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The influence of an electron-vibrational coupling on the laser control of electron transport through
a molecular wire that is attached to several electronic leads is investigated. These molecular
vibrational modes induce an effective electron-electron interaction. In the regime where the wire
electrons couple weakly to both the external leads and the vibrational modes, we derive within a
Hartree-Fock approximation a nonlinear set of quantum kinetic equations. The quantum kinetic
theory is then used to evaluate the laser driven, time-averaged electron current through the
wire-leads contacts. This formalism is applied to two archetypical situations in the presence of
electron-vibrational effects, namely, (i) the generation of a ratchet or pump current in a symmetrical
molecule by a harmonic mixing field and (ii) the laser switching of the current through the molecule.
© 2004 American Institute of Physics. [DOI: 10.1063/1.1768154]

I. INTRODUCTION

In recent years, considerable experimental progress in
the determination of the current-voltage characteristics of
molecular wires has been achieved.!™ In these experiments,
a single molecule is contacted with two nanoelectrodes such
that a transport voltage can be applied. One recent measure-
ment, for example, focused on the influence of the chemical
anchor group which couples the molecule, an oligothiophene
derivative, to the electrode.’ In another experiment, the
length dependence of the current through a DNA strand® was
investigated. Most descriptions of such transport experiments
rely on generalizations of the scattering approach put for-
ward by Landauer.”® Presently, the main theoretical focus
lies on the ab initio computation of the orbitals relevant for
the motion of excess charges through the molecular wire.”~'?

Another line of research employs rather generic models
to gain a qualitative understanding of the transport mecha-
nisms involved. An important problem addressed in this way
is the conduction mechanism in the presence of electron-
vibrational coupling.'*~>* With increasing strength of the
coupling between the wire electrons and the vibrations, the
electrons tend to localize on single wire units. Correspond-
ingly the transport mechanism changes from a purely coher-
ent transfer to a sequential hopping process. The related
transfer rates are known from the theory of nonadiabatic
electron transfer.”> Such a special regime of charge transmis-
sion can also be described within a Redfield theory after
carrying out a so-called polaron transformation.’*?¢ If
the wire has to be described by spatially extended molecu-
lar orbitals, sequential transfer proceeds by jumps from
one electrode into a wire orbital, possibly followed by
an intrawire relaxation, and then by a jump from a wire
orbital into the other electrode. In contrast, the so-called su-
perexchange mechanism enables a direct transfer from one
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electrode to the other. The crossover from superexchange
to a sequential transfer mechanism has been studied in Refs.
18, 21, 23, 24, 27, and 28. In that context, a treatment of
inelastic scattering processes profits from an unified theory
of the electron transfer through molecular donor-acceptor
complexes.”’

Molecular wires illuminated by laser fields have been
proposed for the investigation of ac transport effects such as
coherent quantum ratchets,***! optical control of current and
noise,*>* and resonant current amplification.>***> The appro-
priate treatment of these ac phenomena is based on Floquet
theory, which allows to take into account the action of the
time-dependent field exactly. A Floquet scattering approach
for the fully coherent transport regime has been developed,*
but it cannot be generalized straightforwardly to the case
with additional electron-vibrational coupling. Better suited
for this situation is a quantum kinetic equation formalism
which, however, is perturbative in both the wire-lead cou-
pling and the electron-vibrational coupling.

In the absence of an external transport voltage, a driving
field can induce a so-called pump or ratchet current.**~>° The
same happens even in perfectly symmetric conductors if one
adds a higher harmonic to the driving field. The investigation
of the corresponding effect for the motion of a particle in a
tight-binding lattice revealed that the resulting current de-
pends sensitively on the relative phase between the two com-
ponents of the driving. For this system, two limits have been
studied: the fully coherent dynamics and the overdamped
Brownian motion. The dependence of the current on the rela-
tive phase is in each case qualitatively different.***' The
present model has the advantage that it enables the study of
such effects also in the crossover regime between the purely
coherent and the purely incoherent transport.

A further intriguing phenomenon in driven transport is

© 2004 American Institute of Physics
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the suppression of the dc current caused by properly tailored
ac fields.* This effect is the transport counterpart of the so-
called coherent destruction of tunneling (CDT) found in
bistable potentials without any connection to external
leads.**~** When coupling the bistable system to a heat bath,
tunneling becomes a transient, see Ref. 45 for a review. The
same is true for coherent destruction of tunneling: ultimately,
the driving-induced localization decays via dissipative
transitions.* Here, we address the role of dissipation for the
corresponding transport effect.

The paper is organized as follows: In Sec. II, we intro-
duce a model for the laser driven molecule coupled to several
leads and vibrational degrees of freedom. Subsequently, in
Sec. III, we derive a kinetic equation approach in the Floquet
basis. An expression for the resulting current through the
molecule is derived in Sec. IV. Finally, in Sec. V, the formal-
ism is applied to study the influence of the vibrational cou-
pling on nonadiabatic pumping and coherent current suppres-
sion.

Il. THE MODEL

In the following, we consider a molecular wire which is
attached to a number of electrodes and which is driven by an
externally applied ac field. We neglect hole transport and
start with the Hamiltonian

Hy(R)=E¢+H.,, (1)

of the neutral wire, i.e., in the absence of excess electrons
injected via the electrodes. Here, R denotes the set of all
involved vibrational coordinates with equilibrium configura-
tion Ry and Ey=Hy(R,) is the electronic ground-state en-
ergy of the neutral wire (set equal to zero in the following).
In a representation by normal modes with mode index &, we
find the vibrational Hamiltonian

with the usual harmonic oscillator operators bg and b;. The
normal modes may be delocalized over the whole wire or
may be localized on specific wire units. We assume that they
always remain in thermal equilibrium and are, thus, charac-
terized by the Bose distribution ng(fiw,).

