On the stability of the Rayleigh—Ritz method
for eigenvalues

D. Gallistl! - P. Huber? - D. Peterseim?’

Abstract This paper studies global stability properties of the Rayleigh—Ritz approx-
imation of eigenvalues of the Laplace operator. The focus lies on the ratios M/ Mg of
the kth numerical eigenvalue A; and the kth exact eigenvalue ;. In the context of
classical finite elements, the maximal ratio blows up with the polynomial degree. For
B-splines of maximum smoothness, the ratios are uniformly bounded with respect to
the degree except for a few instable numerical eigenvalues which are related to the
presence of essential boundary conditions. These phenomena are linked to the inverse
inequalities in the respective approximation spaces.
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1 Introduction

The accuracy of the Rayleigh—Ritz method for symmetric eigenvalue problems natu-
rally depends on the approximation properties of the underlying ansatz space. In the
case of finite elements, explicit convergence rates are known since [1,2, 12]. However,
because of smallness conditions on the finite element mesh, these results are restricted
to the lower part of the discrete spectrum (cf. Fig. 1) and numerical experiments have
shown that the remaining discrete eigenvalues are inaccurate, especially for high poly-
nomial degrees (cf. [8,15]). A possible way to reduce these errors is to replace the
finite element functions with splines of higher regularity, which is referred to as the
concept of isogeometric analysis (IGA) (cf. [4,7]).

Numerical experiments in [5] indicate that except for a small number of so-called
outlier frequencies the overall accuracy of the resulting discrete spectra is much greater
than in the case of finite element spaces; see also Fig. 2. In other words, the isogeometric
approach provides an accurate approximation of more eigenvalues compared with
classical finite elements when the comparison is based on the same number of degrees
of freedom.

This paper aims to explain these phenomena by investigating global properties of
the discrete spectrum resulting from the Rayleigh—Ritz method with either classical
finite element functions or splines of maximum smoothness. The term “global” refers
to characteristics of the eigenvalues that concern the whole discrete spectrum. We
address two questions: First, we study the stability of the method, i.e., we derive
bounds of the form

A < A < C g,

where A denotes the kth eigenvalue of the original differential operator and Ak its
discrete counterpart. We show that the constant C > 0 can be chosen uniformly in the
case of splines (except for the aforementioned outlier eigenvalues) whereas it depends
on the polynomial degree in the finite element framework.
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Fig. 1 Frequency ratios ,/)A\k /A for the one-dimensional Laplace eigenvalue problem with Dirichlet
boundary conditions computed with finite element functions of degree p on a one-dimensional grid con-
sisting of 200 elements
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Fig. 2 Frequency ratios ik /Ak for the one-dimensional Laplace eigenvalue problem with Dirichlet
boundary conditions computed with splines of maximum smoothness of degree p on a one-dimensional
grid consisting of 200 elements

The second question is concerned with the behavior of the largest eigenvalues in
the discrete spectrum. Using the sharpness of the inverse inequality, we will show that
in the case of finite element spaces the ratio of the largest discrete eigenvalue and its
corresponding exact eigenvalue A /A diverges with increasing polynomial degree. A
similar statement can be derived in the isogeometric framework. Notably, these results
show that in both frameworks the largest discrete eigenvalue diverges at a similar rate
if the comparison is based on equal numbers of degrees of freedom. The analysis is
restricted to the simple case of the Laplace eigenvalue problem on the unit cube and
uses only uniform, rectangular meshes for the definition of the discrete spaces. For the
case of hp finite elements, the arguments can be transferred to more general settings
in a straightforward way. For tensor-product splines the situation appears to be more
restrictive because the domain needs a tensor-product structure. Hence, in the case of
splines, the results essentially hold for configurations with the unit cube as parameter
domain.

A uniformly accurate approximation of the spectrum is desirable in several applica-
tions, e.g., in computational wave propagation. The work [9] established a relationship
between the discrete spectrum and the wavenumber in Helmholtz problems, see also
the dispersion analysis of [6]. The close connection of the discrete spectrum with
the inverse inequality also shows that the CFL condition in explicit time-stepping
methods is prescribed by the largest numerical eigenvalue. A uniformly stable numer-
ical spectrum would therefore imply a relaxation of the CFL condition. This fact is
exploited, e.g., in [10] where special operator-dependent spline-type basis functions
replace classical finite elements to achieve feasible CFL numbers on adaptive spatial
meshes. Despite their improved spectral properties, the standard IGA approximations
are not yet sufficient for a CFL relaxation because of the outlier frequencies arising
from the Dirichlet boundary condition. Based on numerical experience, the works
[5,9] suggest a nonlinear parametrization of the control points in order to reduce the
outlier modes.

