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We formulate a stabilized quasi-optimal Petrov—Galerkin method for singularly perturbed convection—
diffusion problems based on the variational multiscale method. The stabilization is of Petrov—Galerkin type
with a standard finite element trial space and a problem-dependent test space based on pre-computed fine-
scale correctors. The exponential decay of these correctors and their localization to local patch problems,
which depend on the direction of the velocity field and the singular perturbation parameter, are rigorously
justified. Under moderate assumptions, this stabilization guarantees stability and a quasi-optimal rate of
convergence for arbitrary mesh Péclet numbers on fairly coarse meshes at the cost of additional inter-
element communication.
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1. Introduction

Given a domain £2 C R2, a singular perturbation parameter 0 < € < 1, a velocity field b € (L®(£2))?
and some force f € H™'(£2), the convection—diffusion equation seeks u € V := H}(§2) such that

—€Au+b-Vu=f in g2,

u=0 onds. (-0
We assume that the velocity field b is incompressible, i.e., V - b = 0. The focus of this article is the
convection-dominated regime with large Péclet number Pe = [|b||; g, /€. For reasonably small Péclet
numbers, classical Galerkin finite element methods (FEMs) perform well. However, if the Péclet number
increases then steep gradients of u occur and boundary layers appear, requiring a much finer mesh to
capture the characteristic width of these boundary layers. Consequently, local corrections are needed at
the layers and a numerical method in which the smooth solution regions are not polluted by the layers
is desirable. The thickness of the parabolic layer is O(4/€) and O(e) for the exponential layer, which
have to be resolved for a stable approximation with a standard Galerkin FEM. Furthermore, it holds that
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il g1 gy = O(e™*) and |uly1 g0, = O(e~'/?) with small neighborhoods £2* and £2° of the parabolic
and the exponential boundary layer, respectively (Roos et al., 2008; John & Schmeyer, 2009).

Numerous numerical methods have been proposed in the past few decades aimed at solving the
convection-dominated problem (1.1) efficiently and accurately. Upwinding methods for stabilization of
the exponential boundary layers combined with refinement near the parabolic boundary layers are formu-
lated. Among them are the streamline upwind/Petrov—Galerkin (SUPG) method or Galerkin least squares
(GLS) method (Franca et al., 1992; Christiansen et al., 2016), hp finite element methods (Melenk, 1997,
2002), discontinuous Petrov—Galerkin methods (Demkowicz et al., 2012), residual-free bubble (RFB)
approaches (Brezzi et al., 2000; Cangiani & Suli, 2005a,b), methods with an additional nonlinear diffu-
sion (Barrenechea et al., 2016), methods with stabilization by local orthogonal sub scales (Codina, 2000)
and hybridizable discontinuous Galerkin methods (Qiu & Shi, 2015). Among the multiscale methods are
variational multiscale (VMS) methods (Hughes & Sangalli, 2007; Larson & Malqvist, 2009), multiscale
finite element methods (Park & Hou, 2004; Calo et al., 2016), multiscale hybrid-mixed methods (Harder
et al., 2015) and local orthogonal decomposition (LOD) methods (Elfverson, 2015). Specifically, the
residual-based stabilization methods (SUPG, GLS and RFB) incorporate global stability properties into
high accuracy in local regions away from the boundary layers. We refer to Roos er al. (2008) for an
overview of robust numerical methods for singular perturbed problems. In this article, our focus is on the
construction and the error analysis of a stable and accurate LOD method based on Hughes & Sangalli
(2007), Peterseim (2017) and Malqvist & Peterseim (2011).

VMS methods were designed for solving multiscale problems by embedding fine-scale information
into a coarse-scale framework. Essentially, the efficiency and accuracy rely on the construction of a
problem-dependent stable projector from a larger fine space onto a relatively much smaller coarse space.
Our motivation for this article originates from Hughes & Sangalli (2007), where the authors derived an
explicit formula for the one-dimensional fine-scale Green’s function arising in VMS methods. The smaller
the support of the fine-scale Green’s function, the more favorable the localized method (e.g., Malqvist
& Peterseim, 2011; Peterseim, 2017) in solving (1.1). In particular, the authors compared the fine-scale
Green’s functions derived by the L?-projector with that derived by the H;-projector and concluded that
the latter outweighed the former in the one-dimensional case. In addition, examples were shown for the
two-dimensional case that the H_}-projector would exceed the L*-projector as well. There is a recent work
(Elfverson, 2015) on the convection—diffusion problem employing the L2-projector in the framework of
the VMS and LOD methods. The author shows convergence of the localized method and tests the method
using the HJ-projector and claims that the superiority of the HJ-projector over the L2-projector is not
valid for the two-dimensional case. This claim is supported by Fig. 2 below.

In the one-dimensional case, the H,-projection equals the nodal interpolation. Therefore, another
possible generalization of the one-dimensional case to higher dimensions is to use nodal interpolation in
the VMS method. Doing this, we take into account that nodal interpolation is not well defined and stable as
an operator on H' functions. After regularization using a very fine reference discretization of scale 1 < €,
the use of nodal interpolation can be justified as the stability constant degenerates with log(H /h) in two
dimensions only (see (3.1) below). This approach was previously utilized in Larson & Malqvist (2009)
and is shown to work better than averaging-type operators in the regime of large mesh Péclet numbers
(see Fig. 2 below). In this article, we show that a VMS method based on the nodal interpolation operator
coupled with a Petrov—Galerkin method is stable and locally quasi-optimal for the convection-dominated
problem (1.1) with no spurious oscillations and no smearing. As for other elliptic partial differential
equations (PDEs), the ideal VMS method is turned into a practical method by localizing the support of
the VMS basis functions (Peterseim 2016b). Inspired by the numerical results of the fine-scale Green’s
functions displayed in Hughes & Sangalli (2007) and the proof in our article as well, a b-biased local
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region is proposed as the numerical domain for approximating the ideal method. The convergence of this
localization is proved under the assumption that the local region is sufficiently large. In three dimensions,
the method is still applicable, but the instability of nodal interpolation is more severe and the size of the
subdomains may be prohibitively large to compensate this negative effect.

