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Striped high-Tc superconductors such as La2�y�xNdySrxCuO4 and La2�xBaxCuO4 near x ¼ 1=8 show

a fascinating competition between spin and charge order and superconductivity. A theory for these

systems therefore has to capture both the spin correlations of an antiferromagnet and the pair correlations

of a superconductor. For this purpose we present here an effective Hartree-Fock theory incorporating both

electron pairing with finite center-of-mass momentum and antiferromagnetism. We show that this theory

reproduces the key experimental features such as the formation of the antiferromagnetic stripe patterns

at 7=8 band filling or the quasi-one-dimensional electronic structure observed by photoemission

spectroscopy.
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Unidirectional charge- and spin-density modulations
were predicted [1,2] for doped transition metal oxides
even before their experimental discovery in layered nickel-
ates [3] and the rare-earth doped cuprate La2�xSrxCuO4 [4]
and eventually in La2�xBaxCuO4 [5]. Stripe patterns
emerge as a compromise between correlation driven anti-
ferromagnetism and an optimized kinetic energy gain for
mobile charge carriers [6]. Charge- and spin-stripe textures
were indeed obtained in various approximate model analy-
ses of correlated electron systems, but it has remained
unresolved which model systems sustain stable ground
state solutions with stripes and superconductivity. Here
we report a pairing theory for the coexistence of charge
and spin stripes with d-wave superconductivity that results
from an extension of the BCS theory of superconductivity
with an attractive pairing interaction. Charge and spin
densities and the local pairing amplitudes adjust spatially
in a stripe pattern with transverse sign change for the
antiferromagnetic (AFM) order parameter. Hopping an-
isotropy weakens or even destroys superconductivity, as
observed in the low-temperature tetragonal phase of cup-
rate superconductors [7–10].

Transport experiments in the high-temperature super-
conductor La2�xBaxCuO4 for x ¼ 1=8 uncovered a se-
quence of thermal phase transitions [7,8,11]. Charge- and
spin-stripe order emerges sequentially upon cooling before
two-dimensional (2D) superconducting (SC) fluctuations
set in which ultimately lead to 3D superconductivity below
4 K. These measurements provided compelling evidence
for what has since been called a striped superconductor.
The subsequently developed theory introduced the concept
of a pair density wave (PDW) in which the order parameter
for the pairing of electrons in a superconductor is spatially
modulated with respect to the center-of-mass coordinate of

the electron pair [12,13]. This implies that Cooper pairs
with finite momenta �q form accompanied by a charge-
density modulation with wave number 2q [14]. The phe-
nomenological characteristics of a PDW state with unidir-
ectional charge modulation were either explored with
respect to symmetry aspects and the nature of defects
[13,15] or its spectral properties [16].
Although striped SC states were encountered before

[17–19], a simple microscopic model Hamiltonian which
supports a superconducting PDW ground state with spin
and charge stripes has been lacking so far. Here we elabo-
rate on the existence of these solutions in an isotropic 2D
pairing Hamiltonian, characterize their real- and
momentum-space properties, and relate them to existing
experimental data.
Our model is a tight-binding Hamiltonian H ¼

H 0 þH I, where H 0 ¼ �P
i;j

P
s tijc

y
iscjs describes

the hopping motion of free electrons on a square lattice.

The operator cjs (c
y
js) annihilates (creates) an electron on

lattice site j with spin s ¼"; # ; tij are hopping matrix

elements with amplitude t between nearest-neighbor, and
t0 between next-nearest-neighbor sites. Here we use t0 ¼
�0:4t for all calculations. The effective nonlocal interac-
tion in the CuO2 planes, originating from spin fluctuations
in the 2D Hubbard model [20], is dominated by the BCS-
type attractive interaction

H I ¼ �V

2

X
hi;ji;s

cyisc
y
j�scj�scis; (1)

restricted to nearest-neighbor sites, and V > 0 is the pair-
ing interaction strength. In the complete mean-field decou-
pling scheme
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we introduce the bond order parameter �ij ¼ �Vhcj#ci"i
for superconductivity and the local spin resolved densities

nis ¼ hcyiscisi. Using a Bogoliubov–de Gennes transforma-
tion, the model is solved self-consistently at an electron
density � ¼ 7=8 (for details on the formalism see, e.g.,

