the value ms ¼ 2�d, mu
depends both on the index k and on the explicit form of the time-dependent force field Fðx; tÞ. Later
on, we only need mu for the master path, which we denote by

mopt :¼ lim
t!1

detG*optðtÞ detQ*optðtÞ : ð52Þ

The rest of the product in the denominator of (37) can be rewritten by using the equation of motion (48)
for G*kðtÞ�1 together with the Hamiltonian equation (42) for p*kðtÞ . This yields

d
dt

p*kðtÞ �G*kðtÞ�1 p*kðtÞ
h i

¼ 2p*kðtÞ � D p*kðtÞ ð53Þ

or equivalently in integrated form

p*kðtÞ �G*kðtÞ�1 p*kðtÞ ¼ p*kðt1Þ �G*kðt1Þ�1 p*kðt1Þ þ 2
Ðt
t1

dt0 p*kðt0Þ � Dp*kðt0Þ : ð54Þ

For the master path x*optðtÞ, the integral on the right hand side of the last equation has to converge in
the limit t ! 1 in order that the action fopt assumes a finite value. Hence, the quantity on the left
hand side is also well defined in this limit and we obtain for t ! 1 after a subsequent renaming
tu ! t

p*optðtÞ �G*optðtÞ�1 p*optðtÞ ¼ qopt � p*optðtÞ � AuðtÞ p*optðtÞ ð55Þ

Here we have exploited Eq. (46) for the master path and furthermore introduced the abbreviations

qopt :¼ lim
t!1

p*optðtÞ �G*optðtÞ�1 p*optðtÞ ; ð56Þ

AuðtÞ :¼ 20
P
ab

Fa
u ðtÞFb

uðtÞ
T Ð1

t
dt0 e�ðlauþlbuÞðt0�tÞ Fy;a

u ðt0Þ � DFy;b
u ðt0Þ : ð57Þ

Note that owing to the time-periodicity of the Floquet solutions, AuðtÞ is also a periodic function of t:

Auðt þ kT Þ ¼ AuðtÞ for all times t : ð58Þ
4.3 Approximation in terms of the master path After having gained sufficient insight into the
nature of the paths x*kðtÞ, we now come back to the evaluation of the rate expression (37). The main
idea is to approximate all quantities related to the paths x*kðtÞ in terms of the corresponding master
path, since, as discussed in Sect. 4.1, both resemble each other closely. However, while the boundary
conditions for the master path are x*optðtÞ � xsðtÞ ! 0 for t ! �1 and x*optðtÞ � xuðtÞ ! 0 for t ! 1,
the paths x*kðtÞ have to satisfy Eq. (38). From the results of our previous work [34], we know that
while we can safely neglect these deviations at the initial time t0, the boundary at time tf has to be
treated more carefully. First, we modify the upper boundary condition for x*optðtÞ by requiring that

tk :¼ tf þ kT ; xk :¼ x*optðtkÞ ð59Þ

are the new end time and end point, respectively. In other words, we simply truncate the path
x*optðt þ kT Þ corresponding to x*kðtÞ at the time tf . Obviously, this new path still satisfies the Hamilto-
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nian equations (20) and is thus an extremizing path. The value of its action follows from the defini-
tions (21) and (39) as

foptðxk; tkÞ :¼
Ðtk

�1
dt p*optðtÞ � Dp*optðtÞ ¼ fopt �

Ð1
tk

dt p*optðtÞ � Dp*optðtÞ : ð60Þ

Next, we express the action (21) of the path x*kðtÞ by expanding the one belonging to the associated
master path x*optðt þ kT Þ in powers of the difference dx*kðtf Þ :¼ x*kðtf Þ � x*optðtkÞ ¼ Dx*kðtf Þ � Dx*optðtkÞ
between their endpoints,