The remainder of this article is organized as follows. In Section 2, a detailed description of the
problem considered in this article is shown. In Section 3, we propose a new VMS method based on
the nodal interpolation and denote it as the ideal method. Its stability and local quasi-optimality are
displayed. In Section 4, we estimate the error of the global correctors outside a certain local patch and
show an exponential decay of the error with respect to the size of the local patch. Inspired by the results in
Section 4, we formulate the localization algorithm in Section 5 for the ideal method proposed in Section 3
and display the stability of this algorithm as well as the convergence. A numerical experiment is provided
in Section 6 for the validation of our method and we conclude this article with conclusions in Section 7.

2. Model problem and standard finite elements

We assume that the parameter € < 1 and b € L*(£2; R?) isa divergence-free vector field and we define
the bilinear form a on V x V associated to (1.1) by

a(u,v):e/ Vu-Vy dx—i—/(b-Vu)vdx forall u,v € V. 2.1
2 2

Because V - b = 0, an integration by parts implies that the bilinear form a is V-elliptic, i.e.,

2

a(V, V) =€ |V|H1(Q)

forallv e V. 2.2)

Furthermore, a Poincaré—Friedrichs inequality leads to the existence of some constant C(2, b) that may
depend on (the diameter of) the domain £2 and the L*> norm of b such that a is continuous, i.e., for all
u,v € V it holds that

a(u,v) < €lulyi o) Vg1 o) + 1Dllre@) lulg1o) V2@ 2.3)
< C(£2,b) |M|H1(rz) |V|H1(Q) .

Here, we used that € < 1. Throughout this article, A < B abbreviates that there exists a constant C > 0
independent of €, h and H (h and H will be defined later), such that A < CB, and let A 2 B be defined as
B S A, and A ~ B abbreviates A S B S A. We assume that ||b]| ;o) ~ 1. Let (e, ) h-1(2)xil ) denote
the dual pairing of H~'(£2) and H} (£2).

We consider the variational form of (1.1):

find u € V such that forallv e V
2.4)

a(u,v) = {f, V)H—l(rz)xH({(rz)-

By virtue of the V-ellipticity and V-continuity of a from (2.2) and (2.3) and the Lax—Milgram lemma,
problem (2.4) has a unique solution in V.
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Let 7, be a shape-regular triangulation of the domain 2, where & represents the minimal diameter of
all triangles in 7. Given a triangulation 7, let

PuT) :={veC’R)|vlk € P(K)forall K € T}

denote the space of piecewise linear finite elements and define V;, := P (7,) N V.
Letu, € V, denote the reference solution, which is defined as the Galerkin approximation that satisfies

a(uh,vh) = <f’vh>H_l(Q)><Hé(.Q) for all vV, € Vh. (25)

Taking advantage of the ellipticity and continuity of a from (2.2) and (2.3) on V x V D V), x V), the
Lax-Milgram lemma implies that the fine-scale solution u, of (2.5) exists and is unique on V.

We assume that € < 1 is a small parameter and that 7;, resolves € in the sense that u;, is a good
approximation of u, e.g., if

hmaxllb”L"C(Q)/e 5 1 (26)

with the maximal mesh size h,,,, of 7j,. It holds that

flu—v .
thVh| thl(Q)

hmax ||b||L°°(Q)) .
_— m

lu — Mh|H1(Q) S (1 + 6

If, in addition, the solution u of (2.4) satisfies u € H?($2), standard interpolation estimates lead to

Minax |B]] 1o0(2)
= upli @) S Pmax <1 + maxf

||u||H2(Q),
with a hidden constant independent of €. Note, however, that ||u||;2,, depends on €.

3. The ideal method

In this section, we introduce a variational multiscale method based on nodal interpolation, which yields
a locally best approximation of the reference solution u;, € V, from (2.5) and which is computed on a
feasible coarse underlying mesh 7. We assume that 7y is a regular quasi-uniform triangulation of the
domain £2 with maximal mesh size H, such that 7}, is a refinement of 7;;. Let A denote the nodes in 7y,
and midg the barycenter for each coarse element K € 7. The maximal mesh size H of 7y represents a
computationally feasible scale that is typically much larger than €. Altogether, the target regime is then

0O<h<e<HZ<I.

Define Vy = Py(7yg) NV and let I : V,, - Vy denote the nodal interpolation. Note that I acts only
on finite element functions and is, hence, well defined. It holds

H" v = Iyl 2y + Hnvlg gy < Cr(2) Wl - (3.1
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Indeed, we have (Yserentant 1986)

1 in one dimension,
H H . . .
CIH(Z) S qlog s in two dimensions,
H

W in three dimensions.

