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Abstract. We introduce a new Partition of Unity Method for the numerical homog-
enization of elliptic partial differential equations with arbitrarily rough coefficients. We
do not restrict to a particular ansatz space or the existence of a finite element mesh. The
method modifies a given partition of unity such that optimal convergence is achieved in-
dependent of oscillation or discontinuities of the diffusion coefficient. The modification
is based on an orthogonal decomposition of the solution space while preserving the par-
tition of unity property. This precomputation involves the solution of independent prob-
lems on local subdomains of selectable size. We deduce quantitative error estimates for
the method that account for the chosen amount of localization. Numerical experiments
illustrate the high approximation properties even for ‘cheap’ parameter choices.

Keywords. partition of unity method, multiscale method, LOD, upscaling, homoge-
nization.

1 Introduction

In this paper, we present a novel Multiscale Partition of Unity Method for reliable numerical homog-
enization in the meshfree context.

The Partition of Unity Method (PUM) was introduced by Babuška and Melenk in [6, 29], with
the motivation that known singularities of the solution of a given PDE can be embedded into the
ansatz space. Examples of Partition of Unity Methods can be found in [11, 16, 17, 21, 25, 31, 36].
Specific realizations of methods that fit into the general PUM framework but which are formulated in
the context of finite element methods are the Extended Finite Element Method (XFEM, cf. [7, 30]),
the Generalized Finite Element Method (GFEM, cf. [9, 10, 12, 24, 34, 35]) and the Stable GFEM
presented in [18]. More general surveys on XFEM and GFEM can be found in [3, 14, 33].

In contrast to local singularities (usually due to the shape of the domain), multiscale problems con-
sider the issue of very rough coefficients all over the domain. In order to obtain a reliable numerical
approximation to the solution of the multiscale problem, it is typically necessary to ’resolve the co-
efficient’, whereas a simple local averaging of the coefficient leads to wrong approximations. This
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means that the discrete solution space in which we seek an adequate Galerkin approximation must be
able to fully capture the fine structures of the coefficient. Practically, this often leads to very large
spaces and therefore to tremendous computational efforts. One approach to overcome this difficulty
is to construct a special low dimensional space that incorporates the relevant fine scale features in
its basis functions and that exhibits high approximation properties. A locally supported basis of this
space can be computed in parallel by solving fine scale problems in small patches. This approach has
been studied extensively for Finite Elements in [19, 20, 28, 27].

Other numerical multiscale methods can be found in [1, 4, 13, 15, 22, 23, 26]. In the context of
meshfree methods we refer to recent papers [5, 32] where elliptic problems with rough coefficients
are treated by introducing special non-polynomial shape functions, i.e., local eigenfunctions in [5] and
rough polyharmonic splines in [32].

This paper aims to generalize the mesh-based approach of [19, 20, 28, 27] to general ansatz spaces
without the requirement of underlying finite element meshes.

Throughout the paper, our model problem consists of finding a stationary heat distribution in some
heterogenous media. Let A ∈ L∞(Ω,Rd×d

sym ) be a symmetric coefficient with uniform spectral bounds
β ≥ α > 0 in some bounded Lipschitz domain Ω ⊂ Rd for d = 1, 2, 3, i.e.,

0 < α := ess inf
x∈Ω

inf
v∈Rd\{0}

(
A(x)v, v

)
(v, v)

,

∞ > β := ess sup
x∈Ω

sup
v∈Rd\{0}

(
A(x)v, v

)
(v, v)

.

This coefficient A may be strongly heterogenous and arbitrarily rough. We consider the prototypical
second-order linear elliptic PDE

− div A∇u = g (1a)

with homogeneous Neumann boundary condition

A∇u · ν = 0 on ∂Ω, (1b)

given the exterior normal vector ν on ∂Ω and compatible right-hand side g ∈ L2(Ω) such that∫
Ω

g dx = 0.

