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Relaxation time scales in collective dynamics of liquid alkali metals
Anatolii V. Mokshina) and Renat M. Yulmetyevb)
Department of Physics, Kazan State Pedagogical University, 420021 Kazan, Russia

Peter Hänggi
Department of Physics, University of Augsburg, D-86135 Augsburg, Germany
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In this paper the investigation of the dynamical processes of liquid alkali metals is executed by
analyzing the time scales of relaxation processes in liquids. The obtained theoretical dynamic
structure factor S(k ,v) for the case of liquid lithium is found to be in excellent agreement with the
recently received inelastic x-ray scattering data. The comparison and interrelation with other
theories are given here. Finally, an important part of this paper is the confirmation of the scale
uniformity of the dynamic processes in liquid alkali metals predicted by some previous molecular
dynamic simulation studies. © 2004 American Institute of Physics. @DOI: 10.1063/1.1792155#

I. INTRODUCTION

The dynamic structure factor S(k ,v) is an experimen-
tally measured term, containing information about the pro-
cesses in a liquid with long- and short-time scales. It can be
used to judge the microscopic behavior in a system on the
basis of its spectra, obtained by means of inelastic neutron
scattering ~INS! ~Refs. 1 and 2! or inelastic x-ray scattering
~IXS!.3 As for simple liquids, at present a great amount of
experimental data of S(k ,v) have been accumulated, in par-
ticular, for liquid alkali metals. These data indicate legibly
the presence of the collective propagation excitations beyond
the hydrodynamic region. The characteristic feature of liquid
alkali metals is a triple-peak shape of S(k ,v), lasted to k
;0.8km , where km corresponds to the first maximum of the
static structure factor S(k). Moreover, the frequency of the
side peak achieves its maximum at k;0.55km . The propa-
gation of these high-frequency waves cannot be obtained
within a hydrodynamic treatment, therefore, they are related
in some works to the so-called kinetic collective excitations.
The impossibility to describe these microscopic phenomena
and, therefore, to reproduce qualitatively the experimental
S(k ,v) by means of ordinary hydrodynamic equations led to
the development of other theoretical models and approaches.

One of the simplest and perhaps the earliest modeling
approaches is the so-called viscoelastic theory. It allows one
to obtain the central quasielastic line as well as two inelastic
peaks symmetrically located around v50 for mesoscopic
space-frequency region. However, as shown in Refs. 4 and 5,
this model cannot be used for the exact reproduction of the
experimental spectral shapes of S(k ,v) ~see, for instance,
the cases of liquid cesium and lithium in Refs. 4 and 5!.
Therefore, in Ref. 5 the double-scale model for the viscous
relaxation process with fast and slow time scales was tested,
and as a result a good agreement with the IXS experimental
data for the dynamic structure factor was received. Recently
the similar approach was also applied for the description of
relaxation processes in H-bonded liquids.6,7 The existence of

two time scales in this model reflects the presence of physi-
cally different decay mechanisms. A faster process is hypo-
thetically associated with interactions between an atom and
the ‘‘cage’’ of its nearest neighbors, and a slower one is
identified with the well-known structural ~a2! process.
However, relaxations of both processes are approximated by
exponential dependencies. In recent works the viscoelastic
model has been improved by means of the Markovian clo-
sure on the next relaxation level of Zwanzig-Mori hierarchy,8
it is equivalent to the exponential relaxation on this level. It
is worth mentioning two other methods, one of which is
related to the extension of the usual hydrodynamic analytical
expressions by modification of hydrodynamic modes to k
dependence ~see, for instance, Ref. 9!. This method assumes
the existence of nonhydrodynamical additional modes. The
second approach is related to the so called concept of gener-
alized collective modes, which was proposed for the investi-
gation of the time correlation functions ~TCF’s! beyond the
hydrodynamic region.10 The key idea of this method consists
in the correct choice of the basic set of dynamical variables.

