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Abstract. It is a standard assumption in the error analysis of finite element methods that the underlying
finite element mesh has to resolve the physical domain of the modeled process. In case of complicated
domains appearing in many applications such as ground waterflows this requirement sometimes becomes
a bottleneck. The resolution condition links the computational complexity a priorily to the number (and
size) of geometric details. Therefore even the coarsest available discretization can lead to a huge number
of unknowns. In this paper, we will relax the resolution condition and introduce coarse (optimal order)
approximation spaces for Stokes problems on complex domains. The described method will be efficient
in the sense that the number of unknowns is only linked to the properties of the solution andnot to
the problem data. The presentation picks up the concept of composite finite elements for the Stokes
problem presented in a previous paper of the authors. Here, the a priori error and stability analysis of the
proposed mixed method is generalized to quite general, i.e.slip and leak boundary conditions that are of
great importance in practical applications.
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1 Problem setting

We consider the stationary Stokes equations

−∆u + ∇p = f
divu = 0

}

in Ω ⊆ R
d
, (1.1)

describing the motion of a viscous incompressible fluid in a bounded Lipschitz domainΩ under the
general mixed boundary conditions proposed by Navier [25]

λνuν +(1−λν)(T(u, p) ·ν)ν = 0
λτ uτ +(1−λτ)(T(u, p) ·ν)τ = 0

}

on ∂Ω. (1.2)

Thereby we use the following notation

Ω bounded Lipschitz domain inRd,
d ∈ {2,3} dimension,
u : Ω → R

d velocity field,
p : Ω → R pressure distribution,
f : Ω → R

d given force density,
ν outer normal of the domainΩ,

vν = (v)ν := 〈v,ν〉ν normal component ofv ∈ R
d,

vτ = (v)τ := v−vν tangential component ofv ∈ R
d,

λν ,λτ : ∂Ω → [0,1] coefficient functions,
Du := 1

2

(
∇u +(∇u)T

)
symmetric gradient,

I d×d identity matrix,
T(u, p) := 2Du− pI stress tensor.

(1.3)

Both, the equations (1.1) and the boundary conditions (1.2), can be generalized by replacing the zeros on
the right hand sides by some given functions.

In this paper, we are especially interested in the limit cases of the boundary conditions, i.e., Dirichlet
(λν = λτ = 1), Neumann (λν = λτ = 0), slip (λν = 1,λτ = 0) and leak (λν = 0,λτ = 1) boundary
conditions. In particular, we assume the boundaryΓ := ∂Ω to consist of four relatively closed disjoint
parts

Γ = ΓD ∪Γs∪Γl ∪ΓN, whereΓi ∩Γ j = /0 ∀i, j ∈ {D,s, l ,N} : i 6= j. (1.4)

The leak and slip partsΓs andΓl are supposed to be of classC1. We define the coefficient functions from
(1.2) in the following way:

λν(x) :=

{
1, x ∈ ΓD ∪Γs

0, x ∈ Γl ∪ΓN
, λτ(x) :=

{
1, x ∈ ΓD ∪Γl

0, x ∈ Γs∪ΓN
. (1.5)

This choice leads to the following set of boundary conditions

u = 0, on ΓD,

〈u,ν〉 = 0, (Du ·ν)τ = 0, on Γs,

u−〈u,ν〉ν = 0, 2〈Du ·ν,ν〉 = p, on Γl ,

2Du ·ν = pν , on ΓN.

(1.6)
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While the mathematical literature on Dirichlet and Neumannboundary conditions is vast, leak and slip
boundary conditions have been studied less extensively. However, they are of great practical interest.
For theoretical studies of these boundary conditions we refer to [38; 13; 34] and for some applications to
[19; 20].

The Sobolev space that contains those velocity fields which fulfill the essential parts (conditions on
the left in (1.6)) of the boundary conditions is denoted by

H1
ess:=

{
u ∈ H1(Ω) | u|ΓD = 0, uν |Γs = 0, uτ |Γl = 0 in the sense of traces

}
. (1.7)

The (mixed) weak formulation of problem (1.1) together withthe boundary conditions (1.6) reads:Find
(u, p) ∈ H1

ess×L2 such that

a(u,v)+b(v, p) = 〈f,v〉L2(Ω) , ∀v ∈ H1
ess,

b(u,q) = 0, ∀q∈ L2(Ω).
(1.8)

The bilinear formsa : H1(Ω)×H1(Ω) → R andb : H1(Ω)×L2(Ω) → R are defined by

a(u,v) := 2
∫

Ω
Du : Dv, b(v,q) := −

∫

Ω
qdivv. (1.9)

In general, problem (1.8) is not uniquely solvable. The bilinear forma has a nontrivial kernel given by
the set of rigid body motions

R := {A ·+b | A ∈ R
d×d skew symmetric,b ∈ R

d}. (1.10)

Moreover, everyv ∈ R is divergence-free, i.e. the pairs(v,q), q∈ R, is a solution of the homogeneous
Stokes problem. Thus, a solution of (1.8) can only be unique up to elements ofH1

ess∩R.

Remark 1. To assure unique solvability of problem(1.8) we assume the essential boundary to have a
positive measure, i.e.

|ΓD ∪Γs∪Γl | > 0. (1.11)

If |ΓD| = |Γl | = 0, we further have to exclude domainsΩ having rotational symmetries (cf. [42; 43]).
Uniqueness in the pressure variable of the solution can onlybe achieved up to constants if no additional
constraint is given through the boundary condition, since the pressure component appears only as a
gradient in the equations(1.1). That is why we assume boundary parts containing pressure constraints
to have a positive measure as well:

|Γl ∪ΓN| > 0. (1.12)

As an alternative to the assumptions(1.11)and(1.12)weak formulations with respect to suitable quotient
spaces or additional constraint formulations could be considered.

Under the assumptions (1.11) and (1.12) there exists a unique solution(u, p) ∈ H1
ess×L2(Ω) for all

right hand sidesf in the dual spaceH1
ess

′ of H1
ess. The unique solvability and regularity of the continuous

problem (1.8) has been discussed in detail for the differentboundary conditions for instance in [40], [38],
[34] and [29]. The theory therein bases mainly on Korn’s second inequality and its variants (cf. [26],
[22], [11], [29]).

The classical finite element discretization approach is to replace the continuous spacesH1
ess and

L2(Ω) in the weak formulation (1.8) by suitable finite dimensionalsubspacesX
T

and M
T

. That means
that the essential boundary conditions are incorporated strongly in the velocity part of the approximation
space. This is the standard procedure for the treatment of the Dirichlet boundary condition. An analysis
for slip boundary conditions can be found in [42; 4; 21]. Typically, X

T
and M

T
contain continuous
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(a) Domain with a rough bound-
ary. ball.

(b) Resolving shape regular
mesh.

(c) Coarse overlapping mesh.

Figure 1: A fitted and an unfitted mesh for a complicated domain.

functions that are piecewise polynomial with respect to some triangulationT of the domainΩ, as for
instance the Mini element (cf. [8]) or the modified Taylor-Hood element (cf. [6]). The latter first order
methods fulfill the classical error estimate

‖u−uT ‖H1
ess

+‖p− pT ‖L2(Ω) . infv∈X
T
‖u−v‖H1

ess
+ infqT ∈Mcme

T
‖p−qT ‖L2(Ω), (1.13)

where the hidden constant depends only on the bilinear formsa andb, i.e., on their continuity, the
coercivity ofa and the infsup property ofb. However, for the following reasons, the conformity condition
X

T
×M

T
⊆ H1

ess× L2(Ω) which requires to resolve the details of the boundary exactly, can be too
restrictive:

1. The triangulationT of the physical domainΩ needs to be “almost” exact, which can only be true
for polygonal domains.

2. The approximation of general curved domains by simplicial meshes causes additional problems in
the numerical treatment of leak or slip conditions, since the outer normal is not sufficiently well
approximated by the (piecewise constant) outer normal of the polygonal mesh.