We are looking for the unique (up to a constant) weak solution of problem (1a–b). This is, for
V := H1(Ω), find u ∈ V/R = {v ∈ V |

∫
Ω

v dx = 0} with

a(u, φ) :=
∫
Ω

A∇u · ∇φ dx =

∫
Ω

gφ dx for all φ ∈ V/R. (2)

2 Abstract Multiscale Partition of Unity

In this section, we propose a Multiscale Partition of Unity Method without restriction to a particular
ansatz space or even the existence of a mesh. This method is built upon two abstract (and possibly
equal) partitions of unity that will be introduced in Section 2.1. Another crucial tool for the design
of the method and its error analysis is a quasi-interpolation operator presented in Section 2.2. In the
third and last subsection, we finally define the novel multiscale partition of unity method based on a
localized orthogonal decomposition of V .
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2.1 Two Partitions of Unity

The subsequent derivation of the multiscale method is based upon two standard partitions of unity.
One partition is regular and spans a coarse space Vc. The other partition may be discontinuous and is
solely used for the localization of the corrector problems in Section 2.3.

Definition 1 (Partitions of Unity).

(PU 1) Let J denote a finite index set and {ϕ j | j ∈ J} a linearly independent Lipschitz partition of
unity on Ω, i.e.∑

j∈J

ϕ j = 1 with ∀ j ∈ J : 0 ≤ ϕ j ∈ W1,∞(Ω),

s.t. for any λ ∈ RJ ,
∑
j∈J

λ jϕ j = 0 ⇔ ∀ j ∈ J : λ j = 0.

We define ω j := supp(ϕ j) and H j := diam(ω j) for all j ∈ J and H := max j∈J H j. The partition
of unity functions span a finite dimensional coarse space Vc := span{ϕ j | j ∈ J}.

(PU 2) Let Ĵ denote a finite index set and {ϕ̂ ̂ | ̂ ∈ Ĵ} ⊆ L∞(Ω) a bounded and positive partition of
unity on Ω, i.e. ∑

̂∈Ĵ

ϕ̂ ̂ = 1 on Ω and ϕ̂ ̂ ≥ 0.

We define ω̂ ̂ := supp(ϕ̂ ̂) and Ĥ ̂ := diam(ω̂ ̂) for all ̂ ∈ Ĵ . The maximum over all Ĥ ̂ is
denoted by Ĥ.

Example 1. The abstract definitions of (PU 1) and (PU 2) include the following special cases.

a) (PU 2) equals (PU 1).

b) Given some regular simplicial mesh T with vertices N = J , the partition (PU 1) is the con-
tinuous piecewise affine nodal basis functions ϕz, associated with vertices z ∈ N . Recall that
ϕz is defined by its values ϕz(y) =

{
1 if y=z
0 else for vertices y ∈ N . (PU 2) may be chosen as the

characteristic (or ‘indicator’) functions of the triangles, i.e.

Ĵ = T and ϕ̂T = χT for all T ∈ T .

Definition 2 (extension patch). For any patch ω j in (PU 1) and k ∈ N, we define the k-th order
extension patch ωk

j by

ωk
j :=

⋃
x∈ω j

Bk·H(x) =
{
x ∈ Ω | dist(x, ω j) ≤ k · H

}
.

where Bk·H(x) denotes the ball with radius k · H around x and where “dist” denotes the set distance

dist(x, B) := inf
b∈B
‖x − b‖ .

For (PU 2), the extension patches ω̂k
̂, k ∈ N are defined analogously.

The subsequent definition serves only for the proofs. It has no practical relevance for the proposed
method.

3



Definition 3 (quasi-inclusion). Given two sets B,C ⊆ Ω, the set B is n-quasi-included in C (shorthand

notation: B
n
⊂
∼

C) if

∀ j1, . . . , jm ∈ J , k1, . . . , km ∈ N : C ⊆
m⋃

i=1
ωki

ji
⇒ B ⊆

m⋃
i=1
ωki+n

ji
.

Note that the shorthand notation allows for quantified transitivity

B
n1
⊂
∼

C
n2
⊂
∼

D ⇒ B
n1+n2
⊂
∼

D.

