Computation of eigenvalues by numerical upscaling
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Abstract We present numerical upscaling techniques for a class of linear second-order
self-adjoint elliptic partial differential operators (or their high-resolution finite element
discretization). As prototypes for the application of our theory we consider bench-
mark multi-scale eigenvalue problems in reservoir modeling and material science.
We compute a low-dimensional generalized (possibly mesh free) finite element space
that preserves the lowermost eigenvalues in a superconvergent way. The approximate
eigenpairs are then obtained by solving the corresponding low-dimensional algebraic
eigenvalue problem. The rigorous error bounds are based on two-scale decompositions
of H(l)(Q) by means of a certain Clément-type quasi-interpolation operator.
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1 Introduction

This paper presents and analyzes a novel numerical upscaling technique for comput-
ing eigenpairs of self-adjoint linear elliptic second order differential operators with
arbitrary positive bounded coefficients. The precise setting of the paper is as follows.
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Let @ C RY be a bounded polyhedral Lipschitz domain and let A € L>®(Q, R4x?)

sym
be a matrix-valued coefficient with uniform spectral bounds 0 < o < B8 < o0,

o(Ax)) C la, B] (1.1)

foralmost all x € ©2. We want to approximate the eigenvalues of the prototypical oper-
ator — div(AVe). The corresponding eigenproblem in variational formulation reads:
find pairs consisting of an eigenvalue A € R and associated non-trivial eigenfunction
u € V := Hy () such that

a(u,v) := / (AVu) - Vodx = k/ uvdx =: Au, v) 2 (1.2)
Q Q

for all v € V. We are mainly interested in the lowermost eigenvalues of (1.2) or, more
precisely, in the lowermost eigenvalues of the discretized problem: find A, € R and
associated non-trivial eigenfunctions u;, € V, C V such that

a(up, v) = rp(up, V)2 forallv e V. (1.2.h)

Here and throughout the paper, the discrete space Vj, C V shall be a conforming finite
element space of dimension Nj, based on some regular finite element mesh 7, of width
h.

Popular approaches for the computation of these eigenvalues include Lanczos/
Arnoldi-type iterations (as implemented, e.g., in [23]) or the QR-algorithm applied
directly to the Nj-dimensional finite element matrices. If a certain structure of the
discretization can be exploited (e.g., a hierarchy of finite element meshes and/or
spaces) some preconditioned outer iteration for the eigenvalue approximation may
be performed and linear problems are solved (approximately) in every iteration step
[13,19,20]; see also [1] and [27] and references therein.

Our aim is to avoid the application of any eigenvalue solver to the fine scale dis-
cretization (1.2.h) directly. We introduce a second, coarser discretization scale H > h
instead. On the corresponding coarse mesh 7y, we compute a generalized finite ele-
ment space V. of dimension Ny <« Nj,. The solutions (g, uc) € R x V; of

a(uc, v) = Ap(uc, V)2 forallve Vg, (1.2.H)

then yield accurate approximations of the first Ny eigenpairs of (1.2.h) and, hence,
of the first Ny eigenpairs of (1.2) (provided that Vj, is properly chosen).

The computation of the coarse space V. involves the (approximate) solution of Ny
linear equations on the fine scale (one per coarse node). We emphasize that these linear
problems are completely independent of each other. They can be computed in parallel
without any communication.

The error Ay — Aj between corresponding eigenvalues of (1.2.H) and (1.2.h),
1.e., the error committed by the upscaling from the fine discretization scale /4 to the
coarse discretization scale H, is expressed in terms of H. Without any assumptions
on the smoothness of the eigenfunctions of (1.2) or (1.2.h), we prove that these errors
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are at least of order H*. Note that a standard first-order conforming finite element
computation on the coarse scale yields accuracy H?> under full H>($2) regularity, see
e.g. [22]. Since our estimates are both, of high order (at least H*) and independent
of the underlying regularity, the accuracy of our approximation may actually suffice
to fall below the error A, — A of the fine scale discretization which is of order Ch2
where both the constant C and the exponent s € [0, 1] depend on the regularity of the
data (convexity of €2, differentiability and variability of A) in a crucial way.

The idea of employing a two-level techniques for the acceleration of eigensolvers is
not new. The two-grid method of [37] allows certain post-processing (solution of linear
problems on the fine scale). For standard first-order conforming finite element coarse
spaces, this technique decreases the eigenvalue error from H? to H* (up to fine scale
errors as above) if the corresponding eigenfunctions are H>(£2)-regular. The regularity
assumption is essential and not justified on non-convex domains or for heterogeneous
and highly variable coefficients. However, the post-processing technique applies as
well to the generalized finite element coarse space V; and yields eigenvalue errors of
order H® without any regularity assumptions.

In cases with singular eigenfunctions (due to re-entrant corners in the domain or
isolated jumps of the coefficient), one might as well use modern mesh-adaptive algo-
rithms driven by some a posteriori error estimator as proposed and analyzed, e.g.,
in [3,5,6,10-12,22,24,26]. We are not competing with these efficient algorithms.
However, adaptive mesh refinement has its limitations. For instance, if the diffu-
sion coefficient A is highly variable on microscopic scales, the mesh width has to
be sufficiently small to resolve these variations [31]. For problems in geophysics or
material sciences with characteristic geometric features on microscopic length scales,
this so-called resolution condition is often so restrictive that the initial mesh must be
chosen very fine and further refinement exceeds computer capacity. Our method is
especially designed for such situations which require coarsening rather than refine-
ment.

A particular application of our methodology is the computation of ground states of
Bose-Einstein condensates as solutions of the Gross—Pitaevskii equation. Here, certain
resolution (small ) is required in order to ensure unique solvability of the discrete non-
linear eigenvalue problem. It is already exposed in [16] that our upscaling approach
leads to a significant speed-up in computational time because the expensive iterative
solver for the non-linear eigenproblem needs to be applied solely on a space of very
low dimension.

The main tools in this paper are localizable orthogonal decompositions of H(l)(Q)
(or its subspace V},) into coarse and fine parts. These decompositions are presented
in Sect. 3. The two-level method for the approximation of eigenvalues is presented in
Sect. 4. Section 5 contains its error analysis. The efficient local approximation of the
coarse space, the generalization to non-nested grids, a post-processing technique, and
further complexity issues are discussed in Sect. 6. Finally, Sect. 7 demonstrates the
performance of the method in numerical experiments.

