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Kramers problem in evolutionary strategies
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We calculate the escape rates of different dynamical processes for the case of a one-dimensional symmetric
double-well potential. In particular, we compare the escape rates of a Smoluchowski process, i.e., a corre-
sponding overdamped Brownian motion dynamics in a metastable potential landscape, with the escape rates
obtained for a biologically motivated model known as the Fisher-Eigen process. The main difference between
the two models is that the dynamics of the Smoluchowski process is determined by local quantities, whereas
the Fisher-Eigen process is based on a global coupling ~nonlocal interaction!. If considered in the context of
numerical optimization algorithms, both processes can be interpreted as archetypes of physically or biologi-
cally inspired evolutionary strategies. In this sense, the results discussed in this work are utile in order to
evaluate the efficiency of such strategies with regard to the problem of surmounting various barriers. We find
that a combination of both scenarios, starting with the Fisher-Eigen strategy, provides a most effective evolu-
tionary strategy.
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I. INTRODUCTION

Since Kramers cornerstone paper on thermal activated
barrier crossing @1# published in 1940, reaction rate theory
has become an established discipline of nonlinear science,
relevant in almost all scientific areas @2–5#. Alongside tradi-
tional problems from chemical reaction kinetics or electric
transport theory, the problem of escape from metastable
states has gained importance also in modern fields of sci-
ence, such as evolutionary computation @6,7#.

Generally, evolutionary numerical methods @8,9# were de-
veloped in order to solve complicated optimization prob-
lems, for instance, of the type

U~x !5
!
min or U~x !5

!
max, ~1!

where U:Rn→R and n@1. A very recent application of evo-
lutionary algorithms in the context of materials design was,
for example, reported in Ref. @10#. With regard to nonphysi-
cal applications, function U can also be, e.g., a cost or fitness
function. A physically motivated class of evolutionary algo-
rithms, aiming at such problems, is constituted by the so-
called thermodynamic strategies. These strategies are based
on ensembles of overdamped Brownian particles and, thus,
can be modeled by Smoluchowski equations @2,11,12#.
Other, rather biologically oriented examples of evolutionary
strategies include genetic algorithms @7# and also ensemble
strategies with global coupling @13–17#.

The essential connection between reaction rate theory and
evolutionary optimization consists in the fact that in both
cases the fundamental process is given by the transition be-
tween two neighboring wells or barriers, respectively. Thus,
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the methods developed in classical reaction theory ~e.g., rate
description, first passage time approach @2–4#! can also be
successfully used in the characterization of evolutionary
strategies.

In this paper we will conventionally confine ourselves to
transitions between minima, since any maximum problem as
given in Eq. ~1! can be transformed into a minimum problem
by simply exchanging the sign of U. Moreover, we shall
adopt a physical point of view by considering function U as
a ‘‘physical potential.’’ This is no restriction, because the
generalization to nonphysical optimization problems is
straightforward.

The primary objective of the present work is to compare a
thermodynamic strategy featuring local coupling and a bio-
logical strategy based on global coupling with regard to tran-
sitions between metastable states. More precisely, we calcu-
late the reaction rates of the biologically motivated Fisher-
Eigen process for the symmetric Kramers potential, see Fig.
1, by use of the eigenvalue method, which is well-known
from the classical escape rate theory @2#. As helpful guide in
our calculations of the Fisher-Eigen escape rates, we shall

FIG. 1. Symmetric double-well potential U(x)52ax2/2
1bx4/4 as used in the rate calculations performed below.
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use the well-investigated Smoluchowski process. Since, as
mentioned above, a Smoluchowski process can be inter-
preted as a thermodynamic evolutionary strategy @15–17#, it
will be interesting to compare the rates of the two processes
from the point of view of evolutionary optimization. Put dif-
ferently, we would like to inquire in what situations an algo-
rithm with global coupling might be more efficient with re-
gard to the problem of surmounting a barrier.

The two prototypes of evolutionary strategies that we plan
to investigate are based on the idea that a statistical ensemble
of pointlike objects or particles, respectively, move in the
potential U(x). In both cases the ensembles are described by
a time-dependent, normalized probability density p(x ,t) pos-
sessing the common properties

p~x ,t !>0 ; xPV , tPT5@0,` !, ~2a!

E
V
dxp~x ,t !51 ; tPT . ~2b!

Thus, for both strategies the total number of ensemble mem-
bers is conserved; and p(x ,t)dx characterizes the fraction of
the ensemble in the interval @x ,x1dx# of the search space
V#Rn at time t. The main difference between the two mod-
els is given by the underlying principles ~or selection
schemes!, according to which the ensembles evolve on the
potential landscape U(x).

We start with the Smoluchowski dynamics that corre-
sponds to overdamped Brownian motion. Without loss of
generality, it is sufficient for the subsequent discussion when
we consider the one-dimensional case.