3. Due to 2. problems with leak and slip boundary are in general instable with respect to boundary
perturbations. This fact has been investigated by Verfürth[42]. Therefore, polygonal approxima-
tions to general domains and approximations to the outer normal have to be chosen carefully.

4. Due to 1. to 3., the mesh density of suitable (shape regular) triangulations is determined by the
domain geometry (cf. Figure 1b) andnot by the local approximation properties of the finite ele-
ment space. For domains containing a huge number of geometric details such as holes or rough
boundaries, the number of vertices in a suitable triangulation, and therefore the dimension of a
suitable approximation space, will be at least proportional to the number of details.

5. In practice, one is often interested in an only moderate accuracy, that should be achieved at a
moderate effort. In addition, a mathematical model and its discretization is only an approximation
of a real world process meaning that in general there are modeling and discretization errors any-
way. Therefore it is possible to relax the boundary condition without increasing the overall error
significantly.

In case of a piecewise smooth boundary isoparametric elements are often employed for its approxima-
tion. If the domain is not smooth then other approaches have to be chosen. One alternative is to impose
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the essential boundary conditions weakly as a side condition in a saddle point formulation [2; 42; 41].
Another approach is to incorporate boundary conditions viapenalization (cf. [27; 1]). This is commonly
used in Discontinuous Galerkin Methods for the Stokes problem (see for instance [12]), and also the basis
of Fictitious Domain Methods [15] and Immersed Boundary Methods [28]. All these methods might be
used with (overlapping) computational grids that are not fitted to the physical domain as depicted in Fig-
ure 1c (cf. [18; 5]). However, mesh compatibility conditions have to be imposed and boundary integrals
that enter the variational formulations need to be evaluated which is problematic on very complicated
domains, especially in three spatial dimensions.

In this paper, we will generalize the concept of composite finite elements [17; 16; 32; 36] to problems
on complicated domains with Dirichlet, Neumann, slip, and leak boundary conditions. The concept of
composite finite elements is as follows:

1. They are a generalization of classical finite element spaces which allow that boundary conditions
on rough boundaries are resolved not necessarily by a very fine mesh and a huge number of de-
grees of freedom but allow the adaptation of the shape of the ansatz functions to the characteristic
behavior of the solution via slave nodes.

2. To control this enrichment process in a problem-adapted way, a posteriori error estimators should
be employed which allow to decide whether new degrees of freedoms are locally needed to reduce
the error or whether it is enough to adapt the shape of the ansatz functions locally by using slave
nodes..

3. A local a priori analysis allows to set up a (quasi-) optimal enrichment strategy based on the
indications of the a posteriori error estimator.

In this paper we will concentrate on 1. and the derivation of an local a priori analysis. In a forthcoming
paper this will be combined with an appropriate error estimator (see also [31] for the application in linear
elasticity). By now, composite finite elements have been used successfully for Stokes problems with
Dirichlet and slip boundary conditions [29; 30] where thecomposite mini elementhas been introduced.
Here, we will generalize the theory to the Stokes problem with mixed Dirichlet, slip, leak and Neumann
boundary conditions.

The paper is organized as follows. In Section 2 we introduce the composite mini element formulation
of the problem. Section 3 will contain the main a priori errorbound and its detailed proof. Finally, in
Section 4 we will present some numerical experiments.

In this paper, various notations and conventions will be used. In order to improve readability, we
have collected below the most relevant ones along with a linkto their first appearance.

Notations

BT largest ball inscribed in the simplexT., 8

CT

1 , CT

2 , CT

3 mesh related constants, 8

CT

4 constant related to the local relative boundary
length, 19

CE N , CE
ess constants from Lemma 4, 20

Cext constants related to the modified Stein extension
operator, 16

Cint constant from interpolation error estimates, 15
Cnp, Csize, Cdist constants related to the neighborhood property, 15
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Cν
1 Lipschitz constant of the outer normal, 18

Cν
2 Constant related to the outer domain normal, 18

E N,E D,E
ess extension operators, 9

(·)Γ boundary projection, 9

H1
ess continuous velocity space, 3

IT ,IT nodal interpolation operator with respect to the
vertices of the triangulationT or the simplexT,
15

λν ,λτ coefficient functions, 2
. a . b⇔∃C > 0 : a≤Cb, 4

(·)ν normal component, 2
ν outer normal of the domainΩ, 2
‖ · ‖k,p,Ω, ‖ · ‖k,p,Ω Sobolev norms, 14
| · |k,p,Ω, | · |k,p,Ω Sobolev semi norms, 14

Ω bounded Lipschitz domain, 8
Ωdof union of all elements ofT dof, 8
ωT neighborhood od the simplexT defined in Lemma

1, 16
ΩT union of all elements ofT , 8

R(T) ratio that measures the refinement ofT ∈ T in
Tess, 19

ρT ,ρTess
shape regularity constants, 8

ρT shape regularity constant of the simplexT, 15
R set of rigid body motions, 3

Scfe
T

standard conformingP1 finite element space, 9
Scfe

T
, Scfe

T ,D, Scfe
T ,ess compositeP1 finite element spaces, 9, 10

T(·) projection ontoT dof, 9
(·)τ tangential component, 2
Θ, Θdof, Θdof

ess, . . . vertex sets, 9
T coarse overlapping mesh, 8
T dof = T dof

ess inner part ofT andT resp., 8
Tess submesh ofT , 8
T slave, T slave

ess boundary parts ofT andTess, 8



2 Composite mini element formulation

The choice of a suitable mixed finite element space for the problem (1.8) follows the concept of compos-
ite finite elements introduced in [17], [32] for Poisson problems and in [29] and [30] for Stokes problems.
Instead of using conventional resolving triangulations wewill define the composite mini element space
with respect to an overlapping (and possibly structured) conforming triangulationT (in the sense of
Ciarlet [9]). T contains closed simplices. Typically,T is a quasi uniform triangulation which does not
contain extra boundary resolution. This technique allows the definition of coarse spaces even for very
complicated geometries (see also Figure 1b). We mark the subsetT dof of the triangulation containing
all triangles that are properly contained inΩ. Next, the finite element shape function will be defined
with respect toT dof and extended (smeared) to the remaining (outer) partT slave:= T \T dof in such a
way that the essential parts of the boundary conditions are fulfilled in an approximative way. To be more
precise, letT = T dof∪T slave fulfill the subsequent conditions:

Overlap Ω ⊆ ΩT := int(
⋃

T∈T T),

Shape regularity ∃ρT > 0 : diam
(
BT
)
≥ ρT diam

(
T
)
, ∀T ∈ T ,

Admissible split-
ting







/0 6= T dof ⊆ T andT slave= T \T dof

Ωdof := int(
⋃

T∈T dof T) ⊆ Ω,

∃CT

1 : dist(t,∂Ω) ≤CT

1 diam
(
t
)
, ∀t ∈ T slave,

∃CT

2 : dist
(
t,Ωdof

)
≤CT

2 diam
(
t
)
, ∀t ∈ T slave.

(2.1)
In order to resolve the boundary part where essential boundary conditions are imposed we will employ
a submeshTesswhich arises fromT by standard finite element refinement patterns (cf. [32]).Tess is
refined toward the essential parts of the boundary in such a way that the subsequent assumptions hold:

Submesh property T dof
ess := T dof ⊆ Tess,

Shape regularity ∃ρTess
> 0 : diam

(
Bt
)
≥ ρTess

diam
(
t
)
, ∀t ∈ Tess,

Admissibility ∃CT

3 : dist(t,∂Ω) ≤CT

3 diam
(
t
)
, ∀t ∈ T slave

ess := Tess\T dof
ess .

(2.2)
In Figure 2 a typical choice of an admissible triangulationT andTess is visualized, some remarks are
in order.