fkðxsepðs*k; tf Þ; tf Þ ¼ foptðxk; tkÞ þ
@foptðxk; tkÞ

@xk
� dx*kðtf Þ þ � � � : ð61Þ

The second term on the right hand side can be rewritten as p*optðtkÞ � Dx*kðtf Þ � p*optðtkÞ � Dx*optðtkÞ.
Here, the first scalar product is zero, as can been seen as follows: We know that the endpoint x*kðtf Þ
lies one the separatrix Sðtf Þ and thus a deterministic solution xdetðtÞ starting at time tk from
xdetðtkÞ ¼ x*kðtf Þ will for all times stay on SðtÞ. Its deviation from the unstable periodic orbit is de-
noted by DxdetðtÞ. Within our linearization (41) one can then readily verify with the help of the dyna-
mical equation (42) that d½p*optðtÞ � DxdetðtÞ�=dt ¼ 0. Hence, this scalar product is a constant of motion
and we can infer that

p*optðtkÞ � Dx*kðtf Þ ¼ p*optðtkÞ � DxdetðtkÞ ¼ lim
t!1

p*optðtÞ � DxdetðtÞ
� �

¼ 0 : ð62Þ

Here, the last equality follows from the boundedness of xdetðtÞ near the saddle point (cf. the discus-
sion below Eq. (2)) together with p*optðtÞ ! 0 for t ! 1.

The second scalar product, p*optðtkÞ � Dx*optðtkÞ, can be determined by a similar consideration: The
linearized Hamiltonian dynamics (42) yields

d
dt

p*optðtÞ � Dx*optðtÞ
� �

¼ 2 p*optðtÞ � Dp*optðtÞ ; ð63Þ

and since again this scalar product has to vanish in the limit t ! 1, we obtain

p*optðtkÞ � Dx*optðtkÞ ¼ �2
Ð1
tk

dt p*optðtÞ � Dp*optðtÞ : ð64Þ

Altogether, the approximation (61) for the value of the action of the path x*kðtÞ thus takes the form

fkðxsepðs*k; tf Þ; tf Þ ¼ fopt þ
Ð1
tf

dt p*optðt þ kT Þ � Dp*optðt þ kT Þ þ � � � : ð65Þ

The k-dependence of the exponential term in the rate expression (37) is thus reduced to a simple
sum of exponential factors as given by the time-dependence (46) of the integrand in (65). With
respect to the prefactor terms in the rate expression (37), we already know from the results of our
previous work [34] that up to corrections of the order Oðjp*optðtkÞj2Þ we can directly substitute all
quantities belonging to the path x*kðtÞ by those of the corresponding master path x*optðt þ kT Þ.
Consistently, we also neglect the terms on the right hand side of Eq. (55), which are of the same
order.

4.4 Rate formula After the discussion in the previous section, it is just a matter of collecting every-
thing in order to arrive at the central result of the present work, namely the asymptotic value of the
instantaneous escape rate,

GðtÞ ’
ffiffi
E

p
aopt e

�fopt=E joptðt; EÞ : ð66Þ
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Here, we have introduced the quantities

aopt :¼ 2dþ1p T 2 lim
t!1

p*optðtÞ �G*optðtÞ�1 p*optðtÞ detQ*optðtÞ detG*optðtÞ
h i�1

2
; ð67Þ

joptðt; EÞ :¼ T
PKðt;t0Þ
k¼0

p*optðt þ kT Þ � Dp*optðt þ kT Þ
E

� exp � 1
E

ð1
t

dt0 p*optðt0 þ kT Þ � Dp*optðt0 þ kT Þ

2
4

3
5 : ð68Þ

With the help of Eqs. (46, 56) and the time-periodicity of the Floquet solutions Fa
u ðtÞ we can rewrite

the last expression as

joptðt; EÞ ¼ T
PKðt;t0Þ
k¼0

boptðtÞ � BkðtÞT DBkðtÞ boptðtÞ
E

exp � boptðtÞ � BkðtÞT AuðtÞBkðtÞ boptðtÞ
2 E

( )
;

ð69Þ

BkðtÞ :¼
P
a

0 e�lau kT Fy;a
u ðtÞFa

u ðtÞ
T ¼ Bkðt þ T Þ ; ð70Þ

boptðtÞ :¼ lim
t̂t!1

P
a

0 e�lau ðt�t̂tÞ Fa
u ðt̂tÞ � p*optðt̂tÞFy;a

u ðtÞ : ð71Þ

Since BkðtÞ in (70) is a sum of terms that exponentially decrease with k, there is a competition in
the sum (69) between a pre-exponential factor which quickly decreases with k and an exponential
term increasing with k. The main contribution to this sum thus comes from a few k values around a
number k̂kðtÞ that is for small noise strength E much larger than 0 but at the same moment, for large
enough tf � t0, still much smaller than Kðtf ; t0Þ. Hence, up to an exponentially small error in E, we
can extend the summation range in Eq. (69) and thus in Eq. (67) to all integers k. This allows us to
identify two important features of the time-dependence of joptðt; EÞ. To prove the first one, the time-
periodicity