The dynamics of overdamped Brownian particles can be
described by the overdamped Langevin equation @2,12#

mg
dx
dt 52“U~x !1j~ t !, ~3!

where m denotes the mass of the Brownian particles, g is the
viscous friction coefficient, and j(t) is a d-correlated Gauss-
ian random force ~white noise! characterized by

^j~ t !&50, ^j~ t !j~s !&52 mg kBTd~ t2s !. ~4!

As usual, we have denoted Boltzmann’s constant by kB , and
T is the temperature of the heat bath modeled by j(t). An
equivalent description of the Langevin dynamics ~3! is given
by Smoluchowski’s equation @2,11,12#

]p
]t 5

1
mg

“@~“U !p#1
kBT
mg

¹2p . ~5!

The parameter

D[
kBT
mg

~6!

in Eq. ~5! is the diffusion constant, or noise strength, respec-
tively. Note that Smoluchowski’s equation is a local equation
in the sense that only local properties of U(x) and p(x ,t)
influence the dynamics of the ensemble.
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In contrast to the Smoluchowski process, the biologically
motivated Fisher-Eigen process @13,14,18# is based on global
selection, i.e., members of the ensemble are reproduced or
destroyed according to their status in the overall ensemble.
The evolutionary equation of this model is the generalized
Fisher-Eigen equation, reading

]p
]t 5q@Ū~ t !2U #p1D¹2p , ~7!

where

Ū~ t !5E
V
dxU~x !p~x ,t ! ~8!

is the time-dependent ensemble average of U and q.0 a
coupling parameter. Note that the Fisher-Eigen equation ~7!
constitutes a nonlinear partial differential equation ~PDE!,
whereas the Smoluchowski equation ~5! is linear. The effect
of the selective first term on the right-hand side ~rhs! of Eq.
~7! is obvious. It leads to an increase of the local population,
if value U(x) is lower than the ensemble average Ū(t) and
to a decrease, otherwise. In clear contrast to the local Smolu-
chowski equation ~5!, we have a nonlocal selection criterion
in the case of Eq. ~7!; i.e., the change of the local population
in @x ,x1dx# between t and t1dt can also be strongly influ-
enced by those parts of the overall population which are
located at far distances from x. In this sense, the models with
a nonlocal selection scheme are always based on the assump-
tion that the corresponding system includes long-ranging in-
formation transfer mechanisms as a fundamental feature. It
comes at no surprise that typical examples exhibiting such
global coupling mechanisms are biological systems.

We note that in previous papers @15–17# dealing with
these two evolutionary models, the Smoluchowski process
was also referred to as a thermodynamic ‘‘Boltzmann strat-
egy’’ and the Fisher-Eigen process as ‘‘Darwin strategy.’’
Furthermore, we would like to mention that numerical meth-
ods realizing Eq. ~5! are, for example, based on a discretized
version of the Langevin equation ~3!; whereas the selection
scheme of the Fisher-Eigen process can be realized via reac-
tion mechanisms as known from the description of chemical
reactions. For a detailed discussion of this issue, including
applications to optimization problems ~e.g., optimization of
road networks!, we refer the reader to Refs. @16,19–21#.

We next present a brief overview of the structure of this
paper. In the explicit rate calculations performed below, we
exclusively concentrate on one-dimensional problems; more
exactly, we are interested in transitions between the wells of
the symmetric Kramers potential

U~x !52
a
2 x

21
b
4 x

4, a ,b.0, ~9!

which is shown in Fig. 1.
Because, for the Smoluchowski equation, the rate prob-

lem for the Kramers potential ~9! has been extensively stud-
ied in the past @1–4,12#, our primary aim is to derive corre-
sponding analytic expressions for the reaction rate of the
8-2
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Fisher-Eigen problem by following a similar sequence of
steps. In order to clarify the analogies in the derivation, we
first outline the well-known calculation of the reaction rate
for the Smoluchowski equation.

The paper is organized as follows. In Sec. II, general so-
lution techniques are briefly reviewed, which are put to use
later on in Sec. III wherein we evaluate the escape rates.
Section IV comprises a summary of the main results and
conclusions. In Appendix C the details on numerical methods
applied to the corresponding PDE are given.

II. GENERAL SOLUTION TECHNIQUES

The Smoluchowski equation ~5! was derived in 1915 by
von Smoluchowski @11# in order to describe the motion of
overdamped Brownian particles in an external potential
U(x). Since, this equation has been studied in detail for
different types of potential functions U(x), and we shall
make use of results presented in Refs. @2,12,22# during our
subsequent discussion. Furthermore, for the Fisher-Eigen
process, some results can be found in Ref. @18#.

The essence of this section can be summarized as follows:
Both, the Smoluchowski equation as well as the Fisher-Eigen
equation can be transformed into a Schrödinger equation.

A. Smoluchowski equation

To start, it is useful to introduce dimensionless quantities

x̃[
x
xm

, t̃[
t a
mg

, D̃[
kBT

a xm
2 , p̃~ x̃ , t̃ ![p~x ,t !xm ,

~10!

where xm51Aa/b is the distance between the maximum
and minimum of the Kramers potential ~9!. Dropping, for the
sake of convenience, all tildes we can rewrite the Smolu-
chowski equation ~5! in dimensionless form

]p
]t 5“@~x32x !p#1D¹2p , ~11!

corresponding to the motion in the rescaled ~dimensionless!
Kramers potential

U~x !5 1
4 x42 1

2 x2. ~12!