In the remaining part of this paper, we will frequently make use of the notation
b1 < by which abbreviates by < Cb,, with some multiplicative constant C > 0 which
only depends on the domain €2 and the parameter y (cf. (2.1) below) that measures
the quality of some underlying finite element mesh. We emphasize that the C does not
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depend on the mesh sizes H, h, the eigenvalues, or the coefficient A. Furthermore,
by = by abbreviates by < by < by.

2 Finite element spaces and quasi-interpolation

This section presents some preliminaries on finite element meshes, spaces, and inter-
polation.

2.1 Finite element meshes

We consider two discretization scales H > h > 0. Let 7y (resp. 7;,) denote corre-
sponding regular (in the sense of [8]) finite element meshes of €2 into closed simplices
with mesh-size functions 0 < H € L°°(R2) defined by H|r = diam T =: Hy for all
T € Ty (resp. 0 < h € L°°(RQ) defined by k|, = diam ¢ =: h, for all t € 7). The
mesh sizes may vary in space but we will not exploit the possible mesh adaptivity in
this paper.

The error bounds, typically, depend on the maximal mesh sizes || H || Lo (q). If no
confusion seems likely, we will use H also to denote the maximal mesh size instead
of writing || H || oo(g). For the sake of simplicity we assume that 7}, is derived from
Ty by some regular, possibly non-uniform, mesh refinement. However, this condition
is not essential and Sect. 6.2 will discuss possible generalizations.

As usual, the error analysis depends on the constant ¥ > 0 which represents the
shape regularity of the finite element mesh 7

ith damT o e, @.1)
.= max W1 = — 10r s .
Y TeTy YT YT diam Bt H

where Bt denotes the largest ball contained in 7'.

2.2 Finite element spaces

The first-order conforming finite element space corresponding to 7y is given by
Vg :={v eV | VT € Ty, v|r is a polynomial of total degree < 1}. (2.2)

Let Ny denote the set of interior vertices of 7y . For every vertex z € Ny, let¢, € Vg
denote the corresponding nodal basis function (tent/hat function) determined by nodal
values

¢,(z) =1 and ¢,(y) =0 forall y £z € Ny.

These nodal basis functions form a basis of Vy. The dimension of Vg equals the
number of interior vertices,

Ny :=dim Vy = |NVyl.
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Let V), D Vy denote some conforming finite element space corresponding to the
fine mesh 7},. It can be the space of continuous piecewise affine functions on the fine
mesh or any other (generalized) finite element space that contains Vg, e.g., the space of
continuous p-th order piecewise polynomials as in [33]. By N, := dim V), we denote
the dimension of V},. For standard choices of V},, this dimension is proportional to the
number of interior vertices in the fine mesh 7j,.

2.3 Quasi-interpolation

The key tool in our construction will be the bounded linear surjective Clément-type
(quasi-)interpolation operator Zy : H(l)(Q) — Vp presented and analyzed in [9].
Given v € H(l)(Q), Ihyv = ZZE Ny (ZHv)(2)¢; defines a (weighted) Clément inter-
polant with nodal values

v, 92120

(1, d2) 12

for z € Npg. The nodal values are weighted averages of the function over nodal
patches w. := supp ¢,. Recall the (local) approximation and stability properties of
the interpolation operator 7y [9]: There exists a generic constant Cz,, such that for
all v € H)(2) and for all T € 7y it holds

Zpv)(z) == (2.3)

HT_I v —IHU||L2(T) + V(v —IHU)”LZ(T) < Czgy ||VU||L2(wT), (2.4)

where wy = U{K € Ty | T N K # §J}. The constant Cz,, depends on the shape
regularity parameter y of the finite element mesh 7y (see (2.1) above) but not on Hr.

Note that there exists a constant Co,; > 0 that only depends on y such that the
number of elements covered by wr is uniformly bounded (w.r.t. T') by Cyy,

max {K € Ty | K C wr}| < Cq1. (2.5)

TeTy

Both constant, C7,, and Co, may be hidden in the notation “S” introduced at the end
of Sect. 1.

3 Two-scale decompositions

Two-scale decompositions of functions u € V), into some macroscopic/coarse part
uc plus some microscopic/fine part uy with a certain orthogonality relation are at the
very heart of this paper. The macroscopic or coarse part will be an element of a low-
dimensional (classical or generalized) finite element space based on some coarse finite
element mesh. The microscopic or fine part may oscillate on fine scales that cannot
be represented on the coarse mesh.

We stress that all subsequent results are valid even if 4 = 0, i.e., if V), is replaced
withV = HOl (£2). Actually, the structure of V}, being the space of continuous piecewise
polynomials is never exploited. As far as the theory is concerned, V), could be any
space (finite or infinite dimensional) that satisfies Vg C V), C HO1 (2).
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The 1nitial coarse space Vy may as well be generalized. This will be discussed in
Sect. 6.2.

3.1 L?-orthogonal two-scale decomposition

We define the fine scale space
Vi := kernel (IH|Vh) c Vy,

which will take over the role of the microscopic/fine part in all subsequent decompo-
sitions.

Our particular choice of a quasi-interpolation operator gives rise to the follow-
ing orthogonal decomposition. Remember that (e, );2q) = Jo, @ @ dx abbreviates

the canonical scalar product in L2(Q) and let || o || := /(o ®) 12(q) abbreviate the
corresponding norm of L%(Q).

Lemma 3.1 (L>-orthogonal two-scale decomposition) Any function u € Vj, can be
decomposed uniquely into the sum of uy := Ly |\_/;11 (Zyu) e Vgandus :=u—upy €
Vi with

(umg,ur) 2 = 0. (3.1)

The orthogonality implies stability in the sense of
e |2+ e |1 = ull?.

Proof of Lemma 3.1 ltis easily verified that the restriction of Zy on the finite element
space Vg is invertible. This yields the decomposition.

