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Abstract
The idea of the timescale invariance of relaxation processes in liquids
(Yulmetyev et al 2001 Phys. Rev. E 64 057101; 2002 JETP Lett. 76 147) is used
to analyse the short-wave collective excitation in liquid sodium, as recently
measured by means of very-high-energy-resolution inelastic x-ray scattering
(Scopigno et al 2002 Phys. Rev. E 65 031205). The dynamic structure factor,
S(Q, ω), calculated on the basis of this idea is in very good agreement with
the experimental data in the wavevector range from 1.5 to 14.6 nm−1, where
pronounced collective excitations exist. The frequency dependence of the non-
Markovity parameter εi(Q, ω) (i = 1, 2, 3, 4) allows us to reveal the alternation
of the amplification and the decay of non-Markovity effects for the observed
region of wavevector Q.

1. Introduction

The study of the nature of the high-frequency collective excitations in atomic and molecular
aggregates belongs to one of the most fundamental problems of condensed matter physics.
Whereas the properties of these excitations are quite well understood in crystals, many aspects
are still largely unknown at present as far as disordered systems are concerned. Among these
latter, liquid metals plays a crucial role, as they exhibit pronounced inelastic features in the
terahertz frequency region.

Until now valuable information on the dynamical properties of liquid metals was mainly
received with the help of inelastic neutron scattering (INS) experiments [1, 2], a method that
allows one to measure the frequency spectrum of the density fluctuations in a wide range of
wavevector values and frequencies. The possibility of using x-rays for inelastic scattering
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by collective excitations has been attractive for a long time because of the complementary
advantages and drawbacks of this technique in comparison to INS. Nevertheless, the necessity
of a much higher resolving power prevented the parallel development of the two methods. Many
efforts have been made in the last 20 years to increase the global efficiency of inelastic x-ray
scattering (IXS) experiments [3] and, recently, the availability of the third generation of x-ray
sources, together with a great technological impulse, allowed us to bring IXS resolutions in this
millielectronvolt energy range with scattering rates closer to INS ones [4]. In the specific case
of liquid metals, these experimental studies have been recently reported on liquid lithium [5, 6]
and aluminium [7], sodium [8–10], germanium [11], mercury [12] and gallium [13].

A very useful tool, complementary to the ‘traditional’ experimental facilities, is provided
by numeric experiments, molecular dynamics (MD) simulation in particular. This method
allows one to investigate both the single-particle and the collective dynamics of liquids on the
basis of a suitable interatomic potential. As an example of such studies performed in liquid
metals, one can refer to MD results for liquid lithium at 470 and 843 K [14], and also the recent
MD simulation of liquid lithium near the melting temperature [15].

The mechanisms of relaxation processes, connected with the collective excitations both
in hydrodynamic and in microscopic areas about one to two interatomic distances, have been
well established with the help of numerical simulation, and recently detailed information on
the relaxation processes has been obtained by experimental IXS data [6, 13]. However, many
aspects of the physical origin of the relaxation processes in microscopic areas of liquid metals
still remain unclear.

The area of the measured values of wavevector Q in INS and IXS of liquid metals is
usually bounded by a ‘low-Q’ region where the dynamic structure factor S(Q, ω) consists
of the central peak at ω = 0 and two side peaks at ω �= 0, and a ‘high-Q’ region where the
dynamic structure factor has only a single, Gaussian, peak [1, 6]. The majority of the advanced
theories fully correspond to the experimental data at high values of Q. However, in the regions
of wavevectors Q where S(Q, ω) has a triple-peak structure, significant difference between
the appropriate theories and the experiments is observed (see, for example, [16]).

In some recent works [6, 7, 9, 10], it has been shown that a simple viscoelastic approach
with a single decay time does not account for the spectral features of simple liquid metals.
Indeed, to reproduce the dynamic structure factor in these systems, three relevant timescales
must be invoked, two of them associated with viscous processes and one with the thermal
coupling between density and temperature fluctuations.

In the present work we develop a theory, universal for the whole area of values of
wavevectors, based on one of the most fundamental ideas of modern physics and mathematics:
scale invariance. The experimentally observed relaxation process (in particular, for density
fluctuations) is the result of a multilevel chain of interconnected relaxation processes. However,
the experiment only enables us to observe and estimate a single relaxation process of the whole
set. Now, on a certain relaxation level, an invariance (equiscaling) of the nearest interconnected
relaxation processes can exist, and the relaxation time τ is a convenient physical measure of
such an invariance. The characteristic values of the set of relaxation times essentially depend
on the certain level of relaxation, while the features of this level determine both the number
and the properties of the timescales, through which all the microdynamics is expressed. Thus,
the number of these timescales can be three, two and even one depending on the concrete
structural features of the studied metal, values of wavevector Q etc. A similar approach was
presented first in our previous work [17], where the relaxation processes in liquid caesium were
investigated. The dynamic structure factor S(Q, ω), calculated on the basis of the advanced
theory, was found to agree with experimental data on liquid caesium [2]. The calculation of
the physical parameter of non-Markovity εi (Q, ω), which was entered earlier in [18, 19], has
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Figure 1. Values of the static structure factor S(Q) of liquid sodium from [9] (∗) for the ‘low-Q’
region and from experimental data of Waseda [50] (◦).

allowed us to reveal a non-Markov nature of high-frequency collective excitations, shown in
side peaks of the dynamic structure factor S(Q, ω) of liquid caesium in the wavevector range
Q from 0.4 up to 1 Å. Obviously, a similar study on other alkaline metals would be useful and
interesting to support the above-mentioned scenario.

In this work, we report the results of the dynamic structure factor investigation of liquid
sodium near its melting point (T = 390 K) for the ‘low-Q’ region from 1.5 to 14.6 nm−1 (see
figure 1). The layout of the paper is as follows. Section 2 contains the experimental details of
a recent very-high-resolution determination of S(Q, ω). In section 3 we present our theory.
The results obtained and discussions are presented in section 4. The conclusion is given in
section 5.

2. The experiment

The dynamic structure factor of liquid sodium has been recently measured by means of a very-
high-resolution inelastic x-ray scattering experiment performed at the beamline ID 28 of the
European Synchrotron Radiation Facility (ESRF). The adiabatic sound velocity in this system
is about 2500 m s−1, a value that is high enough to prevent an extended determination by INS
of the S(Q, ω) in the ‘low-Q’ region where collective excitations exists and propagates with
an almost linear dispersion. Moreover, the coherent and incoherent cross sections are almost
equivalent in the sodium case, a condition that poses an additional limit for an accurate study
of the collective microdynamics only.