We describe the presence of an excess electron on the
wire in the representation of N localized wire orbitals |n),
n=1,...,N, and the corresponding Hamiltonian H,,/(R,?).
In the absence of the external driving, the eigenstates of H,,,s
are the lowest unoccupied molecular orbitals. To account for
electron-vibrational coupling this quantity is expanded with
respect to deviations from the vibrational equilibrium con-
figuration R. To lowest order this results in

H,my(R,t)ZH,m/(t)+E§ Ky f(bgtb)). (3)

The matrix H,,(t)=H,, (R,,t) taken at the vibrational
equilibrium configuration R, includes the interaction with
the external field. The 7-periodic time-dependence H,,,/(t)
=H,,(t+7) models the action of the external field on the
excess electrons when moving through the wire. We have in
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mind a dipole-type coupling between electron and field, i.e.,
a contribution eE(#)x, J, ,  to the Hamiltonian H,, (1),
where E(?) is the electric field strength, x, the position of
site n, and — e the electron charge. The considered action of
an external field may in principle also induce a heating of the
electron gas in the metallic leads as well as a thermal expan-
sion of the leads. Of course, this can be of importance for
any experimental realization of the studied mechanism. Nev-
ertheless, the present approach will not attempt to account
for such effects.

We assume that the whole set of vibrational coordinates
discerns into subsets, labeled by an index v. Therefore, we
write the electron-vibrational coupling in Eq. (3) as

Ef Knn',g(bg"‘bg):; Xnn’vgv va(bg—i_bg)a (4)

where the notation £ e v indicates that the summation runs
only over the modes in the corresponding subset. The related
spectral densities read

D)=~ M, 28(0—w,). 5)
h tev

For notational convenience, we define the spectral density
for w<0 by D, (—w)=—D (). In our numerical calcula-
tions, we restrict ourselves to a situation where each orbital
|n) couples to exactly one of these subsets, i.c.,

Xnn’V: 5n11’5nv’ (6)

and assume identical Ohmic spectral densities D, (w)
= ki w, where the dimensionless coupling strength « is iden-
tical for all sites. This model has been employed recently for
the description of dephasing and relaxation in (time-
independent) bridged molecular wires.'®*’

In order to take the exclusion principle properly into
account, we employ a many-electron description based on a
second quantized notation. Neglecting the Coulomb interac-
tion among the electrons, the wire electrons are described by
the Hamiltonian

Hwire(t):E, Hnn’(t)cicn“ (7)
n,n

The operators ¢, and ci annihilate and create, respectively,
an electron in the orbital [n), n=1,...,N. We presume van-
ishing overlap among different orbitals such that the annihi-
lation and creation operators obey the standard anticommu-
tation relations [Cn,CZ/]+=5nn'- The electron-vibrational
coupling Hamiltonian assumes the form

Heyo=2, XgE M ,f(be+b}). ®)

Next, we consider the coupling of the wire to L different
macroscopic electronic leads described by the Hamiltonian

Hleads:; €KeChCre - ©)

The electrons in each lead € are labeled by wave vectors k
referring to bulk or surface states with energy €,,. All lead
states are mutually orthogonal (and also orthogonal to the
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wire states) and, therefore, the creation and annihilation op-
erators ¢y, and cfd , respectively, obey the standard anticom-
mutation relations. We assume that the lead electrons stay in
thermal equilibrium and are, thus, described by the Fermi
distributions f( €y, — p¢) With a common temperature 7" but
possibly different electrochemical potentials i .

The coupling of each lead to exactly one of the suitably
labeled molecular orbitals is described by the Hamiltonian

Hwire—leads:kE; Vk€clT((C€+H~C~ (10)

with V), being the tunneling matrix elements. As it will turn
out, the coupling to the leads is completely characterized by
its spectral density

2
=53 [Val*ole= e, (1)

which becomes a continuous function of the energy e if the
lead states are dense. Since we are mainly interested in the
behavior of the molecular wire itself and not in the details of
the lead-wire coupling,*® we will assume for all numerical
calculations that the conduction bandwidth of the leads is
much larger than all remaining relevant energy scales. In this
so-called wide-band limit, the spectral densities are con-
stants, I"p(€)=T.

The dynamics of the present model is now fully speci-
fied by the Hamiltonian

H( t) = Hwire( t) + Hvib + Hleads + Hel—vib + Hwire—leads . ( 12)

In the following, we start from the uncoupled subsystems
H io(t) + H o+ Hieaqs and treat the influence of both the
wire-lead coupling and the electron-vibrational coupling,
subsumed in the Hamiltonian

Hcoupl = Hel—vib + Hwire—leads > (1 3)

within a master equation approach in second-order perturba-
tion theory.

lll. QUANTUM KINETIC EQUATION APPROACH

In this section, which contains the main theoretical body
of the present work, we first introduce a master equation
which describes the dynamics of the wire electrons in the
presence of a weak or intermediately strong coupling to both
the vibrational environment and the electronic states in the
leads. For the further evaluation of this master equation, we
introduce in Sec. IIIB the so-called Floquet states, which
yield an exact solution of the dynamics of the isolated wire
electrons. An evaluation of the contributions of the wire-lead
(Sec. I C) and electron-vibrational (Sec. III D) coupling in
the basis of this Floquet states finally results in a quantum
kinetic equation describing the dynamics of the single wire-
electron density matrix, which is later, in Sec. IV, required
for the calculation of the current through the molecular wire.

A. Quantum master equation

The derivation of a closed equation for the reduced den-
sity operator Q;.(#) of the wire electrons, which follows
from the total density operator by tracing out those degrees

Lehmann et al.

of freedom which correspond to vibrations and lead elec-
trons, to second order in H,, represents a standard proce-
dure of dissipative quantum dynamics (for a review, see, e.g.,
Ref. 25). We neglect initial correlations between the wire
electrons and the environmental degrees of freedom, which
stay in thermal equilibrium, and do not account for non-
Markovian dissipative effects. The resulting quantum master
equation thus reads

Qwire(t): - %[Hwire(t):gwire(t)]

1 (= ~
- ﬁ fo dTTrenv{Hcoupl3[Hcoupl(t_ 7.1),

Qwire(t) ® Qenv,eq]}' (14)

The trace refers to all environmental states, i.e., the elec-
tronic states of the leads as well as the wire vibrations, and
the operator ﬁcoupl(t,t’)= U(T)(t,t’)Hcoupon(t,t’) describes
the coupling Hamiltonian (13) in the interaction representa-
tion. The related zeroth-order time evolution operator

i t
UO(tst,) = Texp( - % ft,dt”[HWire(t")+Hvib+Hleads])
(15)

is responsible for the dynamics of the uncoupled subsystems.
In this way the external driving field not only determines the
coherent dynamics of the wire electrons but also the dissipa-
tive part of the master equation (14).4743

Note that Eq. (14) still determines the dynamics of the
full many-particle density matrix of the wire electrons. Later
on, we will derive an equation of motion for the single wire-
electron density matrix defined as

Pnn’(t):Trel[gwire(t)czfcn]y (16)

where the trace runs over the many-particle states of the wire
electrons. It will be demonstrated below that in the presence
of an electron-vibrational coupling, a closed equation for
P,,(t) can only be obtained when an approximation is car-
ried out for the two-electron density matrices by employing a
decoupling scheme. We will detail this point when introduc-
ing the Hartree-Fock approximation in Sec. III D. However,
before doing so, we will briefly review the Floquet method
for the treatment of the explicit time dependence appearing
in the propagator (15).