Ref. [21]). The terms �Vnj;�sc
y
iscis are typically not ac-

counted for in the standard BCS theory. However, for a
nearest-neighbor pairing interaction they are a strong
source for antiferromagnetism, since they provide an en-
ergy gain �V for each AFM bond, but only �V=4 for a
bond between two non-spin-polarized sites. This is the
driving force for the formation of AFM stripes in our
model.

There are two qualitatively different regimes of interac-
tion strengths: for weak V, below a critical interaction
strength Vc1 � 0:9t, the only solution of the self-
consistency equations is an homogeneous SC phase with
d-wave symmetry and without antiferromagnetism. As V
is increased beyond Vc1, there is a sharp crossover into a
regime where AFM order is the dominant order, super-
conductivity is suppressed and eventually disappears above
a second critical Vc2 � 3t. The characteristics of this latter
regime are best illustrated for strong interactions V > Vc2

when H I energetically favors an homogeneous AFM
phase for a half-filled band. For � ¼ 7=8 instead, a con-
figuration is preferred with three-legged, half-filled spin
ladders and nonmagnetic quarter-filled lines in between.
This regularly striped solution which is unique for � ¼ 7=8
was indeed inferred from elastic neutron scattering data
for the low-temperature tetragonal (LTT) phase of
La1:48Nd0:4Sr0:12CuO4 [4].

If V is reduced below Vc2, superconductivity
emerges and resides predominantly on the quarter-filled
channels between the AFM stripes. Figure 1 displays

the self-consistently determined magnetization mi ¼
ni" � ni# [1(a)], the charge density ni ¼ ni" þ ni# [1(b)],
and the SC order parameter [1(c)] of the striped SC state
for V ¼ 2t on a 16� 12 lattice. The results presented here
are stable ground state solutions irrespective of the system
size, obtained by minimizing the free energy with respect
to the stripe wavelength, and provided that the selected
geometry is commensurate with the wavelength of the
stripes. Along the AFM stripes the magnetic energy gain
is maximized by a nearly perfect antiparallel spin align-
ment, while kinetic energy is gained by transverse fluctua-
tions. This is the origin of the sign change in the AFM
order between neighboring stripes.
The unidirectional character of the SC order parameter

is evident from its considerably smaller values on the
perpendicular x bonds [see Fig. 1(c)]. The SC order pa-
rameter acquires its maximum value on the bonds which
connect to the sites in the nonmagnetic channels. The sign
change between the SC order parameters on the horizontal
and the vertical bonds connected to the same site verifies
the d-wave character of the SC order parameter.
The ground state solution with striped superconductivity

is not unique with respect to a sign change of �ij between

neighboring hole-rich channels. A solution degenerate to
the one shown in Fig. 1 exists without this sign change.
Since in our analysis all physical quantities depend on �2

ij

only, these two variants of the striped superconductor have
the same energy, provided �ij vanishes at the center of the

AFM stripes. For V close to Vc1, where the AFM order
weakens and �ij becomes finite also within the AFM

stripes, this degeneracy is lifted and the state without the
sign change is favored. A similar conclusion was reached
within a renormalized mean-field theory for a generalized
t-J model by Yang et al., if the hopping amplitudes are
anisotropic [19].
A qualitative difference of the two striped SC states with

and without sign change of the order parameter concerns
the center-of-mass momenta q of the electron pairs. In the
former state all pairs have either momenta qx ¼ ��=4a
or qx ¼ �3�=4a with qy ¼ 0, corresponding to the