Given vy € Vy, define the subscale corrector C : Vi — Ker Iy by
a(w,Cvg) = alw,vg) forall w € Ker I. (3.2)

The well-posedness of (3.2) follows from the ellipticity and continuity of a, as Ker I C V.
Now we are ready to define the multiscale test space as

WH = (1 —C)VH
Note that (3.2) implies that
Wy={weV,:YveKerly,alv,w) =0}

The Petrov—Galerkin method for the approximation of (2.5) based on the trial—test pairing (Vy, Wg)
defined above seeks uy € Vy satisfying

a(uy,wy) = <f’WH>H—1(Q)><H6(Q) for all wy € Wy. (33)
Note that (3.3) is a variational characterization of Iy in the sense that, for all wy € Wy, we have
a(lgup, wy) = allyuy, — up, wy) + a(up, wy) = (f, wy),

where the last equality follows from (3.2), (2.5) and the fact that I u, —u;, € Ker Iy. AsdimVy = dimWy,
it follows that u;; = Iu, € Vy is the unique solution of (3.3) and the ideal method inherits favorable
stability and approximation properties from the interpolation /5. To be more precise, we have the following
proposition, which follows directly from the identity uy = Iyu;, and (3.1).

PROPOSITION 3.1 (Stability and local quasi-optimality of the ideal method) For any f € H~!'(£2), the
ideal Petrov—Galerkin method (3.3) admits a unique solution uy in the standard finite element space V.
The method is stable in the sense that

H
g | o) < CIH(;) lunlgt @) »

where u;, € V), denotes the reference solution that solves (2.5). Note that the constant CIH(%) isindependent
of € but may depend on H /h.
Moreover, for any T € 7, we have the local best approximation result

H .
|uay, — quHl(T) = CIH(W) ‘glel& |1y, — VH|H1(T> .
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REMARK 3.2 The stability and quasi-optimality of Proposition 3.1 also holds for any other norm in which
Iy is stable.

We admit that the corrector problems (3.2) are global problems on the fine triangulation 7, which
have to be precomputed for solving (3.3). This would result in a number, dim(Vy), of problems of
dimension O(dim(V},)), which is comparable to solving the original problem (1.1) on a fine grid by an
efficient standard method. This makes the VMS method (3.3) not realistic. However, it can be observed
in Fig. 1 that the corrector of functions with local support are still quasi-local in the sense that they
decay exponentially. This allows for an approximation of the corrector by functions of local support. In
the next section, the exponential decay will be made rigorous, whereas Section 5 proves stability and
approximation properties for a localization strategy.

REMARK 3.3 (Justification of choice of nodal interpolation) In other applications (Elfverson, 2015; Gal-
listl & Peterseim, 2015; Malqvist & Peterseim, 2011; Peterseim, 2016b, 2017), the method is usually
based on stable quasi-interpolation operators rather than nodal interpolation. This is also possible here
and would prevent the constant C;,(2) from depending on / and, hence, €. However, in the localization
step, this choice of nodal interpolation turns out to be crucial and leads to very fast decay in all directions
but downstream. In particular, it prevents any spread in the cross-stream and upstream direction as it is
observed for averaging-type operators and the H}-projector. This is illustrated in Fig. 2, which shows the
decay behavior of a test basis function for several interpolation operators.

We conclude this section with a proof of stability in the classical inf-sup sense, although the method is
perfectly stable in the sense of Proposition 3.1. This result will be used in Section 5 to prove well-posedness

of the localized version of (3.3).

LemMA 3.4 (Stability) The trial—test pairing (Vy, Wy) satisfies the inf—sup condition

inf sup a(un, W) > ¢ g (3.4)
wiHEWINO eV (0) |MH|H1(_Q) |WH|H1(_Q) CIH(/T)
Proof. Given wy € Wy, take uy = Iy(wy) € Vy. Then by (3.1),
lur o) < CIH(%) Walg e - (3.5)
Note that Iy (wy) — wy € Ker Iy. By (3.2), we have
a(up, wy) = ally(wy), wy) = awy, wi) = € walp o) (3.6)
where the last inequality follows from V - b = 0.
We obtain the result by the application of (3.5). ]

4. Exponential decay of element correctors

This section is devoted to the proof of the exponential decay of element correctors defined in the following.
Given w C 2, define the local bilinear form

a,(u,v) ::ef Vu- Vv dx+/(b-Vu)v dx forallu,v e V 4.1)
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FiG. 1. Standard nodal basis function A, with respect to the coarse mesh 7z (top left), corresponding ideal corrector CA (top right)
and corresponding test basis function (1 — C)A, (bottom left). The bottom right figure shows a top view of the modulus of the

test basis function (1 — C)A, with logarithmic color scale to illustrate the exponential decay property. The underlying data are
b = [cos(0.7),sin(0.7)] and € = 277,

and let the local corrector Cr : Vg — Ker Iz be defined for any vy € Vi by
aw,Crvy) = ar(w,vy) for all w € Ker /. 4.2)

Note that C = } ;. Cr holds for the corrector C defined by (3.2).
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Fi1G. 2. Impact of the choice of interpolation operator on the decay of the ideal test basis function (1 — C)A; in the under-
resolved regime H >> e: nodal interpolation (left), L2-projection (middle) and Hé -projection (right). The underlying data are
b = [c0s(0.7),sin(0.7)] and € = 277,

We consider the case that € < H. In the following, we restrict ourselves to a constant vector field b
and w.l.o.g. |b| = 1; see Remark 4.4 below for a discussion for nonconstant vector fields b. Define ¢ as a
unit vector in R?, such that ¢ - b = 0. Define a rectangle Sy, for each T € 7 and £ € N, by

Srep = 2 N conv{midy — ¢Ht 4+ ¢Hb, midy + £Ht + ¢HD,
(4.3)
mid; — ¢Ht — LH?b /e, mid; + €Ht — CH?b/€).
We do not assume that b is aligned with the triangulation, and therefore, we define the patches $27 4, by

74y =T €Ty | T'"NSrp # B} D Stap.