B. Introduction of Floquet states

For the evaluation of Eq. (14) it is essential to use an
exact expression for the zeroth-order time evolution operator
Uy(t,t"). The use of any approximation bears the danger of
generating artifacts, which, for instance, may lead to a vio-
lation of fundamental equilibrium properties.”>* In the
present case, the only nontrivial contribution to the propaga-
tor (15) stems from the periodically time-dependent wire
Hamiltonian H,,,.(t)=H,, (t+7). A proper tool for the ef-
ficient computation of the corresponding propagator is Flo-
quet theory,**-~32 which is based on the fact that there exists
a complete set of solutions of the form

10:92:v1 ¥20¢ Joquialdes Gz
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(W o(0)) ="M@ (1), @ o(1))=|Pu(1+T))

(17)
with the so-called quasienergies €, and corresponding Flo-
quet modes |® ,(¢)). The Floquet modes fulfill the quasien-
ergy equation

d
2 Y H (00 [=if [ @ (1)) = €] (1)),
| (18)

The practical usefulness of the Floquet ansatz (17) is rooted
in the fact that the Floquet modes are periodic functions of
time ¢ and can therefore be decomposed in a Fourier series

|<I>a<r>>=§ e YD, b,

. (19)
[Poi)=7 JO die"™|® (1)),

This representation makes explicit that each quasienergy €,
is equivalent to the quasienergies

€q k=€, T kR, (20)

where k is an arbitrary integer. Thus, we can restrict our-
selves to states with eigenvalues in one Brillouin zone, E
—hQR2<e,<E+hQ/2.

It is now convenient to define a “Floquet picture” via
the time-dependent transformation of the fermionic creation
and annihilation operators

ca(t)=§ (D ()|n)c,. (21)

The inverse transformation

cn=§ (n|® (1)) q(1) (22)

follows from the mutual orthogonality and the completeness
of the Floquet states at equal times.*> Note that the right-
hand side of Eq. (22) becomes ¢ independent after the sum-
mation over «. In the interaction picture, the operators c ,(7)
obey

Zo(t,t )= U1, e o1 Uy(t,8" )=~ et =t (1),
(23)

This is readily verified by differentiating expression (23)
with respect to ¢ and using the fact that |® (7)) is a solution
of the eigenvalue equation (18). The proof is completed by
noting that Eq. (23) fulfills the initial condition &,(z',¢")
=c,(t").

It is advantageous to change to the “Floquet representa-
tion” of the single-(wire)-electron density operator

PQB(I)ZE, <n|q)a(t)><q)a(t)|n,>Pnn’(t)

=Tra[ Qwirel ) f(Dc () ]=(c (e (1)), (24)

Using the relation Tr(A[B,C])=Tr([4,B]C) and the fact
that the Floquet states fulfill Eq. (18), we obtain for the dy-
namics of these expectation values the expression

Vibrational effects in laser-driven molecular wires 2281
d i
Epaﬁ(t) == g(ea_ EB)Paﬁ(t)

1 o
- P J;) dT<[[CI;(t)Ca(t),Hcoupl]a

Hcoupl(t_Tst)Dt' (25)

Obviously, the canonical transformation (21) to the basis of
the Floquet operators c,(¢) has diagonalized the coherent
part of the master equation (25) and the only task left is the
evaluation of the incoherent contribution. Here, we use the
fact that the contributions resulting from the coupling of the
wire electrons to the electronic leads and to the wire vibra-
tions can be treated separately. This is possible due to the
assumption that the lead electrons and the vibrations remain
uncorrelated at all times. Finally, we will obtain as a main
result a quantum kinetic equation of the form

. i . .
Paﬁz - %(601_ 6B)Paﬁ+PaBlwirc—lcads+Paﬂ'cl—vib . (26)

Specific expressions for the second and third term on the
right-hand side of the last equation will be derived in the
following sections.

C. Floquet representation of the wire-leads coupling

For the evaluation of the contribution of the wire-leads
coupling to the kinetic equation (26), we have to evaluate the
integral in Eq. (25) for the corresponding term in the cou-
pling Hamiltonian (13). Using the relation &,,(¢—7,f)
=exp(i€ 7/f)c,e, we obtain

L
. »dr ( de
Paﬁ|wire—leads:;1 fO 7J EF@(E)

x{e " ([ef(t)ea(1).c}).Ee] L),

X fle=pme)=([eh()ca(n).c}Ie) ]

—e'“M([c(t)ca(1).ce].0]4 ),

X fle=pme)—(Elleh(Dea(t).ce]) ]}
(27)

For notational compactness, the time arguments of the inter-
action picture operators ¢,(z— 7,t) have been suppressed.

Using the transformation (22), the commutators in Eq.
(27) are readily evaluated to read

[eh(t)ea(t),c]=— (€@ g(1))c (D), (28)
[eh(D)ea(0),clT1=( D (1) [ €)c (1), (29)

Moreover, the transformation (22) yields in conjunction with
Egs. (19), (20), and (23) the spectral decomposition of the
wire operators in the interaction picture, i.e.,

Ef(t_ Tal) = 2 e_ik()teisa’kT/h<€|q)a,k>ca(t)~ (30)
ak

With the aid of the last two equations, one may readily carry
out the time and the energy integrations in Eq. (27) to obtain

10:92:v1 ¥20¢ Joquialdes Gz
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P a Bl wire-leads

1 L
__ i(k' = k)
OB

(=1 Kk
XAT (€ P o pr [ €| P g i) (€0 pe)
+T (g )P i [€)(C]|DP g ) f(€p 4k~ tte)

_2 Ff(ea',k)<(ba,k’|€><€|q)a',k>Pa’B(t)

=2 Tileg i@ pr [ O P )P opr (1) ). (31)
,BI

Here, principal value terms stemming from an energy renor-
malization due to the coupling to the leads have been ne-
glected. The terms containing Fermi functions describe reso-
nant tunneling of electrons from the leads onto the wire,
while the reverse processes are captured by the terms propor-
tional to P ,4(¢).

