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Current Noise in ac-Driven Nanoscale Conductors
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The theory for current fluctuations in ac-driven transport through nanoscale systems is put forward.
By use of a generalized, non-Hermitian Floquet theory we derive novel explicit expressions for the
time-averaged current and the zero-frequency component of the power spectrum of current fluctuations.
A distinct suppression of both the zero-frequency noise and the dc current occurs for suitably tailored ac
fields. The relative level of transport noise, being characterized by a Fano factor, can selectively be
manipulated by ac sources; in particular, it exhibits both characteristic maxima and minima near
current suppression.
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ence of time-dependent forces at arbitrary frequency and
strength. The dynamics of the electrons is solved by

coupling strengths �‘ � 2� qjV‘qj ���	 �q�, ‘ � L;R
are energy independent. To specify fully the dynamics,
Recent experimental successes in the coherent cou-
pling of quantum dots [1] and in the reproducible
measurement of electronic currents through molecules
[2,3] have given rise to renewed theoretical interest in
the transport properties of nanoscale systems [4,5].
Thereby, new ideas in order to exploit the quantum co-
herence of such systems for the construction of novel
electronic devices [5] have emerged. One possible con-
struction element is based on the manipulation of quan-
tum dots or single molecules by use of an oscillating gate
voltage or an infrared laser, respectively. A prominent
effect of such ac fields consists of the adiabatic [6–9] and
nonadiabatic [10,11] pumping of electrons. Moreover, la-
ser irradiated molecular wires provide novel devices such
as coherent quantum rectifiers [12] and optically con-
trolled transistors [13]. However, such time-dependent
control schemes can be valuable in practice only if they
operate at tolerable noise levels. Thus, the question
whether noise properties of nanoscale systems can be
selectively manipulated becomes of foremost interest.

Electron transport through time-independent, meso-
scopic systems is commonly described within the frame-
work of a scattering formalism. Both the average current
[14] and the transport noise characteristics [15,16] can be
expressed in terms of the quantum transmission coeffi-
cients for the corresponding transport channels. By con-
trast, the theory for driven quantum transport is much
less developed. Expressions for the spectral density of the
current fluctuations have been derived for the low-
frequency ac conductance [17] and the scattering by a
slowly time-dependent potential [18]. However, the situ-
ation becomes more opaque in the presence of rapidly
varying time-dependent fields. Within a Green function
approach, a formal expression for the current through
a time-dependent conductor has been presented in
Refs. [19,20]. Here, we derive explicit expressions for
both the current and the noise properties of electron
transport through a nanoscale conductor under the influ-
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integrating the Heisenberg equations of motion for the
electron creation/annihilation operators within a general-
ized Floquet approach. We then use the resulting expres-
sions to explore the possibility of an a priori control of the
dc current and the zero-frequency noise by the influence
of an ac field.

The lead-wire model.—The entire setup of our nano-
scale system is described by the time-dependent
Hamiltonian H�t� � Hwire�t� �Hleads �Hcontacts, where
the different terms correspond to the driven wire (or
coupled quantum dots), the leads, and the wire-leads
coupling, respectively. In order to go beyond merely
formal considerations, we herewith focus on the regime
of coherent quantum transport where the main physics at
work occurs on the wire itself. In doing so, we neglect
other possible influences stemming from driving induced
hot electrons in the leads, dissipation on the wire, and, as
well, electron-electron interaction effects. Then, the wire
Hamiltonian reads in a tight-binding approximation with
N orbitals jni

Hwire�t� �
X
n;n0
Hnn0�t�c

y
ncn0 : (1)

The fermion operators cn and cyn annihilate and create,
respectively, an electron in the orbital jni. The influence
of an applied ac field with frequency  � 2�=T results
in a periodic time dependence of the Hamiltonian:
Hnn0�t�T � � Hnn0�t�. The leads are modeled by ideal
electron gases, Hleads �

P
q�q�c

y
LqcLq � cyRqcRq�, where

cyLq (cyRq) creates an electron in the state jLqi (jRqi) in
the left (right) lead. The tunneling Hamiltonian