All these methods are more or less successfully used for
the description of collective dynamics in liquids. They have
common property. Namely, they are actually constructed on
heuristic assumption about the presence of exponential decay
~or combination of exponential decay contributions! in some
relaxation processes. Nevertheless, the transition and impo-
sition of different relaxation modes in disorder systems can
occur even in case of a concrete relaxation process, which
complicates the selection of the analytical time dependence
for the corresponding TCF. This fact is proved by the suc-
cessful application of different mode-coupling theories. On
the other hand, this difficulty can be resolved by means of
analysis and comparison of the resulting time scales of re-
laxation processes. Therefore, in the present work we suggest
the approach, which allows us to avoid the immediate ap-
proximation of relaxation processes by analytical functions.
It is based on the development of Bogoliubov’s ideas about
the hierarchy of relaxation times in liquids,11 adapted to the
formalism of time correlation functions.

One of the open problems in studying of liquid state ~in
a!Electronic mail: mav@theory.kazan-spu.ru
b!Electronic mail: rmy@theory.kazan-spu.ru
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particular, of the microdynamics of simple liquids! is to de-
scribe and understand on a general ground the common fea-
tures of different relaxation processes.6 It is well known that
the dispersion of the side ~high frequency! peak of dynamic
structure factor is the same for all alkali metals. Moreover, it
is also valid in case of more complex systems, for example,
for liquid alloys.12 Then the following questions arise: Is the
origin of relaxation processes the same for liquid systems
with similar features? Can the unified description be applied
to these systems? As for the group of melting alkalis, it has
been indicated in Ref. 13 that both the equilibrium and the
time dependent correlations can be cast in a properly scaled
form for all the alkali metals. Further, it was justified by ab
initio molecular dynamics studyed in Ref. 13 too. Experi-
mental confirmation of this result was impossible over a long
period particularly because of the difficulties related to the
technique of INS due to the deficient precision of the experi-
mental data. Recently, due to progress in IXS technique this
issue was considered again.14 In this work we present inves-
tigations related to the determination of corresponding scale
transitions for liquid systems.

The organization of the paper is as follows. In the fol-
lowing section, we describe the theoretical formalism, and
the comparison with the experimental data and other theories
is carried out. The possibility of scale uniformity of dynami-
cal processes in the group of liquid alkali metals is analyzed
and discussed in Sec. III. The scale-crossing relations are
also presented here. Finally, we come up with some conclud-
ing remarks in Sec. IV.

II. THEORETICAL FORMALISM
A. Basic notions

Let us consider the liquid system of N identical classical
particles of the mass m in the volume V and take the density
fluctuations

W0~k!5
1

AN (
j51

N

e ik"rj ~1!

as an initial dynamical variable. To construct some set of
dynamical variables necessary for the description of the evo-
lution of the system we use the technique of projection op-
erators of Zwanzig-Mori.15,16 It is a formal version of the
Gram-Schmidt orthogonalization process, which allows one
to obtain the set of orthogonal variables,

W~k !5$W0~k !,W1~k !,W2~k !, . . . ,W j~k !, . . .%. ~2!

They satisfy the condition ^W j*W l&5d j ,l^uW ju2& and are
connected by the following recurrent relation:17

W j11~k !5LW j~k !2V j
2~k !W j21~k !,

~3!j50,1,2,..., W21~k !50.

Here the characteristic of the corresponding jth relaxation
process, the so-called frequency parameter V j

2(k), appears,
and L is the Liouville operator,

L52iH (
j51

N pj¹j
m 2 (

i. j51

N

¹ju~ j ,i !~¹p
j 2¹p

i !J , ~4!

with the momentum of the jth particle pj and the pair poten-
tial u( j ,i). So, if W0(k) is the density fluctuation, then
W1(k) is the longitudinal component of the momentum den-
sity and so it goes on.

The TCF’s for the corresponding dynamical variables are
given by

M j l~k ,t !5
^W j*~k !e iL22

~1 !tW l~k !&

^W j*~k !W l~k !&
, j ,l51,2,... . ~5!

For convenience normalized time correlation functions are
used here. The time evolution operator of Eq. ~5! contains
the reduced Liouville operator,

L22
~ l !5S 12(

j51

l

P jDLS 12(
j51

l

P jD , ~6!

defined by the following projection operators:

P j5
W j~k !&^W j*~k !

^uW j~k !u2&
, P jP l5d j ,lP j . ~7!