Remark 2. 1. In order to resolve the boundary in such a way that optimal error estimates are pre-
served, the local mesh-width ofTessin a neighborhood ofΓ\ΓN (i.e. close to essential boundary

conditions) has to be of order hmax( 3
2−r,1) (cf. Theorem 1), where h denotes the maximal mesh

width of the initial meshT and r∈ [0,1] is a parameter reflecting the regularity of the solution.

2. The resolution condition from 1. does not lead to an increase of degrees of freedom since it only
restricts the choice of the submeshTesswhich only contains slave nodes.
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3. The submeshTesswill appear in practical computations only during the assembly of the system
matrix and needs to be computed only locally.

4. The constants CT1 , CT

2 , CT

3 and ρT will be crucial in our analysis of the method, while the
conditionsΩdof ⊆ Ω andT dof ⊆ Tesscan be relaxed.

5. The theory can be generalized to the case whereTesscontains hanging nodes as depicted in Figure
2b.

We summarize further notations and definitions in connection with the meshes:

Set of vertices ofT Θ,

Set of vertices of a simplexT V(T),

Vertices ofT dof = T dof
ess Θdof,

Slave nodes Θslave:= (Θ∪Θess)\Θdof,

Maximal mesh-width inT hT := maxT∈T diam
(
T
)
,

Boundary projection1
(·)Γ : Θslave → Γ,

x 7→ xΓ ∈ arginfy∈∂Ω dist(x,y) ,

Projection to the

closest inner triangle

T(·) : Θslave → T dof,

x 7→ Tx ∈ argminT∈T dof dist(x,T) .

(2.3)

Our space definition is based on continuous piecewise affine functions and vector fields with respect to
a triangulationT :

ST :=
{

v∈C0(ΩT ) | ∀T ∈ T : v|T ∈ P1
}

, ST := (ST )d
. (2.4)

The composite finite element space (cf. [17; 16])

Scfe
T := E

N(ST dof

)
(2.5)

is defined as the image ofST dof under a simple linear extension operator which is characterized by
specifying its values at the nodal points explicitly by

E
N : ST dof → ST ⊆ STess

,
(
E

Nq
)
(x) :=

{
q(x), x ∈ Θdof,

qTx(x), x ∈ Θslave.
(2.6)

This space is suitable for the use with Neumann boundary conditions as we will see later. In case of
Dirichlet boundary conditions the space

Scfe
T ,D := E

D(ST dof

)
(2.7)

is an appropriate choice (cf. [32; 29; 30]), whereE D : ST dof → STess
is defined by

(
E

Dq
)
(x) :=

{
q(x), x ∈ Θdof,

qTx(x)−qTx(x
Γ) =

〈
∇uTx,x−xΓ〉 , x ∈ Θslave

ess .
(2.8)

1The minimizer might not be unique and we fix one of them in this case.
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In contrast toE N, the operatorE D is defined with respect to the refined meshT ess. Shape functions
in Scfe

T ,D are not necessarily piecewise affine with respect toT but composed of piecewise affine finite
elements on the submeshTess. This composite construction allows to approximate the essential zero
boundary condition in a very flexible way. For the definition of the approximation spaces that fulfill
the essential parts the boundary conditions we will interpolate the vector valued versionsE N andE

D

of (2.6) and (2.8) point-wise in the slave nodes with respectto the coefficientsλν and λν to define
E

ess: ST dof → STess
by

(
E

essu
)
(x) :=







u(x), x ∈ Θdof,

λν(xΓ)(E Du(x))ν(xΓ) +(1−λν(xΓ))(E Nu(x))ν(xΓ)

+λτ(xΓ)(E Du(x))τ(xΓ) +(1−λτ(xΓ))(E Nu(x))τ(xΓ)
, x ∈ Θslave

ess .
(2.9)

In the special case of slip boundary conditions for the unit disc the extrapolation procedure is shown for
an example in Figure 3.

The operatorE esscan be rewritten explicitly (cf. (1.5)) by

(
E

essu
)
(x) =







u(x), x ∈ Θdof,

E
Du(x), x ∈ Θslave

ess , xΓ ∈ ΓD,

(E Du(x))ν(xΓ) +(E Nu(x))τ(xΓ), x ∈ Θslave
ess , xΓ ∈ Γs,

(E Nu(x))ν(xΓ) +(E Du(x))τ(xΓ), x ∈ Θslave
ess , xΓ ∈ Γl ,

E
Nu(x), x ∈ Θslave

ess , xΓ ∈ ΓN.

(2.10)

We assume that

{x ∈ Θslave
ess | xΓ ∈ ΓD ∪Γs∪Γl} 6= /0 and {x ∈ Θslave

ess | xΓ ∈ ΓN ∪Γl} 6= /0, (2.11)

which can be seen as a discrete analogue to the conditions (1.11) and (1.12) of Remark 1.2 Scfe
T ,ess:=

E
ess(ST dof

)
will form the piecewise affine part of the composite mini element velocity space. In order to

stabilize the method we will use simplex bubble functions (but only) onT dof

BT dof := span
{

ψT : T ∈ T
dof}

, ψT := (d+1)d+1 ∏
y∈V(T)

by, (2.12)

whereby, y ∈ V(T), denote the barycentric coordinates ofT. The composite mini element space is
defined by

Xcme
T ×Mcme

T := (Scfe
T ,ess⊕BT dof)×Scfe

T . (2.13)

Due to (2.11) no quotient spaces have to be considered in (2.13). Note that, in general, the composite mini
element is nonconforming because the Dirichlet boundary condition is satisfied only in an approximate
way. This nonconformity can be controlled in an a priori or, respectively, in an a posteriori way by the
local mesh size inT slave

ess . Note that there is no nonconformity arising from the pressure part of the space.
A pair (u, p) ∈ Xcme

T
×Mcme

T
defines the composite mini element approximation if it fulfills the discrete

variational system:
a(u,v)+b(v, p) = 〈f,v〉L2(Ω) , ∀v ∈ Xcme

T
,

b(u,q) = 0, ∀q∈ Mcme
T

.
(2.14)

2In the case of pure slip/Neumann boundary conditions we additionally have to make the technical assumption: If a rigid
body motionr ∈ R fulfills

〈
r(xΓ),ν(xΓ)

〉
= 0, ∀xΓ ∈ V := {xΓ

i | xi ∈ Θslave
ess , xΓ

i ∈ Γs}, thenr = 0.



10 2. Composite mini element formulation

(a) Marked coarse overlapping meshT =
T dof∪T slave.

(b) Refined meshTess.

Figure 2: Admissible composite mini element triangulation of the domain from Figure 1b.

(a) Vector fieldu defined in the degrees of freedom. (b) Extension ofu to the slave vertices. The extended vec-
tor field is almost tangential to the boundary of the circle.

Figure 3: Extension of a vector field u ∈ ST dof in case of slip boundary conditions imposed on the unit circle. The

small arrows represent the extended outer normal field of the domain. (The inner zone T dof containing the degrees
of freedom is kept small for visualization purposes.)



3 Error analysis

The main result of this paper concerning the unique solvability of the discrete problems (2.14) and
optimal order a priori error is stated in the subsequent theorem.

Theorem 1. The discrete problem(2.14) has always a unique solution(u, p) ∈ Xcme
T

×Mcme
T

. Fur-

thermore if(u∗
, p∗) ∈

(
H1

ess∩H1+r(Ω)
)
×
(
L2(Ω)∩Hr(Ω)

)
, r ∈ [0,1], is the solution of(1.8) then the

following a priori error estimate holds:

‖u∗−u‖H1(Ω) +‖p∗− p‖L2(Ω) ≤Chr(‖u∗‖H1+r (Ω) +‖p∗‖Hr (Ω)

)
,

where the constant C= C(Ω, r) does not depend on the mesh width parameter h:= max
T∈T

diam
(
T
)
.

The underlying submeshTesscan be chosen equal toT in a neighborhood ofΓN. In a neighborhood
of Γ \ΓN (i.e. close to essential boundary conditions) the local mesh-width ofTess has to be of order

hmax( 3
2−r,1) to ensure the above error estimate.