joptðt þ T ; EÞ ¼ joptðt; EÞ ; ð72Þ

we merely have to shift the summation index in Eq. (67) by 1. For asymptotic times and small noise
strengths, the instantaneous escape rate (66) is thus, as expected, a periodic function of the time t. To
establish the second property, we use furthermore that the pre-exponential term in Eq. (67) is just the
negative time-derivative of the expression in the exponential. Again up to an exponentially small
correction, we then obtain

1
T

ðtþT

t

dt0 joptðt0; EÞ ¼ 1 : ð73Þ

Inserting the asymptotic rate expression (66) into the definition (9) for the time-averaged rate and
using the last identity, we thus arrive at the second main result of the present work, namely

�GG ’
ffiffi
E

p
aopt e

�fopt=E : ð74Þ

Hence, the noise-strength dependence of the time-averaged rate is of the form of an Arrhenius-type,
exponentially leading term times an E-dependent prefactor. Note that for a system in thermal equili-
brium i.e. for a time-independent force field FðxÞ, the escape rate is given by an exponentially leading
Arrhenius factor, which contains the barrier against the escape, multiplied by an E-independent prefac-
tor, which depends only on local properties of the force field at the barrier and in the well [19]. In
comparison with this equilibrium rate structure, we observe two crucial differences in (74). First, in
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the present, non-equilibrium situation, both the effective potential barrier in the exponential and the
prefactor depend in a non-trivial way on global properties of the force field Fðx; tÞ, and can thus in
general only be determined by means of a numerical computation. Second, the non-equilibrium case
exhibits an E-dependence of the prefactor.

5 Explicit results for a metastable piecewise parabolic potential While, in general, one has to
resort to numerical methods for the evaluation of the rate expression (66), in the special case of a
particle moving in a one-dimensional piecewise parabolic potential with an additive sinusoidal driving (3)
a complete analytical treatment is possible. In the following, we work out the simplest such example
with two parabolic pieces, and compare the so obtained analytical predictions with numerical results
from a Monte-Carlo simulation of the stochastic dynamics (3).

Let us thus consider the force field deriving from the piecewise parabolic potential of the form

Vðx � 0Þ ¼ 1
2 mw

2
s ½ðx� �xxsÞ2 � �xx2s �

Vðx 
 0Þ ¼ 1
2 mw

2
u½ðx� �xxuÞ2 � �xx2u� ;

(75)

where �xxs < 0 and �xxu > 0 denote the position of the potential minimum and maximum, respectively,
with corresponding curvatures

mw2
s > 0 and mw2

u < 0 : ð76Þ
Note that within our notation wu is an imaginary number. To ensure the continuity of the correspond-
ing force field Fðx; tÞ,

Fðx � 0; tÞ ¼ �mw2
s ðx� �xxsÞ þ A sin ðWtÞ

Fðx 
 0; tÞ ¼ �mw2
u ðx� �xxuÞ þ A sin ðWtÞ ;

(77)

at the point x ¼ 0, we have to impose the additional restriction w2
s �xxs ¼ w2

u �xxu. Selecting as indepen-
dent model parameters w2

s , w
2
u, and the static potential barrier DV :¼ Vð�xxuÞ � Vð�xxsÞ, the fixed points

xs;u can be expressed through

w2
s �xxs ¼ w2

u �xxu ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DV
m

w2
s jwuj2

w2
s þ jwuj2

s
: ð78Þ

If we require furthermore that the periodic orbits xs;uðtÞ do not cross the point x ¼ 0, i.e.

xsðtÞ < 0 < xuðtÞ ð79Þ
for all times t, which is granted if and only if the conditions