The paper is structured as follows. Section 2 states the eigenvalue problem and an
abstract stability result for the Rayleigh—Ritz method. This estimate is applied to hp
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finite elements and splines of maximum smoothness in the subsequent Sects. 3 and 4.
The presentation is concluded with a numerical illustration for the two-dimensional
model situation in Sect. 5.

2 The Rayleigh—Ritz method and its stability
Standard notation on Lebesgue and Sobolev spaces applies throughout this paper. Let

2 C R4 for,d > 1, be a bounded Lipschitz domain and define V := H(} (£2) along
with the bilinear formsa : V x V — Rand b : V x V — R given by

a(v, w) ::/ Vv -Vwdx and b(v, w) ::/ vwdx forallv,w e V.
Q2 Q

The Laplace eigenvalue problem seeks eigenpairs (A, #) € R x V such that
a(u,v) = Ab(u,v) forallveV.

Given some finite-dimensional subspace V C V, the Rayleigh—Ritz method seeks
eigenpairs (A, ) € R x V such that

a(ii, 0) = Ab(@1, v) foralld e V.

It is well-known that the eigenvalues are non-negative and have no finite accumulation
point. They can be sorted in ascending order

0<ij<iy<--- and O<ij <Ay <--- <Ay, 7

The Rayleigh quotient is defined by R(v) := a(v, v)/b(v, v) for any v € V\{0} and
allows the characterization

Ay = min max R(v) forallk € N, (2.1a)
vhcy veV®\{0}
dim V® =

A= min_ max R(®) forallke{1,2,...,dimV} (2.1b)
vy devVE\(o)
dim V® =k

This minmax principle implies the well-known inequality Ay < A for all k €
{1,2,...,dim V}. Therefore, defining the ratio C(V, k) := Ayx/Ar, we obtain the
elementary two-sided estimate

he < hi < C(V ) (2.2)
This means that from the knowledge of upper bounds for C (V, k) we can deduce

stability of the Rayleigh—Ritz method. Let, for example, £2 = (0, 1)¢ be the hypercube
and n be a positive integer. Let N = 2" and let T be a uniform rectangular grid with
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(N + 1) vertices in each coordinate direction. Define v C V to be the finite element
subspace over Jj consisting of continuous and piecewise polynomial functions of a
fixed maximal degree. Let m < nand M = 2" and k = (M — 1)4. We note that
the finite element space defined over the coarser grid of mesh size h = 1/M is a
subspace of V. Then, this subspace is an admissible choice for the minimum in (2.1b).
The inverse inequality [3] then states that there is a constant Cmv, which depends on
the used polynomial degree and the space dimension, such that A < Cinyh™2. On
the other hand, the classical asymptotic behavior of the Laplacian eigenvalues due to
Weyl [14] states that

. Ak A2 2.3)
1m .
ko0 k24~ (4 meas($2)) 2/

where w; denotes the volume if the unit ball in R?. (For the unit cube there are even
explicit formulas for the eigenvalues Ax. However, property (2.3) is valid for more
general domains.) This means that for some constant C; there holds that A, > Cy k4,
and, thus, with A~! = M = (k!/? 4 1), we obtain

C(V, k) < k724K 4+ D? < Cuan (2:4)
d

for some (A, k)-independent constant Cg,p. The constant Ciy,y, however, deteriorates
for large polynomial degrees. Hence, the stability estimate is sensitive to the choice
of the polynomial degree. Still, in Sect. 3 we will prove that, at least for the largest
discrete eigenvalue, the stability estimate (2.4) is sharp by sketching a proof of the
well-known sharpness [11] of the inverse inequality with respect to the polynomial
degree p.

3 Application to 2zp FEM

Let us derive upper bounds for C(V, k) in the finite element framework. We restrict
ourselves to the Laplace eigenvalue problem on the hypercube §2 = (0, 1)?. Let N be
a positive integer and set 4 = N~!. We then assume that T, is a uniform rectangular
grid with N + 1 vertices in each coordinate direction. By Vj , € V we denote the
finite element space over Jj of continuous and piecewise polynomial functions of
maximum degree p € N. Note that for this setting the dimension of Vj, , is given by
dim Vj, , = (pN — 1)4.