The proof of Theorem 1 deserves some theoretical preparations and is left to the subsequent sections.

Remark 3. We will add some remarks related to Theorem 1:

1. The unique solvability does not depend on the choice of theadmissible refinementTess, i.e. it holds
even in the caseT = Tess.

2. Note, that resolution condition on the submesh does not depend on the domain geometry but only
on the mesh-width parameter h of coarse overlapping meshT .

3.1 Proof of Theorem 1

Theorem 1 is based on the general theory of (nonconforming) mixed finite element approximation as
presented for example in [8]. The discrete problem (2.14) isuniquely solvable if the bounded bilinear
form a is coercive with respect to the velocity part of our finite element spaceXcme

T
, i.e.

∃ca > 0 : a(u,u) ≥ ca‖u‖2
H1(Ω), ∀u ∈ Xcme

T , (3.1)

and the bounded bilinear formb fulfills an inf-sup condition3, i.e.

∃cb > 0 ∀p∈ Mcme
T ∃u ∈ Xcme

T : b(u, p) ≥ cb‖u‖H1(Ω)‖p‖L2(Ω). (3.2)

Both properties cannot be inherited from the continuous level where such inequalities hold (cf. [11],
[26], [14]). We will prove (3.1) and (3.2) in Section 3.2.3. Once these conditions are fulfilled the error
of the composite mini element approximation can be estimated by (cf. [8]):

‖u−ucme‖∀p∈Mcme
T

+‖p− pcme‖L2(Ω) . inf
v∈Xcme

T

‖u−v‖H1(Ω) + inf
q∈Mcme

T

‖p−q‖L2(Ω) +K , (3.3)

3(3.2) is known as Babŭska-Brezzi-, Ladyshenskaja-Babus̆ka-Brezzi- or LBB-condition.
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where

K := sup
06=v∈Xcme

T

|a(u,v)+b(p,v)−〈f,v〉L2(Ω) |
‖v‖H1(Ω)

(3.4)

reflects the nonconformity in the approximation space. In Section 3.2.1 we will investigate the first two
terms of the error bound (3.3) and prove the approximabilityproperties of our space under the assumption
(u, p) ∈ H2(Ω)×H1(Ω)

inf
v∈Xcme

T

‖u−v‖H1(Ω) . h|u|H2(Ω) and inf
q∈Mcme

T

‖p−q‖L2(Ω) . h|p|H1(Ω).

This is indeed the same asymptotic error as for the classicalstabilizedP1×P1-elements. It remains to
estimateK . If the solution is sufficiently smooth, i.e.(u, p) ∈ H

3
2 (Ω)×H

1
2 (Ω), K can be estimated as

follows:

K . sup
06=v∈Xcme

T

‖λν 〈v,ν〉+ λτ 〈v,τ〉‖L2(Γ\ΓN)‖T(u, p)ν‖L2(Γ\ΓN)

‖v‖H1(Ω)

.

We will show in Section 3.2.2 thatK can further be bounded in terms of the mesh-width parameter:

K . h(‖u‖
H

3
2 (Ω)

+‖p‖
H

1
2 (Ω)

), (3.5)

which finishes the proof of Theorem 1 for the caser = 1. Finally the interpolation theory of Sobolev
spaces (see for instance [7, Theorem 12.3.3]) allows to relax the smoothness assumptions, since the error
can always be bounded trivially by

‖u−ucme‖H1(Ω) +‖p− pcme‖L2(Ω) . ‖u‖H1(Ω) +‖p‖L2(Ω),

which leads to the (optimal) fractional convergence rate. This finishes the proof of Theorem 1. The
following section is devoted to proofs of the referred statements.

Note that classical stabilizedP1×P1-elements require a finite element mesh that resolves all bound-
ary details in order to fulfill and error bound as (3.5).

3.2 Proof of the partial statements

We will now prove the assertions from the proof sketch of the previous section. Thereby we will use
the following short notation for the norms in the Sobolev spacesWk

p(Ω) containing functions with weak
derivatives up to orderk in Lp(Ω):

‖ · ‖k,p,Ω := ‖ · ‖Wk
p(Ω), | · |k,p,Ω := | · |Wk

p(Ω).

ForH(Ω) = Wk
2 (Ω) we will write

‖ · ‖k,Ω := ‖ · ‖Hk(Ω), | · |k,Ω := | · |Hk(Ω).

3.2.1 Approximability

In this paragraph, we will show that solutions of the weak Stokes problem (1.8), i.e. elements ofH1
ess×L2

can be approximated by composite mini element functions up to an error that decreases linearly in the
maximal mesh-widthh. Usually, a piecewise affine (quasi) interpolantIT with respect to the mesh
T is used to prove this property. However, this is not possiblein our situation because the vertices in
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T slave do not correspond to degrees of freedom, i.e. the interpolants are not contained in our space, in
general. But we will prove that the extension operators of Section 2 are accurate enough to preserve the
approximability properties with respect to the whole mesh.

Let us first recall some basic tools that we will use in the subsequent analysis:

Standard interpolation. It is well known (cf. [9, Theorem 16.1]) that, for an arbitrary simplexT ⊆ R
d,

d = 2,3, with shape regularity constantρT , there exists a constantCint = Cint(m, p,d) such that

|u−ITu|m,p,T ≤ Cint

ρm
T

diam
(
T
)(2− d

2 + d
p−m)|u|2,T , ∀u∈ H2(T), (3.6)

wherem∈ {0,1} and 1≤ p≤ ∞, provided Wm
p(Ω) ⊆ H2(Ω) 4. ITu∈ P1(R

d) denotes the linear
interpolant ofu in the vertices ofT.

Inverse estimate. Form∈ {0,1} andp∈ N∪{∞} it holds that

|q|m,p,T ≤
(

2
ρT

)m

h
( d

p−m)
T ‖q‖0,∞,T ∀q∈ P1(R

d) (3.7)

and

|q|1,T ≤
(

2
ρT

)m

h
( d

2−1)
T max

x,y∈V(T)
|q(x)−q(y)| ∀q∈ P1(R

d). (3.8)

Neighborhood property. Let T be an arbitrary simplex with shape regularity constantρT , t be an arbi-
trary simplex with regularity constantρt . Let the ratio of the diameters oft andT be denoted by
Csize and the distance betweenT andt relative to the size ofT by Cdist, i.e.

Csize :=
diam

(
t
)

diam
(
T
) and Cdist :=

dist(t,T)

diam
(
T
) .

Furthermore letu∈ H2(conv
(
T ∪ t

)
) and letITu∈ P1(R

d) denote the affine interpolation ofu at
the vertices ofT. Then, form∈ {0,1} and 1≤ p≤ ∞, provided Wm

p(Ω) ⊆ H2(Ω), there exists a
constantCnp = Cnp(Cint,d,Csize,Cdist,ρt ,ρT) > 0 such that

|u−ITu|m,p,t ≤Cnpdiam
(
T
)(2− d

2) diam
(
t
)( d

p−m)|u|
2,conv

(
T∪t
). (3.9)

The proof of (3.9) is given in [30, Lemma 1].

Bounded Extensions. Since in generalΩ ⊆ ΩT , it will be useful to extendu to the larger domainΩT .
It is known that, ifΩ is bounded and Lipschitz, there exists a continuous, linearextension operator
E : Hk(Ω) → Hk(Rd), k∈ N0, such that

∀u∈ Hk(Ω) : Eu|Ω = u and ‖Eu‖Hk(Rd) ≤Cext‖u‖Hk(Ω) (3.10)

with a constantCext depending only onk andΩ (cf. [39]). It is worth noting that for domains
containing a large number of holes and a possibly rough outerboundary, there exists an extension
operator with moderately small normCext under mild assumptions on the geometry. For all details
including the characterization of the class of domain geometries, we refer to [35]. In the following
we always identifyu with its minimal extensionEu without mentioning this explicitly. ForT ∈
T dof the approximation results are obvious corollaries of the classical interpolation estimate (3.6).