A2 < m2½g2W2 þ ðW2 � w2
s;uÞ

2� �xx2s;u ð80Þ

are fulfilled for both the ‘‘s” and the ‘‘u” indices, we obtain

xs;uðtÞ ¼ �xxs;u �
A
m

gW cos ðWtÞ þ ðW2 � w2
s;uÞ sin ðWtÞ

g2 W2 þ ðW2 � w2
s;uÞ

2 : ð81Þ

For the determination of the master path x*optðtÞ, we use the specific form (4) of the force field and
of the diffusion matrix to express the Hamiltonian equations of motion (20) in the form of the second
order differential equations

D€xx*optðtÞ þ gD _xx*optðtÞ þ w2
s;u Dx*optðtÞ ¼ 2

g

m
p*v; optðtÞ

€pp*v; optðtÞ � g _pp*v; optðtÞ þ w2
s;u p*v; optðtÞ ¼ 0 :

(82)

Here, the index ‘‘s” (‘‘u”) applies for all times t where x*optðtÞ � 0 (x*optðtÞ 
 0). Furthermore, we have
already set the strength d of the auxiliary noise term appearing in (4) to 0, since Eq. (82) and all the
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following relations remain well-defined for a singular diffusion matrix D. The system (82) of linear
equations can be readily solved, if we restrict ourselves to the case where the master path x*optðtÞ
crosses the point x ¼ 0 exactly once, say at time t1,

x*optðtÞ ¼ 0() t ¼ t1 : ð83Þ

Notice that owing to the form of the Hamiltonian equations (82) both x*optðtÞ and p*v; optðtÞ have to be
continuously differentiable at this time t1. For the following considerations it is convenient to intro-
duce the frequencies

l	s;u ¼ � g

2
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

4
� w2

s;u

r
; ð84Þ

which are the Floquet eigenvalues from Eq. (44). We observe that l�u < 0, such that the respective
terms do not appear in the sums (56, 69, 70). The corresponding Floquet states are given by

F	
s;uðtÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþs;u � l�s;u

q 1

l	s;u

� �
and Fy;	

s;u ðtÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lþs;u � l�s;u

q l	s;u þ g

1

!
: ð85Þ

Hence, the matrices BkðtÞ from Eq. (70) take the form

BkðtÞ ¼
e�lþu kT

lþu � l�u

lþu þ g 1

lþu ðl
þ
u þ gÞ lþu

!
: ð86Þ

Taking into account the boundary conditions Dx*optðtÞ ! 0 and p*v; optðtÞ ! 0 for t ! 	1, we obtain
for the solutions of Eq. (82)

Dx*optðt � t1Þ ¼
1

lþs � l�s

1
m

p*v; optðt1Þ � lþs xsðt1Þ

 �

e�l�s �ðt�t1Þ � 1
m

p*v; optðt1Þ � l�s xsðt1Þ

 �

e�lþs �ðt�t1Þ
� 	

Dx*optðt 
 t1Þ ¼
1

lþu

1
m

p*v; optðt1Þ � lþu xuðt1Þ

 �

el
�
u �ðt�t1Þ � 1

m
p*v; optðt1Þ e�lþu �ðt�t1Þ

� 	

p*v; optðt � t1Þ ¼
1

lþs � l�s
f½�l�s p*v; optðt1Þ þ mw2

s xsðt1Þ� e�l�s �ðt�t1Þ

þ ½lþs p*v; optðt1Þ � mw2
s xsðt1Þ� e�lþs �ðt�t1Þg

p*v; optðt 
 t1Þ ¼ p*v; optðt1Þ e�lþu � ðt�t1Þ : ð87Þ

Next one can infer from the above mentioned requirement of a continuous first derivative at time t
of both x*optðtÞ and p*v; optðtÞ the two relations

p*v; optðt1Þ ¼ mlþu xuðt1Þ þ
_xxsðt1Þ � _xxuðt1Þ

l�u


 �

p*v; optðt1Þ ¼ m
w2

s

w2
u

lþu xsðt1Þ :
(88)

These relations can be used to fix the two so far unknown quantities t1 and p*v; optðt1Þ in the above
expressions: A straightforward, but somewhat tedious calculation yields

tan ðW t1Þ ¼
1
W

�
w2

s �W2� lþu þ gW2

w2
s �W2 � glþu

ð89Þ

p*v; optðt1Þ ¼ m lþu �xxu þ w2
s
lþu
l�u

A
W

cos ðWt1Þ
w2

s �W2 � glþu
: ð90Þ
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Obviously, Eq. (89) has two solutions within each driving period T . We anticipate that only one
corresponds to a minimum of the action, and hence to the master path. Thus, we fix t1 (up to the
usual degeneracy under t ! t þ T ) by requiring additionally that