For the proof of orthogonality, let vy = ZZE Ny VH (2)¢, € Vy and vy € Vi be
arbitrary. Since Zyyve = 0, we have that (¢, vf)2(q) = (Zrvr)(2) fQ ¢, dx = 0 for
all z € Ny. This yields

(Vu, vp)L2@) = Z VH (2) (¢, V1) 2 =0

zeNy
and shows that Vi and V; are orthogonal subspaces of Vj,. O
We may rewrite Lemma 3.1 as
Vi =Vu ®Vy and (Vi, Vi)2(q) = 0. (3.2)

Remark 3.1 (L*-projection onto the finite element space) Note that the operator Zy is
well-defined as a mapping from L?(2) onto V. In particular, it is stable in the sense
that for any v € L?(2), itholds that | Zy v || < ||v]|. From the arguments of Lemma 3.1

one easily verifies that the L2-orthogonal projection H%,Z : L?(2) — Vy onto the
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finite element space Vy may be characterized via the modified Clément interpolation
(2.3),
2 —
My, =Zuly, Tn.

Furthermore, it holds V; = kernel(l’[‘L/iI lv, ), 1.e., Vr might as well be characterized via

2 . :
H‘L,H. This does not change the method. For theoretical purposes, we prefer to work
with 7y because it is a local operator.

3.2 a-Orthogonal two-scale decomposition

The orthogonalization of the decomposition (3.2) with respect to the scalar product
a(e, ®) := fQ (AVe) - V e dx yields the definition of a generalized finite element
space V., that is the a-orthogonal complement of V; in V). Given v € Vj,, define the
a-orthogonal fine scale projection operator Prv € Vr by

a(Prv, w) = a(v, w) forallw e V;.

We define the energy norm ||| e ||| := +/a(e, @) (the norm induced by the scalar product
a).

Lemma 3.2 (a-orthogonal two-scale decomposition) Any function u € Vj, can be
decomposed uniquely into u = u¢ + ug, where

and
ug := Pru € Vi = kernel(Zy|y,).

The decomposition is orthogonal

a(uc, ur) =0, (3.3)
and, hence, stable in the sense of
et 117+ e[ = el (3.4)
In other words,
Vi=Ve®Vy and a(Ve, Vt) =0. (3.5)

We shall emphasize at this point that the decompositions in Lemma 3.1 and
Lemma 3.2 are different in general. In particular, the fine scale part vy may not be
the same.

The orthogonalization procedure (with respect to a(e, @)) does not preserve the
L?-orthogonality. However, the key observation of this section is that the resulting
decomposition (3.5) is almost orthogonal in L%(Q).
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Theorem 3.3 (L2-quasi-orthogonality of the a-orthogonal decomposition) The
decomposition V, = V. @ Vi from Lemma 3.2 is Lz-quasi-orthogonal in the sense

that for all v. € V. and all vy € Vi, it holds

(e, v 120y S HAIVell Vel < o™ H2 [l wel e .
The decomposition is stable in the sense that

ol + 11H ~ oell? < el ve + eI,
Proof Given any v, € V; and vy € Vi, Lemma 3.1 implies that
(Zrve, vi)p2(0) = 0.
Since Zy vy = 0, the Cauchy—Schwarz inequality, (2.4), and (2.5) yield
(Ve, ) 12y = (We — T ve, vr — Tuvp) 2y S HA Vel Vol

This is the quasi-orthogonality. The same arguments show that
(H v, H ) 2y = (H_l (vf — Zpvp), H™ ' (vp — Iva))

2
S D0 IV,
TeTly

- 2
S o el

L%(Q)

This, Friedrichs’ inequality
vl < ™" diam Q| V],

and (3.4) readily prove the stability estimate.

4 Upscaled approximation of eigenvalues and eigenfunctions

(3.6)

(3.7)

(3.8)

This section presents a new scheme for the approximation of eigenvalues and eigen-
functions of (1.2.h) or (1.2). Section 4.1 recalls the variational formulation and some
characteristic properties of the problem. The new upscaled approximation is then

introduced in Sect. 4.2.

4.1 Variational formulation and fine scale discretization

For problem (1.2), there exists a countable number of eigenvalues 19 (¢ € N) and
corresponding eigenfunctions u'®) € V. Recall their characterization as solutions of
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the variational problem
a@'®,v) = 29w, v)2q forallveV. 4.1)

Since A is symmetric, all eigenvalues are real and positive. They can be sorted ascend-
ing

Depending on the actual domain €2 and the coefficient A, there may be multiple eigen-
values. A multiple eigenvalue is repeated several times according to its multiplicity
in the enumeration above. Let u© (¢ € N) be normalized to one in L%(), i.e.,
lu®]|| = 1. It is well known that the eigenfunctions enjoy (or, in the case of multiple
eigenvalues, may be chosen such that they fulfill) the orthogonality constraints

a@®, u™y = @O, u™) 20 =0 ifl#£m. 4.2)

The Rayleigh—Ritz discretization of (4.1) with respect to the fine scale finite element
space V), reads: find )»ff) € R and non-trivial u}lg) € V}, such that

a(u§l£)’ U) = )\‘](f) (Mgf)9 U)LZ(Q) forall v e Vh (43)

Since V), 1s a finite-dimensional subspace of V, we can order the discrete eigenvalues
similar as the original ones

(1) 2) 3 (Nn)

Again, multiple eigenvalues are repeated according to their multiplicity. Let ugf)

(¢ = 1,2,..., Ny) be normalized to one in L%(Q), i.c., ||u;f)|| = 1. The discrete
eigenfunctions satisfy (or, in the case of multiple eigenvalues, can be chosen such that
they satisfy) the orthogonality constraints

@) (m)):( () (m)) —0 if/ 4.4
a(uh U, u, ,uy @) if £ # m. 4.4)

We do not intend to solve the fine scale eigenproblem (4.3). We aim to approximate
its eigenpairs ()L,(f) , u;f) ) with the help of the coarse space V; defined in Lemma 3.2.

4.2 Coarse scale discretization

Recall the definition of the coarse space

Ve =0 =Pr)Vu
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from Lemma 3.2. This means that V, is the image of Vy under the projection operator
1 — Py, where P is the a-orthogonal projection onto the space

Vi:={veV,|Zyv =0}
Since the intersection of Vi and Vt is the trivial subspace (cf. Lemma 3.1), it holds
dim VC = dim VH = NH.