As one can readily check upon an insertion, the stationary
solution of Eq. ~11! is given by the Boltzmann distribution

pst~x !5
e2U(x)/D

Z st , ~13!

where

Zst5E
V
dxe2U(x)/D ~14!

is the stationary normalization constant. Equation ~13! is the
reason why the process described by Eq. ~11! is sometimes
also termed the thermodynamical Boltzmann strategy. Since
06111
pst(x) possesses maxima at the minima of U(x), the Smolu-
chowski process can be considered as an optimization strat-
egy. In order to construct time-dependent solutions of Eq.
~11!, it is convenient to use the ansatz @18#

p~x ,t !5%~x ,t !expF2
U~x !

2D G . ~15!

Inserting this very ansatz into Eq. ~11! leads to

]%

]t 5D¹2%2F 1
4D ~“U !22

1
2 ¹2UG% . ~16!

Mathematically, Eq. ~16! can be treated as a Schrödinger
equation @23–25#. Thus, assuming a discrete spectrum of ei-
genvalues, the complete solution of Eq. ~11! can be ex-
pressed in terms of the series expansion

p~x ,t !5expF2
U~x !

2D G (
n50

`

cnfn~x !e2lnt, ~17!

where ln are the eigenvalues of the Hamilton operator

ĤS52D¹21v~x !, v~x !5
1
4D ~“U !22

1
2 ¹2U

~18!

with corresponding time-independent eigenfunctions fn(x).
Assuming L2(V)-normalized eigenfunctions fn(x), i.e.,

~fn ,fm![E
V
dxfn*~x !fm~x !5dnm , ~19!

the coefficients cn in Eq. ~17! are determined by the initial
condition

cn5~fn ,%0!5E
V
dxfn*~x !expFU~x !

2D Gp~x ,0!, ~20!

where %0(x)5%(x ,0). Furthermore, for t→` , the series ex-
pansion ~17! must converge to the stationary solution ~13!.
Thus one finds that l050, c051/AZ st, and

f0~x !5
e2U(x)/2D

F E
V
dz e2U(z)G 1/25

e2U(x)/2D

AZ st
. ~21!

Hence, as we can immediately see from Eq. ~17!, for t@0
the eigenvalue l1 dominates the dynamics of density p(x ,t).

We note that although the solution of the Smoluchowski
equation is formally known by Eq. ~17!, it is of use, only in
parts, in more complicated applications. This is due to the
fact that apart from some very simple potentials U, the ei-
genvalues and eigenfunctions of the Hamilton operator ~18!
with the effective potential v are unknown.

For the rescaled potential ~12! the effective potential v(x)
is given by
8-3
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v~x !5
1
4D ~x32x !22

1
2 ~3x221 !. ~22!

We shall need it later, since, as briefly reviewed in Sec. III,
the escape rate is closely related to the first nonvanishing
eigenvalue l1. In Fig. 2 we have depicted both u(x) and
v(x) for different noise strengths D. Given the Taylor expan-
sion

v~x !5
1
2 1

1
4D ~126 D !x21O~x4! ~23!

at x50, we deduce that v(x), as given in Eq. ~22!, is a
double-well potential only as long as

D> 1
6 . ~24!

Otherwise, v(x) possesses three minima, see Fig. 2~b!.
Moreover, the supersymmetric ~fermionic! partner potential
@22,26,27#

w~x ![
1
4D ~“U !21

1
2 ¹2U5

1
4D ~x32x !21

1
2 ~3x221 !

~25!

is monostable as long as D>1/18. In order to obtain a
simple estimate of the eigenvalue l1 in the strong noise limit
D@0, we also need the frequency

FIG. 2. Double-well potential U(x)5x4/42x2/2, and the corre-
sponding effective potential v(x) and supersymmetric partner po-
tential w(x) of v(x) as used in the calculation of the eigenvalue l1.
~a! For strong noise strength D>1/6, the effective potential v(x)
exhibits also a double-well potential structure and for D>1/18 the
fermionic partner potential w(x) becomes monostable. ~b! In the
case of D,1/6, the shape of the effective potential v(x) is essen-
tially different from the shape of U(x).
06111
n5A31
1
2D ~26!

of w at the bottom of the well at x50.

B. Fisher-Eigen process

Before we discuss solutions of the Fisher-Eigen equation
~7!

]p
]t 5q@Ū~ t !2U #p1D¹2p ,

it is advantageous to introduce dimensionless quantities

x̃[
x
xm

, t̃[t q a xm
2 , D̃[

D

q a xm
4 ,

p̃~ x̃ , t̃ ![p~x ,t !xm . ~27!