Theorem 1 For each k € {1,2,...,dimV}, ,} the constant C(Vj, p, k) in (2.2) can
be bounded from above by

C(Vh.p, k) < C1 g} (3.1)

with some positive constant Cy and q; € {1,2, ..., p} being the smallest integer
satisfying k < (kN — 1)“.



344

Proof We fix a pair (k, gx) and note that there exists a unique

kel{l,2,...,[logy(N)]}

N d N d
ky = <q;{2—KJ — 1) <k< (qk\‘zk_lJ — 1> = k. 3.2)

We can choose a coarsening Ty of T such that the minimal mesh size in each coor-
dinate direction is given by H = 27 'h. Let Vi, S Vi, p be the finite element
subspace of piecewise polynomial functions over Tz of maximal degree gi. Note that
by this choice the dimension of V 4, is dim Vg 4, = k™ and that consequently Vg 4,
is an admissible subspace for the minimum in the minmax characterization (2.1b) of
Xk*. By the inverse inequality [11] there exists a constant Cj,y such that

such that

A N q4
Ak =< )&k* =< Cinvd H_kz

By the choice of H, itis easy to see that we can bound q,? /H*by C k,%/ d, where C > 0
is some universal constant. Finally, the application of Weyl’s law (2.3) yields

M < C Cinyd g}t k¥4 < Cy qf Mk

with some constant C; > 0, which depends on d and £2. m|

Let K, = dim V}, ;,. According to Theorem 1 the largest eigenvalue A K, satisfies
the estimate

Ak, < bk < C1p°hk.

As we have seen 1n the proof of Theorem 1, the crucial estimate for the upper bound
of A K, 18 the inverse inequality for finite element spaces. It is a well-known fact that
this inequality is sharp with respect to p [11]. We show the sharpness by an explicit
construction using Legendre polynomials.

The Legendre polynomials ((L)ien,) on the interval Q= [—1, 1] are given by
the formula

1 d*

Le) = ook ok

[@ﬁqﬁ} xe[-1.1], k=0.1.2.....

We recall that the Legendre polynomials are symmetric if k 1s even and antisymmetric
if k is odd [11, (C.2.6)]. Moreover, the Legendre polynomials ((L)ken,) constitute a

complete orthogonal system for L%(£2) with

2
(Lk, LE)LZ(.Q) = m(gkg for all k,l e NO. (33)
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Using the completeness of the Legendre basis and Eq. (3.3), it can be shown (following
the lines of [11, p. 148]) that the derivatives of Legendre polynomials satisfy

J J L +1), if¢ <kand(k+¥£) e 2Ny,
(—Lk, —Le) =11k(k+1), ifk <€and (k+ ¢) € 2Ny, (3.4)
L2(£2)

dx dx )
0, otherwise.

We use (3.3) and (3.4) to derive the sharpness of the inverse inequality.

Lemmal Let a,b € R and assume that h = b — a > 0. There exists a constant
¢ > 0 such that for all p € N, there exists a nonzero polynomial v of degree p on the
interval (a, b) satisfying
vl?,, 4
_eh s 2’—2 and v(a) = 0. (3.5)
||U”L2(a,b)
Proof We first show Lemma 1 for the case (a, b) = (0, 1) and deduce (3.5) by a
scaling argument. Assume that p = 2g 4 1 for ¢ € N and define the polynomial
w: (—1,1) — R as alinear combination of Legendre polynomials:

q
W(x) = Zaksz_,_l(x), with a; = 4k + 3. (3.6)
k=0
The orthogonality relation (3.3) immediately implies

1B172_; ) =2(@+1D=p+1.

Using (3.4) and rearranging sums, we obtain

q k—1 q
Dy 22 DD i Qe+ 1DQRE+2) + Y afQk + 1)(2k +2).
k=0 ¢=0 k=0

For both terms the following relations can be shown by induction:

q k—1

Y > @e+3)2e+ HRe+2) = %q(q +1)(q +2)(4q” +3q —2),
k=0 £=0

q
> @k +3)(2k + 1)(2k +2) = (g + 1)(q +2)(2g + D(2q + 3).
k=0

Summing up these terms and using p = 2g + 1 we obtain

|'7)|%11 -1,1 1
I = (DY
||U)||L2(_1’1)
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Since w is antisymmetric, its restriction to (0, 1) satisfies (3.5) for (a, b) = (0, 1). The
analogue result for even polynomial degree can be reduced to the case of odd degree
by choosing p + 1 instead of p. For general intervals (a, b) the statement follows from
a scaling argument. O

An immediate consequence of Lemma 1 is the sharpness of the upper bound in
Theorem 1 for the largest discrete eigenvalue.