From the condition of orthogonalization of the dynamical
variables we obtain the initial values for the TCF’s of Eq. ~5!

M j l~k ,t50 !5H 0 if jÞl , cross correlations
1 if j5l , autocorrelations

. ~8!

These correlation functions M j l(k ,t) are symmetrical in l
and j, i.e.,

M j l~k ,t !5M l j~k ,t !. ~9!

Autocorrelation functions of Zwanzig-Mori formalism have
the following property: every autocorrelation function of the
higher order M j(k ,t)5M j j(k ,t) is a memory function for
the previous one, i.e., M j21(k ,t) ~autocorrelation functions
will be marked by one index only in accordance with the
used variable!, and they are interrelated by integro-
differential non-Markovian equations of the form:

dM j21~k ,t !
dt 1V j

2~k !E
0

t
dtM j~k ,t !M j21~k ,t2t !50.

~10!

Differentiating the first equation of the chain ~10!, i.e., j
51, one obtains the generalized Langevin equation:

d2M 0~k ,t !
dt2

1V1
2~k !M 0~k ,t !2V1

2~k !V2
2~k !E

0

t
dtE

0

t

dt8

3M 2~k ,t2t !M 1~k ,t2t8!M 0~k ,t8!50. ~11!

One the other hand, these functions describe concrete relax-
ation processes, the physical meaning of which may be es-
tablished from direct definitions of TCF’s. For instance,
M 0(k ,t) describes the dynamics of fluctuations of density
correlations in the system, M 1(k ,t) is the TCF of the fluc-
tuations of the longitudinal component of the momentum
density, and M 2(k ,t) contains the TCF of fluctuations of
energy density. So, these quantities are associated with the
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TCF’s of the well-known hydrodynamic ‘‘slow’’ variables.
These TCF’s have characteristic time scales, which can be
found from

t j~k !5Re E
0

`

dtM j~k ,t !5Re M̃ j~k ,s50 !, ~12!

where M̃ j(k ,s) is the Laplace transform of the corresponding
TCF, i.e., M̃ j(k ,s)5*0

`dte2stM j(k ,t) ~Refs. 18–20!.
So, the memory function approach with single initial dy-

namical variable extracts the whole set, which describes the
relaxation processes of the corresponding relaxation levels.
In fact, the well-known problem of the choice of a set of
variables required for the correct description of the system
dynamics here is reduced ~i! to the search of the number of
variables for a priori known succession W(k), that was ex-
cellently shown by the recurrent relation approach in a works
of Lee;21,22 and/or ~ii! to finding the correct closure of the
chain ~10!.

The ratio between t0(k), t1(k), and t2(k) may be quite
arbitrary. In the hydrodynamic region (k→0,v→0) they
take large values due to the slow changes of the correspon-
dent variables: densities of mass, momentum, and energy.
Further, one can suggest that the relaxation times of the fol-
lowing TCF’s, in comparison with the scales of these three
variables, are comparable, i.e., t3(k)'t4(k). We emphasize
here that this assumption does not contradict the viscoelastic
model, which presupposes that t2(k)@t3(k). Obviously,
this key condition of the viscoelastic theory is just a special

case in our approach. Simultaneously, our approach does not
deny the presence of the long-lasting time tail of M 2(k ,t),
which may be adequately taken into account by the mode-
coupling theory.23

Then, taking into account Eq. ~12! one can find

M 4~k ,t !5M 3~k ,t !1h~k ,t !, ~13!

where the ‘‘tail’’ function h(k ,t) appears. From the short-
time asymptotic of the time autocorrelation functions and the
condition of the long-time attenuation of correlation Eq. ~13!
yields the following properties of h(k ,t):

lim
t→0

h~k ,t !5 lim
t→`

h~k ,t !50, ~14!

this function must have at least one crossing with the time
axis at the intermediate region.24 Equation ~13! allows us to
obtain the closure of hierarchy of equations of the form ~10!
at the fourth level ( j54) and by means of Laplace transfor-
mation to find its exact solution for M̃ 0(k ,iv), particularly,
which is directly related to the experimentally available term
and the dynamic structure factor, S(k ,v). The expression for
the resulting S(k ,v) is given in Ref. 25 in terms of the first
four frequency parameters V1

2(k), V2
2(k), V3

2(k), and
V4

2(k) and the Laplace transform of tail function, i.e.,
h̃(k ,iv). In some cases, the regime with h(k ,t)→0 may be
realized. It can be observed in some parts of time ~frequency!
scale. In this case we find the following expression for the
dynamic structure factor:

S~k ,v !5
S~k !