4The condition Wm
p (Ω) ⊆ H2(Ω) restricts the choices ofm and p depending on the dimensiond. The combinations ofm

andp that will be useful later ((m, p) ∈ {(0,2),(0,∞),(1,2)}) are allowed in two as well as in three dimensions.
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As a first step towards the approximation results we will showthat an arbitrary H2(Ω)-function u,

can be approximated sufficiently well byE N
(

IT dofu
)

, i.e. by the extension of the piecewise affine

interpolation with respect toT dof. We will give local and global H1-estimate.

Lemma 1. Let m∈ {0,1}.
There is a constant C= C(Cint,ρT ,CT

1 ,CT

2 ,d) > 0 which does not depend on h such that

‖u−E
N
IT dofu‖m,T ≤Cdiam

(
T
)(2−m)|u|2,ωT , ∀u∈ H2(ΩT ), ∀T ∈ T ,

whereωT = T for all T ∈ T dof and ωT = conv
(
T ∪

(⋃

x∈V(T) Tx
))

for slave simplices T∈ T slave.
Furthermore, the global estimate

‖u−E
N
IT dofu‖m,Ω ≤Ch(2−m)|u|2,Ω, ∀u∈ H2(ΩT ).

holds, where C depends only on the constant of the local estimate,ρT and Cext.

Proof. For everyT ∈ T dof the local estimate is simply given by (3.6). ForT ∈ T slave we estimate the
error as follows

‖u−E
N
IT dofu‖m,T ≤ ‖u−ITu‖m,T +‖ITu−E

N
IT dofu‖m,T

(3.6),(3.7)
. diam

(
T
)
|u|2,T +diam

(
T
)( d

2−m)‖ITu−E
N
IT dofu‖∞,T .

With the help of (3.9) we further get

‖ITu−E
N
IT dofu‖∞,T = max

x∈V(T)
|ITu(x)−E

N
IT dofu(x)|

(2.6)
= max

x∈V(T)
|ITu(x)−ITxu(x)|

(3.9),(2.1)
. diam

(
T
)2− d

2 |u|2,ωT

and therefore the local estimate follows. The global estimate follows immediately by summation over all
T ∈ T since

∑
T∈T dof

|u|22,ωT

(2.1),(3.10)
≤ C(ρT ,Cext)|u|22,Ω.

Finally (3.10) allows to restrict the H2-norm ofu in the error bound to the physical domainΩ.

Lemma 1 can be generalized easily to functionsu∈ H1 by replacing the nodal interpolation operator
by some bounded quasi interpolation operatorΠT : H1(ΩT ) → ST as introduced by Scott and Zhang
(see e.g. [37]) or Clément (see [10] and [44],[45]). Insteadof (3.6) we can use the error estimates
from [37, Theorem 4.1 and Corollary 4.1)] to derive the approximation result of the pressure part of the
composite mini element space.

Theorem 2 (Approximation property of Mcme
T

). Let m∈ {0,1}. For all p∈ H1(Ω) there exists a pcme∈
Mcme

T
such that

‖p− pcme‖m,Ω ≤Ch1−m‖p‖1,Ω,

where the constant C= C(Cqint,ρT ,CT

1 ,CT

2 ,d,Cext) does neither depend on h nor p.

Proof. The proof follows the line of the previous proof withpcme := E NΠT dof p. For technical details
due to the use of quasi interpolation operators we refer to Theorem 4.8 in [29].
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To prove a similar estimate in the presence of essential boundary conditions Theorem 2 cannot be
simply applied component-wise. Its proof and especially the proof of Lemma 1 is based on the admissi-
bility condition in (2.1), which assumes the distance between slave triangles and the degrees of freedom
to be comparable to the diameter of the slaves. For essentialboundary conditions, the constantCT

2 dete-
riorate with respect to the refined meshTess. Therefore a more precise analysis is required in this case.
On the other hand the essential boundary conditions provideadditional information about the functions
to be approximated. This has been worked out in detail in [30;29] for H1

0-functions and the operatorE D.
We recall the result in the following Lemma.

Lemma 2. Let m∈ {0,1}.
There is a constant C= C(Cint,ρT ,CT

1 ,CT

2 ,d,Cext) > 0 which does not depend on h such that

‖u−E
D
IT dofu‖m,Ω ≤Ch(2−m)|u|2,Ω, ∀u∈ H2(ΩT ).

holds, where C depends only on the constant of the local estimate,ρT and Cext.

With the help of Lemma 1 and Lemma 2 we are now able to state the approximation property of the
velocity space.

Theorem 3 (Approximation property ofXcme
T

). Let m∈ {0,1}.

For all u ∈ H1
ess(Ω)∩H2(Ω) there is aucme∈ Xcme

T
such that

‖u−ucme‖m,Ω ≤Ch(2−m)|u|2,Ω, ∀u ∈ H1
ess(Ω)∩H2(ΩT ),

where the constant C= C(Cint,ρT ,ρTess
,CT

1 ,CT

2 ,Cν
1 ,d) > 0 does neither depend on h nor onu.

Proof. Let u ∈ H1
ess(Ω)∩H2(Ω) anducme := E

ess
IT dofu. We denote the error byecme := u−ucme. It

can be expressed in terms ofeD := u−E
D
IT dofu andeN := u−E

N
IT dofu in every slave vertexx∈ Θess

in the following way

ecme(x)
(2.9)
= λν

(
eD(x)

)

ν(xΓ)
+(1−λν)

(
eN(x)

)

ν(xΓ)

+ λτ
(
eD(x)

)

τ(xΓ)
+(1−λτ)

(
eN(x)

)

τ(xΓ)
.

(3.11)

Recall thatλν andλτ are piecewise constant coefficient functions defined in (1.5). In the casesλν = λτ
(|Γl | = |Γs| = 0) the errorecme coincides with eithereD (λν = λτ = 1) or eN (λν = λτ = 0) and can be
estimated by either using Lemma 2 or Lemma 1.
Let us therefore concentrate on one of the remaining casesλν = 1 andλτ = 0 5. First, we will investigate
the local errors|ecme|1,t with respect to the slave simplicest ∈ T slave

ess :

|ecme|m,t

(3.6),(3.7)
. diam

(
t
) d

2−m
max

x,y∈V(t)
|(ecme(x))− (ecme(y)) |+diam

(
t
)
|u|2,t

(3.11)
≤ diam

(
t
) d

2−m(
M

D
t,ν +M

N
t,τ
)
+diam

(
t
)
|u|2,t

(3.12)

with
M

D
t,ν := max

x,y∈V(t)

∣
∣
∣

(
eD(x)

)

ν(xΓ)
−
(
eD(y)

)

ν(yΓ)

∣
∣
∣ ,

M
N
t,τ := max

x,y∈V(t)

∣
∣
∣

(
eN(x)

)

τ(xΓ)
−
(
eN(y)

)

τ(yΓ)

∣
∣
∣ .

5The opposite case can be proved equivalently.
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Noting thateN(x) = Itu(x)−E NIT dofu(x) for all verticesx∈V(t) the maximumM N
t,ν can be estimated

as follows:

M
N
t,τ ≤ max

x,y∈V(t)

∣
∣eN(x)− eN(y)

∣
∣+
∣
∣eN(y)

∣
∣
∣
∣ν(xΓ)−ν(yΓ)

∣
∣

Γs∈C1(p.2)

. diam
(
t
)
|Itu−E

N
IT dofu|1,∞,t +‖ν‖C1(Γs)

︸ ︷︷ ︸

=:Cν
1

diam
(
t
)
|Itu−E

N
IT dofu|0,∞,t

(3.7)
. diam

(
t
)(1− d

2 )‖Itu−E
N
IT dofu‖1,t

(3.6)
. diam

(
t
)(1− d

2 )‖eN‖1,t +diam
(
t
)(2− d

2 )|u|2,t .