D. Floquet representation of the electron
vibrational coupling

For ease of notation, we introduce the “position” and the
“force” operators

XV:E Xnn’vcz:cn' » (32)
FV=§2 M (be +b]), (33)

respectively. Then, the vibrational contribution to the dissi-
pative kernel in Eq. (25) becomes

. 1 *
Paplaa=— 52 [ arS.0m0llehen(.x,),

X, (t— 1)~ %EV J:dTA A7)

X([[eh(Dea), X, 1LX (= 7014),. (4)

The symmetrized and antisymmetrized autocorrelation func-
tions

| I
S, ()= ﬁ<[FV(T)>FV]+>Cq

©d
- f 70)D,,(w)coth(ﬁw/ZkBT)cos(wT), (35)
0

1 - *dw
)= 5 R D)= [ 2D w)sin(),
(36)

of the “force” operators fully characterize the fluctuation
properties of the wire vibrations. Note that coth(x)=1/x
+ O(x) such that for an Ohmic spectral density no infrared
divergence occurs in the integral (35).

Lehmann et al.

For the further evaluation of Eq. (34), we express the
operator X, and its interaction picture version X,(¢— 7,7) in
terms of the Floquet picture operators c,(¢) at time ¢, ob-
taining

X,,z% Ek‘, S NI O} (37)

5% — ikQt ,i(€g—€,—khQ)1/h Y1
X,,(t—r,t)—;B ; Mgl ca= Mt YT

Xel(ept). (38)

The time-averaged coupling matrix elements in the Floquet
basis have been abbreviated as

_Zﬁ,kzz E <q)a,k+k’|n>Xnn’V<n,|(I)B,k'>- (39)

!
nn' k

When evaluating Eq. (34), it turns out that in addition
to terms containing the single-electron density matrix
P,p(t), two-electron expectation values of the form

(cg(t)cz,(t)c p(1)c (1)), appear. By iteration, one thus gen-
erates a hierarchy of equations up to N-electron expectation
values. To obtain a description in terms of only the single-
electron expectation values, we employ the Hartree-Fock de-
coupling scheme defined by the approximation

<c'l;(r)c';(r>cﬁ<r>ca<z>>t~Pa5<r>PM<z)—P,M(r)Pay(r).( )
40

Clearly, such a mean-field approximation only covers certain
aspects of the full many-particle problem. Nevertheless, it
offers a description which is consistent with the second law
of thermodynamics, as we will detail in Sec. III F. We remark
that in principle one could also include electron-electron in-
teraction in the framework of the mean-field approximation
(40), similar to the approach put forward in Refs. 53, 54.
However, focusing on the vibration-mediated interaction ef-
fects, we here refrain from doing so.

For the description of the transport problem, a scattering
approach, i.e., a strict one-particle picture, is frequently
employed.'®18:23275556 Then  nonlinear terms of the type
(40) do not appear. The same happens if one considers a
closed system with a single electron; then, the corresponding
equation is also of the form (26) but without the terms qua-
dratic in P ,p().*""

Upon insertion of the Hartree-Fock approximation (40)
into Eq. (34) and disregarding again the principal value in-
tegrals, which correspond to an energy renormalization due
to the electron-vibrational coupling, we obtain after a
straightforward calculation

10:92:v1 ¥20¢ Joquialdes Gz
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. 1
Poglaniv=5 ZE,[FMB () HT g o (D)= 2(r*”ﬁ,w (D+T grararal ) Parg— E(Fawgm

+F,B"a'ﬁ,3’(t))Paﬁ”

X Py g— 22

aHBH

Here, we have introduced the time-dependent, complex-
valued coefficients

lk' k)Q
T oparpr(t) 2§V) g R G
XN, (€,—€gtk'hQ)), (42)

where the functions N ,(€) are defined for each vibrational
subsystem v by N,(e€)=D ,(€e/h)ng(€)/h. For an Ohmic
spectral density, D ,(e/fh)xe, N,(€) is well defined in the
limit e—0.

Interestingly, the rates (41) resulting from the vibrational
coupling render the kinetic equation (26) nonlinear. The
physics behind the nonlinear terms is an effective electron-
electron coupling mediated by the phonons. This can be il-
lustrated by one electron exciting a phonon while another
electron causes the relaxation. In Eq. (41), the transitions
between diagonal elements P, of the single particle density
matrix represent collision terms of the quantum Boltzmann
equation (45) derived below. However, the transitions be-
tween the off-diagonal elements do not have such an intui-
tive interpretation.

E. Rotating-wave approximation

For a very weak coupling of the wire electrons to the
environmental degrees of freedom, the coherent time evolu-
tion dominates the dynamics (26) of the density matrix
P ,p5(t). More precisely, the largest time scale of the coherent
evolution, which is given by the smallest quasienergy differ-
ence, and the dissipative time scale, which is of the order of
the coupling rates I'¢(€), are well separated, i.e.,

Al (€)<|e,— gt khQ|, k<1 (43)
for all €, k, €, and a# B. Note that this condition is only
satisfiable if the quasienergy spectrum has no degeneracies.
Then, it is possible to replace the 7-periodic coefficients in
Eq. (26) by their time averages. Furthermore, we may as-
sume that in the long-time limit, the solution becomes diag-
onal and time independent, i.e., we make the ansatz

P op(t)=const= 6,4/ - (44)

With these approximations, the quantum kinetic equation
(26) assumes the form

1
Pa,ﬁ,—zz LE T prar gralt) — ZB (T2 et (DT grar anal £) Pangy

E T ang(D= 2 (T o (V4T gragpr (1) P g

Pug - (41)

Ozfa: _Wfadsfa_l—slcads_‘_ 2 WSZ’(l _fa)fa’
a

=2 W1 far)f - (45)

Here, the population of the Floquet states « due to the wire-
lead coupling is determined by the decay rates

L
ng:,ads:€§=:1 zk: |<€|(I)a,k>|2rf(6“’k) (46)

and the source terms

L
Sljadszgl ; |<€|(I)a,k>|2F{7(6a,k)f(6a,k_#’(f)' (47)