In fact, up to a few years ago, the only appropriate technique to study the atomic dynamics
at a microscopic level, i.e. in a wavevector region comparable to the inverse mean interatomic
distances, was neutrons. In the last decade this situation has gradually changed and the
advent of inelastic x-ray scattering has allowed us to perform inelastic experiments with
photons [3]. Nevertheless, the development of this technique was prevented at the beginning
due to the severe resolution demand necessary to separate excitations of the order of a few
millielectronvolts from the energy of the incoming beam (some kiloelectronvolts). Only in
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the recent past, thanks to the rapid development of the third-generation sources, have suitable
resolutions been achieved [4].

Liquid sodium, together with lithium and the other light metallic elements, has been shown
to exhibit inelastic features well above the Q position of the structure factor maximum, with
well defined high-frequency modes of propagating nature [8]. The performance of IXS is
nowadays very close to the intrinsic theoretical limitations of the technique, both in terms of
efficiency and resolution, that has come down to 1 meV, a value that allows one to go beyond
the mere determination of the sound speed and attenuation properties. As consequence, one
can now use the information contained in all the spectral features in order to test different
theoretical models and approaches [9, 10], and this is the aim of the present paper.

The IXS data reported here relate to an experiment that has been performed at fixed
exchanged wavevector over a Q-region below the first sharp diffraction peak (1.5–15 nm−1)

with a Q-resolution of �Q = 0.4 nm−1 full width at half maximum (FWHM). Energy scans
in the range −50 < E < 50 meV were collected utilizing the (11 11 11) reflection of the
silicon monochromator and analysers for a total energy resolution of �E = 1.5 meV FWHM.
Each scan took about 300 min; several scans were summed up to 500 s of integration per
point. For each scan, five different values of Q could simultaneously be measured thanks to a
multiple analyser bench,operating in horizontal scattering geometry. The sample, a high-purity
sodium bar, was purchased by Goodfellow. A sample environment similar to the one adopted in
previous experiments performed on liquid lithium [6] has been utilized, i.e. an austenitic steel
cell heated by a resistor connected to a voltage regulated supply and kept in thermal contact
with the cell. The sample length has been chosen in order to match the absorption length
of sodium at the working energy 21 747 eV (corresponding to the Si (11 11 11) reflection in
backscattering geometry) that is about 5 mm. In fact, this condition maximizes the efficiency
of an IXS sample [9].

In figure 2, we report the measured coherent dynamic structure factor at different Q values.
Since the incident flux on the sample varies with time, and the five analysers have different
scattering efficiencies E(Q), in order to extract the S̃(Q, ω) from the raw experimental spectra
the data need to be put in absolute units first. A reliable procedure to do this is to make use
of the lower-order sum rules holding for the dynamic structure factor in formulae (the suffix
q indicates here the true quantum dynamic structure factor, to distinguish it from its classical
representation):

�
(0)
Sq

=
∫

dω Sq(Q, ω) = Sq(Q) (1)

�
(1)

Sq
=

∫
dω Sq(Q, ω)ω = h̄Q2

2M
. (2)

Indeed, the experimental spectra, I (Q, ω), being proportional to the convolution of the
scattering law Sq(Q, ω) with the resolution R(ω),

I (Q, ω) = E(Q)

∫
dω′ Sq(Q, ω′)R(ω − ω′) (3)

in terms of the first two spectral moments of I and R, �
(0)
I , �

(1)
I , �

(0)
R and �

(1)
R , it holds that

Sq(Q) = h̄ Q2

2M
(�

(1)

I /�
(0)

I − �
(1)

R /�
(0)

R )−1. (4)

The normalized spectra (still affected by the resolution broadening) will now be

IN (Q, ω) = Sq(Q)∫
I (Q, ω dω)

I (Q, ω). (5)
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Figure 2. Coherent dynamic structure factor of sodium at the melting point as measured by constant
Q IXS energy scan (•). The dotted curves indicate the instrumental resolution.

3. Theoretical formalism

3.1. Fundamentals

We shall consider here the fluctuations of the local density of N particles in liquid as a dynamic
variable:

δρQ(t) = 1

V

N∑
j=1

eiQ·r j (t) − δQ,0
N

V
, (6)
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where V is the volume of the system, r j (t) is the radius-vector of the j th particle at the time
moment t and δQ,0 is Kronecker’s symbol.

The normalized time correlation function (TCF) of local-density fluctuations δρQ(t) is

F(Q, t) = 〈δρ∗
Q(0)eiLtδρQ(0)〉
〈|δρQ(0)|2〉 . (7)

It is now possible to construct the infinite chain of connected non-Markov kinetic equations
with the help of the Zwanzig–Mori projection operator technique [20, 21]

dF(Q, t)

dt
= −�2

1

∫ t

0
dτ M1(Q, τ )F(Q, t − τ ),

dM1(Q, t)

dt
= −�2

2

∫ t

0
dτ M2(Q, τ )M1(Q, t − τ ), . . . ,

dMi (Q, t)

dt
= −�2

i+1

∫ t

0
dτ Mi+1(Q, τ )Mi (Q, t − τ ).

(8)

Here L is the Liouville operator, �2
1,�

2
2, . . . , �

2
i are general relaxation parameters with the

dimension of the square of frequency, and Mi (k, t) is the memory function (MF) of the i th
order. The first frequency parameter �1 is given by the following relation:

�2
1 = kB T Q2/mS(Q). (9)

Similar expressions for calculation of �2
i , where i = 2, 3, . . . , are also well known, and these

relaxation frequency parameters can be expressed in terms of the pair distribution function
g(r) and of the higher-order distribution functions.