2p
V1

2~k !V2
2~k !V3

2~k !@4V4
2~k !2v2#1/2$V1

4~k !V3
4~k !1v2@V1

4~k !V4
2~k !22V1

2~k !V3
4~k !

2V1
4~k !V3

2~k !12V1
2~k !V2

2~k !V4
2~k !2V1

2~k !V2
2~k !V3

2~k !1V2
4~k !V4

2~k !#1v4@V3
4~k !22V1

2~k !V4
2~k !

12V1
2~k !V3

2~k !22V2
2~k !V4

2~k !1V2
2~k !V3

2~k !#1v6@V4
2~k !2V3

2~k !#%21. ~15!

This equation is also expressed through the first four fre-
quency parameters, which are directly related to the first five
even frequency moments of dynamics structure factor. It is
necessary to note that this expression is obtained in the way
completely different from the theory of moments.26

B. Comparison with IXS experiment and relationship
with other theoretical approaches

In Fig. 1 we report the dynamic structure factor S(k ,v)
of liquid lithium (T5475K) for some wave numbers calcu-
lated from Eq. ~15! ~solid line! and obtained from IXS ex-
periment ~circles!.14 Being used in theoretical computations
the static structure factor S(k) for both cases was taken from
Ref. 27. The first frequency parameter was directly defined
from its definition V1

2(k)5KBTk2/mS(k). The second fre-
quency parameter V2

2(k) is related to the fourth frequency
moment. We found this parameter from the values of the
infinite frequency sound velocity c`(k) ~Refs. 5 and 14! by
means of relation c`(k)5AV1

2(k)1V2
2(k)/k . The high-

order parameters were found by comparison with the experi-
ment. Eventually, we have revealed that all the frequency
parameters have the similar dispersion. In particular, they
have the first principal maximum at the same wave numbers
such as the side peak of S(k ,v), i.e., at k;0.55km , and any
low order parameter is less than the high order one.

We would like to emphasize that the theoretical S(k ,v)
and, in particular, the position of the side peak, is very sen-
sitive to the magnitude of V2

2(k). The magnitudes of V3
2(k)

and V4
2(k) influence the form of S(k ,v). However, it is not

so important to know these parameters separately as their
ratio, i.e., V4

2(k)/V3
2(k).

To compare the theoretical outcome with the experiment
we modified it to account for the quantum mechanical de-
tailed balance condition according to

Sq~k ,v !.
\v/KBT

12e2\v/KBT
S~k ,v !, ~16!
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and then broadened it for the finite experimental resolution
effects R(k ,v):5

E R~k ,v2v8!Sq~k ,v8!dv . ~17!

From Fig. 1 one can see that the above described theoretical
approach yields a good agreement with IXS data of both
systems.

Now we can execute a more detailed study of the ob-
tained results and compare them with other approaches: the
usual viscoelastic model, the double-scale viscous model,
and the generalized mode approach. The common feature of
these theories is the use of the time autocorrelation function
M j l(k ,t) of Eq. ~5! at j5l52. So, the viscoelastic and the
double-viscosity models are based on approximations to this
term, and M 2(k ,t) plays a key role in these theories. As for
our approach, it gives the following form for Laplace trans-
form of M 2(k ,t):

M̃ 2~k ,s !5@s1V3
2~k !M̃ 3~k ,s !#21

5
s1V4

2~k !M̃ 3~k ,s !

s21V4
2~k !M̃ 3~k ,s !s1V3

2~k !
, ~18a!

M̃ 3~k ,s !5
2s1As214V4

2~k !

2V4
2~k !

, ~18b!

which are obtained by Laplace transform of the third and
fourth ( j53,4) equations of the chain ~10!.