Moreover, the images of the nodal basis functions ¢, (z € Ny) under (1 — P) yield
a basis of V.,
Ve = span{(1 — Pg)¢; | z € N} (4.5)

In order to actually compute those basis functions, we need to approximate Ny
solutions v, = Pr¢p, € V¢ of

a(y.,v) =a(¢;,v) forallv e V;. (4.6)

These problems are linear. The only difference to a standard Poisson problem is that
there are some linear constraints hidden in the space Vr, that is, the quasi-interpolation
of trial and test functions vanishes. In practice, these constraints are realized using
Lagrange multipliers.

The linear problems (4.6) may be solved in parallel. Moreover, Sect. 6.1 below will
show that these linear problems may be restricted to local subdomains of diameter
~ |log(H)|H centered around the coarse vertex z, so that the complexity of solving
all corrector problems exceeds the cost of solving one linear Poisson problem on the
fine mesh only by a factor that depends algebraically on |log(H)|.

The Rayleigh—Ritz discretization of (4.3) [and (4.1)] with respect to the generalized

finite element space V. reads: find k%) € R and non-trivial u((;e) € V. such that
¢ @ (,
a (ug ), v) = Ay (u((: ), U)Lz(g) forall v e V.. 4.7)

The assembly of the corresponding finite element stiffness and mass matrices requires
only the evaluation of the corrector functions ¥, = Pr¢, € Vi computed previously.
In general, these matrices are not sparse. However, either the dimension of the coarse
problem Ny < Ny, is so small that the lack of sparsity is not an issue or the matrices
may be approximated by sparse matrices with negligible loss of accuracy (see Sect. 6.1
below).

The discrete eigenvalues are ordered (multiple eigenvalues are repeated according
to their multiplicity)

(€] () 3) (Nu)
0 <Ay <Ay <Ay <---<xr,™.

Let also uff) (¢ =1,2,..., Ny)be normalized to one in L2(2), i.e., (uée), uée))Lz(Q)
= 1. The discrete eigenfunctions satisfy (or, in the case of multiple eigenvalues, can
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be chosen such that they satisfy) the orthogonality constraints

a (u((:e)’ ué’")) _ (u((:e)’ u((:m))Lz(Q) —0 if¢+£m. 4.8)

5 Error analysis

In the subsequent paragraphs we will present error bounds for the approximate eigen-
values and eigenfunctions based on the variational techniques from [34] (which are
based on [2] on their part); see also [4].

5.1 Two-scale decomposition revisited

The eigenfunctions allow a different (with respect to Sect. 3) characterization of a
macroscopic function, that is, any function spanned by eigenfunctions related to the ¢
lowermost eigenvalues. Define

Ey := span {ugll), cee ug)} . (5.1

We will have a closer look at the quasi-orthogonality result of Lemma 3.2 given some
macroscopic function u € Ey.

Lemma 5.1 (L?-quasi-orthogonality of the a-orthogonal decomposition of macro-
scopic functions) Let £ € N and let u = u. + uy € Eg with ||u|| = 1, where u. € V.
(resp. us € Vr) denotes the coarse scale part (resp. fine scale part) of u according to
the a-orthogonal decomposition in Lemma 3.2. Then it holds

Nuell] < A, (5.2)

( 2@))3/2
uell| S € ~—%— H?, and (5.3)
o
NONS
|(uc, Mf)L2(Q)| < E(%) H, (5.4)
Proof Let §; < 1, j = 1,2,..., £, be the coefficients in the representation of u

by eigenfunctions, that is, u = 21}7‘:1 ) juzj ). Then (5.2) follows from the fact that

(1 —Pr) is a projection and the obvious bound u]]]? < kgf).
For the proof of (5.3), we employ some algebraic manipulations and Eq. (4.3),

l 14
uell* = a@u,up) = 8y up) =D 80wy up) 2. (5.5)
j=1 j=1
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Lemma 3.1, the Cauchy—Schwarz inequality, (2.4), and (2.5) yield
() —1 201,
(" e) . g = @ H2 I e (5:6)

(cf. (3.8)). The combination of (5.5)~(5.6), ||[u\”|[|2 = 2}/ < (" and §; < 1 yields
the upper bound of |||u¢||].

The inequality (5.4) follows readily from Theorem 3.3 and the bounds (5.2)—(5.3).

O

Remark 5.1 (Improved L2-quasi-orthogonality under regularity) Consider the full
space V;, = V. Then, in certain cases, e.g., if €2 is convex and the coefficient
A is constant, we have that any macroscopic function u € E; is in H2(2) and
1V 2u|| < A® Jor||lu||. Such an instance of regularity gives rise to an additional power
of H1® /& in the estimates (5.3) and (5.4) in Lemma 5.1. This is due to the approxi-
mation property

lv=Znvll S H[vlp ) (5.7)

for v € V NH3(), and the possible modification

H320)

(um,uf) _ (uo‘) — TyuD _IHuf) <
L2(Q) L2(Q) o

[leee]l]

of (5.6).

5.2 Estimates for approximate eigenvalues
We first introduce the Rayleigh quotient, which is defined for non-trivial v € V), by

__a(v,v)
R(w) = w0

Recall that the £th eigenvalue of (4.3) is characterized via the minmax-principle (which
goes back to Poincaré [30])

MO = min  max R(v), (5.8)

SeSi(Vy) veS\{0}

where S¢ (V') denotes the set of ¢-dimensional subspaces of V},. This principle applies
equally well to the coarse problem (4.7), i.e.,

) .
Ay = min max R(v 5.9
H ™ 6e8,(Ve) vesS\(0) ) (59)

characterizes the £th discrete eigenvalue (¢ < Np). The conformity V. C V,(C V)
yields monotonicity

O <) a? <2 foralle=1,2,..., Ny. (5.10)
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The following theorem gives an estimate in the opposite direction.