The Laplace transform of F(Q, t)

F̃(Q, z) =
∫ ∞

0
dt e−zt F(Q, t)

is connected with the scattering function S(Q, ω) by the following:

S(Q, ω) = S(Q)

π
lim

ε→+0
Re[F̃(Q, iω + ε)]. (10)

Here symbol Re means the real part; S(Q) is the static structure factor and the zero-frequency
moment of S(Q, ω) which is defined by

S(Q) =
∫ ∞

−∞
S(Q, ω) dω. (11)

Thus, the static structure factor S(Q) is defined by the integral of the coherent scattering law
over all energy transfers at constant Q [22]. In the general case frequency moments of the
dynamic structure factor are expressed as the following:

ω(m)(Q) =
∫ ∞

−∞
ωm S(Q, ω) dω. (12)

Note that the frequency moments ω(m)(Q), m = 2, 4, . . . are connected with the general
relaxation parameters of the chain (8) �2

1, �2
2, . . . , �

2
i , . . . by the following relationship [18]:

�2
1 = ω(2), �2

2 = ω(4)ω(2)−1 − ω(2), �2
3 = ω(6)ω(2) − ω(4)2

ω(4)ω(2) − ω(2)3 . (13)

However, from the experimental point of view, the scattering intensity in IXS is
proportional to the convolution between the experimental resolution function and a ‘quantum
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mechanical’ dynamic structure factor Sq(Q, ω), affected by the detailed balance condition.
The following approximation was used in works [6, 7]:

Sq(Q, ω) 	 βh̄ω

1 − e−βh̄ω
S(Q, ω), (14)

where β = 1/kB T . This approximation connects Sq(Q, ω) with its classical counterpart
S(Q, ω).

3.2. Non-Markovity parameter and its statistical spectrum

Many authors have attempted to introduce a parameter to estimate memory effects in different
relaxation processes [23–28]. These parameters are calculated with the help of different
formulae and have various physical meanings. The non-Markovity parameter ε1, first appearing
in [18], allows one to obtain valuable information concerning the non-Markovian properties
of the wide range of relaxation processes in simple liquids.

Every relaxation process can be described by a characteristic timescale usually named the
relaxation time, which is related to the corresponding TCF Mi (t) in the chain of equations (8).
Thus, a multilevel hierarchy of the relaxation times τi naturally appears. The relaxation times
of the initial TCF F(t) and of the first-order MF M1(t) are defined as follows:

τ0 = Re[M̃0(0)], M̃0(s) =
∫ ∞

0
dt M0(t)e

−st ,

τ1 = Re[M̃1(0)], M̃1(s) =
∫ ∞

0
dt M1(t)e−st .

(15)

Then the dimensionless non-Markovity parameter will be defined by the following expression:

ε1 = τ0/τ1. (16)

The non-Markovity parameter for any relaxation process can be calculated from equation (16),
and depending on the value of ε1 different cases can be considered. The process is Markovian
if ε1 → ∞, quasi-Markovian when ε1 > 1 and finally non-Markovian as ε1 ∼ 1.

The infinite set of values of non-Markovity parameters can be easily generalized to for
the frequency-dependent case on the basis of definition (16) in the following way [19]:

εi (ω) =
{

µi−1(ω)

µi(ω)

} 1
2

, (17)

where i = 1, 2, 3, . . . and µi(ω) is a power frequency spectrum for the i th relaxation level

µ j (ω) =
{

Re
∫ ∞

0
dt eiωt M j (t)

}2

. (18)

The meaning of the frequency-dependent generalization of the value of ε1 is the following.
The definition of ε1 (equations (15) and (16)) is related to the time decay of the TCF F(Q, t)
and of the MF of the first order M1(Q, t), namely to the initial values of the corresponding
Laplace transforms. The generalization introduced with equations (17) and (18) allows one
to quantitatively estimate memory effects in the whole area of explored frequencies. It is
clear from equations (16)–(18) that the parameter ε0 is only a limiting case of the frequency-
dependent parameter εi (ω):

εi = lim
ω→0

εi (ω). (19)

The i -suffix indicates here the considered relaxation level.
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3.3. Memory function approach

There are many different methods for the calculation of the density correlation function,
F(Q, t). In the majority of these approaches the closure of the infinite chain of the non-
Markovian kinetic equations (8) is searched for. The easiest way to perform such a closure is
to introduce a model MF. Typically, the i th-order MF can be reasonably well approximated by
known model functions, such as exponential, Gaussian and hyperbolic secant [29–32]. The
main limitation of this approach obviously lies in the absence of convincing justification for
the above-mentioned ansatz on the MF form.

An alternative and successive method is based on Bogolubov’s idea of the reduced
description and the hierarchy of the relaxation times in liquids [33]. According to this
approach, it is possible to hypothesize that on a certain relaxation level the timescale invariance
(equiscaling) of the two nearest interconnected relaxation processes can exist. As a result, the
relaxation time does not vary with transition from one relaxation level to another: on a given
relaxation level there exist the invariance of timescales of the nearest relaxation processes, i.e.

Mi+1(t) ≈ Mi (t). (20)

The given expression is referred to as the first correlation approximation (FCA), successfully
applied to describe different relaxation processes in liquids [18, 34–39]. Within this
approximation, the relaxation phenomena under study are described through M0(t) =
F(t), M1(t), . . . , Mi−1(t).

It is worthwhile to emphasize that the chain resulting from the approximations M1(t) ≈
F(t), M2(t) ≈ M1(t), . . . , Mi+1(t) ≈ Mi (t) forms a full set. In this set, the solution can
be obtained with the help of Mi (t) ≈ Mi−1(t) and it is just a specific case at approximation
Mi+1(t) ≈ Mi (t). So, FCA of a higher order contains a wider spectrum of different solutions. In
the case of approximate equality of the neighbouring general relaxation frequency parameters
�2

i and �2
i+1 the following relation is true: Mi+1(t) ≈ Mi (t) ≈ Mi−1(t). In this way,

the approximation for the MF of the (i + 1)th order, Mi+1(t) ≈ Mi (t), transforms to the
approximation for the MF of the i th order, Mi (t) ≈ Mi−1(t), at which more convenient
calculations of the Laplace transform of the initial TCF are required (see appendix A). Thus,
the timescales of relaxation processes on the i th level become invariant in this case.

The definition of the closure level is the crucial point of the theory. In order to describe
one-particle and collective dynamics in INS spectra of liquid argon, neon, aluminium and
others [18, 34, 35] the approximation for MFs of the second and the third orders was applied.
To calculate S(Q, ω) for liquid caesium near its melting point an FCA modification method
based on expressing the third-order MF in terms of the scaled second-order MF [16] was used.