FIG. 1 (color online). Real-space characterization of the striped SC state. (a) The magnetization mi ¼ ni" � ni# exhibits AFM stripes
separated by nonmagnetic antiphase domain walls. (b) The charge density ni ¼ ni" þ ni# reaches nearly one electron per site inside the
AFM stripes which are separated by single lines near quarter filling, resulting in an overall mean charge density 7=8, i.e., hole doping
1=8. (c) The SC bond order parameter on the horizontal (purple) and on the vertical bonds (blue). It is largest on the vertical bonds
along the line of nonmagnetic sites. Results were obtained for V ¼ 2t on a 16� 12 lattice.
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periodicity of eight lattice sites. The state without sign
change has in addition a finite q ¼ 0 component; i.e.,
hck"c�k#i � 0. The finite center-of-mass momenta coexist-

ing with q ¼ 0 are stabilized only by the AFM stripes and
vanish together with stripe order, thereby recovering the
homogeneous d-wave superconductor. The state with sign
change, however, remains striped for sufficiently large V
even in the absence of AFM order and realizes the pure
PDW state discussed in Refs. [13,14].

In Fig. 2 the striped superconductor is characterized in
momentum space. The calculations were performed on a
16� 12 lattice with 9� 9 supercells to ensure satisfactory
momentum resolution. The momentum distribution nðkÞ in
Fig. 2(a) clearly exhibits the unidirectional character of the
striped system with a horizontal bar of high occupation
probability and a diffuse region around the Brillouin zone
(BZ) center. This diffuse background traces the original 2D
Fermi surface of the uncorrelated electrons. In the absence
of superconductivity the stripe order leads to a sharp Fermi
surface with occupied states for momenta k with ky �
�=4. The absence of discontinuities in nðkÞ in Fig. 2(a)
is due to a finite energy gap in the density of states (DOS)
(see Fig. 3). A remarkably similar momentum distribution

has indeed been measured by Zhou et al. for the rare-earth
doped cuprate La1:28Nd0:6Sr0:12CuO4 with static stripe or-
der but no superconductivity [22]. For a comparison with
the measured spectral weight we display the integrated
spectral function

Z �

��!c

Aðk; !Þd! ¼ � 1

�

Z �

��!c

ImGðk;k; !Þd! (3)

in Fig. 2(b). The lower energy cutoff at !c ¼ �t restricts
the spectral weight to the contributions of the nonmagnetic
channels (cf. Fig. 3). The chemical potential� corresponds
to 7=8 filling. The quasiparticle excitations near the Fermi
level occupy the horizontal bar in momentum space with a
strongly reduced spectral weight in the center of the BZ as
observed in the measurements of Ref. [22]. This ‘‘breach’’
in the spectral function is not captured by the physics of
isolated spin ladders and indicates that the conducting
states are not decoupled from the magnetic stripes.
Similarly to Ref. [16] we define the electron-pair density

PðkÞ for singlet pairing as P2ðkÞ ¼ P
qhc�kþq#ck"i2. PðkÞ

serves as a measure at which momenta electron pairs
predominantly form. For the striped superconductor dis-
cussed above, electron pairs have the finite center-of-mass
momenta �q where qy ¼ 0 and qx ¼ �=4 or 3�=4 ac-

cording to a stripe wavelength of 8 lattice constants. The
pair density is expected to be largest near the Fermi surface
of the normal conducting system as is indeed verified in
Fig. 2(c). In a similar way we also translate the spin-stripe

pattern into momentum space �SðkÞ ¼ P
q;shscykþqscksi.

As shown in Fig. 2(d), �SðkÞ is strongest near ð0;��Þ
for vertically oriented AFM stripes, i.e., in those regions of
the BZ where no pairs form.
The absence of a discontinuity in nðkÞ is tied to the

opening of a full gap in the DOS. The local DOS in Fig. 3
shows a large energy gap in the center of the AFM stripes
which is reduced on the edge of the stripe. But also on the
nonmagnetic sites, where the SC order parameter is stron-
gest, there exists a small gap, because the quasi-one-
dimensionality admixes a significant extended s-wave

FIG. 2 (color online). Momentum-space characterization of
the striped superconductor. (a) Momentum distribution nðkÞ.
(b) Integrated spectral weight [see Eq. (3)]. (c) The pair density
PðkÞ shows the distribution of the SC pairs in momentum space.
(d) Fourier transformed spin density �SðkÞ. Results were ob-
tained for V ¼ 2t on a 16� 12 lattice using 9� 9 supercells.