2.2 Abstract Quasi-Interpolation

Definition 4 (quasi-interpolation operator). Throughout this paper, let I : V → Vc denote an abstract
quasi-interpolation operator which fulfills the following properties.

(I1) I is linear and continuous.

(I2) I|Vc : Vc → Vc is an isomorphism with H1-stable inverse.

(I3) There exists a constant C1 only depending on Ω and the shape of the patches ω j such that for
all u ∈ H1(Ω) and all j ∈ J

‖u − I(u)‖L2(ω j) ≤ C1H j‖∇u‖L2(ω1
j )
,

and a constant C2 that further depends on max j∈J
(
H j

∥∥∥ϕ j
∥∥∥

W1,∞(Ω)
)

such that

‖∇I(u)‖L2(ω j) ≤ C2‖∇u‖L2(ω1
j )
.

(I4) There exists a constant C3 with same dependencies as C2 and some κ ∈ N depending on the
overlapping of the supports {ω j} j∈J such that for all vc ∈ Vc there exists v ∈ V such that

I(v) = vc, ‖∇v‖L2(Ω) ≤ C3‖∇vc‖L2(Ω), and supp(v)
κ
⊂
∼

supp(vc),

with the quasi-inclusion
κ
⊂
∼

defined above.

A particular quasi-interpolation operator I is given in the subsequent definition.

Example 2 (Clement-type quasi-interpolation [8]). Define a weighted Clément-type quasi-interpolation
operator

I : V → Vc, v 7→ I(v) :=
∑
j∈J

v jϕ j with v j :=
(v, ϕ j)L2(Ω)

(1, ϕ j)L2(Ω)
.

This operator obviously satisfies (I1) and (I2). The properties (I3) have been shown in [8] in the
abstract setting of (PU 1). We verify that (I4) is satisfied for a particular choice of basis functions.
The following result is similar to [28, Lemma 2.1].

Lemma 1. For a given regular triangulation T with vertices N = J and nodal basis functions
{ϕz}z∈N as in Example 1b), the quasi-interpolation operator from Example 2 satisfies (I4) with κ = 1.
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T Tred

Figure 1: Sketch of a so-called red refinement of a single triangle in 2d. In general, the red refinement
is based on the bisection of all edges and yields at least d + 1 simplices of same shape and
half diameter.

Proof. For any basis function ϕz, we want to find bz ∈ H1(Ω) with

I(bz) = ϕz, |∇bz| ≤ C|∇ϕz| a.e. in Ω and supp(bz) ⊆ supp(ϕz).

Consider the red refinement Tred of T (cf. Figure 1) with nodal basis functions ϕr
z. If nb(z) denotes

the set of all neighboring nodes of z in Tred it can be verified that

bz = (2d+1 − 1)ϕr
z −

1
2

∑
y∈nb(z)

ϕr
y

satisfies the desired conditions.
To conclude the proof, set

w :=
∑
z∈N

(vc(z) − I(vc)(z)) bz

and observe that v := vc + w satisfies vc = I(v), with supp(v)
1
⊂
∼

supp(vc) and

‖∇v‖ ≤ (1 + C + C2C) ‖∇vc‖ . �

2.3 Definition of the method

The goal is the construction of a space Vm
c that is of the same dimension as the discrete coarse space

Vc = span{ϕ j | j ∈ J} (cf. Definition 1) but which exhibits high H1-approximations that are inherited
from the L2-approximation properties of Vc. Furthermore, we wish to explicitly construct a partition
of unity basis for Vm

c .
Under the conditions (I1) and (I2) on the abstract quasi-interpolation operator, the space V can be

written as the direct sum

V = Vc ⊕ Vf , with Vf := {v ∈ V | I(v) = 0}. (3)

The subspace Vf contains the fine scale features in V that cannot be captured by the coarse space Vc.