In addition, the electron-vibrational interaction contributes a
quantum Boltzmann type collision term to Eq. (45), which
takes into account the Pauli principle by the blocking factors
1 —f, . The corresponding scattering rates from one state «'
into another state « are given by

W =23 X PN (€€ TKRQ).  (48)
v k ’

F. Thermal equilibrium

An important consistency check of the present theory is
a thermal equilibrium situation, where H,,,, is time indepen-
dent and where no external bias is present (u,=u for all
€).>° In order to obtain the static limit of the kinetic equation
(26), we have to replace the Floquet states |® ,(¢)) and the
quasienergies €, by the eigenstates |¢,) and the eigenener-
gies E,. One can show that the diagonal ansatz (44) leads to
an exact stationary solution of the kinetic equation. The
populations f,, obey also the kinetic equation (45), but with
the Floquet states and quasienergies replaced by the (adia-
batic wire) eigenstates |¢,) and the eigenenergies E,, re
spectively, of the static Hamiltonian H,,. Moreover, only
k=0 contributes to the rates (46)—(48).

Thermal equilibrium with respect to the coupling to the
vibrational subsystems is characterized by the detailed bal-
ance condition

W (L= f ) far =W (L= f) (49)

where the rates WZI;, satisfy
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vib

w
aa' _ (E, —E)lkgT (50)
vib — © .

’

a

A solution of Egs. (49) and (50) is given by the Fermi dis-
tribution f,=f(E,—u'), where the chemical potential w’
remains undetermined. It is due to the additional condition
wieadsg — gleads that " adjusts to the chemical potential u of
the leads. Thus, the equilibrium solution of the kinetic equa-

tions (26) reads

fa=fE;—p), (51)

in accordance with elementary principles of the statistical
physics of noninteracting fermions.

a

G. Numerical solution of the kinetic equation

For the solution of the nonlinear kinetic equation (26)
one generally has to resort to numerical methods. We there-
fore use a propagation scheme for the computation of the
long-time limit of the solutions of the set of nonlinear equa-
tions (26), which however, is numerically rather time con-
suming and, especially in the strongly driven regime, only
applicable for not too large systems. We then verify the 7
periodicity of the resulting solution and compute its Fourier
decomposition

Pop(t)=2 e *¥Up 0. (52)
k

As we will see in the subsequent section, the Fourier coeffi-
cients

1 (7 .
Paﬁ’k:%fo dte'thPaﬁ(t) (53)

fully specify the stationary current through the wire.

IV. CURRENT THROUGH THE WIRE

The net (incoming minus outgoing) current through con-
tact € is given by the negative time derivative of the electron
number N 622k6£60k€ in lead € multiplied by the electron
charge —e,

) |
100 =e (N yi=e 7 (LH(D).N ), (54

For the Hamiltonian (12), the commutator in Eq. (54) is
readily evaluated to read

2e

(==~ Im§k‘, Vieletoe o), . (55)

For a weak wire-lead coupling, one can assume for all times
a factorization of wire and lead degrees of freedom. This
assumption allows one to derive from Eq. (55) an explicit
expression for the stationary, time-dependent net electrical
current through the contact € in terms of one-particle expec-
tation values of the wire electrons,

Lehmann et al.

Ig(t)=%Re JO ‘dff deT () M(cieu(t,i— 7)),

—[eh, & t,t— 7)1 f(e— )} (56)

Note that the anticommutator [c}f ,Ce(t,t— 7)), is in fact a
c-number, which by means of the transformation (22) and
the interaction picture dynamics (23) of the wire operators in
the Floquet picture reads

[e}.2e(t,t— T)]+=§a: e 717D (1= T)[€)(€]| D o(1)).
(57)

Similarly, the expectation value appearing in the current for-
mula (56) can be expressed in terms of the density-matrix
elements (24) as

(cleu(t,t—1)),,
=aEB e €MD y(t— ) )(C]|D W (1)) P up(t— 7). (58)

These relations, together with the spectral decompositions of
the Floquet states and of the density matrix, Egs. (19) and
(52), respectively, allow one to carry out the time and energy
integrals in expression (56). The current 7,(¢) obeys the time
periodicity of the driving field. However, because we con-
sider here excitations with frequencies in the optical or in-
frared spectral range, the only experimentally accessible
quantity is the time-averaged current. In the wide-band
limit—the  extension to the general case is
straightforward—we thus obtain

17=eFe2k {2 (CD,B,k/+k|€><€|q)a,k’>PaB,k
aK ﬁk’

_|<€|q)a,k>|2f(€a,k_1u‘€) . (59)

Charge conservation, of course, requires that the charge
on the wire Qy;.(f) can only change by a current flow,
amounting to the continuity equation Qwire(t)=E]g:11 (7).
Since the charge on the wire is bounded, the long-time aver-
age of O;.(t) must vanish. From the continuity equation
one then finds

L
> 1,=0. (60)
=

For a two-terminal configuration, € =L,R, we can then intro-
duce the time-averaged current

=1,=—Iy. 61)

To close this section we consider the thermal equilibrium
situation described in Sec. IIIF. It is characterized by w,
= (absence of any transport voltage) and |®,, ;) =0 unless
k=0 (absence of driving). Inserting the equilibrium solution
P opk=0apOiof (E,— p) into Eq. (59), we immediately see
that all currents 7/, vanish—despite any possible asymmetry
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E
a(t)

FIG. 1. Symmetric two-site structure coupled to two leads which rectifies an
externally applied laser field of the harmonic mixing form a(¢)
=4, sin(Q4)+4, sinQt+ ).

of the molecule itself or of its coupling to the environment.
Thus, the results of our microscopic theory are in accordance
with the second law of thermodynamics.

V. CONTROL OF CURRENTS IN TWO-SITE SYSTEMS

With the necessary formalism at hand, we study in this
section two aspects of driven transport for which dissipation
plays a significant role: (i) the generation of pump currents
by means of harmonic mixing fields and (ii) optical current
switching. As a rather generic model, which still captures the
essential physics, we employ a symmetric wire that consists
of two sites in the two-terminal configuration sketched in
Fig. 1. The wire sites are coupled by a hopping matrix ele-
ment A while an electromagnetic field causes time-dependent
shifts of the on-site energies. Then, the wire Hamiltonian
reads

(1)

. a
Hnd )= = Alefentchen) + ——(cler—chen), (62)

where a(t)=a(z+7) represents the dipole force on the wire
electron multiplied by the distance of the two wire sites.
Furthermore, we assume that the molecule couples equally
strong to both leads, thus, I'y =T'z=T".