From the previous discussion we see how the choice of the closure level of the
relaxation chain can be based on the definition and the comparison of relaxation scales
of the corresponding TCFs τ0, τ1, . . . , τi , . . . and of the general relaxation parameters
�2

1,�
2
2, . . . , �

2
j . The calculation of the first quantities τ0 and �2

1 is correct: the first can
be easily defined from the experimental data, and �2

1 is simply deduced from its definition (9).
Further, the parameter �2

2 is defined as

�2
2 = ω2

2 − �2
1;

ω2
2 = 3�2

1S(Q) +
N

mV

∫
dr g(r)[1 − cos(Qr)]∇2

l u(r),
(21)

whereas �2
3 has the following expression:
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�2
3 = ω2

3ω
2
2 − ω4

2

�2
2

,

ω2
3 = 1

ω2
2

{
15

(
kB T

m

)2

Q4 +
kB T

m
Q2 N

mV

∫
dr g(r)∇2

l u(r)

+ 6
kB T

m2
Q

N

V

∫
dr g(r)∇3

l u(r) sin(Qr)

+ 2
N

m2V

∫
dr g(r)[∇∇lu(r)]2[1 − cos(Qr)] +

(
N

mV

)2 ∫
dr dr′ g3(r, r′)

× [1 + cos(Q(r − r′)) − cos(Qr − Qr′)](∇∇lu(r))(∇ ′∇ ′
l u(r ′))

}
.

(22)

Here the suffix l denotes the component parallel to Q, g(r) is the radial distribution
function, g3(r, r′) is the three-particle distribution function and u(r) is the pair interparticle
potential. Higher-order frequency parameters contain higher-order distribution functions. The
expressions for these quantities are given in [40]. Higher-order relaxation times are calculated
by means of frequency parameters of the corresponding order:

τi+1 = (�2
i+1τi)

−1, i = 0, 1, 2, . . . . (23)

So, the direct calculation of higher-order parameters is extremely time consuming [41, 42],
and therefore not realistic [43]. Although there exist different approximations (for
example, [44, 45]), the final results of these calculations contain appreciable numerical
errors [46, 47].

Three variables (density, momentum density and energy density) are usually used in
hydrodynamics to study the complete dynamics of the system. For the description of the
mechanisms underlying both collective and single-particle motions at the microscopic level
(one or two interparticle distances) in simple liquids these three variables are always sufficient,
and they appear implicitly in F(Q, t), M1(Q, t) and M2(Q, t). Generally, the relaxation times
of these three variables can be substantially different, while the timescales level off and become
invariant on higher levels (see appendix B).

It is known that the calculations of dynamic structure factor are performed very actively
by MD simulation (see, for example, [14, 15]), where a realistic interatomic potential, i.e. a
potential model able to reproduce structural properties, is chosen. Comparison of the results
of these numerical investigations with the experimental data reveals a short-range and a fast-
damped oscillatory form of interatomic potential in liquid alkali metals. For example, the
Ashcroft pseudopotential (with a core radius 0.905 Å) is shown to be appropriate in treating
liquid sodium [48] in contrast with liquid lithium, where it is totally invalid. Such behaviour
of the ion–ion potential in liquid sodium reflects similarities with the scenario of electric field
gradient (EFG) of NQR relaxation in liquid metals [49]. A microscopic theory of nuclear
quadrupole relaxation in liquid metals is developed in [49] with use of the Zwanzig–Mori
formalism. It is based on some experimental data showing a rapprochement of timescales for
the MFs of EFG (the second derivative of interaction potential) and for the next (higher-order)
MF. The underlying case has many similarities with the NQR scenario in liquid metals. Indeed,
the third dynamical variable W3 (see equation (B.6)) resembles an EFG in NQR theory. The
next fourth dynamical variable W4 (see equation (B.7)) corresponds to a local EFG current
density. It was shown in papers [49] that the relaxation timescale of these variables in liquid
metals is the same. From the above-mentioned it is clear that S(Q, ω) is very sensitive to the
asymmetry of EFG of the ion–ion interaction and its relaxation in liquid. On the basis of the
previous observations, it seems reasonable to use the closure (20) for the third relaxation level
with i = 3.
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So, an FCA of the following form for calculations of spectra S(Q, ω) in the whole
wavevector range should be used:

M4(Q, t) = M3(Q, t) + h(Q, t). (24)

The ‘tail function’ h(Q, t) is entered here. This function provides a correction to the correlation
approximation over the whole interval of times t (and frequencies ω). The equation (24) yields
a close system of four equations instead of the chain (8), where the fourth equation has the
following form:

dM3(Q, t)

dt
= −�2

4

∫ t

0
dτ {M3(Q, τ ) + h(Q, τ )}M3(Q, t − τ ). (25)

Solving the system by the Laplace–Fourier (LF) transform we find the expression for the initial
TCF

F̃(Q, iω) = {2�2
2�

2
4 + ω2(�2

3 − 2�2
4) + iω�2

3[�4
4h̃2(Q, iω)

+ 2iω�2
2h̃(Q, iω) − ω2 + 4�2

4]1/2 − iω�2
3�

2
4h̃(Q, iω)}{�2

1(�
2
3 − ω2)

× [�4
4h̃2(Q, iω) + 2iω�2

4h̃(Q, iω) − ω2 + 4�2
4]1/2

− (�2
1 − ω2)�2

3�
2
4h̃(Q, iω) + iω(2�2

2�
2
4 + 2�2

1�
2
4 − 2ω2�2

4

− �2
1�

2
3 + ω2�2

3)}−1. (26)

Here h̃(Q, iω) is the LF transform of the ‘tail function’ h(Q, t). The relevant result for S(Q, ω)

is presented in appendix C, which is directly obtained by means of FCA (24) and is true for
the arbitrary values of Q and ω.

The expansion of Mi (Q, t) at small times is given as (for more details, see appendix D)

Mi (Q, t) = 1 − 1

2!
�2

i+1t2 + · · · . (27)

Retaining the first two terms of the series for i = 4 the following approximate expression
holds:

M4(Q, t) ≈ e−�2
5t2/2. (28)

By the LF transform we obtain

M̃4(Q, iω) = 1

�5
e−ω2/(2�2

5). (29)

Similarly, for the fourth equation of (8), we obtain

M̃3(Q, s) = {s + �2
4 M̃4(Q, s)}−1. (30)

Rewriting equation (24) in terms of (30) we obtain

M̃4(Q, s) = 1

s + �2
4 M̃4(Q, s)

+ h̃(Q, s). (31)

After substitution of equations (29) and (31) we obtain

h̃(Q, iω) = �4
4e−3ω2/(2�2

5) + ω2�2
5e−ω2/(2�2

5) − �2
4�

2
5e−ω2/(2�2

5) + iω�3
5

�4
4�5e−ω2/�2

5 + ω2�3
5

. (32)

Since the third relaxation level takes on the properties of timescale invariance, the
corresponding frequency parameters will also be approximately equal, �2