5



Definition 5 (corrector). For ̂ ∈ Ĵ and m ∈ N, define the local corrector Qm
̂ : Vc → Vf(ω̂m

̂ ) as the
mapping of a given vc ∈ Vc onto the solution Qm

̂ (vc) ∈ Vf(ω̂m
̂ ) :=

{
v ∈ Vf | v = 0 in Ω \ ω̂m

̂

}
of∫

ω̂m
̂

A∇Qm
̂ (vc) · ∇w dx = −

∫
ω̂ ̂

ϕ̂ ̂A∇vc · ∇w dx for all w ∈ Vf(ω̂m
̂ ). (4)

The global corrector is given by
Qm(vc) :=

∑
̂∈Ĵ

Qm
̂ (vc).

For sufficiently large m such that ω̂m
̂ = Ω for all ̂ ∈ Ĵ , we call QΩ := Qm the ideal corrector.

The parameter m in Definition 5 reflects the locality of the method. The computational cost grows
polynomially with m, while the error decays exponentially towards the error of the ideal (not localized)
method.

Observe that the corrector problem (4) always yields a unique solution. Existence is clear by the
Lax-Milgram theorem, because the zero function is the only constant function in Vf . For any m ∈ N,
the operator Qm is linear and we denote the corrected discrete space

Vm
c := {vc + Qm(vc) | vc ∈ Vc}, VΩ

c := {vc + QΩ(vc) | vc ∈ Vc}. (5)

Note that Vm
c (and also VΩ

c ) satisfies
V = Vm

c ⊕ Vf

and that {ϕ j+Qm(ϕ j) | j ∈ J} is a basis of Vm
c . Moreover, the ideal method comes with a-orthogonality

of Vc onto Vf , i.e.
a(VΩ

c ,Vf) = 0. (6)

Remark 1. The partition of unity property is preserved under correction. To prove this, it suffices to
show

∑
j∈J Qm(ϕ j) = 0. We compute∑

j∈J

Qm(ϕ j) =
∑
j∈J

∑
̂∈Ĵ

Qm
̂ (ϕ j) =

∑
̂∈Ĵ

Qm
̂

(∑
j∈J

ϕ j
)

=
∑
̂∈Ĵ

Qm
̂ (1) = 0.

Hence {ϕ j + Qm(ϕ j) | j ∈ J} is a partition of unity. This also holds for the ideal corrector QΩ.

The Galerkin discretization of (2) with respect to the corrected space Vm
c , m ∈ N reads as follows.

Definition 6 (Multiscale Partition of Unity Method). Find um
c ∈ Vm

c /R such that∫
Ω

A∇um
c · ∇vc dx =

∫
Ω

gvc dx for all vc ∈ Vm
c /R. (7)

The ideal problem seeks uΩc ∈ VΩ
c /R such that∫

Ω
A∇uΩc · ∇vc dx =

∫
Ω

gvc dx for all vc ∈ VΩ
c /R. (8)
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3 A priori error analysis

In this section, we prove error estimates for the discrete solution of (7). In the first subsection, we
consider the ideal case with ansatz space VΩ

c (cf. (5)). The second subsection yields an error estimate
for the localized problem. We will use the notation “a . b” to state the existence of C > 0 such that
a ≤ Cb. The hidden constant C may depend on the Poincaré constant CPoinc(Ω), on the ratio Ĥ/H,
on the constants C1,C2,C3 and κ from (I1)–(I4) in Definition 4, and on the operator norms of I and(
I|Vc

)−1 that result from (I1) and (I2). The hidden constant does not depend on the data A and g, the
spectral bounds α and β (in particular the contrast β

α ) or the patch sizes H and Ĥ.

3.1 Error estimate for global basis functions

We consider the ideal (but expensive) case of no localization (i.e. ω̂m
̂ = Ω) and observe that the

proposed method inherits the optimal approximation properties. This estimate is also important in the
analysis of the localized method in Section 3.2.