By virtue of these transformations the form of the rescaled
~dimensionless! Kramers potential is given by Eq. ~12!, i.e.,
Ũ( x̃)5 x̃4/42 x̃2/2. For the sake of convenience, we drop
again all tildes from now on and obtain the following dimen-
sionless version of the Fisher-Eigen equation ~7!:

]p
]t 5@Ū~ t !2U #p1D¹2p . ~28!

We have already mentioned that in contrast to the Smolu-
chowski equation ~11!, the generalized Fisher-Eigen equation
~28! is a nonlinear PDE. Nevertheless, it can also be trans-
formed into a PDE of Schrödinger type ~16! by using the
ansatz @18#

p~x ,t !5%~x ,t !expF E
0

t
Ū~s !ds G , ~29!

where in contrast to the probability density p(x ,t) the auxil-
iary function %(x ,t) stays not normalized. Inserting ansatz
~29! into Eq. ~28!, one finds the result

]%

]t 5D¹2%2U% . ~30!

Compared with Eq. ~16! the essential difference consists in
the fact that instead of the effective potential v(x) in Eq.
~16!, the original potential U(x) appears in Eq. ~30!. Thus,
assuming a discrete spectrum of eigenvalues again, the for-
mal solution of Eq. ~28! reads

p~x ,t !5expF E
0

t
Ū~s !ds G (

n50

`

cnfn~x !e2lnt, ~31!

where fn is a L2(V)-normalized eigenfunction of the
Hamilton operator

ĤFE52D¹21U~x ! ~32!
8-4
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and ln is the corresponding eigenvalue. The coefficients

cn5E
V
dxfn*~x !p~x ,0! ~33!

are again determined by the initial condition. In order to
identify the prefactor in Eq. ~31!, we can use the fact that
p(x ,t) stays normalized at all times t. More precisely, we can
integrate Eq. ~31! over x, yielding

15expF E
0

t
Ū~s !ds G (

n50

`

cnlne2lnt, ~34!

wherein we defined the coefficients

lm5E
V
dxfm~x !. ~35!

Therefore, the final result for the probability density ~31! can
be written as

p~x ,t !5

(
n50

`

cnfn~x !e2lnt

(
m50

`

cm lm e2lmt

. ~36!

Put differently, the solution of the generalized Fisher-Eigen
problem ~28! can be expressed in terms of characteristic
quantities of the eigenvalue problem ~30!. Moreover, by vir-
tue of ~34! we also immediately obtain

Ū~ t !52
d
dt ln(n50

`

cnlne2lnt5

(
n50

`

cnlnlne2lnt

(
m50

`

cm lm e2lmt

, ~37!

and the additional condition

(
n50

`

cn ln51. ~38!

The latter result follows from Eq. ~34! by setting t50. Also
note that in the case of the symmetric double-well potential
considered below, ln50 holds if n5odd . This is due to the
symmetry properties of the eigenfunctions fn of ĤFE .

Let us now still have a closer look at the stationary situ-
ation. Assuming a time-independent solution p st(x) of Eq.
~28! for t→` , we find from the rhs of Eq. ~37! that the
stationary value Ū st of Ū(t) is given by the lowest eigen-
value

Ū st5l0 , ~39!

and, furthermore, from Eq. ~36! that the stationary solution
p st(x) is proportional to f0(x), i.e.,
06111
p st~x !5
f0~x !

Zst , ~40!

where Zst5l0.
On the basis of the exact solutions ~17! and ~36!, we are

now able to calculate approximate analytic expressions for
the escape rates of both processes, which will be the subject
of the following section.

III. CROSSING OVER A BARRIER

In this section we study the following problem. We con-
sider Kramers symmetric double-well potential ~9!, and all
members of the ensemble initially situated at the bottom of
the left well, i.e., at x521. Using, as in the previous sec-
tions, dimensionless quantities, this special initial condition
corresponds to

p~x ,0!5d~x11 !. ~41!

The quantity we intend to estimate analytically is the escape
rate k characterizing the decline of the population in the left
well or the increase of the population in the right well. The
population in the left well, denoted by p2 , and that in the
right well, denoted by p1 , are given by

p2~ t ![E
2`

0
dxp~x ,t !, p1~ t ![E

0

1`

dxp~x ,t !,

~42!

and from Eq. ~41! follow the initial conditions p2(0)51 and
p1(0)50. Of course, for Smoluchowski and Fisher-Eigen
processes, the dynamics of p6(t) is governed by the respec-
tive evolutionary equation for p(x ,t) and can be evaluated
numerically. However, in order to derive also analytical es-
timates, it is appropriate to approximate the actual process by
the following set of ~two-state! master equations:

ṗ252k p21k p1 ~43a!

ṗ15k p22k p1 , ~43b!

where ṗ65dp6 /dt . The quantity k, appearing on the rhs of
Eqs. ~43! is the escape rate, respectively. Note, that only
because of the symmetric test potential chosen here, the rates
for the left and right wells are identical. As one can easily
check, the solution of Eq. ~43! reads

p6~ t !5p6
` 1@p6~0 !2p6

` #exp~22k t !, ~44!

where p6
` represents the respective stationary value. For our

symmetric double-well potential p6
` 51/2, and we can re-

write Eq. ~44! in the simplified form

p6~ t !5 1
2 7 1

2 exp~22k t !. ~45!