Theorem 2 There exists a constant Co» > 0 such that

. Ak, ]
liminf — — > (). (3.7)
p—>00 }‘Kp p

Proof In the one-dimensional case d = 1, let xi, xx,41 and x;42 be neighboring
vertices of the grid Ty for an arbitrary k € {1,2,..., N — 1}. Let v: (0,h) — R
be a polynomial function of degree p satisfying (3.5), with mesh size 4. Then, the
piecewise polynomial function defined by

v(x —xg),  forx € (xk, Xk41),
Wy (x) = Qv(xgq2 —x), forx € (Xgg1, Xk42). (3.8)
0, otherwise,

is contained in the finite element space V}, ,,. For higher dimensions, we define wy, to
be a suitable tensor product of univariate functions given by (3.8). The characterization
(2.1b) and Lemma 1 yield

4

« o p
Ax. = max Rw,) > R(w,) > cd —.
K 5pe Vi ( p) = ( p) = 72

As K, = (p/h — 1) we obtain with Weyl’s law

2/d
; K (0¥
1m = 7 -
p—>0 )»KP 4

Finally, combining the last two expressions shows (3.7) for d = 1. In the case of
higher dimension the proof follows the same line of arguments, where w, is defined
as a tensor product function of the univariate counterpart. O

4 Application to splines

With a similar reasoning as for finite element spaces, we can apply the elementary
stability estimate (2.2) to spaces of splines of maximum smoothness. We employ the
same notation as in Sect. 3 and denote by S;, , € V the space of all spline functions over
Jp of degree p € N that are p — 1 times continuously differentiable in the hypercube
§2. We recall that for this setting the dimension of Sy, , is given by (N + p — 2)4 [13].
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The following stability result relies on an enhanced inverse inequality for splines
of maximum smoothness, stated in [13]:

12d

-2 )
|UP|H1(Q)S 2 ||UP||L2(Q)' “4.1)

It is important to note that the inequality in (4.1) does only hold for spline functions
v, contained in a certain subspace Sy, , € Sj , with dimension

£ —dim3$, . — (N —2), if pis even, 42)
- " (N — )4, if pis odd. '

Theorem 3 Let K be given by (4.2). Then, for each k € {1,2, ..., K } the constant
C(Sh,p, k) in (2.2) can be bounded from above uniformly by a positive constant C3:

C(Sh,p, k) < C3. (4.3)

Proof Without loss of generality we may assume that p is odd. The case that p is even
can be treated in an analogous way. For fixed index k € {1, 2, ..., K} there exists a
unique « € {1, 2, ..., [log,(N)]} such that

T (A PR

Similarly to the proof of Theorem 1, we choose a coarsening Ty of T such that the
minimal mesh size is given by H = 2“"'h. Let Sy, € Sy, be the corresponding
subspace of splines of degree p over Ty and let S H, p denote the subspace of Sy, for
which the inverse inequality [13, Theorem 8.2] holds. Since by (4.2) this space has
dimension k*, the minmax characterization of ik* yields the existence of a constant
Ciny such that

)Atk =< Xk”‘ =< CinvdH_z-

Using standard estimates we can bound H 2 from above by a multiple of k*/¢ and
derive (4.3) by an application of Weyl’s law (2.3). O

Since the inverse inequality [13] applies only to a subspace S’h’ » € Sh, p. the upper
bound in Theorem 3 does not hold for all discrete eigenvalues if p > 1. We show,
that there exists splines in Sy, p\§ 1, p for which the Rayleigh quotient behaves like the
square of the polynomial degree p.

Lemma 2 For every p € N, there exists a spline function W, € Sy, such that

1 d
lim — R(W,) = —. 4.5
P2 57 RO = 5 “2)
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Proof Itsuffices to considerthe cased = 1.Letw,: (0, 1) — Rbethe spline function
given by

2(1 — £)7 —2(1 = £)P, in[0, h),
() = 121 — 32)7, in [k, 2h).
0, otherwise.

In fact, W), is the unique B-spline basis function of degree p having support in the first
two elements. The idea behind this choice is to exploit the steep slope of W, near zero.
An iterative application of the integration by parts formula yields explicit expressions
for the norms of W ,:

2

|02y = 5705 — g Are 08 100l = oo — o Anet
LX)~ 2p+1 p+1 H() — @2p—1Dh h
Here, A is a perturbed partial sum of the geometric series
pl(p+ D!

p
Ap=> 0y (=) with ;= . : .
b 9 _ ' '
o, (p =D p+j+D!