Theorem 1 (A priori error estimate for the ideal case). Let u be the solution of (2). Then the discrete
solution uΩc of (8) satisfies

α1/2
∥∥∥∇(uΩc − u)

∥∥∥
L2(Ω) ≤

∥∥∥A1/2∇(uΩc − u)
∥∥∥

L2(Ω) . α
−1/2H‖g‖L2(Ω).

Proof. Observe that we can replace the test function space VΩ
c /R by VΩ

c , since we subsequently only
consider gradients. Galerkin orthogonality, i.e.

a
(
u − uΩc , vc

)
= 0 for all vc ∈ VΩ

c (9)

and (6) imply that e := u − uΩc ∈ Vf and therefore I(e) = 0. We get

‖A1/2∇e‖2L2(Ω) = a(e, e)
(9)
= a(e, u) = a(u, e)

=

∫
Ω

g(e − I(e)) dx

(I3)
. H‖g‖L2(Ω)‖∇e‖L2(Ω)

≤ α−1/2H‖g‖L2(Ω)‖A
1/2∇e‖L2(Ω). �

3.2 Error estimate for local basis functions

In this final subsection, we give error estimates for the localized method. The main result is presented
below.

Theorem 2 (A priori error estimates for the localized method). Assume that u ∈ V solves (2), then the
discrete solution um

c ∈ Vm
c of (7) satisfies

‖∇u − ∇um
c ‖L2(Ω) . α

−1(H +
β
αmd/2θ̃m)

‖g‖L2(Ω),

‖u − um
c ‖L2(Ω) . α

−2(H +
β
αmd/2θ̃m)2

‖g‖L2(Ω),

with some generic constant 0 < θ̃ = θdĤ/He < 1 and θ depending on the contrast β
α (cf. Lemma 4 and

5 below).
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Proof. Let uΩc be the solution of the ideal problem with correction operator QΩ, and uc ∈ Vc/R such
that uΩc = uc + QΩuc. As a consequence of (I3), all functions v ∈ Vf satisfy

∫
Ω

v dx = 0. With
Qmvc ∈ Vf , we get

‖∇u − ∇um
c ‖L2(Ω) . min

vm
c ∈Vm

c /R

∥∥∥∇u − ∇vm
c

∥∥∥
L2(Ω)

≤
∥∥∥∇u − ∇(uc + Qmuc)

∥∥∥
L2(Ω)

≤
∥∥∥∇u − ∇uΩc

∥∥∥
L2(Ω) +

∥∥∥∇QΩuc − ∇Qmuc
∥∥∥

L2(Ω) .

Lemma 5 will quantify the localization error∥∥∥∇QΩuc − ∇Qmuc
∥∥∥

L2(Ω) .
β
αmd/2θ̃m

(∑
̂∈Ĵ

‖∇QΩ
̂ uc‖

2
L2(Ω)

)1/2
.

This, Theorem 1 and the estimates∑
̂∈Ĵ

‖∇QΩ
̂ uc‖

2
L2(Ω)

(4)
.

∑
̂∈Ĵ

‖ϕ̂ ̂∇uc‖
2
L2(Ω) ≤ ‖∇uc‖

2
L2(Ω)

=
∥∥∥∇(I|Vc

)−1I(uΩc )
∥∥∥

L2(Ω)

(I1),(I2)
. ‖∇uΩc ‖

2
L2(Ω) ≤ α

−1CPoinc(Ω) ‖g‖2L2(Ω)

yield the H1-error estimate. The L2-error estimate is obtained by a standard Aubin-Nitsche argument.
�

To prove Lemma 5, several tools are needed in addition to the preceding results. They will be
discussed below.

Lemma 2 (quasi-inclusion of intersecting patches). Let i, j ∈ J and `, k,m ∈ N with k ≥ ` ≥ 2. Then

if ωm
i ∩

(
ωk

j \ ω
`
j

)
, ∅ then ωi ⊆ ω

k+m+1
j \ ω`−m−1

j .