Apparently, the escape rate k can be considered as a measure
for the ability of a certain strategy to surmount a barrier, i.e.,
we assess that strategy X is ‘‘more mobile’’ than strategy Y, if
8-5
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kX.kY ~46!

is true.

A. Rates for the Smoluchowski process

In principle, for the Smoluchowski process, several excel-
lent analytical estimates for the escape rate kS are known,
which are based on different approximation techniques ~e.g.,
eigenvalue method, flux over population method! @2#. Since
the eigenvalue method turns out to be successfully applicable
to the Smoluchowski as well as to the Fisher-Eigen strategy,
we shall briefly outline this method by means of the Smolu-
chowski process in the following, where the case of strong
noise is discussed. Later on, in Sec. III B, we also give a
well-known rate result for the opposite case of weak noise,
which is based on the stationary flux method @2#.
(a) Strong noise (eigenvalue method). Using the solution

~17! of the Smoluchowski equation ~11! we can write

p2~ t !5
1
2 1E

2`

0
dxe2U(x)/2D(

n51

`

cn fn~x ! e2lnt. ~47!

Thus, for t@0 we find asymptotically

p2~ t !>
1
2 1exp~2l1 t !E

2`

0
dxe2U(x)/2Dc1 f1~x !,

~48!

where according to Eqs. ~20! and ~41!

c15E
2`

`

dxf1*~x !eU(x)/2D p~x ,0!5f1*~21 !eU(21)/2D.

~49!

For the special initial condition ~41!, we can estimate

E
2`

0
dxc1 f1~x !e2U(x)/2D'E

2`

0
dxc0 f0~x !e2U(x)/2D5

1
2 ,

~50!

because f0(x)'f1(x) holds in the vicinity of x521 @we
assumed additionally a normalization such that f1(x).0 for
x,0]. Upon inserting this estimate into Eq. ~48! and com-
paring the result with Eq. ~45!, we can expect that for the
Smoluchowski process the rate is approximately given by

kS5
l1

2 , ~51!

where l1 is the lowest nonvanishing eigenvalue of the
Hamilton operator ~18!. Since, as mentioned earlier, l050
holds, we could also write kS5Dl/2, where Dl[l12l0 is
the difference between the lowest two eigenvalues.

Unfortunately, it is generally impossible to determine l1
exactly for the effective potential v(x) from Eq. ~22!, and
one has to employ approximation techniques, e.g., WKB or
supersymmetric ~SUSY! methods as known from quantum
mechanics and widely applied in statistical physics
06111
@2,22,26–30#. Using SUSY methods, one finds by quadratic
approximation for relatively strong noise

D@1/18, ~52!

the rate

ksusy
S 52

1
4 1

A2D
4 n52

1
4 1

1
4
A6D11, ~53!

where n was defined in Eq. ~26! as the frequency of the
fermionic partner potential w(x) at x50. In Fig. 3~a! one
can contemplate that for strong noise D>1 the analytical
approximation, given by ksusy

S inserted into Eq. ~45!, yields
good agreement with numerical results based on simulations
of the PDE ~11!. Details regarding the numerical simulation
of the PDE are presented in Appendix C.
(b) Moderate to weak noise strength. As already men-

tioned, there exist many results obtained by working directly
with the Smoluchowski equation @2#. Here we shall apply
some of them to our rescaled dimensionless stochastic dy-
namics. A general result based on the stationary flux method
is given by the following integral formula for the inverse rate
@2#:

~kS!215
1
DE2`

0
dy expF2

U~y !

D GE
y

`

dz expFU~z !
D G .

~54!

FIG. 3. Semilogarithmic plots of the decrease of the population
p2(t) in the left well ~reduced by its stationary value p2

` 50.5) for
the Smoluchowski process. ~a! Strong and moderate noise: For the
analytical curves we used the rate expression ksusy

S from Eq. ~53!,
and the rate kav

S from Eq. ~57!, respectively. ~b! Weak noise: Both
analytical graphs are based on the rate kS as given in Eq. ~56!.
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We remark that this result may as well be derived by a mean
first time passage time approach @2#. In the case of weak
noise

DU
D 5

1
4D@1, ~55!

one can evaluate Eq. ~54! by a Gaussian steepest-descent
approximation, yielding the dimensionless estimate @2#

kS5
v0vb

2p
expS 2

DU
D D F12

3
2 D1O~D2!G , ~56!

where DU51/4 is the depth of the rescaled double-well po-
tential, v05A2 is the dimensionless angular frequency at the
bottom of the minimum at x521, and vb51 is the dimen-
sionless angular frequency at the top of the barrier at x50.
The prefactor before the brackets corresponds to the well-
known Kramers result @1,2# valid for strong damping ~that is,
very weak noise D→0). In Fig. 3~b! one can see that the
corresponding analytical approximation, given by kS inserted
into Eq. ~45!, is in good agreement with the numerically
calculated relaxation dynamics as long as D<0.1 holds,
which is in accordance with weak noise.