5 ≈ �2
4 (see

appendix A). Then h̃(Q, s) may be written in the following form:

h̃(Q, iω) = e−ω2/(2�2
4)(ω2 + �2

4e−ω2/�2
4 − �2

4) + iω�4

�4ω2 + �3
4e−ω2/�2

4

. (33)
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However, this equation can be used in calculation only for a limited region of large frequencies
(ω � 2�4). From different experimental investigations [1] it is well known that the data for
this frequency region are not available. On the other hand, the correction h̃(Q, iω) is negligible
in this frequency range. Using equations (10) and (26) we finally obtain the expression for
S(Q, ω)

S(Q, ω) = S(Q)

2π
�2

1�
2
2�

2
3(4�2

4 − ω2)
1
2 {�4

1�
4
3

+ ω2(−2�2
1�

4
3 + �4

1�
2
4 − �4

1�
2
3 + 2�2

1�
2
2�

2
4 − �2

1�
2
2�

2
3 + �4

2�
2
4)

+ ω4(�4
3 − 2�2

1�
2
4 + 2�2

1�
2
3 − 2�2

2�
2
4 + �2

2�
2
3) + ω6(�2

4 − �2
3)}−1. (34)

4. Numerical calculations and discussion

We now apply the introduced formalism to the discussion of the experimental data for liquid
sodium at the melting point (T = 390 K) in the range of wavevector from 1.5 to 14.6 nm−1

(see figure 2). Equation (34) was used to test the theory against the data. The static structure
factor S(Q)-data are taken from [9] and are illustrated together with the Waseda data [50] in
figure 1. From S(Q) the quantity �2

1 is simply deduced by definition (9). Different kinds of
approximation exist to calculate frequency parameters �2

2. For example, according [45], one
can use the following equation:

�2
2 = ω2

l − �2
1,

ω2
l 	 3Q2

mβ
+ ω2

E

{
1 − 3 sin(Q R0)

Q R0
− 6 cos(Q R0)

(Q R0)2
+

6 sin(Q R0)

(Q R0)3

}
,

(35)

where parameter ωE is the value of the order of the maximum phonon frequency in the
solid [22]. However, this approximation is not suitable for some Q-regions. Alternatively, the
Q-dependence of frequency ωl is related to the generalized infinite-frequency velocity by [51]

c∞(Q) ≡ ωl(Q)

Q
=

√
�2

1 + �2
2

Q
. (36)

Therefore the values of �2
2 are easily expressible in terms of known values of c∞(Q).

We report the quantities �2
1 and �2

2 (from equation (36)) in figure 3, along with �2
2apr ,

which is calculated with the help of the Hubbard approximation (35). The Einstein frequency
ωE is taken to be 16.2 ps−1 which was obtained by Rahman [54], whereas the values of c∞(Q)

are taken from [10]. It is clear from this figure that the frequency parameters �2
1 and �2

2
have a dispersive behaviour, with �2

2apr showing strong deviations from �2
2. So, we use the

parameter �2
2 to calculate expression (34). The frequency parameters �2

3 and �2
4 can also

be calculated within different approximations, and the final result is usually affected by a
large error [46, 47]. Consequently, we decided to leave the high-order frequency parameters
�2

3 and �2
4 as adjustable parameters. In figure 4 we report the Q dependence of relaxation

parameters �2
i with i = 3 and 4, which are necessary to reproduce the dynamic structure factor

lineshapes at the selected closure level. Table 1 helps to present clearly the numerical values
of all the relaxation parameters used in our calculations together with �2

2apr obtained from
approximation (35). These frequency parameters carry information about the microdynamics
of the studied system (as noted above, they are determined by the pair distribution function
g(r), the pair interparticle potential u(r), the higher-order distribution functions and so on).
This is apparent from equations (21) and (22). On the other hand, kinetic theory holds that
diverse microdynamic parameters such as viscosity coefficient, self-diffusion constant, thermal
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Figure 3. Wavevector dependence of relaxation parameters �2
1(Q) calculated from its definition

(full dots •); �2
2apr (Q) calculated from the well known approximation (35) and �2

2 as obtained
from equation (36).

Figure 4. Wavevector dependence of relaxation parameters �2
i (i = 3 and 4). The full circles (•)

present �2
3(Q) and open triangles (�) are the values of �2

4(Q).

conductivity and others are expressed by u(r), g(r), g3(r, r′) and other microscopic and
statistical properties [22, 55–57].

The results for the dynamic structure factor S(Q, ω) for Q values from 1.5 to 14.6 nm−1,
obtained by means of IXS [9], are shown in figure 5. It is clear from this figure that our theory is
in a good agreement with the experimental data, and therefore it gives a satisfactory description
of the microdynamics of molten sodium. In figure 6 we report the dynamic structure factor
S(Q, ω) calculated from our theory for the ‘low-Q’ region, where it demonstrates the shift
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Table 1. Numerical values of the relaxation parameters �2
1, �2

2, �2
3 and �2

4 used in equation (34)
together with �2

2apr at various values of Q.

Q (nm−1) �2
1 (1024 s−2) �2

2 (1024 s−2) �2
3 (1026 s−2) �2

4 (1026 s−2) �2
2apr (1024 s−2)

1.5 14.9 28 ± 2 5.3 117.26 6.2
3 54.25 81 ± 3 20.2 654.46 22.74
4.4 99.18 130.5 ± 10 43.5 2 364.9 63.24
5.9 155.21 215.7 ± 12 82.3 4 458.6 104.1
7.3 208 290.3 ± 10 154.95 12 816 128.17
8.8 248.32 348.7 ± 11 314.8 36 613 184.5

10.2 280.18 395.8 ± 12 434.3 65 108 211.97
11.7 268.9 420.7 ± 18 514.2 56 109 240.58
13.1 243.83 392.8 ± 15 410 41 169 266.81
14.6 173.05 350.63 ± 9 212.4 8 867.7 302.21

of the side peak positions. In figure 7 the dispersion of collective excitations ωc(Q) obtained
from the results of theory and experiment is presented. Again, the theory well reproduces the
position of the collective excitation peaks.