Theorem 5.2 (Bound for the eigenvalue error) Let H be sufficiently small so that
H < ¢1/4 /ﬁ. Then it holds that
h

NOBNG ©\?
H—ehgg Zh )} gt forallt =1,2,..., Ny. (5.11)
Ay o

Proof Recall the definition of E; in (5.1) and define

(0)
o, = max [, up) 200y + 2Qe, ur) ;2.0
H weEp:(uu) 2 g = L=(2) ¢ L2(Q)

where u. € V; (resp. ur € Vi) denotes the coarse scale part (resp. fine scale part) of
u € E; according to the a-orthogonal decomposition in Lemma 3.2. The L2-norm of
ur satisfies the estimate

||Mf||2 = (u, Mf)LZ(Q) — (uc, uf)LZ(Q)
=W —Tyu,us — IHuf)LZ(Q) — (uc, uf)L2(Q)

©\?
)\'h 4
S o H™ + |(ue, ur) 2l

which follows from Lemma 3.1, (2.4), and (2.5). Hence, Lemma 5.1 shows that

© Ay ’ 4

If H is chosen small enough so that al(f) < % (e, H < ¢~ 1/4 ~777)- then Lemma 6.1
in [34] shows that

—1
M= (1=a) 40 = (14201) 247,

)
H

Inserting our estimate for o,,” readily yields the assertion. O

The triangle inequality allows to control the approximation error with respect to the
continuous eigenvalues (4.1) by

) ) Q) ) /g4

The first term )\g) — 1 depends on the choice of the space V}, and the regularity of
corresponding eigenfunctions in the usual way.
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Remark 5.2 (Improved eigenvalue error bound for smooth eigenfunction) With regard
to Remark 5.1, the error bound in Theorem 5.2 may be improved in the ideal case
V =V}, provided that the first ¢ eigenfunctions are regular in the sense of || V2uD | <
1) /. The improved bound reads

O _ 5 ©\>
A A A
ZH O Z <o\ =) B foralle=1,2,...,Ny. (5.12)
A0 o

This improved bound applies also to the case where V), is a finite element space if &
is sufficiently small.

The improved bound might still be pessimistic in the sense that the error in the
¢th eigenvalue/vector depends on the regularity of all previous eigenfunctions. The
recent theory [21] shows that this is not necessarily true. Moreover, there might be
smoothness also in the single summands of the two-scale decomposition which is not
exploited.

5.3 Estimates for approximate eigenfunctions

We turn to the error in the approximate eigenfunctions. Again, we follow the receipt
provided in [34].

Theorem 5.3 (Bound for the eigenfunction error) Let )»Ef) be an eigenvalue of mul-

_ A§£+r—1)

tiplicity r, i.e., )»(E) = with corresponding eigenspace spanned by

the orthonormal basis {u(eﬂ)} :1. Let the pairs (k(z), u(z)) e (X(HF_I) u((;Hr_l))

be the Rayleigh—Ritz approximations solving Eq. (4.7) with ||u(z+] o= 1 for
j=0,1,...,r=LIft+r—1<Nyandif HS 730+ p)=153 Ja/a?
is sufficiently small, then there exist an orthonormal basis of span({u( + )} ;})), let us
denote the basis functions u( +J) , such that forall j =0,1,...,r — 1,
’ (Z))?/Z ( (3))2
12 —uet i < vE Y2 g2 ey ) S HL(5.13)
. . 5O /
iy ™ —uED )< e+ p)(f) e, (5.14)

0
2

where p = Max;¢(¢ ¢41,....04r—1} 707 -
(A, —Ag |

Proof The analysis presented in [34, Lemma 6.4 and Theorem 6.2] shows that, for

any j =0,1,.. — 1, there 1s a function u( ) ¢ span({u(“'l)}’ 1) such that

H “+j) ~(€+])H < (1+,0)“Pf1/l(£+j)”
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According to the a-orthogonal decomposition in Lemma 3.2, Pfugfﬂ ) is the fine scale

part of u}fﬂ ) Hence, the interpolation error estimate (2.4) and Lemma 5.1 yield

r—1 " 5 5 (0 3

. L
Z”“é J)_u((:u;)H S,(l—l—,o)zﬁz(%) e
j=1

If the right-hand side is small enough, i.e., if the multiplicative constant hidden in

H < 1B+ p)~V 3‘/05 / )»;f) is sufficiently small, the linear transformation of the
orthonormal basis {u&zﬂ ) }r.;%) which defines the set of functions {ft((:“_j )};;5 may be
replaced with an orthogonal transformation, without any harm to the estimate. In this
regime, the application of the inverse orthogonal transformation to the errors proves
the L2 bound (5.14).

For the proof of (5.13), observe that for any v € span({u%_"l)}?;(])) with [[v]| =1
it holds

o = w012 = 2 =207 (0,00) | 42

2@
ENCY S © © _,©
Y (2 2 (v, u )Lz(m) + Al 2l
2
=14 o= w25 = 41, (5.15)

The assertion then follows by combining Eq. (5.15) with v = ii;fﬂ ), (5.14), and
Theorem 5.2. O

6 Practical aspects

This section discusses the efficient approximation of the corrector functions Pr¢, from
(4.6) by localization, the generalization to non-nested meshes, some post-processing
technique, and the overall complexity of our method.

6.1 Localization of fine scale computations

The construction of the coarse space V. is based on the fine scale equations (4.6) which
are formulated on the whole domain 2. This makes them expensive to compute.
However, in [25] it was shown that Pr¢. decays exponentially fast outside of the
support of the coarse basis function ¢,. We specify this feature as follows. Let k € N.
We define nodal patches w; 1 of k coarse grid layers centered around the node z € Ny
by

w1 =suppp, =U{T € Ty |z € T},
wok =U{T €Ty | T Nwyp—1 # B} for k > 2. (6.1)
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The result in the decay of Pr¢, in [25] can be expressed as follows. For all vertices
z € Ny and for all k € N, it holds

_ 1/2
IAY2VPrell 2 o S € P HIPege . (6.2)

For moderate contrast B/«, this motivates the truncation of the computations of the
basis functions to local patches w, . We approximate . = Pr¢p, € V¢ from (4.6)
with ¥; r € Vi(w k) := {v € V¢ | vl@\w,, = 0} such that

a(Y; k,v) =a(¢;,v) forallv e Vi(w; ). (6.3)
We emphasize that

Vi(w. k) = {v e Vi | vigw, =0, Yy e Ny Nk 1 (v, ¢y) 12y = 0},

1.e., in a practical computation with lagrangian multipliers only one linear constraint
per coarse vertex in the patch w, x needs to be considered.
The localized computations yield a modified coarse space V¥ with a local basis

V¥ = span{¢, — Y.k | z € Nu). (6.4)

The number of non-zero entries of the corresponding finite element stiffness and mass
matrix is proportional to kY Ny (note that we expect NIZ_I non-zero entries without
the truncation). Due to the exponential decay, the very weak condition k ~ |log H |
implies that the perturbation of the ideal method due to this truncation is of higher order
and the estimates in Theorems 5.2 and 5.3 remain valid. We refer to [25] for details
and proofs. The modified localization procedures from [15] and [18] with improved
accuracy and stability properties might as well be applied.