In the intermediate region of moderate noise strength,
0.1<D<1.0, the average escape rate

kav
S [

1
2 F ksusyS 1

1
A2 p

expS 2
DU
D D G ~57!

yields satisfactory analytical estimates for the simulated de-
cay curves, see Fig. 3~a!.

B. Rates for the Fisher-Eigen process

Having discussed the rate problem for the Smoluchowski
process, we next address the Fisher-Eigen process. Before
we can actually calculate a rate kFE for the Fisher-Eigen
model, it is again necessary to take a closer look at the
asymptotic behavior of this strategy. For t@0, the lowest
lying eigenvalues dominate the numerator and the denomi-
nator of the time-dependent solution ~36!. If we neglect
terms n ,m>2 in Eq. ~36! and also consider the well-known
fact that for symmetric potentials the first eigenfunction is
asymmetric, f1(x)52f1(2x), which again leads to l1
50, we attain the asymptotic solution

p~x ,t !>
f0~x !

l0
1
c1 f1~x !

c0 l0
e2(l12l0)t. ~58!

For the special initial condition ~41! and sufficiently weak
noise, we can approximate c1'c05f0(21) and

E
2`

0
dxf0~x !'E

2`

0
dxf1~x !5

l0
2 . ~59!

Thus, we find

kFE5 1
2 ~l12l0!5 1

2 Dl ~60!
06111
for the escape rate for the Fisher-Eigen process. Before we
proceed, we would like to emphasize again that, in contrast
to the Smoluchowski rate kS, the eigenvalues appearing in
Eq. ~60! are those of the Hamilton operator ĤFE containing
the original potential U(x).

Of course, the problem of calculating the eigenvalue dif-
ference Dl for the double-well potential U is a key problem
in quantum mechanics, see Refs. @26,29–31#, and also refer-
ences therein. For small dimensionless noise parameters

D<1/16, ~61!

a WKB approximation ~see Appendix A for details! yields
the rate

kwkb
FE 5

D1/2

p
expS 2

2 F

D1/2D , ~62!

where

F5
1
3 z2FES z12z22D 22D1/4KS z12z22D G ~63!

and

z15A122D1/4, z25A112D1/4. ~64!

FIG. 4. Semilogarithmic plots of the decay curves of the popu-
lation p2(t) in the left well ~reduced by the stationary value p2

`

50.5) for the Fisher-Eigen process. ~a! Strong noise: For the ana-
lytical curves the rate kFE from Eq. ~65! was used. ~b! Moderate and
weak noise: Here the analytical graphs are based on kav

FE as given in
Eq. ~66!, and kwkb

FE as given in Eq. ~62!. Note that compared with the
Smoluchowski process, see Fig. 3~b!, the Fisher-Eigen process is
‘‘more mobile’’ at moderate to weak noise corresponding to param-
eter values D<1.0.
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FIG. 5. Comparison of the nu-
merically calculated ‘‘stationary’’
solutions ~taken at time t as given
in the diagrams! for the particle
density. It becomes obvious that
the stationary solutions of the
Smoluchowski process, repre-
sented in diagrams ~a!–~c!, pos-
sess much better properties with
regard to ensemble minima search
than those of the Fisher-Eigen
process given in ~d!–~f!.
Furthermore, K and E denote the complete elliptic integrals
of the first and the second kind, respectively, as defined in
Eqs. ~A9! and ~A10!. In the limit of very weak noise D
→0, one finds F→1/3. Compared with the Smoluchowski
process the essential observation is that at small noise param-
eters D!1 the Fisher-Eigen process is more mobile than the
Smoluchowski process. Put differently, in the weak noise
regime the global selection criterion turns out to be much
more efficient for the process of overcoming a barrier.

In the opposite case of strong noise strength, we obtain
from the standard time-independent perturbation theory ~see
Appendix B!

kFE5S 3D2

4 D 1/32S D48D
1/3

. ~65!

This approximation can principally be valid only as long as
D.1/36, because otherwise the rate would assume negative
values. As shown in Fig. 4~a! this estimate for rate ~65! can
successfully be applied to describe the relaxation dynamics
of the population p2(t) if D>0.1.

As before, in the case of the Smoluchowski process, there
exists an intermediate region, now corresponding to 1/36
<D<0.1, where the average rate
06111
kav
FE[ 1

2 ~kFE1kwkb
FE ! ~66!

yields a satisfactory analytical estimate of the numerical re-
sults, see Fig. 4~b!.

C. Comparison of the stationary solutions

With regard to evolutionary optimization, it is not only
important which of the two strategies approaches its station-
ary distribution most rapidly. One certainly also needs to
know about the quality of the stationary distributions. In the
context of a computational optima search those strategies are
to be favored where, in the stationary state, the majority of
the members of the search ensemble is located near the op-
timum.