To gain a better understanding of the origin of the collective excitations in the ‘low-Q’
region we introduced the non-Markovity parameter, which allows us to estimate the memory
effects of different relaxation levels over the whole frequency range. We have calculated the first
three points in the statistical spectrum of the frequency-dependent non-Markovity parameter
εi (Q, ω) by using equation (17) (see figure 8). It is worthwhile to underline the importance
of the non-Markovity parameter ε1(Q, ω) as it does not depend on any specific theory. Let us
now write F̃(Q, ω) = F ′(Q, ω)+iF ′′(Q, ω) and M̃1(Q, ω) = M ′

1(Q, ω)+iM ′′
1 (Q, ω), where

F ′ and M ′
1, F ′′ and M ′′

1 are real and imaginary parts of corresponding TCFs. The relevant
power spectra can be directly obtained from equations (17) and (18):

µ0(Q, ω) = F ′2(Q, ω),

µ1(Q, ω) = M ′2
1 (Q, ω) = F ′2(Q, ω)

�4
1[F ′2(Q, ω) + F ′′2(Q, ω)]2

.

Consequently, the first non-Markovity parameter ε1(Q, ω) = [µ0(Q, ω)/µ1(Q, ω)]
1
2 is

determined by F̃(Q, ω), and by the first frequency parameter �2
1 only, which can be calculated

with high accuracy from its definition (9).
As can be observed, the central and the side peaks in frequency dependence of the

calculated parameter ε1(Q, ω) are observed precisely at the same frequencies as the one
of S(Q, ω). Moreover, the inelastic peaks of S(Q, ω) start to vanish at Q = 14.6 nm−1,
and a flattening of the side peaks of parameter ε1(Q, ω) around the same Q-value is
also observed. One can also notice that in the whole frequency region where collective
excitations are well pronounced the parameter ε1(Q, ω) satisfies the condition ε1(Q, ω) � 1.
Therefore, we can state with assurance that the microdynamics of molten sodium exhibits
a pronounced non-Markovian nature of collective excitations in the ‘low-Q’ region. Notice
that a similar correspondence between S(Q, ω) and ε1(Q, ω) spectra has been found in liquid
caesium [17] too.

Finally, we also calculated the parameter ε1(Q) on the basis of equations (15) and (16):

ε1(Q) = �2
1

[
π S(Q, ω = 0)

S(Q)

]2

.

The results, illustrated in figure 9, confirm again that the collective excitations of liquid sodium
in the ‘low-Q’ region are exclusively non-Markovian.
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(a)

(b)

Figure 5. Theoretical (——) and experimental [9] (◦) values of the dynamic structure factor
S(Q, ω) of liquid sodium at T = 390 K and fixed values of wavevector Q. The theoretical
lineshape has been modified to account for the quantum mechanical detailed balance condition and
broadened for finite experimental resolution effects (see text).

5. Conclusion

In this work we have presented new evidence for the efficiency of the idea of timescale
invariance (TSI idea) of relaxation processes applied to the specific case of molten sodium.
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Figure 6. Dynamic structure factor calculated on the basis of our theory for liquid sodium at
T = 390 K showing the change of side peak position for the ‘low-Q’ region.

Figure 7. Dispersion relation, ωc(Q), for liquid sodium at T = 390 K derived from the
experimentally observed side peaks [9] (•) and our theory (——).

The dynamic structure factor of this system has been recently studied in the Q-region
1.5–14.6 nm−1 by means of a very-high-energy-resolution IXS experiment, and the results
have been interpreted within an MF formalism [10]. In this paper, starting from the TSI idea,
we assumed that relaxation times of the third and the fourth relaxation levels are approximately
equal to each other and therefore that the relevant timescales are invariant. Then we used the
correlation approximation (24) for closure of the infinite chain of the non-Markovian kinetic
equations (8). As a result, we obtained good agreement with the experiment in the whole
range of wavevector Q. Notice that our theory does not contradict the viscoelastic model (see
appendix E).
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Figure 8. Frequency dependence of the non-Markovity parameter εi = εi (ω) at fixed values of Q;
the solid curve (——) is related to i = 1; (· · ·) corresponds to i = 2 and the broken line (— — —)

reflects the values at i = 4. The parameter ε3(ω) has a descending curve for the whole wavevector
range.

Figure 9. Non-Markovity parameter of the density fluctuations in liquid sodium for low values of
the wavevector Q.

The frequency-dependent non-Markovity parameters εi (Q, ω) (i = 1, 2, 3 and 4) were
also calculated. In particular, we found that ε1(Q, ω), as well as in the case of liquid
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caesium [17], has a frequency dependence similar to the one of the dynamic structure factor,
with maxima occurring at the same frequencies. Our calculations have then established the non-
Markov nature of collective excitations in a spatial range matching the interparticle distances.

The statistical theory of dynamical processes in liquids is closely related to Bogolubov’s
idea of hierarchy of relaxation times [58]. According to this idea, various timescales
exist in liquids, and they are connected with specific characteristic relaxation processes.
The theory of simple liquids should take these timescales into account and ensure smooth
coupling of processes from one relaxation mode to another, as such a hierarchy has been
experimentally reported in a wide range of relaxation phenomena in liquids: molecular light
scattering [59, 60], dielectric relaxation [38], electronic spin, nuclear magnetic and quadrupole
electric relaxation [33], inelastic neutron and x-ray scattering [1, 6, 7, 9, 10] and various
transport and diffusion phenomena [61].

It must be emphasized that the idea of TSI and the idea of hierarchy do not contradict but
mutually support each other. In our opinion the powerful combination of these two ideas forms
a universal physical concept that should be taken into account for the description of relaxation
processes in liquids.

Finally, we believe that theoretical approaches, such as the one we have presented here,
may supply an important tool to interpret diverse IXS experiments on liquids.
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Appendix A

Taking the LF transform of equations (8), we obtain equations of the form

iωM̃i (Q, z) − 1 = −�2
i+1 M̃i+1(Q, z)M̃i (Q, z). (A.1)

As a result of the FCA of the (i)th order MF, i.e., Mi (Q, t) ≈ Mi−1(Q, t), we obtain the next
system of two equations

iωM̃i (Q, z − 1) =
{

−�2
i M̃2

i (Q, z),

−�2
i+1 M̃i+1(Q, z)M̃i (Q, z).

(A.2)

After solving equations (A.2) we have

M̃i+1(Q, z) = �2
i

�2
i+1

M̃i (Q, z). (A.3)

So, if �2
i+1 ≈ �2

i , then the expression Mi+1(t) ≈ Mi (t) ≈ Mi−1(t) holds.