Comparing the limit lim,_, o A, with the alternating geometric series Z?‘;O(—Z)_j
it can be shown that lim,_, o A, = 2/3. The statement of Lemma 2 now follows from
the expressions of the norms H W) || LA92) and |wp|H1(9). O

Theorem 4 Let K, := dim S}, ,,. There exists a constant C4 > 0 such that

A

A C
lim inf K > —;.
p—00 Ak, h

(4.6)

Proof This is merely a consequence of Lemma 2. The minmax characterization of
Ak, yields

2 2/d A
)”Kp > L R(W,) = KP/ R(wp) pz
Ak, — Ak, P Ak, P? K,z,/d

4.7)

where W, is a spline function in Sy, ,, satisfying (4.5). According to Weyl’s law (2.3),
in the limit as p — oo, the first term converges to some constant C4 > 0, while the
limit of second fraction is given by Lemma 2. Finally, the last term of (4.7) converges

tolasK,z,/d:(N—i—p—Z)z. O

Remark 1 Numerical experiments indicate that the right-hand side in (4.6) may not
be optimal (cf. Fig. 2) and that the eigenvalue ratio Ag, /Ak, diverges with rate p?as
p tends to infinity.
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Remark 2 The statement of Theorem 4 is formulated with respect to the mesh size
h of the mesh 7). Note that in this case the dimension of the spline space Sy , 1s
significantly smaller than the dimension of the corresponding finite element space
Vi, p» in particular for large p. If the grid for Sy , is refined in such a way that the
spline space has approximately the same dimension as V}, ,, (still defined with respect

to the original mesh), then it is easy to show that A K,/ Mk, diverges with the same rate
as for the finite element case, i.e., with rate p2.

5 Numerical illustration

This section illustrates the previous analytical results in a two-dimensional model
situation. We consider the unit square 2 = (0, 1)? equipped with a fixed uniform
rectangular grid T, consisting of N = h~! elements in each coordinate direction (see
Fig. 3).

The discrete eigenvalue problem is solved numerically using both the finite ele-
ment spaces Vj, , and the spline spaces Sy . In either case we first fix a grid width &

and compute the discrete eigenvalue spectra for polynomial degrees p =1, 2, ..., 5.
Fig. 3 Uniform rectangular grid T ) I L | | |
Ty on 2 = (0, 1)? with '
N=h"1=15 " 7
0.5 F |
0.0 /i | | | |
0.0 0.5 1.0
2 I T I I I I I I I
p =
18 | —p= _
p=3
< 16 |—p= .
3 ———p=5
<
14+ _
1.2 —/ _
1 i | | | | | | |

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500
k

Fig. 4 Frequency ratios ik /A for the Laplace eigenvalue problem on the unit square with Dirichlet
boundary conditions computed with finite element functions of degree p on a uniform rectangular grid
consisting of 15 x 15 elements
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Fig. 5 Frequency ratios )A»k /A for the Laplace eigenvalue problem on the unit square with Dirichlet
boundary conditions computed with splines of maximum smoothness of degree p on a uniform rectangular
grid consisting of 70 x 70 elements
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Fig. 6 Evolution of the frequency ratios corresponding to the six largest discrete eigenvalues evaluated
with splines of maximum smoothness for increasing polynomial degrees p. All eigenvalues are computed
on a uniform rectangular grid on the unit square consisting of 10 x 10 elements

Figure 4 depicts the resulting square roots of the eigenvalue ratios A/ Ay for the com-
putation with finite element functions on a grid consisting of N2> = 15 elements. The
numerical results illustrate the convergence of the lower part of the discrete spectrum
for increasing polynomial degrees and confirm the divergence of the eigenvalue ratio
associated to the largest discrete eigenvalue A k, for growing polynomial degree as
stated in Theorem 2.

The outcome of the analogous experiment involving the spline spaces Sy , are
displayed in Fig. 5. In this case we used a grid of N> = 70 elements in order to obtain
a comparable number of degrees of freedom. In accordance with Theorem 3 the bulk of
the eigenvalue ratios is bounded while the upper part of the discrete spectrum exhibits
a limited number of outlier frequencies. Note that like in the finite element setting the
square root of the uppermost eigenvalue ratio Ak ,/ Xk, seems to increase linearly with
the polynomial degree (cf. Fig. 6) which indicates that the right-hand side in (4.6) is
not optimal and should exhibit some dependence on p (cf. Remark 1).
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