In Fig. 5 we have depicted the stationary probability den-
sities for the Smoluchowski and the Fisher-Eigen processes,
based on simulations with identical parameters. As one can
clearly deduce from the results, the stationary distribution of
the Smoluchowski process possesses advantageous proper-
ties as compared to the corresponding Fisher-Eigen process.
In particular, the stationary distribution of the latter process
possesses only a single maximum at the barrier x50, if the
dimensionless noise strength becomes sufficiently large.

This observation means that we face a situation typically
referred to as ‘‘frustrated problem.’’ On the one hand, the
Fisher-Eigen process is more mobile than the Smoluchowski
8-8
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scenario, i.e., it is more efficient if a barrier of the landscape
must be crossed. In contrast, the stationary probability den-
sity is lesser peaked at the minima of the potential. A quan-
titative explanation for this effect based on the special case
with harmonic potentials can be found in Ref. @32#. There it
was shown that the two processes exhibit different functional
dependencies between the angular frequency at the minimum
and the variance of the stationary distribution.

IV. CONCLUSIONS

In this work we have calculated and compared escape
rates of the Smoluchowski and Fisher-Eigen processes by
applying the eigenvalue method. While the escape problem
is well investigated in the Smoluchowski case, the results
obtained for the Fisher-Eigen strategy are not so.

Even though we confined our quantitative discussion to
the one-dimensional symmetric Kramers potential, the re-
sults seemingly indicate some rather general and robust
properties of the two strategies. As we have discovered from
our rate calculations in Sec. III, for weak ~dimensionless!
noise strength D, the Fisher-Eigen process with global selec-
tion is much more efficient if a barrier has to be overcome.
We are confident that this property remains true also for
high-dimensional problems. The main reason for this conjec-
ture is that with regard to high-dimensional search spaces,
the one-dimensional model represents a good approximation
for the ensemble dynamics in the vicinity of the shortest link
between two neighboring optima.

Moreover, in a different investigation of the two models
for a simple harmonic potential, we could establish @32# that
for sufficiently low noise parameters the stationary solution
of the Smoluchowski process possesses better properties re-
garding the local concentration of the stationary distribution
around a minimum. Thus, from the evolutionary optimiza-
tion point of view we herewith do recommend the following
combination of the two strategies: ~1! To start with, use the
Fisher-Eigen process in the beginning of the search process;
~2! then switch to a local Smoluchowski process ~with very
small D) at the final stages.

Finally, we would like to comment on the approach cho-
sen in this paper. Obviously, in the general case it is not
possible to transform the Schrödinger equation into a Smolu-
chowski equation, albeit one can always transform a Smolu-
chowski equation into an equation of Schrödinger type ~the
latter result was first discovered by Favella @24#!. This non-
equivalence of the Smoluchowski and Schrödinger equations
is also evident in the case of the Fisher-Eigen process where
the eigenvalue method is thus far the only technique allow-
ing for an estimate of the crossing dynamics. From this point
of view, the Smoluchowski process is technically simpler
and we actually can choose from several different techniques
@2#. In particular, there also exists a great variety of suitable
methods such as the MFPT-approach, the stationary flux
method, etc., to name but a few, which generally yield supe-
rior results over the WKB approximation that is rooted in
quantum mechanics. However, when we are interested in
evolutionary strategies of the Fisher-Eigen type, we exclu-
sively depend on such an eigenvalue analysis.
06111
ACKNOWLEDGMENTS

This work was supported by the DFG via Grant Nos.
Sfb-555 ~L.S.-G. and J.D.!, Sfb-486 ~P.H.!, and by the Stu-
dienstiftung des deutschen Volkes ~J.D.!.

APPENDIX A: WKB APPROXIMATION
FOR THE FISHER-EIGEN PROCESS

The eigenvalue problem corresponding to Eq. ~30! reads

lf52Dfxx1Uf , U52 1
2 x21 1

4 x4. ~A1!

In the WKB approximation the eigenvalue difference Dl
5l12l0 is given by

Dl5
A2D1/2v0

p
expF2

2
D1/2E0

z1
dxAU~x !2«0G , ~A2!

where

«052 1
4 1D1/2 ~A3!

is the ground-state eigenvalue obtained for the parabolic ap-
proximation of U(x) at the minimum at x51, and v05A2
is the corresponding dimensionless angular frequency. Fur-
ther, the upper boundary z1 of the integral corresponds to the
smallest, positive solution of the problem

G~z ![AU~z !2«050. ~A4!

The positive solutions of Eq. ~A4! are

z15A122D1/4, z25A112D1/4. ~A5!

From z1 we obtain the condition

D<1/16, ~A6!

i.e., the WKB approximation is valid for weak noise
strength. The exact value of integral

F[E
0

z1
dxAU~x !2«0 ~A7!

in Eq. ~A2! is given by

F5
1
3 z2FES z12z22D 22D1/4KS z12z22D G , ~A8!

where K denotes the complete elliptic integral of the first
kind

K~m ![E
0

p/2
~12m sin2u !21/2du , ~A9!

and E denotes the complete elliptic integral of the second
kind

E~m ![E
0

p/2
~12m sin2u !1/2du . ~A10!