Hcontacts �
X
q

�VLqc
y
Lqc1 � VRqc

y
RqcN� � H:c: (2)

establishes the contact between the sites j1i, jNi, and the
respective lead, as sketched in Fig. 1. Below, we shall
assume within a so-termed wide-band limit that theP
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FIG. 1. Level structure of the molecular wire with N � 3
orbitals. The end sites are coupled to two leads with chemical
potentials �L and �R � �L 	 eV.
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we choose as an initial condition for the left/right lead a
grand-canonical electron ensemble at temperature T and
electrochemical potential �L=R, respectively. An applied
voltage V maps to a chemical potential difference �R 	
�L � eV, where 	e is the electron charge.

We shall focus on two central transport quantities: the
time-dependent electrical currents through the two con-
tacts and their fluctuations. The current operators are
given by the negative time variation of the electron num-
bers in the leads, multiplied by the electron charge 	e,
I‘�t� � ie
H�t�; N‘�= �h, where N‘ �

P
qc

y
‘qc‘q denotes the

electron number in lead ‘.
Generalized Floquet approach.—For the evaluation of

correlation functions, we work in the Heisenberg picture
and derive the annihilation operators at long times by a
Floquet ansatz [21]. From the Hamiltonian H�t� follow
the Heisenberg equations for the lead operators, with the
wire operators appearing in an inhomogeneity. In an
integrated form they read

cLq�t� � cLq�t0�e
	i�q�t	t0�= �h

	
iVLq
�h

Z t	t0

0
d�e	i�q�= �hc1�t	 ��

and cRq�t� accordingly. Inserting this into the Heisenberg
equations for the wire operators yields

_cc 1=N � 	
i
�h

X
n0
H1=N;n0�t�cn0 	

�L=R
2 �h

c1=N � �L=R�t�;

_ccn � 	
i
�h

X
n0
Hnn0�t�cn0 ; n � 2; . . . ; N 	 1:

(3)

Owing to the wide-band limit, the dissipative terms are
memory free. Within the chosen grand-canonical ensem-
bles the operator-valued Gaussian noise �‘�t� �
	�i= �h�

P
qV

�
‘qe

	i�q�t	t0�= �hc‘q�t0� obeys

h�‘�t�i � 0; (4)

h�y‘ �t��‘0�t
0�i � �‘‘0

�‘
2� �h2

Z
d�ei��t	t

0�= �hf‘���; (5)
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where f‘��� � �1� exp
��	�‘�=kBT��
	1 denotes the

Fermi function at temperature T and chemical potential
�‘, ‘ � L;R. The current operator then assumes the form

IL�t� �
e
�h
�Lc

y
1 �t�c1�t� 	 efcy1 �t��L�t� � �yL�t�c1�t�g: (6)

Before solving the inhomogeneous set of Eqs. (3), let us
first analyze the corresponding homogeneous equations.
They are linear and possess time-dependent, T -periodic
coefficients. Thus, it is possible to construct a complete
solution with the help of the Floquet ansatz j ��t�i �
exp
�	i��= �h	 ��� t�ju��t�i. The Floquet states
ju��t�i �

P
kju�ki exp�	ikt� obey the time periodicity

of the differential equations and fulfill in a Hilbert space
that is extended by a periodic time coordinate the eigen-
value equation�

H �t� 	 i�	 i �h
d
dt

�
ju��t�i � ��� 	 i �h���ju��t�i; (7)

where H �t� �
P
n;n0 jniHnn0�t�hn

0j and 2� � j1i�Lh1j �
jNi�RhNj. Because the eigenvalue equation (7) is non-
Hermitian, its eigenvalues �� 	 i �h�� are generally com-
plex valued and the (right) eigenvectors are not mutually
orthogonal. Therefore, we need to solve also the adjoint
Floquet equation yielding again the same eigenvalues but
providing the adjoint eigenvectors ju�� �t�i. It can be
shown that the Floquet states ju��t�i together with
the adjoint states ju�� �t�i form at equal times a com-
plete biorthogonal basis: hu�� �t�ju!�t�i � ��! andP
�ju��t�ihu