See Fig. 3 for an illustration. For fixed ¢ € N_, the element patches have finite overlap in the sense that
there exists a constant C,,(¢) > 0, such that

max #H{T € Ty | K C 2745} < Coe(e). 4.4)

KeTy

THEOREM 4.1 Let T € 7y and vy € Vy and let Crvy denote the corresponding local subscale corrector
as defined in (4.2). Then, we have

ICrvarlin (2vsy, ) S B 1Crvala g - (4.5)
The constant 8 reads
1/2
4C,(2) +3C,,(2)?
— ( IH(h) IH(h) > <1 (46)
1 44C,, (1) +3C,(4)

and is bounded away from 1.
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F1G. 3. Element patches £27¢5 for b = [c0s(0.7),sin(0.7)], ¢ = 27 and ¢ = 1,2,3 (from left to right) as they are used in the
localized corrector problem (5.1).

Before going to the proof of this theorem, we express the exponential decay in terms of patches in
the following corollary. This is a direct consequence of Theorem 4.1 and the definition of £27 .

COROLLARY 4.2 LetT € Ty and vy € Vy and let Crvy denote the corresponding local subscale corrector
as defined in (4.2). Then, we have

|CTVH|H1(9\.(2T’Lb) = |CTVH|H1(.Q\ST’U,) 5 IBK |CTVH|H1(.Q) 4.7)

with 8 < 1 from (4.6).

REMARK 4.3 Recall that in this two-dimensional situation, Cp,(%) < log(%) for C;,(4) from (3.1). Then
given fixed H € (0, 1) and let h — 0, the constant 8 scales as

1-p*2> ;
~ 1+ log(h)?
In the three-dimensional case, Theorem 4.1 could essentially be proven in the same way, but the
dependence of Cy, (%) on H/h is algebraic, so that the decay rate deteriorates very fast.
Proof of Theorem 4.1. The crucial point in the proof is (4.10) below, which exploits the direction of b.
This allows for patches that are only enlarged in the direction of —b. The remaining part of the proof then
essentially follows as in Malqvist & Peterseim (2011).

Define a cutoff function

ni=1—=mn,

where 0 < n1(x) < 1 and 0 < m(x) < 1 are one-dimensional continuous piecewise affine cutoff
functions along ¢ and b, respectively. Recall that mid; denotes the barycenter of a coarse element 7T,
|b| = 1 and ¢ is a unit vector orthogonal to b. We define 5, and n, by

1 if |(x —midy) -] < (¢ — DH,
ni(x) = { (4.8)

0 if |(x —midy) - 7] > ¢H



1238 G.LIETAL.

and

HZ
1 if—(=1DH<—(x—midy)-b<({—1)—,
€

n2(x) = ) 4.9)

H
0 if —(x—midy)-b>£€— or —(x—midy)-b < —(H.
€

We obtain from the construction above that Vi (x) - b = 0 for all x € £2 and n; < 1. Moreover, because
—(b-Vnx) <0if0 < (x — midy) - b, we deduce

€

—=b-Vn=—=b-Vn)n— b -Vn)n = —b - V) < I"ER (4.10)

Furthermore, n[s,,_, , = 0and |g\s,,, = 1, and n is bounded between 0 and 1 and satisfies the Lipschitz
continuity

IVl o) < 2/H. (4.11)

Note that supp(Vn) C St.ep \ Ste—14-
Let (o,0) := (o,0);,2,, denote the L? scalar product and define ¢ := Crvy. As V - b = 0, we have
(b-V(ng),ny) =0, and

€10l (ausy,,) = €V9). V@) + (b V(ngp). )

=e(Vp,nV(nep)) +e(Vn,oV(ne)) + (b - V(ne), np)
=e(Vo, V*e)) + (b - V(*p), @) — e(Vo,npVn)
+ e(Vn,oV(ng) — (b -V, ne?).

Observe that n?¢ € Ker I, and we obtain
e(Vo, V') + (b - V(). ) = a(i’p, ¢) = ar (¢, vi) = 0 (4.12)
by the definition of Cr in (4.2). Thus, we arrive at
€ le?,l(msw) < el(Vo,npVn)| + €|(Vn, oV ()| — (b - Vi, ng”). (4.13)

We will estimate each term on the right-hand side of (4.13). With n < 1 and (4.11), a Cauchy inequality
leads to

€l(Vo,npVn)| < 2e¢H™! |¢|H1(ST’“,\ST’5_M) ||(/)||L2(s”,b\ST,l_Lb)

H 2
< 2CIH(7)E |¢|H1(ST,¢,};\ST,Z—1J7) ’

where we have used the fact that ¢ € Ker Iy and estimate (3.1) in the last inequality.
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The same arguments imply for the second term in (4.13),

€|V, oV me)| < 2¢H™ I9li2 (s, sroo1) 1911 (570057010)
)2 )il 2
<2 <CIH(Z) + CIH(F)) |(p|H1(ST’Lb\ST’5_]‘b) .

The crucial point in the estimation of the last term in (4.13) is estimate (4.10), which implies together
with ng? > 0,

2 € 2
_(b : V’I, 7790 ) S m ”(p”LZ(ST,/Z,b\ST,E—l,b)
H\2, 2
= ECIH(Z) |¢|H1(STAZ.h\ST.Z—1,b) ’

Assemble all estimates above for (4.13) to conclude

2 2 2
€ |90|H1((z\smb) =€ <4CIH(%) + 3CIH(7T) ) |¢|H1(Sf‘g’b\ST‘g_l’b) .

Define C(Z) := 4C,, (1) + 3C,,(%)’, which leads to

h

q
h

2 2 2
llel(ﬂ\Sr,z,b) = C( ) (l(lel(Q\ST,Z—l,b) - lngHl(Q\ST,l,b))’

and therefore

—
==
N—

2 2
|¢|H1(Q\ST,£,b) = 1+ C(Iﬂ) |¢|H1(.Q\ST,@_1J))‘

Repeating this process, we arrive at

SGIAY
|¢|§1I(Q\ST,E,Z7) = (TC}:(%)> |(p|i11(_(2) .