FIG. 3 (color online). Local density of states (LDOS). The
colors correspond to the three distinct sites of the striped
superconductor: sites with minimum charge density (dark
blue), sites in the center (light blue), and on the edge (medium
blue) of the AFM stripes.
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component. This is in contrast to the rather 2D pure PDW
state without antiferromagnetism, where the local DOS is
gapless [13,14,16].

The special affinity to stripe formation at the density
� ¼ 7=8 in the cuprates is evident from the variation
of the superconducting transition temperature Tc. The
striped compounds La2�y�xNdySrxCuO4 [9,10] and

La15=8Ba1=8CuO4 [7,8] show a sharp dip in TcðxÞ for hole
doping x ¼ 1� � ¼ 1=8. The observed reduction of Tc is
even stronger when lattice anisotropies in the LTT phase
grow with increasing Nd content (cf. inset in Fig. 4). Our
model calculations reproduce these features as is evident
from the doping dependence of the maximum SC order
parameter � ¼ maxij�ij shown in Fig. 4. If we simulate

the lattice anisotropy from the octahedral tilt in the LTT
phase by introducing an anisotropy in the hopping ampli-
tudes tx � ty, superconductivity is weakened and the mini-

mum at x ¼ 1=8 develops into a sharp dip, which reaches
� ¼ 0 for tx=ty & 0:83. For weaker pairing interaction

strengths the dip at x ¼ 1=8 develops also for isotropic
hopping tx ¼ ty. When x is decreased, the electron density

in the SC stripes increases, and sequentially at specific
values of x the conducting stripes turn antiferromagnetic
one by one. This process is indicated by the dashed lines
in Fig. 4. Since � is a measure of Tc, the results for �
can directly be compared to the Tc data for
La2�y�xNdySrxCuO4 [9,10] in the inset of Fig. 4. There

is almost no suppression of Tc for the isotropic compound
with y ¼ 0, but a complete destruction of superconductiv-
ity around x ¼ 1=8 in the anisotropic Nd-doped com-
pounds with y ¼ 0:2 and y ¼ 0:4.

Our pairing model for the coexistence of SC and AFM
stripe order reproduces the most prominent properties of

striped high-Tc cuprates remarkably well. Although it was
shown before that the pure PDW can be the ground state of
a pairing Hamiltonian in the absence of magnetism [14],
the issue concerning the sign change of the SC order
parameter will only be resolved by a phase sensitive
extension of the present calculation, e.g., a Josephson
coupling term which has to be identified beyond the
Hartree-Fock decoupling scheme [12]. Density matrix re-
normalization group calculations indeed support the for-
mation of the AFM stripe order coexisting with either
d-wave or PDW superconductivity [23]; however, more
advanced methods are necessary to characterize the nature
of the SC state. Defects may certainly affect the stability of
the stripe state considerably; the pure PDW is indeed
supposed to be fragile with respect to impurities [12]. As
we have verified, the inclusion of potential scatterers in our
model weakens superconductivity. The AFM stripe order,
however, is affected only little. Moreover, impurities can
act as pinning forces for fluctuating stripes and thereby
support the formation of static stripe order.
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FIG. 4 (color online). Doping dependence of the SC order
parameter. The purple and blue curves for the maximum SC
order parameter maxij�ij correspond to V ¼ 2t for isotropic

tx ¼ ty and anisotropic hopping tx=ty ¼ 0:83, respectively. The

gray line is the result for tx ¼ ty with a reduced V ¼ 1:8t. The

dashed lines indicate an extrapolation to smaller values of x
where the numerical procedure does not converge to the dis-
cussed solution. Inset: Measured doping dependence of Tc in
La2�y�xNdySrxCuO4 for y ¼ 0:2 (Ref. [9]) (red squares), y ¼
0:4 (blue dots), and y ¼ 0 (gray) (Ref. [10]).
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