To pass from the frequency dependence of M̃ 2(k ,iv) to
the time one, let us consider the low-frequency region re-
stricted by the value 2V4(k). For convenience we introduce
here a small parameter ~at the fixed wave number k!:

j5
s2

4V4
2 , uju!1. ~19!

Taking into account the fact that the found values of V4
2(k)

for liquid sodium and lithium achieve 1029–1030 s22 for the
low-k region, we span by introducing parameter j the fre-
quency ~time! range v,1015 s21 (t.10215 s), which is im-
portant for us and is available experimentally.

Expanding the radicand in Eq. ~18b! as a series in the
parameter j

A11j511
j

22
j2

8 1¯ , ~20!

we can rewrite it in the following way:

M̃ 3~s !52
s

2V4
2 1

1
V4

1
s2

8V4
32

s4

32V4
5 1¯ . ~21!

By restricting the number of terms in the series ~20! @and,
accordingly, in Eq. ~21!# we receive from Eq. ~18a! the linear
combination of the Lorentz functions

M̃ 2~k ,s !5(
j

A j~k !

s1t j
21~k !

, j51, 2, 3, 5,..., ~22!

the number of which will be increased at the increase of the
number of terms in the series ~20!. The quantities A j(k) and
t j(k) are expressed by the relaxation frequencies V3

2(k) and
V4

2(k). Going over to the time scale by the inverse Laplace
transform28 we obtain

M 2~k ,t !5(
j
A j~k !e2t/t j~k !. ~23!

By restricting the first term of the series ~20! only we receive
the simplest model from the first equality of Eq. ~18a! with
Eq. ~21!

M 2~k ,t !5e2t/t~k !, ~24!

which corresponds to the viscoelastic model with the relax-
ation time t(k)5V4(k)/V3

2(k), and from the second equal-
ity of Eq. ~18a! the double exponential model, i.e., Eq. ~23!
at j52 with the following time relaxation parameters

t1,2~k !5@V4~k !6AV4
2~k !2V3

2~k !#21 ~25!

and the weight factor

A~k !5
V4~k !1AV4

2~k !2V3
2~k !

2AV4
2~k !2V3

2~k !
. ~26!

This case may be related to the double-time viscous
model,5,14 two-time exponential ansatz.18,29 In the general
form Eq. ~23! corresponds to the framework of generalized
collective mode approach30 with the sum of the weighed ex-
ponents for the TCF M 2(k ,t), where t j

21(k) denote eigen-
values of a generalized dynamic matrix with the elements
consisting of static correlation functions, and the weight fac-
tors A j(k) are the amplitudes describing the contribution of
the corresponding modes.

FIG. 1. Dynamic structure factor of liquid lithium at the temperature T
5475 K. The solid lines are the results of the theoretic model ~15!, whereas
the open circles are the IXS data.5 The theoretical lineshapes have been
modified to account for the quantum mechanical detailed balance condition
and broadened for the finite experimental resolution effects as described in
the text. The wave numbers k are given in a reduced form, where km is the
main peak position in the static structure factor S(k).
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So, it is obvious that the theory underlying Eq. ~15! pre-
scribes such behavior of the second-order memory function
M 2(k ,t), which may be represented in the form of Eq. ~23!
and can be reduced to the above-mentioned models. Eq. ~23!
is in fact an expansion of M 2(k ,t) into decay channels em-
bedded in this function.

III. SCALE UNIFORMITY OF DYNAMICS PROCESSES
IN LIQUID ALKALI METALS

The determination of the scale uniformity of structural
and dynamical features for different groups of liquids is very
important for the physics of liquid state. On the one hand, it
allows one to apply the unified theoretical description to the
whole group. On the other hand, it allows one to remove the
difficulties related to obtaining the experimental data. The
fact is that until recently the microscopic dynamics of liquids
could be experimentally probed by INS only. However, there
were often different problems related to, first, separation of
collective and one-particle contributions, and, second, gross
experimental errors ~and even with impossibility to obtain
data! for different (k ,v) regions. Recent progress in the
technique of IXS has allowed one to clear some of the
obstacles.3 Ten years ago the possibility of the unified de-
scription of the structural and dynamical properties of differ-
ent liquid alkali metals near the melting point was found by
the comprehensive molecular dynamics simulation study,13
where the adopted potential model of Price, Singwi, and Tosi
was used, and the scale passage was executed on the basis
of the potential parameters. The recent sketchy attempt of
testing this outcome experimentally has shown its
inconsistency.14