A
W

cos ðWt1Þ
w2

s �W2 � glþu
> 0 : ð91Þ

Combining (89–91) we arrive at

p*v; optðt1Þ ¼ mlþu �xxu þ
jAj w2

s jwuj2

l�u n4
> 0 ; ð92Þ

where we have introduced the frequency n via

n4 :¼ ½ðg2W2 þ ðW2 � w2
s Þ

2Þ ðw4
u þW2ðl�u Þ

2Þ�1=2 : ð93Þ
To conclude the discussion of the master path, we note that in order to check the consistency of the
solution (87) with the condition (83) it is necessary to solve a transcendental equation, which has to
be done numerically. Qualitatively, one expects a break-down of Eq. (83) in the deterministically
underdamped regime, i.e. g=2 < ws, where the path ðxoptðtÞ; voptðtÞÞ in phase space leaves the vicinity
of the stable periodic orbit by way of a spiraling orbit which crosses the line x ¼ 0 several times.

Inserting p*v; optðtÞ from Eq. (87) and (88, 92) into the definition (21, 39) yields the action of the
master path:

fopt ¼ DV 1� A2 w2
sw

2
u ðw2

s þ jwuj2Þ
2m DV n8

�����
�����
1=2

2
4

3
5
2

: ð94Þ

The periodic driving thus leads to an ‘‘effective potential barrier” fopt which is smaller than the static
barrier DV to which it reduces in the limits A ! 0 or W ! 1. While fopt is monotonically decreas-
ing with increasing driving amplitude A, the dependency on the driving frequency W is more compli-
cated. In particular one observes resonance behavior near the frequency ws of the bottom well. Had
we chosen the opposite inequality in Eq. (91), a plus instead of the minus sign would have appeared
in the Eq. (94). Thus, the condition (91) does indeed single out the minimum of the action and thus
the desired solution for the master path x*optðtÞ. Using the result for p*v; optðt1Þ from Eq. (92), we obtain
the following explicit expression for boptðtÞ from Eq. (69):

boptðtÞ ¼
lþu þ g

1

!
p*v; optðt1Þ e�lþu ðt�t1Þ : ð95Þ

Finally, we turn to the determination of the prefactor quantity aopt. We first note that in the present
case the linear differential Eq. (48) does not only hold approximatively but is exact for all times
t 6¼ t1. Owing to t0 ! �1, the solution has approached its stationary value, and we obtain

G*optðt < t1Þ �
mw2

s 0

0 m

� �
ð96Þ

and hence with Eq. (28)

detQ*optðt < t1Þ ¼
1

4mw2
s

: ð97Þ

At this point, we make use of the fact that detQ*optðtÞ is continuous at time t1 according to Eq. (29),
while G*optðtÞ jumps due to Eq. (27). With @2Fðx; tÞ=@x2 ¼ m w2

s � w2
u

� �
dðxÞ one thus can infer that

G*optðt1 þ 0Þ ¼ ðw2
s þ jwuj2Þ

m _xx*optðt1Þ � p*v; optðt1Þ
_xx*optðt1Þ

� jwuj2 0

0 m

0
B@

1
CA : ð98Þ
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This yields together with Eq. (51), which again is exact for the piecewise parabolic potential, the
intermediate result

lim
t!1

detG*optðtÞ detQ*optðtÞ ¼
1

4mw2
s

ðw2
s þ jwuj2Þ

m _xx*optðt1Þ � p*v; optðt1Þ
_xx*optðt1Þ

� m jwuj2
" #

: ð99Þ

Applying two times Eq. (54), one time for t ¼ t0 ! �1 using the initial condition (49) and a second
time for t ! 1, yields after some algebra another necessary quantity, namely

lim
t!1

p*optðtÞ �G*optðtÞ�1 p*optðtÞ

¼ p*x; optðt1Þ2 ðw2
s þ jwuj2Þ

m _xx*optðt1Þ � p*v; optðt1Þ
_xx*optðt1Þ

� m jwuj2
" #�1

� 1
mw2

s

8<
:

9=
;þ 2fopt : ð100Þ

Inserting these expressions into the definition (67) of aopt and using Eqs. (20), (92) and (94) we arrive at

aopt ¼ 4pT 2 m _xx*optðt1Þ � p*v; optðt1Þ
m _xx*optðt1Þ

fopt

" #�1=2

: ð101Þ

Again, our choice for the sign in Eq. (91) is justified a posteriori, since it guarantees that
m _xx*optðt1Þ � p*v; optðt1Þ is a positive quantity. Eventually, together with Eqs. (78), (81), (89), (90) and
(92), the last expression can be rewritten as

aopt ¼
jAj ½W2ðl�u Þ

2 � w2
s jwuj2� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mDV n8

w�2
s þ jwuj�2

s

16p3 jAj ðl�u Þ
2 fopt

2
664

3
775
1=2

: ð102Þ

We remark that the structure of the results (94) and (102) closely resembles those in the overdamped
case, as obtained in Ref. [33, 34]. In particular, this limiting case m ! 0 is correctly reproduced by
(94) and (102).

We have checked our above analytical predictions by comparing them with results from Monte-
Carlo simulations of the stochastic dynamics (3), which yield the mean time �ttexit necessary for an exit
out of the driven well. The time-averaged rate is related to this quantity via [51]

�GG ¼ �ttexitð Þ�1 : ð103Þ
Since the necessary simulation times diverge exponentially with decreasing noise strength E (cf. (74)
and (102)), the numerical determination of the mean exit time becomes impossible for extremely
small E. For similar reasons, the numerical determination of the time-resolved rates GðtÞ is ruled out.

68                                                                              

�

�

�

�

�

�
�

�

�

n
u

m

�

�

n
u

m

Fig. 4 Time-averaged rate �GG vs. driving frequency W
for �xxs ¼ w2

u ¼ �1, �xxu ¼ w2
s ¼ m ¼ h ¼ DV ¼ A ¼ 1;

E ¼ 0:1 (dimensionless units). Crosses: Inverse mean
first exit time from simulations of Eq. (3) (error bars:
mean square deviation of mean value). Solid (dotted)
line: Analytical prediction (74) (condition (83) not ful-
filled). Inset: Convergence behavior of �GG for E ! 0 for
fixed driving frequency W ¼ 5 (all other parameters as
in main panel).

                    
  

            
                        

        
                                

                  
          

      
                                           

                                         
        

     
                      

      
                                 

 
                                                     

 
           



Figures 4–6 depict the time-averaged rate �GG as a function of various system parameters. Parameter
regions for which condition (83) is not fulfilled are indicated, which in particular applies for the case
of weak damping h and the vicinity of the deterministic resonance at W2 ¼ w2

s � g2=2 , as discussed
above. Outside of these regions, already for a noise strength of E ¼ 0:1, the agreement between theory
and simulation is very good (compare also inset of Fig. 6).

Furthermore, as one can see in Fig. 4, the theory breaks down both for small and large driving
frequencies W, if the noise strength E is kept fixed. However, for E ! 0, we again observe the conver-
gence of numerically determined rate towards the theoretical approximation (cf. inset of Fig. 4). This
behavior is in full accordance with our predictions from Sect. 4.1.

6 Conclusions With the present work, we have generalized earlier results for the noise-activated
escape in time-periodically driven one-dimensional overdamped systems to an arbitrary number of
dimensions. The basic idea of the path-integral approach put forward is that it is necessary to sum
over all local, nearby minima of the relevant action that contribute to the escape rate. For asymptoti-
cally weak noise, these minima are well separated in the space of all paths, and the contribution of
each of them can be obtained by a standard saddle-point approximation of the path-integral. This
behavior is in strong contrast to the undriven situation, where the occurrence of a (quasi-) Goldstone
mode requires a more sophisticated treatment of the associated prefactor.