�
� �t�j � 1 [22]. For �L=R � 0, both ju��t�i

and ju�� �t�i reduce to the usual Floquet states.
The Floquet states ju��t�i allow one to write the gen-

eral solution of Eq. (3) in closed form. In the asymptotic
limit t0 ! 	1, it reads

cn�t� �
X
�

Z 1

0
d�hnju��t�ie

�	i��= �h	����hu�� �t	 ��j

� fj1i�L�t	 �� � jNi�R�t	 ��g: (8)

To obtain the current hIL�t�i, we insert the operator (8)
into Eq. (6) and use the expectation values (5). We then
find that the current assumes the commonly expected
‘‘scattering form’’ [14] but with time-dependent trans-
mission probabilities and, as well, an additional contri-
bution that accounts for a T -periodic charging of the
wire. The latter does not contribute to the time-averaged
current �II �

R
T
0 dthIL�t�i=T so that we obtain as a first

result

�II �
e
2� �h

X1
k�	1

Z
d�fT�k�

LR���fR��� 	 T�k�
RL���fL���g: (9)

Owing to charge conservation it equals the average cur-
rent through the right contact. The coefficients

T�k�
LR��� � �L�RjG

�k�
1N���j

2 (10)
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can be interpreted as the probability that an electron with
energy � is transmitted from the right lead to the left lead
under the absorption of k photons, respectively, the emis-
sion of 	k photons when k < 0. Note that the sum runs
over all integers k corresponding to different conduction
channels that contribute independently to the average
current �II. The retarded Green function

G�k�
nn0��� �

X
�;k0

hnju�;k0�kihu
�
�;k0 jn

0i

�	 ��� � k0 �h	 i �h���
(11)

describes the propagation of an electron from orbital jn0i
to orbital jni. We emphasize that generally jG�k�

1N���j �

jG�k�
N1���j for a driven system. An expression for the time-
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averaged current similar to Eq. (9) has been proposed in
Ref. [19] without providing an explicit form for the Green
function in terms of generalized Floquet states.

Next, we address the main topic of this work, namely,
the current noise given by the autocorrelation function
SL�t; �� �

1
2 h
�IL�t�;�IL�t� ����i of the current fluctua-

tion operator �IL�t� � IL�t� 	 hIL�t�i. It can be shown
that SL�t; �� � SL�t�T ; �� shares the time periodicity
of the driving. Therefore, it is possible to characterize the
noise level by the time-averaged noise strength at zero
frequency, �SSL �

R
d�

R
T
0 dtSL�t; ��=T . Since the total

charge is conserved, the zero-frequency noise is identical
at both the left and the right contact, i.e., �SSL � �SSR � �SS.
After some extensive algebra we obtain our central result
�SS �
e2

2� �h
�L�R

X
k

Z
d�

�
�L�R

�������
X
k0
G�k0	k�
N1 ��� k �h�G�k0�

N1 ���
�

�������
2
fL��� �ffL��� k �h�

�

�������G�	k�
1N ��� k �h� � i�L

X
k0
G�k0	k�
1N ��� k �h�G�k0�

11 ���
�

�������
2
fL��� �ffR��� k �h�

	

� same terms with the replacement �L; 1� $ �R;N�; (12)
where we have defined �ffL=R � 1	 fL=R. The key results
(9) and (12) contain as special cases prior findings: In the
absence of any driving, the Floquet eigenvalues �� 	
i �h�� reduce to the complex-valued eigenenergies; this
implies G�k�

nn0 � 0 for all k � 0, yielding the transmission
probability for an electron with energy E of T�E� �
�L�RjG

�0�
N1�E�j

2. Thus, the quantities �II and �SS agree with
the well-known expressions obtained within the time-
independent, nondriven scattering approach [15]. For a
system for which the ac potential is spatially uniform in
the driven region, the average current and the noise
strength follow in the low tunneling limit already from
the static conduction properties [24]. In the limit of a
weak system-lead coupling but arbitrary driving
strength, the average current (9) coincides also with
the corresponding result of a recent master equation
approach [12].