This concludes the proof. (Il

REMARK 4.4 (Nonconstant b) If the velocity field b is divergence-free, but not globally constant, the
definition of the rectangles Sy, has to be modified in that they have to follow the velocity. To avoid the
computation of those patches for a complicated b, one may alternatively enlarge the patches adaptively
using a posteriori error estimators (Larson & Malgvist, 2009).

The following sketch shows that the proof of the exponential decay can be generalized to the situation
where there exists a bounded diffeomorphism with bounded inverse that maps a constant reference
velocity field by to b, in the following sense. Assume that there exists a reference domain £2,.; and a
diffeomorphism v : 2.t — 2, ¥ € C'(£2), such that

DY (Mber =b(Y(y))  forally € £y,
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FiG. 4. Top view of the modulus of (ideal) test basis functions (1 — C)A, with a logarithmic color scale. The underlying data are
€ =278 and b (left) and b, (right) from (4.14).

i.e., ¥ follows b in the following sense. For any yg e € §2:f, the function y(¢) := ¥ (Yoer + threr) solves
the ordinary differential equation (ODE) y'(t) = b(y(?)), i.e., y follows b.

The domain St ¢, (formerly a rectangle) is then defined as S.rp, = ¥ (Ser 7.0, )» Where Seer 700, C
£2,.¢ 1s defined for the constant vector field b,¢s as in (4.3). The cutoff function n = 1 —1n;1;, is then defined
by nj(x) := nj,ref(x/f‘l(x)) for nj s defined as in (4.8)—(4.9). The boundedness of Dvr~! then proves

Vol S H™".
The definitions of 7, and 7, lead for all x € £2 to

b(x) - an(x) = an,reflw—l(x) : (D\ﬁ_' (0)b(x)) = an,reflw—l(x) “ brets

which implies —b - Vi) < €/H?*. Theorem 4.1 then follows as before.
Figure 4 displays the modified basis functions (1 — C)A, for z = (0.875,0.5) for the following
nonconstant vector fields

bi(x)=5 5 =05) o d by(x)=(2(]x- 051~ 1) mod 2 by (x), (4.14)
0.5 — x| 0.5

where [r] := min{k € N | k > r} denotes the ceiling function. For the first example, there exists a
diffeomorphism ¢ as above in a subdomain (0.6, 1) x (0, 1), whereas for the second example, this is not
true due to the jumps of b,. Nevertheless, one observes a typical exponential decay pattern that follows
b very closely.
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5. LOD method and error analysis

On the basis of the results above, we conclude that the energy norm of Crv decreases very fast outside
a local region around T for any v € Vy. Therefore, a localization process is feasible to reduce the
computational costs of the ideal method but maintain a good accuracy. In this section, we want to localize
the corrector problems (3.2). To this end, instead of solving them on the global domain £2, we obtain a
good approximation of those correctors by solving a local problem on £27,,.

First, let us introduce some notation. In the following, we will denote Ry = Ker Iy and Ry ($27 ) =
{w € Ry, andw = 0in £2 \ £27,,}. Recall the local bilinear form a, defined in (4.1). The localized
element corrector CT,E Vg — RH(QT,Z,I)) is defined as follows: given vy € Vy, let CT,ZVH (S RH(QT,Z,b)
satisfy

agr ey W, Cryevy) = ar(w,vy) forallw € Ry ($27.04). (5.1

Then we denote C; := } ;.. Cr.; see Fig. 5 for an illustration of the localized correctors C,A. and the
corresponding localized test basis.

In the following lemma, we will show that Cr, is a good approximation of C; provided that the local

patches §2r ., are sufficiently large. For ease of presentation, we denote the mesh Péclet number Pey ,
of 7y by

Peype == HlDll o) /€. (5.2)
Recall the definition of 8 from (4.6).
LEMMA 5.1 Givenv € Vi and £ € N, it holds that
1Crv = Crav| 1oy S (14 Perne Cri( £)) (Crf2) + DB Mlinery - (5.3)

Proof. Define ery := Crv — Cryv. In view of Ry (827 ,,) C Ry, the definitions of the correctors in (5.1)
and (3.2) and the orthogonality of Petrov—Galerkin type lead to

2
€ lerelyig = alersery) = alery —w,er,)  forallw € Ry(2r,).
As Iy (ery) = 0, Holder’s inequality and the approximation property (3.1) of Iy imply
2 H
|eT-’5|H1(Q) = (1 + Perpe CIH(E)) |€T1|H1((z) |eT»‘5 - W|H1(.Q) :
Asw € Ry($2r,,) is arbitrary, we arrive at
‘eT.e|H1(Q) = (1 + Penpe CIH(%)) |Crv — Wlni(g) - (5.4)

In the following, we construct a specific w € Ry;(§27,,) to control the term [Crv — w1 ). Let  denote
the cutoff function from the proof of Theorem 4.1, such that n|s,,_,, = 0 and n|e\s;,, = 1. Note that
St.ep C 274 and therefore p := 1 — 7 satisfies p|o\ Qrep = 0. In addition, u is bounded between 0 and
1 and satisfies the Lipschitz continuity

IVidll ooy < 2H™'. (5.5
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FIG. 5. Localized element correctors Cr ¢, for £ = 2 and all four elements 7 adjacent to the vertex z = [0.5,0.5] (top), localized
nodal corrector CgA, = ZTBZ Cr¢ X, (bottom left) and corresponding test basis function (1 — C;)A; (bottom right). The underlying
data are b = [c0s(0.7),sin(0.7)] and € = 2~7. The computations have been performed by standard linear finite elements on local
fine meshes of width i = 278, See Fig. 1 for a comparison with the ideal global corrector and basis.