6.2 Non-nested meshes and general coarsening

In Sect. 2.1, we have assumed that 7}, is derived from 7y by some regular refinement,
i.e., that the finite element meshes 7;, and 7y are nested. This condition may be
impracticable in relevant applications, e.g., in cases where the coefficient encodes
microscopic geometric features such as jumps that require accurate resolution and the
reasonable resolution can only be achieved by highly unstructured meshes (cf. Fig. 3
in Sect. 7.3 below).

A closer look to the previous error analysis shows that the nestedness of the under-
lying meshes is never used explicitly but enters only implicitly via the nestedness of
corresponding spaces Vy C V). It turns out that all results generalize to the case where
the standard finite element space Vy on the coarse level is replaced with some general
(possibly mesh free) coarse space Vi C Vj, with a local basis {¢~> j}jess J being some
finite index set. Precise necessary conditions for the theory read:
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(a) Local support and finite overlap. For all j € J, diam(supp é i) S H and there
1s a finite number C, independent of H such that no point x € €2 belongs to the
support of more than Cy; basis functions.

(b) Non-negativity, continuity and boundedness. For all j € J, é i — [0, 1]1is
continuous and ||Vq§_,~ oo S HTL

(¢) Partition of unity up to a boundary strip. Forall x € ,itholds that dist(x, 92) <
H OijeJ ¢j(x) = 1.

Under the conditions (a)—(c), the operator Zy, defined by Zyv := > jeJ m j

for v € V, satisfies the required stability and approximation properties. Their proofs
may easily be extracted from [9], where a slightly modified operator is considered.
For details regarding the generalization of the decompositions and error bounds of this
paper to some general coarse space characterized by (a)—(c), we refer to [15], where
everything (including the exponential decay of the coarse basis and its localization)
has been worked out for a linear boundary value problem.

The conditions (a)—(c) are natural conditions for general coarse spaces used in
domain decomposition methods and algebraic multigrid methods; see [36, Ch. 3.10]
for an overview and [32] for a particular construction without any coarse mesh. A
very simple mesh-based construction which remains very close to the standard finite
element space Vg can be found in [35, Section 2.2] and works as follows. Given some
regular fine mesh 7j,, consider an arbitrary regular quasi-uniform coarse mesh 7y with
H > h. Let Vj (resp. Vi) be the corresponding finite element space of continuous
Th-piecewise (resp. Ty -piecewise) affine functions and let / ,I;Odal :Vy C CUQ) —
V), denote the nodal interpolation operator with respect to the fine mesh. The nodal
interpolation of standard nodal basis functions of the coarse mesh defines a nested
initial coarse space

Vi := span {Igodalqsz Iz e NH} c v, 6.5)

and V. := (1 — Pf)f/g is the corresponding coarse space of our method. The desired
properties (a)—(c) of Vg are proven in [35, Lemma 2.1]. Section 7.3 shows numerical
results based on this construction.

6.3 Postprocessing

As already mentioned in the introduction, the two-grid method of [37] allows a certain
post-processing (solution of linear problems on the fine scale) of coarse eigenpairs. So
far, this method was mainly used to post-process approximate eigenpairs of standard
finite element approximations on a coarse mesh, i.e., approximations with respect
to the space Vp. However, the framework presented in [37] is more general and
readily applies to the modified coarse space V.. Given some approximate eigenpair

(Ag), uée)) € Rx V. with ||u((;€) | = 1thatsolves (4.7), the post-processed approximate
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)

eigenfunction u .

€ V), is characterized uniquely by

¢ 0, @
a (ug,l))ost’ U) = )‘Sr-[) (uf; ), V)12(Q) (6.6)

for all v € V). The corresponding post-processed eigenvalue is

() )

) L a(uc,post’ uc,post
)”H,post = 7 7 . (6.7)
(£) )
(”c,post’ uc,post)Lz(Q)

The error analysis of [37] relies solely on the nestedness V. C Vj, and, in essence,
yields the error estimates

2O

H post h c,post

2 2
S (0 =0) + () Nl — w2

4 14 14
=] = el = oI

The first estimate follows from (5.15) which remains valid for uée) and k%) replaced

ity 4, (O ©)
with g o and Ay

dard inequalities (cf. [37, Eq. (4.3)]). Hence, with uﬁf) suitably chosen, Theorems 5.2
and 5.3 imply that the error of the post-processed eigenvalues (resp. post-processed
eigenfunctions) is at least of order H® (resp. H*). As for all our previous results, the
rates do not depend on any regularity of the eigenfunctions. In the third numerical
experiment of Sect. 7 we will also show results for this post-processing technique.

The second estimate follows from the construction and stan-

6.4 Complexity

Finally, we shall comment on the overall complexity of our approach. Consider quasi-
uniform meshes of size H and # and corresponding conforming first-order finite
element spaces Vg and V. We want to approximate the eigenvalues related to V).

In order to set up the coarse space V., we need to solve Ny linear problems with
approximately k¢ Ny, /Ny degrees of freedom each; the parameter k being the trun-
cation parameter as above. Since almost linear complexity is possible (using, e.g.,
multilevel preconditioning techniques), the cost for solving one of these problems up
to a given accuracy is proportional to the number of degrees of freedom N, /Ny up
to possible logarithmic factors. This yields an overall complexity of k¢ Nj, log(Ny)
(resp. Ny Ny log(Ny,) if k4 > Np) for setting up the coarse problem. Note that this
effort can be reduced drastically either by considering the independence of the linear
problems in terms of parallelism or by exploiting a possible periodicity in the problem
and the mesh. In the latter case, only very few of the problems have to be computed
because all the other ones are equivalent up to translation or rotation of coordinates.