(3.13)

To estimateM D
t,ν we choose a vector fielduν ∈ H1

0(Ω)∩H2(Ω) such that

uν(x) = (uν(x))ν(xΓ) = (u(x))ν(xΓ), ∀x ∈ Θslave and ‖uν‖2,Ω ≤Cν
2‖u‖2,Ω. (3.14)

The vector fielduν could be defined by interpolatingu(·)ν(·Γ) in the slave nodes using aC1-interpolation
operator as defined for instance in (cf. [7, Theorem 4.4.20]). The auxiliary functionuν contains only
the (extended) normal component ofu. The constantCν

2 can be bounded in terms of theC2-norm ofν
independent fromu. ThereforeΓs is implicitly assumed to be of classC2. This smoothness assumption
on the slip boundary could be circumvented by following the proof of Theorem 4.7 in [29], which makes
only use of the constantCν

1 . However, the use of the auxiliary functionuν simplifies the presentation and
avoids many technical difficulties. Note that

(
eD(x)

)

ν(xΓ)
=
(
eD

ν (x)
)

ν(xΓ)
:=
(

uν −E
D
IT dofuν

)

(x), ∀x ∈ Θslave
, (3.15)

which leads to

M
D
t,ν = max

x,y∈V(t)

∣
∣
∣

(
eD

ν (x)
)

ν(xΓ)
−
(
eD

ν (y)
)

ν(yΓ)

∣
∣
∣

≤ max
x,y∈V(t)

∣
∣eD

ν (x)− eD
ν (y)

∣
∣+
∣
∣eD

ν (y)
∣
∣
∣
∣ν(xΓ)−ν(yΓ)

∣
∣

Γs∈C1(p.2)

. diam
(
t
)
|Ituν −E

D
IT dofuν |1,∞,t +Cν

1 diam
(
t
)
|Ituν −E

D
IT dofuν |0,∞,t

(3.7),(3.6),(3.14)
. diam

(
t
)(1− d

2 )‖eD
ν ‖1,t +diam

(
t
)(2− d

2 )|u|2,t .

(3.16)

Now summing up all the local errors gives the following global bound

‖ecme‖2
m,Ω = ∑

T∈T

‖ecme‖2
m,T = ∑

T∈T

∑
t∈Tess:t⊆T

‖ecme‖2
m,t

(3.12),(3.13),(3.16)
. ∑

T∈T

∑
t∈Tess:t⊆T

diam
(
t
)2(1−m) (‖eD

ν ‖2
1,t +‖eN‖2

1,t

)
+diam

(
t
)2(2−m)|u|22,t

(3.10)
≤ h2(1−m)

(
‖eD

ν ‖2
1,Ω +‖eN‖2

1,Ω
)
+h2(2−m)|u|22,Ω

Lem.2,Lem.1,(3.14)
. h2(2−m)|u|22,Ω.
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3.2.2 Nonconformity

We have seen at the beginning of Section 3.1 that for essential boundary conditions, the composite
mini element space is nonconforming in the sense that these boundary conditions are fulfilled only in
an approximative way. We will now see that this nonconformity can be controlled by the local mesh
refinement in the slave partT slaveof the meshT , more precisely, by the ratio

R(T) := max
t∈Tess:T⊇t,t∩(ΓD∪Γs∪Γl) 6= /0

diam
(
t
)

diam
(
T
) , T ∈ T

dof
, (3.17)

which can be assigned to every extrapolation simplex. Before we state the result we introduce the con-
stant

CT

4 := max
T∈T

|Γs∩T|
diam

(
T
)(d−1)

,

which is assumed to be independent of the mesh width parameter.

Lemma 3 (Nonconformity). There is a constant C> 0 depending onρTess
, CT

3 , CT

4 > 0 and the curva-
ture ofΓs∪Γl such that

‖λν 〈u,ν〉+ λτ 〈u,τ〉‖L2(Γ\ΓN) ≤C
(

max
T∈T dof

R(T)
)
h

1
2 |u|1,Ω ∀u ∈ Xcme

T .

Proof. We will only prove the caseλν = 1,λτ = 0. The opposite caseλν = 0,λτ = 1 can be treated
analogously andλν = 1,λτ = 1 follows by combination of the first two cases. Lett ∈ T slave satisfy
t ∩∂Ω 6= /0. In the proof of Lemma 4.11 in [29] it was shown that

‖〈u,ν〉‖0,∞,Γs∩t ≤ ‖E Du‖0,∞,t +Cdiam
(
t
)
‖E Nu‖0,∞,t , (3.18)

where the constantC depends only on the maximal curvature ofΓs∩ t. Therefore we can prove the
following local L∞-estimate:

‖〈u,ν〉‖0,∞,Γs∩t

(2.8),(3.18),(2.2)
. diam

(
t
)
‖∇u‖1,∞,ωt

(2.2),(3.7)
.

diam
(
t
)

diam
(
T
) d

2

‖∇u‖1,ωT ,

(3.19)

whereT ∈ T dof is chosen in such a way thatTx = T for somex ∈V(t). A simple summation gives the
final result:

‖〈u,ν〉‖2
0,Γs

. ∑
T∈T :T∩Γs6= /0

∑
t∈Tess:T⊇t,t∩Γs6= /0

|Γs∩ t|‖〈u,ν〉‖2
0,∞,Γs∩t

(3.19),(3.7)
. ∑

T∈T

|Γs∩T|R(T)2 diam
(
T
)2−d|u|21,ωT

(2.1)
. max

T∈T

|Γs∩T|
diam

(
T
)(d−1)

︸ ︷︷ ︸

=CT

4

(

max
T∈T dof

R(T)2
)

h‖u‖2
1,Ω.
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3.2.3 Discrete stability and coercivity

In this section, we will investigate the unique solvabilityof the discrete composite mini element systems.

Lemma 4. The extension operatorsE N andE
essdefined in(2.6) and (2.9) are uniformly bounded, i.e.

there are constants CE N and CE
ess which only onρT , d and CT

2 and not on the local mesh-size such that

‖E Nu‖m,Ω ≤CE N‖u‖m,Ωdof and ‖E essu‖m,Ω ≤CE
ess‖u‖m,Ωdof

for all u ∈ S
T dof, u ∈ S

T dof and m∈ {0,1}.

Proof. Foru∈ ST dof andm∈ {0,1} there holds

‖E Nu‖2
m,Ω ≤ ‖u‖2

m,Ωdof +∑
T∈T slave

‖u‖2
m,T

(3.7)
≤ ‖E Nu‖2

m,Ωdof +∑
T∈T slave

diam
(
T
)d‖E Nu‖2

m,∞,T . (3.20)

Let T ∈ T slave. SinceE Nu|T takes its maximum in a vertexx ∈V(T), there holds

‖E Nu‖m,∞,T ≤ ‖uTx‖m,∞,T

(2.1),(3.7)
.

(

1+
diam

(
Tx
)

diam
(
T
)

)

‖uTx‖m,∞,Tx

(2.1),(3.7)
. |Tx|−

1
2‖u‖m,Tx ,

whereuTx denotes the extension ofu|Tx (by itself) toR
d. We plug this into (3.20) which finishes the proof

for E N, since the resulting overlap can be bounded in terms of the shape regularity constantρT .
Next, we prove the boundedness ofE D defined in (2.8). Foru∈ ST dof andm∈ {0,1} there holds

‖E Du‖2
m,Ω ≤ ‖u‖2

m,Ωdof +∑
t∈T slave

ess

‖E Du‖2
m,t

(3.7)
≤ ‖u‖2

m,Ωdof +∑
t∈T slave

ess

diam
(
t
)(d−2m)‖E Du‖2

0,∞,t

(2.9),(3.7)
. ‖u‖2

m,Ωdof + ∑
T∈T slave

∑
t∈T slave

ess :t⊆T

diam
(
t
)(d−2m+2)

diam
(
T
) ‖u‖2

1,ωT∩Ωdof

d−2m+2≥d,(2.1)
. ‖u‖2

1,Ωdof.