Define w = uCrv; thenw € Ry (£27,5). As Crv € Ry, the fact that 0 < u < 1 and (5.5) lead as in the
proof of Theorem 4.1 to

ICrv — wlgig) = ICrv — 'u’CTlel(-Q\ST,Z—l,b)

2(CIH(%) + 1) |CTVIH1 ('Q\ST,f—l,b).

A

Theorem 4.1 then implies

1Crv = Wl ey < (Ci(2) + DB 1Crvli o
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The combination with (5.4) implies

|Crv — CT,/zV|H|(_Q) < (1+ Peppe Crp(2)) (C( ) + DB CrvIg ) -

In the end, we show the stability of Cr to bound the term |C7v|y1 o). As Iy (Crv) = 0, the stability of Cr
follows from

2
€1Crvl g, = aCrv,Crv) = ar(Crv,v)
< €|Crvlyiay Wyt + 10leory Wl 1CvI2)

<(e+ H”b“LO“(T)CIH(%)) ICrvl o) Ve »

where the definition of the element corrector in (5.1) implies the second equality and the approximation
property (3.1) leads to the last inequality. This proves the assertion. (]

The following theorem assembles the local estimates from Lemma 5.1 to derive an estimate for the
global corrector.

THEOREM 5.2 Givenv € Vy and £ € N, it holds that
|Cv — CKV|H1(Q) 5 C(H,h,e,b, f)ﬂﬁ_l |V|H1(9) (5.6)
with

C(H,h,e,b,8) := (14 Peyy. Crp( 1)) (Cl(2) + 1)

(5.7)
x (14 2C, (%) + Peype Crp( ) Copera(e)'?.
Proof. Setz :=Cv —C,_,v € Kerly and z7 := Crv — Cry_,v, thenz = ) z7. We have
TeTy
€lzlig, = D azr). (5.8)

TeTy

We estimate a(z, z7) for each coarse element 7 € 7. Recall that we defined a cutoff function » in the
proof of Theorem 4.1. Note that £27,_,, C Sr¢_1,. By construction, we have nz € Ry(£2 \ Sre_15) C
RH (Q \ QT.Z—Z.}))- As CT*e_zvl'Q\QT,Z—Z,b = 0, this lmplles

a(nz,zr) = a(nz, Crv).
Furthermore, notice that nz € ker(/;;), which combined with (4.2) yields
a(nz,Crv) = ar(nz,v) = 0.
As a consequence, we obtain

a(z,zr) = a(nz,zr) +a((1 = Nz, zr) = a((1 — Nz, 27).
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In the following, we will bound the term a((1 — 1)z, zr). Recall from the proof of Theorem 4.1 that

A =lasy,, = 0, IVA = Nlliee < 2H7" and ||(1 — n)|lzx@ < 1. Taking into account that
Iy (z) = In(zr) = 0, the stability of the projector Iy from (3.1), therefore, leads to

a((l =mz,zr) < €| =mzlui(s,,,) lerlm s, ) F 10Ieew) 122, ) 12rlm s, )

< (e (1+2C,(%)) + 1Dl HC () 12l (57, ) V2ol (s7.,) -

As Sty C 827,45, the combination with (5.8) and the application of a discrete Cauchy—Schwarz inequality
yields

lzl510) < (14 2C3 (%) + Peuse Cufi)) Z |2l a1 (57.0) 127101 (57.0)

TETH
=< (142C(5) + Pense Cul5))
1/2 1/2
X Z |Z|12ql(9”,b) Z |ZT|iI](ST’£,b)
TeTy TeTy
Lemma 5.1 implies
1/2
D lerlingsyy | S (0 Pemne Cu(5)) (Cul) + 1) 7 Wi -

TeTy

while the bounded overlap of the patches from (4.4) implies

172

2 2
Z |Z|H1(.QT“,) < Cot(O)' Izly1g) -

TeTy

In the end, the combination of the previously displayed inequalities and the shift £ +— £ 4+ 2 shows the
assertion, (I

Now we are ready to define the localized multiscale test space as
WH,Z = (1 - CZ)VH-

The Petrov—Galerkin method for the approximation of (2.5) based on the trial-test pairing (Vy, Wy )
defined above seeks uy , € Vy satisfying

G(MH_g,WH,@) = U, le)H—l(Q)de(.Q) for all Whye € WH,@. (59)



VARIATIONAL MULTISCALE STABILIZATION FOR CONVECTION-DOMINATED DIFFUSION EQUATIONS 1245

Lemma 5.3 (Inf—sup stability) If £ is sufficiently large, i.e., the oversampling condition

_ 1 ltog (Cyf(§))] + llog (€t b, )] + log (1+ 1, 2) + Perne Gy 2)7)|

> - — - — (5.10)
[log (4C, (%) +3C,(4)7) —10g (1 +4Cy,(£) +3C,,(£)7)
is satisfied, then the Petrov—Galerkin method (5.9) is inf—sup stable and
inf sup a(n Wie) (5.11)

wiLe€WH \OY 4y evig\(0) IuylHl(Q) WH_g|H1(Q) ~ CIH(%)

REMARK 5.4 If H/h = 1/€ and |b| = 1 then (5.10) reads
¢z (log(e))?,
i.e., the local patch size ¢ depends on log(€) algebraically.
REMARK 5.5 As the dimension of Vjy equals the dimension of Wy, the reverse inf—sup condition

auy, Wi )

inf su
WH.¢ |H1(.Q) ~ C’H(%)

ur €VENOY vy yewpy OV U 11 (2

(5.12)

follows from Lemma 5.3.