On top of the assembling, an Ny-dimensional eigenvalue problem is to be solved.
The complexity of this depends only on Ny, the number of eigenvalues of interest,
and the truncation parameter k but not on the critically large parameter Ny,.
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Fig. 1 Initial uniform
triangulation of the L-shape
domain (5 degrees of freedom)

The cost of the post-processing presented in Sect. 6.3 is proportional to one fine
solve for each eigenpair of interest, i.e., proportional to Ny up to some logarithmic
factor.

7 Numerical experiments

Three numerical experiments shall illustrate our theoretical results. While the first
two experiments consider nested coarse and fine meshes, the third experiments uses
the generalized coarsening strategy of Sect. 6.2. In all experiments, we focus on the
case without localization. The localization (as discussed in Sect. 6.1) has been studied
extensively for the linear problem in [14,15,25] and for semi-linear problems in [17].
In the present context of eigenvalue approximation, we are interested in observing
the enormous convergence rate which is 4 or higher for the eigenvalues. In order to
achieve this rate also with truncation, patches have to be large (at least 4 layers of
elements) which pays off only asymptotically when H is small enough.

7.1 Constant coefficient on L-shaped domain

LetQ:= (—1,1)32 \ [0, 112 be the L-shaped domain. Consider the constant scalar coef-
ficient A; = 1 and uniform coarse meshes with mesh widths ~/2H =2~1, ... 274
of €2 as depicted in Fig. 1.

The reference mesh 7;, has maximal mesh width & = 27 / \/5 We consider some
P1 conforming finite element approximation of the eigenvalues on the reference mesh
7T, and compare these discrete eigenvalues Agf) with coarse scale approximations
depending on the coarse mesh size H.

Table 1 shows results for the case without truncation, i.e., all linear problems have
been solved on the whole of 2.
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) ()
Ay —A
Table 1 Errors e(e)(H ) =: HA(Z)h for £ =1, ..., 20, constant coefficient Ay, and various choices of
h
the coarse mesh size H
¢ 2V O (1/24/2) (O (1/4/2) 0 (1/8v2) D (1/164/2)
1 9.6436568 0.004161918 0.000041786 0.000000696 0.000000014
2 15.1989733 0.009683715 0.000083718 0.000000888 0.000000011
3 19.7421815 0.024238729 0.000199984 0.000001930 0.000000022
4 29.5280022 0.084950011 0.000679046 0.000006309 0.000000074
5 31.9266947 0.120246865 0.001032557 0.000011298 0.000000169
6 41.4911125 - 0.002220585 0.000019622 0.000000264
7 44.9620831 - 0.002837949 0.000022540 0.000000257
8 49.3631818 - 0.003535358 0.000027368 0.000000295
9 49.3655616 - 0.004143842 0.000031434 0.000000343
10 56.7367306 - 0.006494922 0.000052862 0.000000606
11 65.4137240 - 0.013504833 0.000094150 0.000000995
12 71.0950435 - 0.013314963 0.000095197 0.000001077
13 71.6015951 - 0.011792861 0.000084001 0.000000851
14 79.0044010 - 0.021302527 0.000155038 0.000001526
15 89.3721008 - 0.038951872 0.000233603 0.000002613
16 92.3686575 - 0.042125029 0.000253278 0.000002442
17 97.4392146 - 0.033015921 0.000254700 0.000002435
18 98.7544790 - 0.039634464 0.000264156 0.000002482
19 98.7545515 - 0.046865242 0.000268012 0.000002500
20 101.6764284 - 0.045797998 0.000311683 0.000003071
10000
100
1
0.01

Fig. 2 Scalar coefficient A, used in the second numerical experiment and initial uniform triangulation of
the unit square (1 degree of freedom)

For fixed ¢, the rate of convergence of the eigenvalue error kg) — A;le) in terms
of H observed in Table 1 is between 6 and 7 which is even better than predicted in
Theorem 5.2 and in Remark 5.1.
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Table 2 Errors e(e)(H ) =: )L%;&?’(f) for¢ =1, ..., 20, rough coefficient A5, and various choices of the
coarse mesh size H !

¢ Y e (1/24/2) (0 (1/4:/2) ¢ (1/8+/2) D (1/164/2)
1 21.4144522 5.472755371 0.237181706 0.010328293 0.000781683
2 40.9134676 - 0.649080539 0.032761482 0.002447049
3 44.1561133 - 1.687388874 0.097540102 0.004131422
4 60.8278691 - 1.648439518 0.028076168 0.002079812
5 65.6962136 - 2.071005692 0.247424446 0.006569640
6 70.1273082 - 4.265936007 0.232458016 0.016551520
7 82.2960238 - 3.632888104 0.355050163 0.013987920
8 92.8677605 - 6.850048057 0.377881216 0.049841235
9 99.6061234 - 10.305084010 0.469770376 0.026027378
10 109.1543283 - - 0.476741452 0.005606426
11 129.3741945 - - 0.505888044 0.062382302
12 138.2164330 - - 0.554736550 0.039487317
13 141.5464639 - - 0.540480876 0.043935515
14 145.7469718 - - 0.765411709 0.034249528
15 152.6283573 - - 0.712383825 0.024716759
16 155.2965039 - - 0.761104705 0.026228034
17 158.2610708 - - 0.749058367 0.091826207
18 164.1452194 - - 0.840736127 0.118353184
19 171.1756923 - - 0.946719951 0.111314058
20 179.3917590 - - 0.928617606 0.119627862
7.2 Rough coefficient with multiscale features

Let © := (0,1)% be the unit square. The scalar coefficient A, (see Fig. 2) is

piecewise constant with respect to the uniform Cartesian grid of width 27, Its
values are taken from the data of the SPE10 benchmark, see http://www.spe.org/
web/csp/. The coefficient is highly varying and strongly heterogeneous. The contrast
for A, is large, B(A2)/a(Ay) =~ 4 - 10°. Consider uniform coarse meshes of size
V2H = 2- 1 2_2, R 274 of Q (cf. Fig. 2). Note that none of these meshes resolves
the rough coefficient A, appropriately. Hence, (local) regularity cannot be exploited
on coarse meshes.