Appendix B

The MF of (i)th order (i = 0, 1, 2, . . .) in the general case is defined as

Mi (t) = 〈Wi (0)Wi (t)〉
〈|Wi (0)|2〉 , (B.1)
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where Wi (t) are dynamical variables of i th order, and relaxation parameters are defined by the
following relation:

�2
i+1 = 〈|Wi+1(0)|2〉

〈|Wi (0)|2〉 . (B.2)

The dynamical variables Wi = Wi (0) have the following expressions (|Q| �= 0):

W0 = 1

V

N∑
j=1

eiQr j , (B.3)

W1 = 1

mV

N∑
j=1

(m jv
l
j )e

iQr j , (B.4)

where the suffix l denotes longitudinal, parallel to the Q-component.

W2 = 1

mV

N∑
j=1

{
(m jv

l
j )

2

m
+ i

N∑
i> j=1

∇ j u( j, i)Q[1 − eiQ(ri −r j )]

}
− �2

1

V

N∑
j=1

eiQr j , (B.5)

W3 = 1

V

N∑
j=1

(p j Q)3

m3
eiQr j +

2i

V m2

N∑
i> j=1

(Q∇ j )u(i, j){(p j Q)eiQr j − (pi Q)eiQri }

+
N∑

i> j=1

p j∇ j

V m2
(Q∇ j )u( j, i){eiQr j − eiQri } − (�2

1 + �2
2)W1, (B.6)

and

W4 = 1

V

N∑
j=1

(p j Q)4

m4
eiQr j +

3i

V m3

N∑
i> j=1

(Q∇ j )u( j, i)[(p j Q)2eiQr j − (pi Q)2eiQri ]

+
2

V m3

N∑
i> j=1

p j∇ j (Q∇ j )u( j, i)[(p j Q)eiQr j − (pi Q)eiQri ]

− 2

V m2

N∑
i> j=1

(Q∇ j )
2u2( j, i)[eiQr j + eiQri ] − i

V m3

N∑
i> j=1

p2
j∇2

j (Q∇ j )

× u( j, i)[eiQr j − eiQri ] +
i

V m2

N∑
i> j=1

∇ j u( j, i)(∇ j − ∇i )(Q∇ j )u( j, i)

× [eiQr j − eiQri ] − (�2
1 + �2

2 + �2
3)W2 − (�2

1 + �2
2)�

2
1W0. (B.7)

So, the introduction of approximation (24) is related to a specific feature of liquid metals.
In particular, it is connected with the short-range behaviour of ion–ion potential. One can
see from the above-mentioned equations (B.1), (B.3)–(B.7) that time correlation of Fourier
components of a local momentum density, local energy density and local energy current density
occurs in MFs M1(t), M2(t) and M3(t), respectively. Space and momentum functions arise in
appropriate dynamic variables, depending on position and momentum of molecules of liquids.
The levelling of the relaxation timescale on the third and fourth levels occurs through the
entanglement of these functions and due to the short-range character of the ion–ion interactions.
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Appendix C. The exact solution of the set of kinetic equations with the tail function for
M4(t)

Writing the ‘tail function’ at fixed Q as h̃(ω) = h′(ω) + ih′′(ω), we obtain

S(Q, ω) = S(Q)

π

ω3 A3 + ω2 A2 + ωA1 + A0

ω6 B6 + ω5 B5 + ω4 B4 + ω3 B3 + ω2 B2 + ωB1 + B0
, (C.1)

where

A3 = (�2
3 − 2�2

4)(a
2 + b2)1/4 cos(ϕ/2), (C.2)

A2 = (�2
3 − 2�2

4)(a
2
1 + b2

1) cos(ϕ1/2) + (2�2
4) − �2

3(a
2
2 + b2

2)
1/4 cos(ϕ2/2)

− �2
3�

2
4[h′(ω)(a2 + b2)1/4 sin(ϕ/2) − h′′(ω)(a2 + b2) cos(ϕ/2)], (C.3)

A1 = (2�2
2�

2
4 + 2�2

1�
2
4 − �2

1�
2
3)(a

2 + b2)1/4 cos(ϕ/2)

+ �2
3�

2
4(a

2
1 + b2

1)
1/4[h′′(ω) cos(ϕ1/2) − h′(ω) sin(ϕ1/2)]

+ �2
3�

2
4(a

2
2 + b2

2)
1/4[h′(ω) sin(ϕ2/2) − h′′(ω) cos(ϕ2/2)], (C.4)

A0 = −2�2
1�

2
2�

2
3�

4
4h′(ω) + �2

1�
2
3�

2
4(a

2 + b2)1/4[h′(ω) sin(ϕ/2) − h′′(ω) cos(ϕ/2)]

+ 2�2
2�

2
4(a

2
1 + b2

1)
1/4 cos(ϕ1/2) − 2�2

2�
2
4(a

2
2 + b2

2)
1/4 cos(ϕ2/2), (C.5)

B6 = (2�2
4 − �2

3)
2, (C.6)

B5 = 2�2
3�

2
4h′′(ω)(�2

3 − 2�2
4), (C.7)

B4 = �4
3�

2
4(h

′2(ω) + h′′2(ω)) + 4�2
2�

2
4(�

2
3 − 2�2

4) + 2�2
1(4�2

3�
2
4 − 4�4

4 − �4
3), (C.8)

B3 = 4�2
2�

2
3�

4
4h′′(ω) − 2(�2

3 − 2�2
4)[2�2

1�
2
3�

2
4h′′(ω) − (a2

1 + b2
1)

1/4 sin(ϕ1/2)

+ (a2
2 + b2

2)
1/4 sin(ϕ2/2)], (C.9)

B2 = −2�2
1�

4
3�

4
4[h′2(ω) + h′′2(ω)] + �4

1(2�2
4 − �2

3)
2 − 4�2

1�
2
2�

2
4(�

2
3 − 2�2

4)

+ 4�4
2�

4
4 + �4

1�
4
3 + 2�2

3�
2
4(a

2
1 + b2

1)
1/4[h′(ω) cos(ϕ1/2) + h′′(ω) sin(ϕ1/2)]

− 2�2
3�

2
4(a

2
2 + b2

2)
1/4[h′(ω) cos(ϕ2/2) + h′′(ω) sin(ϕ2/2)], (C.10)

B1 = 2�4
1�

2
3�

2
4h′′(ω)(�2

3 − 2�2
4) − 4�2

1�
2
2�

2
3�

2
4 + 2�2

1(a
2
2 + b2

2)
1/4 sin(ϕ2/2)(�2

3 − 2�2
4)