(3.21)

The boundedness ofE essfollows from the results forE N andE D in a straight forward way.

Theorem 4 (Stability). Xcme
T

×Mcme
T

is a stable pairing, i.e. there is a constantβ cme which does not
depend on the mesh size h and the choice of the submeshTesssuch that

inf
p∈Mcme

T

sup
06=u∈Xcme

T

b(u, p)

‖u‖1,Ω‖p‖0,Ω
≥ β cme

. (3.22)

Proof. To keep things clear we will restrict the proof to the case of aquasi uniform triangulationT , i.e.
h≈ diam

(
T
)

for all T ∈ T . The general case can be proved by using standard localization techniques.
Note that the pressure part of the composite mini element space Mcme

T
can be decomposed in the

following way

Mcme
T =

(

Mcme
T ∩L2

0(Ω)
)

⊕R,
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where L2
0(Ω) := {v ∈ L2(Ω) | ∫Ω v = 0}. Due to (2.11), it is easy to construct a vector fieldu ∈ Xcme

T

such that ∫

Ω
cdivu = c

∫

Ω
divu = c

∫

ΓN∪Γl

〈u,ν〉 ≥ β cme
1 ‖c‖0,Ω‖u‖1,Ω

for all constant pressuresc∈ R. The constantβ cme
1 > 0 will depend on the relative length ofΓN ∪Γl.

It is left to bound

inf
p∈Mcme

T
∩L2

0(Ω)
sup

06=u∈Xcme
T

b(u, p)

‖u‖1,Ω‖p‖0,Ω

uniformly from below. Recall that the velocity partXcme
T

of the composite mini element space is the sum
a piecewise affine partE ess(ST dof) and a stabilization partBT dof containing simplex bubble functions
with respect to the elements with degrees of freedom (cf. (2.13)). We define a mappingPB : Mcme

T dof ∩
L2

0(Ω) → BT dof by
PB(p)(x) := ∑

T∈T dof

(∇p|T)ψT(x),

whereψT denotes the normalized simplex bubble onT defined in (2.12). We can boundPB by

‖PB(p)‖2
1,Ω = ‖PB(p)‖2

1,Ωdof = ∑
T∈T dof

‖∇p‖2
0,∞,T‖ψT‖2

1,T

(3.7),Poinc. inequ.
≤ (C1)

2h−2
T ‖p‖2

0,Ωdof, ∀p∈ Mcme
T ∩L2

0(Ω).

(3.23)

Since
C2|T| ≤

∫

T
ψT , (3.24)

we can estimate

|b(PB(p), p)| =

∣
∣
∣
∣
∣

∑
T∈T dof

〈

∇p|T ,

∫

T
PB(p)

〉
∣
∣
∣
∣
∣
= ∑

T∈T dof

‖∇p|T‖2
0,∞,T

∫

T
ψT

(3.24)
≥ C2‖∇p‖2

0,Ωdof

Lem.4,Poinc. ineq.
≥ C2

CE N
‖p‖2

0,Ω > 0

(3.25)

for all p∈ Mcme
T

∩L2
0(Ω). Although (3.25) does not imply stability of the mixed spaceBT dof × (Mcme

T
∩

L2
0(Ω)), it guarantees that the problem

a(u,v)+b(v, p) = 0, ∀v ∈ BT dof,

b(u,q) = g(q), ∀q∈ Mcme
T

∩L2
0(Ω),

(3.26)

has a unique solution(ug, pg) for all g∈ (Mcme
T

∩L2
0(Ω))′. Furthermore, we get

‖ug‖2
1,Ω

B
T dof⊆H1

0(Ω),Korn ineq.,(3.26)

≤ 1
αK

‖g‖(Mcme
T

)′‖pg‖0,Ω, (3.27)

‖pg‖2
0,Ω

(3.25)
≤

CE N

C2
|b(PB(pg), pg)|

(3.26),(3.23)
≤

C1CE N

C2
h−1‖ug‖1,Ω‖pg‖0,Ω (3.28)

and therefore

‖ug‖1,Ω
(3.27),(3.28)

≤
C1CE N

C2αK
︸ ︷︷ ︸

=:C3

h−1‖g‖(Mcme
T

∩L2
0(Ω))′, (3.29)
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It is well known (cf. [14, Lemma 3.2]) that the inf-sup condition holds on the continuous level, i.e.

∀p∈ L2
0(Ω)∃up ∈ H1

ess(Ω) : b(up, p) > β‖up‖1,Ω‖p‖0,Ω. (3.30)

Let p ∈ Mcme
T

∩ L2
0(Ω) andup ∈ H1

ess(Ω) denote the associated velocity field according to (3.30). By
ucme

p we denote the projection ofup onto the piecewise affine partE
ess(ST dof) of Xcme

T
. We deduce from

Theorem 2 by simple interpolation arguments (cf. [7, Theorem 12.3.3]) that

‖up−ucme
p ‖0,Ω ≤C4h‖up‖1,Ω. (3.31)

Based onug we choose the functionalg∈ (Mcme
T

∩L2
0(Ω))′ from (3.26) by

g(q) := b(up−ucme
p ,q). (3.32)

There is a uniqueug ∈ BT such thatb(ug,q) = g(q) for all q∈ Mcme
T

∩L2
0(Ω) and

‖ug‖1,Ω
(3.29)
≤ C3h−1‖g‖(Mcme

T
∩L2

0(Ω))′

≤C3h−1 sup
q∈Mcme

T
∩L2

0(Ω)

∣
∣
∫

Ω
〈
∇q,up−ucme

p

〉∣
∣+
∣
∣
∫

∂Ω q
〈
up−ucme

p ,ν
〉∣
∣

‖q‖0,Ω

p∈H1,Poinc. ineq.
≤ CPC3h−1(‖up−ucme

p ‖0,Ω +‖up−ucme
p ‖− 1

2 ,∂Ω)

p∈H1,trace th.
≤ CPC3Ctrh

−1‖up−ucme
p ‖0,Ω

(3.31)
≤ CPC4C3Ctr
︸ ︷︷ ︸

=:C

‖up‖1,Ω.

(3.33)

Finally, we estimate

b(ucme
p + ug, p)

(3.27)
= b(ucme

p , p)+g(p)
(3.31)
= b(up, p)

(3.25)
≥ β‖up‖1,Ω‖p‖0,Ω

(3.33)
≥ β

1+C
‖ucme

p + ug‖1,Ω‖p‖0,Ω

Next, we have to investigate the coercivity of the bilinear form a with respect to the discrete space
Xcme

T
. Due to the assumption (1.11) coercivity ofa is fulfilled with respect to the discrete spaces

∃α > 0 : a(u,u) ≥ α‖u‖1,Ω, ∀u ∈ H1
ess. (3.34)

We refer to [26; 22; 11; 29] for a proof of (3.34). SinceXcme
T

6⊆ H1
essthis result needs to be extended to a

certain neighborhood ofH1
ess. This neighborhood will be controlled in terms of theL2-norm of the trace.

Lemma 5 (Equivalent norms inH1
ess). For all u ∈ H1

essthere holds

‖u‖2
1,Ω . a(u,u)+‖λνuν + λτuτ‖2

0,∂Ω,

where the hidden constant does not depend onu.

Lemma 5 is a straight forward generalization of Lemma 4.12 in[29], where the cases of Dirichlet
and slip boundary conditions are discussed. The case of leakboundary conditions can be proved in an
analog way. The pure Neumann was excluded by Remark 1. Lemma 5implies thata is coercive on the
composite spaceXcme

T
if the violation of the essential boundary conditions is nottoo large.