In a realistic wire molecule, A is of the order 0.1 eV.
Thus, a wire-lead coupling strength I'=0.1A/% corresponds
to a current e['=2.56X10"> A and a laser frequency ()
=A/h lies in the infrared spectral range. Furthermore, for a
distance of 1 A between two neighboring sites, a driving
amplitude 4 =A is equivalent to an electrical field strength
of 107 V/em.

It turns out that for the description of the effects dis-
cussed below, the off-diagonal elements of the single-particle
density matrix P,4(t), @# 3, play an essential role. There-
fore, we have to go beyond the rotating-wave ansatz (44) and
consequently employ the propagation scheme for the full
nonlinear kinetic equation (26) described in Sec. III G.

A. Nonadiabatic pump current from harmonic mixing

The Hamiltonian (62) with a driving of the form a(¢)
ocsin({)f) has an intriguing symmetry, the so-called general-
ized parity, which has been discussed widely in the context
of driven tunneling:*** a time translation by half a driving
period results for the external field in a minus sign, i.c.,
a(t+7/2)=—a(t). Thus, for the dipole coupling given in
the Hamiltonian (62), the time shift /— ¢+ 772 is equivalent
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FIG. 2. Average current through the two-site wire from Fig. 1 driven by the
harmonic mixing signal (63) with amplitudes 4,=24,=A as a function of
the wire-lead coupling strength I' (for k=0) for different values of the
phase difference ¢. The driving frequency is )=A/#%, and the temperature
is kgT=0.25A. The dotted line is proportional to I', corresponding to a
current that is proportional to I'2.

to interchanging the left and the right wire site. In addition,
the dc current / is also inverted. Consequently, because / has
to be independent of any (finite) time translation, it must
vanish.>! However, for a time-dependent driving field of the
form

a(t)=A,;sin(Qt)+A4,sin(2Q:+ @), (63)

with 4,,4,#0, the generalized parity is no longer present
and a nonadiabatic pump current emerges from the harmonic
mixing of the two driving frequencies.’! Its magnitude is
generally proportional to the coupling strength between wire
and lead, /«I", with a prefactor that depends on the details
such as the phase lag ¢ or the amplitudes 4,,4,. The phase
lag ¢ =0 represents a particular case because for this value
the wire Hamiltonian obeys time-reversal parity, i.e., it is
invariant under the operation (L,R,#)—(R,L,—¢). As a con-
sequence, one finds that the dc current vanishes to linear
order in T such that 7ocI'2.3! Figure 2 demonstrates this be-
havior and, moreover, reveals that already small phase lags
of the order ¢~0.001 are sufficient to alter the qualitative I"
dependence of the dc current.

Harmonic mixing has also been studied recently for the
motion of a quantum particle in an infinitely extended tight-
binding lattice, both in the purely coherent regime*"®* and
for incoherent, sequential quantum between adjacent
sites.*>*! It turns out that the dependence of the current on
the phase lag ¢ is qualitatively different in these two limiting
cases. This raises the question how the phase dependence of
the current changes as a function of the dissipation strength.

Generally, quantum dissipation results from a coupling
of the quantum system to an environment—here, the metallic
leads and the vibrational modes. Figure 3(a) depicts the in-
fluence of only the wire-lead coupling: For a very weak cou-
pling strength I'=0.001A/% and k=0 we find a dc current
proportional to sin ¢. With increasing I', the dependence on
o shifts towards cos ¢. In order to investigate the influence of
the vibrational coupling, we choose again I'=0.001A/# and
a finite but small vibrational coupling strength . The ¢ de-
pendence of the pump current is given in Fig. 3(b); it exhib-
its the same dissipation-induced shift.
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FIG. 3. Average current through the two-site wire sketched in Fig. 1 driven
by the harmonic mixing signal (63) as a function of the phase difference ¢
(a) for different wire-lead coupling strengths I' (for k=0) and (b) for dif-
ferent electron-vibrational coupling « (for I'=0.001A/#). All other param-
eters are as in Fig. 2.

Interestingly enough, the electron-vibrational coupling
can enhance the pumping effect. This enhancement is most
pronounced in the presence of the time-reversal parity dis-
cussed above, i.e., for ¢ =0. Figure 4 shows the pump cur-
rent as a function of the vibrational coupling strength . We
find that the dc current can be increased by more than one
order of magnitude. For values k<AI'/A, the main dissipa-
tion comes from the leads and the vibrations are practically
without influence. Correspondingly, one is back to a the situ-
ation of Fig. 2, where the pump current is proportional to I'2.

B. Laser-switched current gate

An external driving field cannot only induce a pump
current through the molecular wire, but for proper param-
eters can also cause the opposite effect: A driving of the
shape a(t) = A4 sin()¢) can suppress almost completely the dc
current even in the presence of a large transport voltage V.

9 L — I'=0005A/h

Lo '=0.01A/k i
“E Eo... ' =0.05A/h é
S 05 F —-T=01A/h j

1y

0.1

10~4 1073 1072 107!
K

FIG. 4. Average current (in units of eI'?) through the two-site wire sketched
in Fig. 1 driven by the harmonic mixing signal (63) with amplitudes 4,
=24,=A and phase difference ¢=0 as a function of the electron-
vibrational coupling strength «. Different values of the wire-lead coupling
strength I" are shown.
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r KR

ML

FIG. 5. Two-site wire driving by a harmonic driving field a(¢)
=4 sin({)), which is attached to two leads with the chemical potential
difference ur—up=eV.

The physics behind these suppressions is the so-called coher-
ent destruction of tunneling (CDT) that has been found in the
context of tunneling in time-dependent bistable
potentials 43436162 The central phenomenon observed
there is that for a driving with amplitude and frequency such
that the ratio 4/A() equals a zero of the Bessel function J,
(i.e., for the values 2.405.., 5.520.., 8.654.., ...), the coherent
tunneling dynamics comes to a standstill.®' As a related ef-
fect for the transport through such a tunnel system, one finds
pronounced suppressions of the dc current.’? The fact that
coherent destruction of tunneling is disrupted by finite
dissipation,*37-38:63-65 motivates our investigation of the in-
fluence of dissipation on these current suppressions.