− 4�2
2�

2
4(a

2
2 + b2

2)
1/4

× sin(ϕ2/2) + 2(a2
1 + b2

1)
1/4 sin(ϕ1/2)(4�2

2�
2
4 − �2

1�
2
3), (C.11)

B0 = �4
1�

4
3�

4
4(h

′2(ω) + h′′2(ω)) + (a2
1 + b2

1)
1/2 + (a2

2 + b2
2)

1/2

− 2(a2
1 + b2

1)
1/4(a2

2 + b2
2)

1/4[sin(ϕ1/2) sin(ϕ2/2) + cos(ϕ1/2) cos(ϕ2/2)]

− 2�2
1�

2
3�

2
4h′(ω)[(a2

1 + b2
1)

1/4 cos(ϕ1/2) − (a2
2 + b2

2)
1/4 cos(ϕ2/2)]

− 2�2
1�

2
3�

2
4h′′(ω)[(a2

1 + b2
1)

1
4 sin(ϕ1/2) − (a2

2 + b2
2)

1/4 sin(ϕ2/2)], (C.12)

a = ω2�4
3[�4

4h′2(ω) + 4�2
4 − �4

4h′′2(ω)] − 2ω3�4
3�

2
4h′′(ω) − ω4�4

3, (C.13)

b = 2ω2�4
3�

2
4h′(ω)[�2

4h′′(ω) + ω] (C.14)

with ϕ = arctan(b/a),

a1 = �4
1�

4
3[�4

4h′2(ω) + 4�2
4 − �4

4h′′2(ω)] − 2ωh′′(ω)�4
1�

4
3�

2
4 − ω2�4

1�
4
3, (C.15)

b1 = 2h′(ω)�4
1�

4
3�

2
4[�2

4h′′(ω) + ω] (C.16)

with ϕ1 = arctan(b1/a1) and

a2 = ω4�4
3[�4

4h′2(ω) + 4�2
4 − �4

4h′′2(ω)] − ω6�4
3 − 2ω5h′′(ω)�4

3�
2
4, (C.17)

b2 = 2ω4�4
3�

2
4h′(ω)[�2

4h′′(ω) + ω] (C.18)

with ϕ2 = arctan(b2/a2).
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Appendix D

It is convenient to use Tauber theorems [62] about the restitution of the arbitrary function
f (t) when t → ∞ or 0 by the properties of its Laplace image f̃ (s) = ∫ ∞

0 dt exp(−st) f (t)
for the calculation of TCF. It is well known that asymptotic series are widely applied in
approximate calculations of time functions at values of the arguments close to singular points
t0 (0 � t0 < +∞). The problem of approximation of the solution at t → t0 often arises when
solving various tasks by the method of Laplace (Fourier) transformation. It is appropriate to
use the expansion of the solution in asymptotic series in these cases. In this particular case,
let us turn to the two important Tauber theorems [62].

The first theorem relates to the restitution f (t) at t → ∞ by the properties of its Laplace
image f̃ (s). Let us assume that the function f̃ (s) possesses a finite number of singular points
sν and it has the following form of the Laurent expansion in the neighbourhood of these points:

f̃ (s) =
∞∑

k=0

C (ν)
k (s − sν)

n(ν)
k , (D.1)

where −∞ < n(ν)

0 < n(ν)

1 < n(ν)

2 < · · · < +∞. Then the function f (t) at t → ∞ has the
form

f (t) =
∑

ν

exp(sν t)
∞∑

k=0

C (ν)
k {�(−n(ν)

k )}−1t−(1+n(ν)
k ), (D.2)

where we perform summation over all the singular points. For integer non-negative numbers
n(ν)

k = 0, 1, 2, . . . we have {�(−n(ν)
k )}−1 = 0. For example, for the first-order pole we have

n(ν)

k = 1 and the corresponding contribution to the asymptotic behaviour of f (t) is equal to
f (ν)
k = C (ν)

k exp(sν t).
The second theorem holds [62] that if the limit limt→+∞ f (t) exists, then the next limit

also exists,

lim
t→+0

f (t) = lim
s→∞

[
f̃ (s)

s

]
. (D.3)

The first Tauber theorem was widely used in statistical theory of nonequilibrium processes
for quantum spin systems in classical liquids [33, 63]. In this work we use the second theorem
to calculate the tail function h(Q, t).

Appendix E

As is well known, the following approximation for the time dependence of the normalized
second-order MF M2(Q, t) is provided by the ‘viscoelastic’ model [22, 51]:

M2(Q, t) = e−t/τl (Q). (E.1)

It corresponds to the assumption that the third-order MF decays rapidly compared to the
second-order MF. The idea of the approximate equality of timescales of M4 and M3, therefore,
does not contradict the viscoelastic model, which can be seen as a lower-order truncation.

According to our theory, indeed, the Laplace transform of M2(Q, t) has the following
exact form:

M̃2(Q, s) = 2�2
4(Q)

s[2�2
4(Q) − �2

3(Q)] + �2
3(Q)

√
s2 + 4�2

4(Q)

, (E.2)
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which can be obtained from equations (8) and (21) using the LF transform. Multiplying both
the numerator and the denominator of equation (E.2) by [2�2

4(Q) − �2
3(Q)]−1, we obtain

M̃2(Q, s) = 2�2
4(Q)[2�2

4(Q) − �2
3(Q)]−1

s + �2
3(Q)[2�2

4(Q) − �2
3(Q)]−1

√
s2 + 4�2

4(Q)

. (E.3)

From the equation (E.3) one can see that if conditions 2�2
4(Q) � �2

3(Q) and 4�2
4(Q) � s2

are met then equation (E.3) can be written as

M̃2(Q, s) = 1

s + τl(Q)−1
, (E.4)

which corresponds to the viscoelastic model with a relaxation time τ−1
l (Q) ≈ �2

3/�4.
The last equation, in fact, implies that the MF in this case will has an exponential

time dependence of the same form as equation (E.1). The consequences of the viscoelastic
approximation (E.1), (E.4) on the behaviour of the dynamic structure factor S(Q, ω) follow
directly from the LF transforms of the first two equations of the chain (8). So, comparing
this result in the Q → 0 limit with the correct hydrodynamic expressions under isothermal
conditions [55], the quantity �2

2(Q)τl(Q) can be identified with the damping of the sound
mode, yielding [τ (Q → 0)]−1 = nm[c2∞ − c2

0]/ηL , where n = N/V , c0 is the isothermal
velocity of sound and ηL is the longitudinal viscosity coefficient,which is related to the ordinary
shear and bulk viscosities.
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