Finally, we will discuss coercivity of the bilinear forma(·, ·) with respect to the discrete space.
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Theorem 5 (Discrete coercivity). There is a constantαcme that does not depend on h such thata(u,u)≥
αcme‖u‖2

1,Ω for all u ∈ Xcme
T

.

Proof. In Lemma 3 we have seen that the nonconformity in the velocityspace can be controlled by the
ratios R(T). As a consequence,a is coercive on the composite spaceXcme

T
, if the submesh is fine enough.

However, here we want to avoid constraints on R(T) to ensure well-posedness of the discrete problem
2.14 independently from the choice ofTess.

R(T) (cf. (3.17)) is bounded by a constantC independent of the mesh sizeh and the right hand
side in Lemma 3 is always bounded byC

√
h. In view of Lemma 5, there is anh0 such that the bilinear

form is coercive for all triangulationsT with mesh sizeh≤ h0. The caseh > h0 is discussed in what
follows. The bilineara has a nontrivial kernel given by the finite dimensional set ofrigid body motions
R (cf. (1.10)) and it is therefore coercive onXcme

T
if and only if Xcme

T
∩R = {0}. The latter has already

been proved for Dirichlet boundary conditions in [30]. The case of leak boundary conditions follows by
similar arguments. The generalization to the case|ΓD ∪Γl| > 0 is straight forward. In the case of pure
slip/Neumann boundary conditions, i.e.ΓD ∪Γl = /0, let u ∈ Xcme

T
, A ∈ R

d×d be skew symmetric and

b ∈ R
d such thatu(x) = Ax+ b. Then, by definition (2.9), we get

〈
AxΓ −b,ν(xΓ)

〉
= 0, ∀xΓ ∈ V := {xΓ

i | xi ∈ Θslave
ess , xΓ

i ∈ Γs}. (3.35)

Under the assumptions 2.11 the latter implies thatA = 0 andb = 0.

Theorem 4 and 5 imply the unique solvability of the discrete problem (2.14). Note that this result
does not depend on the choice of submeshTessand remains true forTess= T . The dependence on the
meshT is only minimal.

Therefore all assertions from the proof sketch in Section 3.1 have been verified.



4 Numerical Experiments

In this section we will report on the results of some numerical experiments. Extensive numerical param-
eter studies which systematically investigate the performance of the composite mini element with respect
to the roughness of the domain boundary have been published in [29; 30]. They clearly show that the
composite mini element is a very robust generalization of the standard mini element to very coarse, non
resolving meshes. [31; 32; 24]).

Here, we have studied the convergence behavior of the composite mini element with respect to the
approximation error in case of a small hole that is not resolved by the computational grid. We will start
with the following parametrized class of model problems. For 0 <

r
2 < 1 we defineM (r) by

−∆u + ∇p= fr , divu = 0 in Ωr := B1(0)\B r
2
(0), 0 <

r
2

< 1, (4.1)

〈u,ν〉 = 0, (Du ·ν)τ = 0 on Γs := ∂B r
2
(0), (4.2)

2Du ·ν = pν on ΓN := ∂B1(0), (4.3)

wherefr := −∆(ur) is the Laplacian ofur given by

ur(x) := (r −‖x‖)(1−‖x‖).

Obviously the pair(ur , p) ∈
(
H1

ess∩H2(Ω)
)
×
(
L2(Ω)∩H1(Ω)

)
is a solution of the model problem

M (r) for all constant pressuresp ∈ R and all radii 0<
r
2 < 1. The solution flow is visualized for

r = 0.5 in Figure 4. In a numerical computation the non-uniquenessin the pressure variable can be
fixed by adding a constraint like

∫

Ω p = 0 to the system of equations. We will use uniform overlapping
triangulations (cf. Figure 4b) arising from the initial triangulation

T = {conv{(−1,−1),(1,−1),(1,1)},conv{(1,1),(−1,1),(−1,−1)}}

by uniform refinements. Note that none of the meshes will resolve the domainΩr , i.e. neither the outer
boundary is resolved nor the hole. Especially for small values ofr the hole will be much smaller than
the mesh width of the finest triangulation. In Figure 5a the convergence history of the composite mini
element method is depicted for different hole sizes. Obviously, the optimal order of convergence is
present right from the coarsest levels. This is not surprising, since the solution remains very smooth in a
neighborhood of the hole whenr tends to 0. In general, we expect the method to give similar reasonable
approximations on complicated domains if the solution is smooth enough to be well represented by the
coarse composite space. Since we only adapt the basis to the boundary conditions and no additional
degrees of freedom are placed locally at the boundary, the method is not able to capture local behavior of
the solution within the slave part of the mesh. This can be seen in the second example where the solution
depends crucially on the size of the hole. Forn∈ N, n≥ 2, we defineM (n) by

−∆u + ∇p= fn, divu = 0 in Ω := B1(0)\Br(0), 0 < r :=
2

1+n
< 1, (4.4)

〈u,ν〉 = 0, (Du ·ν)τ = 0 on Γs := ∂Br(0), (4.5)

2Du ·ν = pν on ΓN := ∂B1(0), (4.6)
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wherefn := −∆(un) is the Laplacian ofun given by

un(x) := ‖x‖(1−‖x‖)n
.

Obviously the pair(un, p) ∈
(
H1

ess∩H2(Ω)
)
×
(
L2(Ω)∩H1(Ω)

)
is the unique solution of the model

problemM (n) for all constant pressuresp ∈ R. A solution flow is visualized in Figure 4. Using the
same meshes as before, results in the convergence history ofthe composite mini element method as
depicted in Figure 5b. As expected, the local bump of the solution is not captured by the composite mini
element approximation until the global mesh size is small enough. Therefore we observe a suboptimal
convergence depending on the size of the hole. However, for all investigated radii optimal convergence
order starts long before the hole is resolved by the mesh. These examples show that small holes might
influence the singular behavior of the solution in some case while in other cases the solution is harmless
and degrees of freedom are not necessary from the view point of approximability. As explained in
the introduction composite finite elements, conceptually,allow to enrich the finite element space in an
optimal way. Future research will be directed to control theoptimal enrichment by a posteriori error
indicators.
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(a) Solution flow (first component) ofM1(
1
4) (r = 1

8). (b) Solution flow (first component) ofM2(15) (r = 1
8).

Figure 4: Model problems: Stokes flows on the unit disc with a circular hole, Dirichlet boundary condition
on the outer boundary, slip boundary condition on the inner circle.
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Figure 5: Convergence history of CME applied to the model problems.



5 Conclusion

We have described a mixed finite element method for the Stokesproblem that does not require the
underlying finite element mesh to resolve the physical domain. Overlapping, and possibly structured,
meshes are used instead. Therefore arbitrary coarse approximation spaces can be defined even if the
domain is very complicated. In contrast to other coarseningstrategies (cf. [3; 23; 46]), the asymptotic
error estimates are preserved on the coarse meshes. Furthermore, the application of the method is not
restricted to the standard Dirichlet and Neumann boundary conditions. Boundary conditions of leak and
slip type can be treated as well. Additionally, our error analysis requires only minimal smoothness of the
domain.

Compared to homogenization approaches we did not make any periodicity assumptions. Further-
more, the definition of the basis functions is fully explicit, no local problems have to be solved. There-
fore the complexity of the method will be proportional to thenumber of degrees of freedom which can
be chosen almost independent from the geometry. The only difficulty lies in the integration over the
intersections of elements and the domain. However, from a practical point of view, integration in space
is much simpler then integration over the complicated boundary or solving a whole sub-problem on a
fine scale mesh.

In cases where the domain contains rough boundaries or holesthe method still allows to derive
reasonable approximations at moderate effort. Although, as in standard finite element methods, details
of the solution that are smaller than the mesh width cannot becaptured, the composite approximation
will always be a reasonable and cheap initial guess in an adaptive process of an adaptive enrichment of
the finite element space driven via an a-posteriori error estimation and mesh refinement (cf. [32; 33]).
As a consequence, geometric details will only be resolved where it is required by the solution.
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