Proof. Consider x ∈ ωm
i ∩

(
ωk

j \ ω
`
j

)
and observe

ωi ⊆ B(m+1)H(x) ⊆ ωk+m+1
j \ ω`−m−1

j . �

Definition 7 (cut-off functions). For all j ∈ J and `, k ∈ N with k > `, we define the cut-off function

ηk,`
j (x) =

dist(x, ωk−`
j )

dist(x, ωk−`
j ) + dist(x, Ω \ ωk

j)
.

For Ω \ ωk
j = ∅, we set ηk,`

j ≡ 0. Note that ηk,`
j = 0 in ωk−`

j and ηk,`
j = 1 in Ω \ ωk

j. Moreover, ηk,`
j is

bounded between 0 and 1 and Lipschitz continuous with∥∥∥∇ηk,`
j

∥∥∥
L∞(Ω) ≤

1
`H

. (10)

See [2, Theorem 8.5] for existence and boundedness of the weak derivative of Lipschitz-continuous
functions.
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Remark 2. The Lipschitz bound is shown as follows. For x ∈ Rd we have the triangle inequality

dist(x, ωk−`
j ) + dist(x, Ω \ ωk

j) ≥ dist(ωk−`
j , Ω \ ωk

j) = `H.

Moreover, any nonemtpy set B in a metric space satisfies Lipschitz continuity of the distance function
dist( · , B) in the sense

|dist(x, B) − dist(y, B)| ≤ dist(x, y) for x, y ∈ Rd.

Altogether, ∣∣∣ηk,`
j (x) − ηk,`

j (y)
∣∣∣

dist(x, y)
≤

1
dist(x, y)

·

∣∣∣dist(x, ωk−`
j ) − dist(y, ωk−`

j )
∣∣∣

`H

≤
1
`H

.

A technical issue in our error analysis is that Vf is not invariant under multiplication by such cut-off

functions. However, the product ηk,`
j w for w ∈ Vf is close to Vf in the following sense.

Lemma 3 (quasi-invariance of Vf under multiplication by cut-off functions). Recall κ from (I4). For
any given w ∈ Vf and cutoff function ηk,`

j with k > ` > 0, there exists w̃ ∈ Vf(Ω \ ωk−`−κ−2
j ) ⊆ Vf such

that
‖∇(ηk,`

j w − w̃)‖L2(Ω) . `
−1‖∇w‖L2(ωk+2

j \ω
k−`−2
j ).

Proof. We fix the j ∈ J and k ∈ N and denote η` := ηk,`
j and c`i := 1

|ω1
i |

∫
ω1

i
η` dx for i ∈ J . The

property (I4), applied to I(η`w) ∈ Vf , yields v ∈ V with

I(v) = I(η`w), ‖∇v‖L2(Ω) . ‖∇Iη`w‖L2(Ω), (11)

and supp(v)
κ
⊂
∼

supp
(
I(η`w)

) 1
⊂
∼

supp(η`w) ⊆ Ω \ ωk−`
j ,

which yields supp(v)
κ+1
⊂
∼
Ω \ ωk−`

j ⇒ supp(v) ⊆ Ω \ ωk−`−κ−2
j . (12)

Note that supp
(
I(η`w)

) 1
⊂
∼

supp(η`w) is a consequence of (I3), and that (11) implies I(v − η`w) = 0.
We define w̃ := η`w − v ∈ Vf(Ω \ ωk−`−κ−2

j ). Using I(w) = 0, we obtain for any i ∈ J

‖∇I(η`w)‖L2(ωi)
(I1)
=

∥∥∥∇I((η` − c`i )w)
∥∥∥

L2(ωi)

(I3)
.

∥∥∥∇((η` − c`i )w)
∥∥∥

L2(ω1
i ) . (13)
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This gives us

‖∇I(η`w)‖2L2(Ω) ≤
∑
i∈J

‖∇I(η`w)‖2L2(ωi)

(13)
.