Current and noise suppression.—As a simple, yet non-
trivial application, we consider a wire composed of N
orbitals as sketched in Fig. 1. Each orbital is coupled to its
nearest neighbors by a hopping matrix element�. The on-
site energies are modulated by the influence of the ac
dipole field, Hnn�t� � En 	 A cos�t��N � 1	 2n�=2,
n � 1; . . . ; N. The energy A equals the electric field
strength multiplied by the electron charge 	e and the
distance between two neighboring sites. The wire is as-
sumed to couple equally to both leads, �L � �R � �, and
the laser frequency is far off resonance, � 5�= �h. For a
molecular wire, a typical value for the hopping matrix
element � and the coupling strength � is 0.1 eV leading
to a current unit e�= �h ’ 25�A, while the laser frequency
lies in the optical regime. For a distance of 2 �A be-
tween two neighboring sites, a driving amplitude A � �
corresponds to an electric field strength of roughly 5�
106 V=cm. For the evaluation of the current �II and the
noise �SS, we restrict ourselves to zero temperature. Then,
the Fermi functions turn into step functions and the
energy integrals in Eqs. (9) and (12) can be carried out
analytically. This limit is physically well justified for
molecular wires at room temperature and for quantum
dots at helium temperature since in both cases, thermal
electron excitations do not play a significant role.

Figure 2(a) depicts the dc current and the zero-
frequency noise for a wire with N � 3 sites with equal
on-site energies and a relatively large applied voltage. As
a remarkable feature, we find that for certain values of the
field amplitude A, the current drops to a value of some
percent of the current in the absence of the field [13]. A
perturbation theory for the Floquet equation (7) for
�;�� �h yields that the driving results in a renormal-
ized hopping matrix element �! �eff � J0�A= �h��,
where J0 denotes the zeroth-order Bessel function.
Then, G1N and GN1 vanish if the condition J0�A= �h� �
0 is fulfilled [25]. Consequently, the dc current (9) and the
zero-frequency noise (12) also vanish.

The relative noise strength can be characterized by the
so-called Fano factor F � �SS=ej �IIj depicted in Fig. 2(b).
Interestingly enough, we find that the Fano factor exhibits
as a function of the driving amplitude A both a sharp
maximum at current suppression and two pronounced
minima nearby. For a sufficiently large voltage, the
Fano factor assumes at the maximum the value F �
1=2. Once the driving amplitude is of the order of
the applied voltage, however, the Fano factor becomes
much larger. The relative noise minima are distinct and
210602-3



FIG. 2. Time-averaged current �II and zero-frequency noise �SS
(a) as a function of the driving amplitude A for a wire with
N � 3 sites with on-site energies En � 0 and chemical poten-
tials �R � 	�L � 25�. The other parameters read � 5�= �h
and � � 0:5�. (b) displays the Fano factor F for these parame-
ters (solid line) and for smaller wire-lead coupling (dash-
dotted line).
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provide a typical Fano factor of F � 0:15. Reducing the
coupling to the leads renders these phenomena even more
pronounced since then the suppressions occur in a smaller
interval of the driving amplitude; cf. Fig. 2(b). The over-
all behavior is robust in the sense that approximately the
same values for the minima and the maximum are also
found for larger wires, different driving frequencies,
different coupling strengths, and slightly modified on-
site energies, provided that �;�; En � �h and that the
applied voltage is sufficiently large. The qualitative be-
havior can again be understood within a perturbative
approach. With increasing driving amplitude, a crossover
from �eff � � to �eff � � at the current suppression
occurs. Both limits correspond to the transport through
a symmetric double barrier and, therefore, are character-
ized by F � 1=2 [15]. At the crossover �eff � � the
effective barriers vanish and, consequently, the Fano
factor assumes its minimum.

In summary, we have put forward with Eqs. (9) and
(12) new and appealing expressions for the time-averaged
current and the zero-frequency noise for the electron
transport through ac-driven nanoscale systems. A main
finding is that in molecular wires and coherently coupled
quantum dots, the influence of an ac field can be used
210602-4
to selectively suppress both the current and its noise.
Investigating the relative noise level characterized by
the Fano factor has revealed that the current suppression
is accompanied by a noise maximum and two remarkably
low minima. These phenomena can be used to devise
novel current sources with a priori controllable noise
levels.
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