Our central results express the time-instantaneous rate (66) and the time-averaged rate (74) in terms
of quantities belonging to a master path, which has in general to be obtained numerically as the
solution of a minimization problem. However, the structure of the result already reveals two note-
worthy, salient differences compared to the static case: both the exponentially leading Arrhenius factor
and the prefactor not only depend on the relative barrier height and the local properties of the poten-
tial inside the well and at the barrier region, respectively, but in addition these two quantities depend
as well sensitively on the global behavior of the time-dependent metastable potential. Additionally, affiffi
E

p
-dependence of the rate prefactor appears as a consequence of the non-equilibrium situation. Final-

ly, we have been able to derive closed analytical rate expressions for a distinctive case, namely the
sinusoidally driven Kramers problem with a metastable potential formed by two parabolas.
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Fig. 5 Time-averaged rate �GG vs. particle mass m for
�xxs ¼ mw2

u ¼ �1, �xxu ¼ mw2
s ¼ h ¼ DV ¼ A ¼ W ¼ 1;

E ¼ 0:1 (dimensionless units). Crosses: Inverse mean
first exit time from simulations of Eq. (3) (error bars:
mean square deviation of mean value). Solid (dotted)
line: Analytical prediction (74) (condition (83) not
fulfilled). Inset: Magnification of small m regime.
Note that the deterministic resonance lies at
m ¼

ffiffiffiffiffiffiffiffi
1=2

p
� 0:707.

Fig. 6 Time-averaged rate �GG vs. damping coefficient
g ¼ h=m for �xxs ¼ w2

u ¼ �1, �xxu ¼ w2
s ¼ m ¼ DV ¼ A

¼ W ¼ 1; E ¼ 0:1 (dimensionless units). Crosses: In-
verse mean first exit time from simulations of Eq. (3)
(error bars: mean square deviation of mean value). So-
lid (dotted) line: Analytical prediction (74) (condi-
tion (83) not fulfilled). Inset: Relative difference be-
tween analytical prediction and numerical result as a
function of g.

                    
  

            
                        

        
                                

                  
          

      
                                           

                                         
        

     
                      

      
                                 

 
                                                     

 
           



We also like to point out here that the treatment of driven escape in meta-stable potential land-
scapes by use of path integral methods is close in spirit to prominent work by Jozef T. Devreese
wherein he pioneered the challenging problem of polarons in magnetic fields [52, 53]: in both cases
the effective Hamiltonian involves a vector-potential like contribution which is linear in the canonical
momentum variable, see Eq. (19). Then, as pointed out repeatedly by Jozef, the standard variational
principle based on the Feynman-Jensen inequality no longer applies [53, 54], but requires instead an
appropriate modification [54].

Appendix In this appendix, we shall prove Eq. (36). Let us first abbreviate the d � d � 1 matrix S
composed of the vectors @xsepðs*k; tf Þ=@s*k;n, n ¼ 1; . . . ; d � 1 as columns. For notational brevity, we
suppress here and in the following the asterix, all indices k, and the time arguments. Indicating
furthermore with Si, i ¼ 1; . . . ; d, the d � 1� d � 1 matrix, which consists of S without row i and
with Gi

j, i; j ¼ 1; . . . ; d, the matrix without row i and column j , we can apply a generalized version of
the determinant multiplication theorem [55] to the left hand side of Eq. (36), yielding

det ðSGSÞ ¼
P
ij

det Sj detGi
j det S

i : ð104Þ

Using a standard relation between the cofactors and the inverse of a matrix [55]

ð�1Þiþj detGi
j ¼ ðG�1Þji detG ; ð105Þ

we obtain the intermediate result

det ðSGSÞ ¼ u � G�1u detG : ð106Þ
Here, we have introduced the d-dimensional vector ui :¼ ð�1Þiþd det Si, i ¼ 1; . . . ; d. A comparison
with Eq. (36) shows that the proof is complete, if we are able to demonstrate that u ¼ ffiffiffi

g
p

n. To this
end, we define another auxiliary quantity, namely the d � d matrix M :¼ ðS j nÞ. Since the normal
vector n of the separatrix S is orthogonal to all columns of S, the determinant of M is given by (cf.
also Eq. (33))

detM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detMTM

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det STS

p
¼ ffiffiffi

g
p

: ð107Þ
For the same reason, one has ðM�1Þdi ¼ Mid ¼ ni, i ¼ 1; . . . ; d, and thus

ui ¼ ð�1Þiþd detMi
d ¼ detM ðM�1Þdi ¼

ffiffiffi
g

p
ni : ð108Þ
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