In present work we also execute the comparison of the
dynamic structure factor spectra of liquid lithium and so-
dium. As known from the experimental results, the dynamic
structure factor S(k ,v) depends strongly on the temperature
T and the wave number k. So, one can define the reduced
forms of these terms as T/Tm and k/km , where Tm is the
melting temperature and km is the main peak position in the
static structure factor S(k) for the corresponding system. The
scale time interval t* can be expressed as t*
5k21Am/KBT . Thus defined time unit t* is different from
the one introduced in Ref. 14, because the present term var-
ies with the change of space and temperature characteristics.
However we do not exclude the possibility that this scale
unit may be independent of the temperature and the wave
number for other systems ~for instance, semiconductors, or
H-bonded liquids!.

In Fig. 2 we report the comparison of S(k ,v) spectra for
liquid lithium and sodium5,14 at approximately the same re-
duced temperatures T/Tm and wave numbers k/km . Namely,
T/Tm51.049 for liquid lithium and 1.051 in case of sodium.
From this figure one can see that dynamic structure factor
practically coincides in the first two higher cases. From the
lower plot of Fig. 2 one can see that the position of inelastic
and central peaks for both systems is the same. However,
though the overall coincidence of spectra is observed at in-
termediate frequencies only, the peak altitudes are a little
different. Such deviation can easily be explained by the fact
that the plot for liquid lithium is presented for a higher value

of the reduced wave number, 0.75, whereas in case of so-
dium, k/km50.73. As known, these wave numbers corre-
spond to the so called de Gennes narrowing region charac-
terized by a strong k dependence. In other words, a higher
section at k of flat S(k ,v)/t* is presented for lithium than
for sodium. It is necessary to take into account that the val-
ues of the reduced temperatures for both systems are also
slightly different.

Notice that the time unit t* depends on the system fea-
tures m, on the probed spatial region k and the temperature
regime T in contrast to scale units km and Tm , which remain
unchanged and the spatial region and the temperature of the
system are revised.

At result, the experimental or theoretical S(k ,v) for any
single metal allows one to easily restore this term for the
whole group of alkali metals at the same reduced conditions,
k/km and T/Tm . Moreover, the theory developed for the con-
crete separate alkali metal may be simply extended to the
whole group.

As an example, in Fig. 3 we report the dynamic structure
factor of liquid potassium SK(k ,v) obtained on the basis IXS
data for liquid sodium SNa(k ,v). The transition SNa(k ,v)
→SK(k ,v) has been executed by means of the following
scale reductions:

SK~k ,v !5SNa~k ,v !
kNa

kK
AmKTNa

mNaTK, ~27a!

vK5vNa k
K

kNaAmNaTK

mKTNa, ~27b!

FIG. 2. IXS spectra of liquid lithium at T5475 K ~hhh! and liquid so-
dium at T5390 K ~sss! ~Refs. 5 and 14! in the reduced units. The scale
frequency v* is chosen as the term inverse proportional to t*.
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TK5
Tm

KTNa

Tm
Na , kK5

km
KkNa

km
Na . ~27c!

By the top subscript we note the corresponding system ~K or
Na!.

IV. CONCLUDING REMARKS

The following results are presented in this work.
~i! The theory, developed on the basis of Bogoliubov

ideas about the hierarchy of relaxation times, allows one to
obtain dynamic structure factor, reproducing adequately ex-
perimental IXS spectra for liquid alkali metals ~in particular,
for liquid lithium and sodium! in the region of low values of
wave number.

~ii! The expansion of the second-order memory function
into exponential decay channels, used ~sometimes intu-
itively! in others theories, may be easily obtained within the
framework of the presented approach. This is the evidence of
the multimode character of decay of the observed relaxation
process.

~iii! An important result of this work is the confirmation
of the proposition about the unitary description of the dy-
namical features of liquid alkali metals, and finding of cor-
responding scale transition relations.
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