Again, the reference mesh 7;, has width 7 = 27 /+/2 and we compare the discrete
eigenvalues Ag) (withrespect to some P 1 conforming finite element approximation of
the eigenvalues on the reference mesh 7;,) with coarse scale approximations depend-
ing on the coarse mesh size H. Table 2 shows the errors and allows us to estimate the
average rate around 4 which matches our expectation from the theory. We emphasize
that the large contrast does not seem to affect the accuracy of our method in approx-
imating the eigenvalues Agf). However, the accuracy of Ag) may be affected by the
high contrast and the lack of regularity caused by the coefficient.
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Va¥AVAVAY,
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Fig. 3 Left Scalar coefficient A3 used in the third numerical experiment. A3 takes the value 100 in the
gray shaded inclusions and the value 1 elsewhere. Right Un structured fine mesh 77, aligned with jumps of
the coefficient A3

Table 3 Errors e (H) =: # for¢ =1, ..., 20, coefficient A3, and various choices of the coarse
mesh size H "

¢ ,\jf) O (1/24/2) e (1/42) e (1/8v2) e (1/164/2)
1 25.6109462 0.025518831 0.000572341 0.000017083 0.000000700
2 58.9623566 - 0.005235813 0.000090490 0.000002710
3 67.5344854 - 0.006997582 0.000154850 0.000006488
4 98.2808694 - 0.023497502 0.000358178 0.000011675
5 121.2290664 - 0.052366141 0.000563438 0.000016994
6 125.2014779 - 0.066627585 0.000747688 0.000019934
7 156.0597873 - 0.145676350 0.001579177 0.000034329
8 168.2376096 - 0.095360287 0.001320185 0.000043781
9 197.4467434 - 0.343991317 0.002888471 0.000049479
10 209.4657306 - - 0.003223901 0.000056318
11 222.4472476 - - 0.003431462 0.000080284
12 245.5656759 - - 0.005906282 0.000102243
13 253.7074603 - - 0.006215809 0.000121646
14 288.0756442 - - 0.013859535 0.000180899
15 298.8903269 - - 0.010587124 0.000138404
16 311.4410556 - - 0.012159268 0.000161510
17 324.6865434 - - 0.012143676 0.000176624
18 336.7931865 - - 0.016554437 0.000233067
19 379.5697606 - - 0.023254268 0.000325324
20 386.9938901 - - 0.028772395 0.000383532
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Table 4 Errors ¢(©) (H) = }\Hp;# after post-processing for £ = 1,..., 20, coefficient A3, and
various choices of the coarse mesh shize H

¢ x,(f) e (1/24/2) e (1/42) e (1/82) e (1/164/2)
1 25.6109462 0.001559704 0.000003765 0.000000008 3.5¢e—10

2 58.9623566 - 0.000191532 0.000000213 1.9¢—08

3 67.5344854 - 0.000284980 0.000000474 0.000000001
4 98.2808694 - 0.002239689 0.000002253 0.000000004
5 121.2290664 - 0.007461217 0.000005065 0.000000008
6 125.2014779 - 0.011284614 0.000006826 0.000000008
7 156.0597873 - 0.042466017 0.000023867 0.000000024
8 168.2376096 - 0.025093182 0.000027547 0.000000042
9 197.4467434 - 0.186960343 0.000072471 0.000000051
10 209.4657306 - - 0.000105777 0.000000079
11 222.4472476 - - 0.000131569 0.000000129
12 245.5656759 - - 0.000286351 0.000000213
13 253.7074603 - - 0.000268463 0.000000255
14 288.0756442 - - 0.000915102 0.000000473
15 298.8903269 - - 0.000762135 0.000000403
16 311.4410556 - - 0.000873769 0.000000504
17 324.6865434 - - 0.000955392 0.000000642
18 336.7931865 - - 0.001335246 0.000000977
19 379.5697606 - - 0.002896202 0.000001886
20 386.9938901 - - 0.007202657 0.000001908

7.3 Particle composite modeled by an unstructured mesh

Let Q2 := (0, 1)2 be the unit square. In this experiment, the scalar coefficient A3 models
heat conductivity in some model composite material with randomly dispersed circular
inclusions as depicted in Fig. 3. The coefficient A3 takes the value 100 in the gray
shaded inclusions and the value 1 elsewhere. In order to resolve the discontinuities, we
simply align the fine mesh 7;, with the boundaries of the inclusions (see Fig. 3). The
mesh size of 7}, satisfies 277 < i < 277, Note that this fine mesh 7j, is solely based on
geometric resolution and shape regularity. The grading towards the inclusions is not
adapted to the characteristic behavior of the eigenfunctions. However, this mesh might
be the actual output of some commercial mesh generator or modeling tool. Sufficient
resolution could be achieved with fewer degrees of freedom, however, this would
require more sophisticated discretization spaces; we refer to [7,28,29] for possible
choices and further references.

As in the previous experiment, we consider uniform coarse meshes of size v2H =
271272 274 of Q (cf. Fig. 2). Note that these meshes neither resolves the coef-
ficient Az appropriately nor can be refined to 7}, in a nested way. For the construction
of the upscaling approximation we employ the generalized coarse space defined in
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(6.5) in Sect. 6.2. We compare the discrete eigenvalues )\Ef) (with respect to some P 1
conforming finite element approximation of the eigenvalues on the reference mesh 7y,)
with coarse scale approximations depending on the coarse discretization parameter H .
Table 3 shows the results which clearly support our claim that the nestedness of coarse
and fine meshes is not essential and that upscaling far beyond the characteristic length
scales of the problem (i.e., the radii of the inclusions and their distances) is possible.

For this problem, we have also computed the post-processed approximations
according to Sect. 6.3. Table 4 shows the error for the eigenvalues which are more
accurate by several orders of magnitude. The experimental rates are roughly between
5 and 6 in Table 3 without post-processing and around 9 to 10 after post-processing
in Table 4.
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