Proof of Lemma 5.3. Letwy, € Wy,, and set wy = (1 — C)lywy, € Wy. By Lemma 3.4, there exists
uy € Vy, such that

€
a(ug, wi) = ——7~ lun g o) welg o) - (5.13)
ClH(?)

Taking into account that wyy = Iywy, — Colywy ., we arrive at wy — wyy = (Co — C)lgwp . As a
consequence, Theorem 5.2 together with the stability of I; from (3.1) implies

Wit = Wite| o) < CCH o €,b, 0B [Iuwi o] 1

< CC(H,h,e,b,0)C,(L)p"! Wi el 10, -

Here, C denotes the constant hidden in < in Theorem 5.2, which is independent of H, h or €. The
combination with a triangle inequality leads to

|WH|H1(Q) Z |WH,[|H1(9) - |WH - WH.[|H1(_Q)

> (1= CCH, h,e,b, )C1, (1) B Wire| 1 o, -
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As IH(WH.K —wy) = 0,ie., Wye — Wy € Ry, this leads to

lau, Wi — wi)| < (€ + 1Bl oy HCL(E)) lunl i o) Wi — WH|H1(_Q)
=€ (1+PeypeCrp(2)) lunly o) |wi.e — WH|H1(9) :
The combination of the above displayed inequalities results in
a(uy,wye) = aluy, wy) + a(uy, wye —wy)
€ ~
> —=(1 = CC(H, h,,b, OOC, (%) "' lun |1 oy Wi | 1 g
CIH(I)
— (1 4Py Cry( L) C(H, hy€,b, ) CCL () B unli oy Wil 1 o, -
Recall the definition of 8 from (4.6). If £ satisfies (5.10) then we obtain (5.11). O
We are ready to estimate the error |uH — Ugy | 2 coming from the localization.
LEMMA 5.6 Let £ satisfy (5.10). Then
2
lurr = tr12] 1,0y S Crn %) C(H, b, €, b, 0)(1 + Pey e Cri(4))

Proof. Notice that uy — uyy, € Vy is a coarse finite element function. Therefore, the inf—sup
condition (5.12) guarantees the existence of wy , € Wy, with

CIH(%) a(uy — Uy e, Wi )

Ug = UHt|g1 (o) <
€ |WH,€|H1(Q)

In view of wy, € Wy, C V), the standard Galerkin problem (2.5) and the VMS method (5.9) imply
a(uy — up e, wie) = alun — Up, Wi ).

Define wy := Igwyy — C(Iywy,) € Wy C V,,. Together with the orthogonality of Petrov—Galerkin type,
we obtain

a(upg — up, W) = a(uy — Uy, Wiy — Wi).

Taking into account that wy, — wy = (C — C;)Iywy,, the combination with a Cauchy inequality,
wy — wy € ker(Iy) and an application of Theorem 5.2 lead to

a(uH — Up, Wy — WH) S (6 + ||b||Loo(_Q)HC1H(7—1))C(H, h,E,b, g)ﬂe_l |IHWH,(|H1(_Q) |Llh - Lt[-[lHl(Q)
The stability of I from (3.1) implies the assertion.

Lemma 5.6 allows us to bound the error for the localized VMS method in the following manner.
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THEOREM 5.7 (Global error estimate for the localized VMS method) Let £ satisfy (5.10); then

|Mh - MH.K|H1(Q) /-S <CIH(%) + CIH(%)BC(H’ h’ 69b, Z)(l + PeH.h.e CIH(%))ﬁE_1>

X min |u;, _leﬂl(Q)
\’HEVH

with the constant C(H, h, €, b, £) from (5.7).
Proof. The proof follows directly from a triangle inequality, Proposition 3.1 and Lemma 5.6.

Although Theorem 5.7 provides a best approximation result, the assertion still depends on €, which
is hidden in the best approximation min,, cy,, |y — vy g, The locality in the error bound of the ideal
method from Proposition 3.1 transfers to the VMS method defined in (5.9) and results in the local error
bound in the following theorem. Note that the error from the localization still depends on the mesh Péclet
number of 7y and still contains the best approximation error on the whole domain. Nevertheless, these
ill-behaved terms are weighted by the exponentially decaying term 8°~!, where B is bounded above from
1.

THEOREM 5.8 (Local error estimate for the localized VMS method) Let £ satisfy (5.10). Then for any
K C 7y and w := UK, it holds that

H .
|Mh - MH,Z|H1((U) N CIH(W) VI{IUEI‘I}H |1y, — VH|H1(w)

3 T
+ C1, (%) C(H, h,e,b,0)(1 4 Peyy Crf( L) B! i lun — valyig) -

REMARK 5.9 (Complexity) Problem (5.9) on the coarse scale consists of O(1/H?) degrees of freedom
(DOFs). Corresponding to each of those DOFs, one localized corrector problem (5.1) has to be solved,
which relates to O(£2H?*/(h*¢)) DOFs in the worst-case scenario. If the mesh is structured, the number
of corrector problems that have to be solved can be reduced to O(£H /¢) (cf. Gallistl & Peterseim, 2015).