We model the transport voltage V' by shifting the chemi-
cal potential of the left (right) lead, w; (ug), by —eV/2
(+eV/2), cf. Fig. 5. Due to the external voltage, the electric
field can in principle also cause a static bias to the wire
levels. We do not take this effect into account in the present
work, but remark only that in the absence of a vibrational
coupling, the current suppressions are stable against an inter-
nal bias.’!

Before focussing on the influence of electron-vibrational
coupling, let us first substantiate the discussion of the current
suppressions by the numerical results depicted in Fig. 6. The
time-averaged current / as a function of the laser amplitude
A exhibits, besides a global decay, pronounced minima
whenever the CDT condition is fulfilled, i.e., when the ratio

Ilel

0 20 40 60 80 100

FIG. 6. Average current (solid) vs driving amplitude for the setup sketched
in Fig. 5. The leads’ chemical potentials are ugr=— u;=10A; the other
parameters read £Q=10A, kgT=0.25A, A'=0.1A. The dashed line
marks the result obtained within a rotating-wave approximation. The inset
depicts the minimal current 7, at the first suppression as a function of the
wire-lead coupling strength I'.
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FIG. 7. Average current vs driving amplitude for the setup sketched in Fig.
5 in the presence of dissipation of the form (6). The inset depicts the mini-

mal current ITmn at the first suppression as a function of the electron-phonon
coupling strength « for I'=0.001A/% (solid line), 0.01A/% (dashed), and
0.1A/% (dotted). All other parameters are as in Fig. 6.

A/R Q) assumes a zero of the Bessel function J,. However,
the current does not vanish exactly, but a residual current
remains; its value is proportional to the molecule-lead cou-
pling I', as can be appreciated from the inset of Fig. 6. Since
the current in the undriven situation is also proportional to I',
we thus can conclude that the maximal suppression is deter-
mined by a factor which is independent of T'.

The inspection of the quasienergy spectrum reveals that
CDT is related to crossings of the quasienergies.®' Thus, at
the center of the current suppressions, the quasienergies are
degenerate and the condition (43) for the applicability of the
rotating-wave approximation is not fulfilled. Indeed, the
dashed line in Fig. 6 demonstrates that a rotating-wave ap-
proximation fails completely in the vicinity of current sup-
pressions.

A central question to be addressed is the robustness of
the current suppressions against dissipation. In the corre-
sponding tunneling problem, the CDT driving alters both the
coherent and the dissipative time scale by the same factor.’®
Thus, one might speculate that a vibrational coupling leaves
the effect of the driving on the current qualitatively un-
changed. Figure 7, however, demonstrates that this is not the
case. With increasing dissipation strength «, the characteris-
tic current suppressions become washed out until they finally
disappear when k becomes of the order unity. This detracting
influence underlines the importance of quantum coherence
for the observation of those current suppressions. Note that
the dissipation affects only the depth of the suppressions
while the width remains unchanged. We close this section
with the remark that within the present setup of two driven
tunnel-coupled orbitals (cf. Fig. 5) and within our chosen
parameter range, we do not detect the analog of the effect of
a stabilization of CDT within a certain temperature
range’ %70 or, likewise, with increasing external noise,”' as
it has been reported for driven, dissipative symmetric
bistable systems.

VI. CONCLUSIONS

We have derived a nonlinear quantum kinetic equation
that allows one to investigate for a molecule the simulta-
neous influence of a laser field, a coupling to leads, and in
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addition, a coupling to vibrational modes. The use of Floquet
states as a basis set for the reduced single-particle density
matrix represents a most important technical cornerstone. It
enables both the exact inclusion of the driving field and an
efficient treatment of the dissipative couplings. Since the vi-
brational modes provide an effective electron-electron inter-
action, a formalism for general situations requires one to
resort to further approximations such as a Hartree-Fock de-
coupling scheme.

Within this kinetic equation formalism, we have investi-
gated the influence of quantum dissipation on recently pro-
posed transport effects caused by the action of laser fields on
molecular wires. For the nonadiabatic electron pumping that
emerges from harmonic mixing, we find that dissipation can
play a constructive role to the extent that it can significantly
enhance the current.

For the model under investigation, we observed an en-
hancement of the pump current by more than one order of
magnitude. Moreover, the present scheme allows one to trace
back the dependence of the pump current on the phase lag
between the two harmonic mixing fields to the increasing
influence of dissipation. The situation is less promising for
effects that depend intrinsically on quantum coherence. We
have found that the coherent current suppressions are dero-
gated by the coupling to vibrational modes. Nevertheless, the
effect persists provided that the quantum dynamics of the
wire electrons remains predominantly coherent. Finally, we
share the hope that our general theoretical findings will pro-
vide motivation and prove useful to experimentalists to ini-
tiate corresponding, tailored experiments on driven molecu-
lar wires in the not too distant future.

ACKNOWLEDGMENTS

This work has been supported by the Volkswagen-
Stiftung under Grant No. 1/77 217 and the Deutsche Fors-
chungsgemeinschaft through SFB 486, Project No. A10.

!'See Special Issue on Process in Molecular Wires [Chem. Phys. 281, 111
(2002)].

2 A. Nitzan and M. A. Ratner, Science 300, 1384 (2003).

3T. Seideman, J. Phys. C 15, R521 (2003).

4J. R. Heath and M. A. Ratner, Phys. Today 56(11), 43 (2003).

SL. Patrone ef al., Phys. Rev. Lett. 91, 096802 (2003).

T. Shigematsu ef al., J. Chem. Phys. 118, 4245 (2003).

"R. Landauer, IBM J. Res. Dev. 1, 223 (1957).

8S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge Univer-
sity Press, Cambridge, 1995).

M. Di Ventra, S. T. Pantelides, and N. D. Lang, Phys. Rev. Lett. 84, 979
(2000).

1OM. Di Ventra and N. D. Lang, Phys. Rev. B 65, 045402 (2002).

Y. Xue, S. Datta, and M. A. Ratner, Chem. Phys. 281, 151 (2002).

2P, Damle, A. W. Ghosh, and S. Datta, Chem. Phys. 281, 171 (2002).

13]. Heurich, J. C. Cuevas, W. Wenzel, and G. Schon, Phys. Rev. Lett. 88,
256803 (2002).

M. Olson ef al., J. Chem. Phys. 102, 941 (1998).

57, G. Yu, D. L. Smith, A. Saxena, and A. R. Bishop, Phys. Rev. B 59,
16001 (1999).