Hence, the final result reads
8-9



DUNKEL et al. PHYSICAL REVIEW E 67, 061118 ~2003!
Dl5
2D1/2

p
expS 2

2F

D1/2D . ~A11!

We mention that we checked the correctness of Eq. ~A8!
numerically, too. Moreover, for D→0 one finds F→1/3.

APPENDIX B: FISHER-EIGEN PROCESS AND
MODERATE TO STRONG NOISE

We intend to calculate the rate for the Fisher-Eigen pro-
cess at moderate to strong noise. To this end, we use Schrö-
dinger’s time-independent perturbation theory. In the first
step we split operator ĥ[ĤFE /D ,

ĥ5 ĥ01a ĥ1, ~B1!

into an anharmonic oscillator part ĥ0 and a perturbation ~the
barrier! ĥ1, that is,

ĥ052
d2

dx2
1
x4

4D , ĥ152
x2

2D . ~B2!

By setting a51 we obtain the original problem. In order to
calculate an approximation m0

(0) for the ground-state eigen-
value m0 of the anharmonic oscillator ~corresponding to the
situation, when there is no barrier, a50), we apply the Ritz
method using the Gaussian test function

cc~x !5S 2cp D 1/4exp~2cx2!, ~B3!

where c denotes the variation parameter. By applying the
Ritz condition to

^h0&[E
2`

`

dxcc*ĥ0cc5c1
3

64c2D
, ~B4!

we get

c5
1
2 S 3

4D D 1/3 ⇒ m0
(0)5

3
4 S 3

4D D 1/3. ~B5!

Using the test function

xc~x !52S 2c3p D 1/4x exp~2cx2! ~B6!

orthogonal to cc , we find

m1
(0)5

11
4 S 3

4D D 1/3 ⇒ Dm (0)[m1
(0)2m0

(0)5S 6D D 1/3.
~B7!

The result for the difference of eigenvalues in Eq. ~B7! can
be used to calculate a first estimate for the Fisher-Eigen es-
cape rate, kFE'Dm (0)D/2. In the remaining part, we calcu-
late the corrections corresponding to O(1/D) by following
the standard procedure of quantum mechanical time-
independent perturbation theory. From
061118
m0
(1)5E

2`

`

dxcc*ĥ1cc52
1
2 S 1

6D2D 1/3

, ~B8a!

m1
(1)5E

2`

`

dxxc*ĥ1xc52
1
2 S 9

2D2D 1/3

, ~B8b!

we get ~for a51)

Dm'Dm (0)1a~m1
(1)2m0

(1)!5S 6D D 1/32S 1
6D2D 1/3

.

~B9!

We remark that this approximative result can, in principle,
only be valid as long as D.1/36, because otherwise the rate
kFE5DmD/2 would become negative.

APPENDIX C: NUMERICAL METHODS

In our numerical simulations of the PDE we used a simple
algorithm characterized as follows.

~1! Discretization. Spatial derivatives are realized by sym-
metric quotients, that is, ]p(x ,t)/]x5@p(x1dx ,t)2p(x
2dx ,t)#/(2dx) and ]2p(x ,t)/]x25@p(x1dx ,t)22p(x ,t)
1p(x2dx ,t)#/dx2. Partial time derivatives are realized by
forward quotients, ]p(x ,t)/]t5@p(x ,t1dt)2p(x ,t)#/dt . In
all simulations we used a spatial interval V5@25,5# with
301 equidistant spatial grid points ~with distance dx). The
time step dt was always chosen as dt50.05dx2. Further-
more, we fixed the boundary values p(65,t)[0.

FIG. 6. Comparison of the exact time-independent solution
pst(x)5exp@2U(x)/D#/Z st of the Smoluchowski equation with nu-
merically obtained stationary solutions for different values of the
noise parameter D. The stationary normalization constants Z st were
numerically calculated as Z st53.905 in ~a! and Z st515.170 in ~b!.
-10
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~2! Non-negativity. If the probability density becomes
negative at some grid point (x ,t) during the simulation, we
set p(x ,t)50.

~3! Renormalization. After each integration step the prob-
ability density at each grid point is multiplied by a constant
such that *Vdxp(x ,t)51 holds.

There exist more refined numerical methods for these
types of problems, for our purpose, however, the above al-
gorithm proved to be completely satisfactory. For example,
we plotted in Fig. 6 both the exactly known stationary solu-
tions of the Smoluchowski equation and the numerically ob-
tained solution. As can be deduced, there occurs an excellent
061118
agreement between the numerics and the approximation.
We also note, that we used harmonic test functions

U(x)5v2x2/2 in order to check the temporal behavior of the
algorithm. This is possible, since for both the Smoluchowski
and the Fisher-Eigen equation one can find explicit time-
dependent solutions of the form

p~x ,t !5Z~ t !21exp@2b~ t !U~x !# ~C1!

corresponding to the special case of Gaussian initial condi-
tions ~see Ref. @32# for further details!.
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