6. Numerical experiment

In this section, we present one simple numerical test to illustrate the theoretical convergence results
of the localized method proposed in (5.9). We take £2 = (0,1) x (0, 1), the velocity field b =
(cos(0.7),sin(0.7))7, the volume force f = 1 and € = 277. The reference solution u,, is obtained through
(2.5) by taking h = /2278,

We will compare our approach with the SUPG method. Let us briefly review the SUPG model to
(1.1) (Franca et al., 1992). Let (e, ®)7 := (o, )2 denote the L? scalar product over a triangle T € 7Tj,.
Then the SUPG method seeks uy € Vy such that

BSUPG(UIS.IUPGa ve) = Fsupc (Vi) forall vy € Vi (6.1)
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with

Bsupc ("% vir) = auy’™%, vir) + Ssupc Z (b-Vuy ™o b - Vvy)r
TeTy

and

Fsuec (Vi) = (f> Vi) y=1(0) <l o) T dsura > (b Vv,

kE’TH
Here, dsypg indicates the stability parameter, and we choose

H
S =
Sore \/gmax(e, H/«/i)

in our numerical test.

The reference solution from (2.5) and the coarse-scale solution from (5.9) and the SUPG solution
from (6.1) with H = +/22~* are depicted in Fig. 6. One can observe that the classical FEM approximation
with H = +/227* is not stable around the boundary layers (i.e., the top and right boundaries) and shows
spurious oscillations and thus fails to provide a reliable solution. Nevertheless, both the SUPG method
and the ideal method are stable and generate an accurate solution. In Fig. 7, we display the solutions for
fixed y = 0.75 to illustrate the stability and accuracy of the VMS method. We observe large oscillations
in the coarse-scale solution obtained through classical FEM when x approaches 1, while the SUPG and
the VMS methods yield reliable solutions. The smearing is restricted to one layer of elements around the
boundary. We can also conclude that the SUPG and the VMS methods reproduce the reference solution
away from x = 1 and the latter shows slightly less smearing. We want to highlight that the localization
parameter is £ = 1 for the VMS method in this example.

Tables 1 and 2 list the errors between the localized solutions (5.9) and the reference solution u;, under
various coarse mesh sizes H and localization parameters £. We observe an optimal convergence rate of
O(H) in Table 1 for the error in the H' seminorm in the domain [0, 0.75] x [0,0.75] away from the
boundary layers and an optimal convergence rate of O(H?) in Table 2 for the global error in the L? norm.
Although Theorem 5.8 guarantees optimality only under the assumption that ¢ is large enough in the
sense of (5.10), the numerical experiment demonstrates that £ = 1 is sufficient for an accurate solution,
which implies a potentially huge computational reduction.

The convergence rate for uy,; with various € in a range from 273 to 2% is shown in Figs 8 and 9.
The error is stable and of order O(H) with respect to the H' seminorm in a region away from boundary
layers and of order O(H?) in the global L? norm with a preasymptotic effect for smaller values of €. For
comparison, the nodal interpolation error (i.e., the error from the ideal method) in the global L? norm is
depicted, which agrees with ” Uy — Up H 22 Very well. This justifies the fast convergence of the localized
method with respect to the localization parameter £ for all of the considered values of €.

7. Conclusions

In this article, a singularly perturbed convection—diffusion equation was considered, and we obtained
a stable locally quasi-optimal variational multiscale method based on the nodal interpolation operator.
Because of the high complexity involved in solving the global correctors, which account for the main
component of the VMS method, a further model reduction was proceeded by localization techniques
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FiG. 6. Reference solution (top left), classical FEM approximation (top right), SUPG approximation (bottom left) and multiscale
approximation for £ = 1 (bottom right) for € = 2~7 and H = /227,

based on the LOD method. This localization employs local patches that depend on the velocity field b
and the singular perturbation parameter €. The error of the localization decays exponentially. We also
provided a numerical experiment to illustrate our theoretical results.

The stability constant of the nodal interpolation operator that occurs in the error estimate depends
logarithmically on H/h (and so on ¢). In the three-dimensional case, this stability estimate depends
polynomially on H /h. Therefore, a generalization of the proposed method to three dimensions does not
seem reasonable.



1250

G.LIETAL.
reference solution
0.6 classical FEM
- X - SUPG
— =4 - multiscale FEM / )E
§
\
0.4 \\
\
\
\
\
0.2 \
\
\
0 k
0 0.2 0.4 0.6 0.8 1

FiG.7. Reference solution, classical FEM, SUPG and multiscale approximation for £ = 1 at the line y = 0.75 on a mesh with
mesh size H = +/227% for e =277,

TABLE 1 The error |V (w, — un o)z, for 2, = 10,0.75] x [0,0.75] for different localization
parameters £ and mesh sizes H for e =277

=1 £=2 £=3 £=4 £=5 £=6

H =422 5.14e—02 5.14e—-02 5.14e—02 5.14e—-02 5.14e—-02 5.14e—-02
H=+22"* 2.57e—02 2.57e—02 2.57e—02 2.57e—02 2.57e—02 2.57e—-02
H =227 1.27e—02 1.27e—02 1.27e—02 1.27e—-02 1.27e—-02 1.27e—-02
H =422 6.23e—03 6.23e—03 6.23e—03 6.23e—03 6.23e—03 6.23e—03

TABLE 2 The error ||uy—ug ¢ || 2o, for different localization parameters £ and mesh sizes H fore = 277

t=1 £=2 £=3 £=4 £=35 £=6
H =0.17678 9.45e—02 9.45e—02 9.45e—02 9.45e—02 9.45e—02 9.45e—02

H = 0.088388 5.34e—02 5.34e—02 5.34e—02 5.34e—02 5.34e—-02 5.34e—02
H =0.044194 2.31e—02 2.32e—02 2.32e—-02 2.32e—02 2.32e—-02 2.32e—-02
H = 0.022097 7.25e—03 7.27e—03 7.27e—03 7.27e—03 7.27e—03 7.27e—03

The local patches in the localized computation of the corrector depend on €. It is an open question
whether this is optimal or whether a further reduction or simplification is possible.
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