1E. G. Emberly and G. Kirczenow, Phys. Rev. B 61, 5740 (2000).

7M. K. Okuyama and F. G. Shi, Phys. Rev. B 61, 8224 (2000).

8D, Segal et al., J. Phys. Chem. 104, 3817 (2000).

H. Ness, S. A. Shevlin, and A. J. Fisher, Phys. Rev. B 63, 125422 (2001).

20D, Boese and H. Schoeller, Europhys. Lett. 54, 668 (2001).

2'E. G. Petrov and P. Hanggi, Phys. Rev. Lett. 86, 2862 (2001).

22E. G. Petrov, V. May, and P. Hanggi, Chem. Phys. 281, 211 (2002).

10:92:v1 ¥20¢ Joquialdes Gz



2288 J. Chem. Phys., Vol. 121, No. 5, 1 August 2004

V. May, Phys. Rev. B 66, 245411 (2002).

24E. G. Petrov, V. May, and P. Hanggi, Chem. Phys. 296, 251 (2004).

V. May and O. Kuhn, Charge and Energy Transfer Dynamics in Molecu-
lar Systems, 2nd ed. (Wiley, Weinheim, 2003).

2°D. Segal and A. Nitzan, Chem. Phys. 281, 235 (2002).

27D. Segal and A. Nitzan, Chem. Phys. 268, 315 (2001).

BE. G. Petrov, L. S. Tolokh, A. A. Demidenko, and V. V. Gorbach, Chem.
Phys. 193, 237 (1995).

2E. G. Petrov and V. May, J. Phys. Chem. A 105, 10176 (2001).

307, Lehmann, S. Kohler, P. Hanggi, and A. Nitzan, Phys. Rev. Lett. 88,
228305 (2002).

317, Lehmann, S. Kohler, P. Hanggi, and A. Nitzan, J. Chem. Phys. 118,
3283 (2003).

32]. Lehmann, S. Camalet, S. Kohler, and P. Hanggi, Chem. Phys. Lett. 368,
282 (2003).

38, Camalet, J. Lehmann, S. Kohler, and P. Hanggi, Phys. Rev. Lett. 90,
210602 (2003).

3A. Keller, O. Atabek, M. Ratner, and V. Mujica, J. Phys. B 35, 4981
(2002).

333, Kohler, J. Lehmann, S. Camalet, and P. Hanggi, Isr. J. Chem. 42, 135
(2002).

%M. Switkes, C. M. Marcus, K. Campman, and A. C. Gossard, Science 283,
1905 (1999).

37P. Reimann, Phys. Rep. 361, 57 (2002).

3P, Reimann and P. Hanggi, Appl. Phys. A: Mater. Sci. Process. 75, 169
(2002).

3R. D. Astumian and P. Hanggi, Phys. Today 55(5), 33 (2002).

401, Goychuk and P. Hanggi, Europhys. Lett. 43, 503 (1998).

411, Goychuk and P. Hanggi, J. Phys. Chem. B 105, 6642 (2001).

4F. Grossmann, T. Dittrich, P. Jung, and P. Hanggi, Phys. Rev. Lett. 67, 516
(1991).

“F. GroBmann, P. Jung, T. Dittrich, and P. Hanggi, Z. Phys. B: Condens.
Matter 84, 315 (1991).

#R. Bavli and H. Metiu, Phys. Rev. Lett. 69, 1986 (1992).

4SM. Grifoni and P. Hanggi, Phys. Rep. 304, 229 (1998).

46S.N. Yaliraki and M. A. Ratner, J. Chem. Phys. 109, 5036 (1998).

Lehmann et al.

47S. Kohler, T. Dittrich, and P. Hanggi, Phys. Rev. E 55, 300 (1997).

48S. Kohler, R. Utermann, P. Hanggi, and T. Dittrich, Phys. Rev. E 58, 7219
(1998).

4T, Novotny, Europhys. Lett. 59, 648 (2002).

07 H. Shirley, Phys. Rev. 138, B979 (1965).

STH. Sambe, Phys. Rev. A 7, 2203 (1973).

2 A. G. Fainshtein, N. L. Manakov, and L. P. Rapoport, J. Phys. B 11, 2561
(1978).

53V. May, J. Mol. Electron. 6, 187 (1990).

54V, May, Phys. Lett. A 161, 118 (1991).

55]. Bonca and S. A. Trugman, Phys. Rev. Lett. 75, 2566 (1995).

S°H. Ness and A. J. Fisher, Phys. Rev. Lett. 83, 452 (1999).

STT. Dittrich, B. Oelschlagel, and P. Hanggi, Europhys. Lett. 22, 5 (1993).

8K. M. Fonseca-Romero, S. Kohler, and P. Hanggi, Chem. Phys. 296, 307
(2004).

20Of course, thermal equilibrium requires all baths to be at a common tem-
perature, as was put into our model from the very beginning.

1. Goychuk and P. Hanggi, in Stochastic Processes in Physics, Chemistry,
and Biology, Lecture Notes in Physics Vol. 557, edited by J. Freund and T.
Poschel (Springer, Berlin, 2000), pp. 7-20.

IF. GroBmann and P. Hanggi, Europhys. Lett. 18, 571 (1992).

1. A. Goychuk, E. G. Petrov, and V. May, Chem. Phys. Lett. 253, 428
(1996).

%M. Morillo and R. I. Cukier, J. Chem. Phys. 98, 4548 (1993).

%Y. Kayanuma, Phys. Rev. B 47, 9940 (1993).

%M. Grifoni, M. Sassetti, P. Hanggi, and U. Weiss, Phys. Rev. E 52, 3596
(1995).

T, Dittrich ef al., Physica A 194, 173 (1993).

7B. Oelschlagel, T. Dittrich, and P. Hanggi, Acta Phys. Pol. B 24, 845
(1993).

%M. Thorwart, M. Grifoni, and P. Hanggi, Phys. Rev. Lett. 85, 860 (2000).

%M. Thorwart, M. Grifoni, and P. Hanggi, Ann. Phys. (N.Y.) 293, 15
(2001).

"D. E. Makarov and N. Makri, Phys. Rev. E 52, R2257 (1995).

"'F. Grossmann, T. Dittrich, P. Jung, and P. Hanggi, J. Stat. Phys. 70, 229
(1993).

10:92:¥1 ¥20Z Jequisides Gz