∑
i∈J

∥∥∥∇((η` − c`i )w
)∥∥∥2

L2(ω1
i )

=
∑
i∈J :

ω1
i ∩(ωk

j\ω
k−`
j ),∅

∥∥∥∇((η` − c`i
)
w
)∥∥∥2

L2(ω1
i )

(2)
≤

∑
i∈J :

ωi⊆ω
k+2
j \ω

k−`−2
j

∥∥∥∇((η` − c`i
)
w
)∥∥∥2

L2(ω1
i )

.
∑
i∈J :

ωi⊆ω
k+2
j \ω

k−`−2
j

∥∥∥(∇η`)(w − Iw)
∥∥∥2

L2(ω1
i ) +

∥∥∥(η` − c`i
)
∇w

∥∥∥2
L2(ω1

i ).

Since ∇η` , 0 only in ωk
j \ ω

k−`
j and (η` − c`i )

∣∣∣
ω1

i
, 0 only if ω1

i intersects with ωk
j \ ω

k−`
j , we have

.
∑
i∈J :

ωi⊆ω
k+1
j \ω

k−`−1
j

∥∥∥(∇η`)(w − Iw)
∥∥∥2

L2(ωi)
+

∑
i∈J :

ωi⊆ω
k+1
j \ω

k−`−1
j

∥∥∥(η` − c`i
)
∇w

∥∥∥2
L2(ω1

i )

. H2‖∇η`‖
2
L∞(Ω)‖∇w‖2

L2(ωk+1
j \ω

k−`−1
j )

+
∑
i∈J :

ωi⊆ω
k+1
j \ω

k−`−1
j

∥∥∥(η` − c`i
)
∇w

∥∥∥2
L2(ω1

i )

(10)
≤ `−2

∥∥∥∇w
∥∥∥2

L2(ωk+2
j \ω

k−`−2
j ), (14)

where we used the Lipschitz bound ‖η` − c`i ‖L∞(ω1
i ) . H ‖∇η`‖L∞(ω1

i ). The combination of (11) and
(14) readily yields the assertion,

‖∇(η`w − w̃)‖2L2(Ω) = ‖∇v‖2L2(Ω)

(11)
≤ ‖∇I(η`w)‖2L2(Ω)

(14)
. `−2 ‖∇w‖2

L2(ωk+2
j \ω

k−`−2
j )

. �

A key result is the following.

Lemma 4 (Exponential decay in the fine scale space). Consider some fixed j ∈ J and let F ∈ (Vf)′

satisfy F(w) = 0 for all w ∈ Vf(Ω \ ω
%
j) with % :=

⌈ Ĥ
H
⌉
. Let p ∈ Vf be the solution of

a(p,w) = F(w) for all w ∈ Vf . (15)

Then there exists 0 < θ < 1 depending on the contrast β
α such that for all positive k ∈ N it holds

‖∇p‖L2(Ω\ωk
j)
. θk ‖∇p‖L2(Ω) .

10



Proof. We use a cut-off function as in the previous proof and denote η` := ηk,`
j with ` ≤ k − % − κ − 2.

Applying Lemma 3 yields the existence of p̃ ∈ Vf(Ω\ωk−`−κ−2
j ) with the estimate ‖∇(η`p− p̃)‖L2(Ω) .

`−1 ‖∇p‖L2(ωk+2
j \ω

k−`−2
j ). Due to the property p̃ ∈ Vf(Ω \ ωk−`−κ−2

j ) and the assumptions on F we also
have ∫

Ω\ωk−`−κ−2
j

A∇p · ∇ p̃ dx =

∫
Ω

A∇p · ∇ p̃ dx = F( p̃) = 0. (16)

This leads to

α ‖∇p‖2
L2(Ω\ωk

j)
≤

∫
Ω\ωk

j

A∇p · ∇p dx ≤
∫
Ω\ωk−`−κ−2

j

η`A∇p · ∇p dx

=

∫
Ω\ωk−`−κ−2

j

A∇p · (∇(η`p) − p∇η`) dx.

With (16) and since p ∈ Vf , this is

=

∫
Ω\ωk−`−κ−2

j

A∇p ·
(
∇(η`p − p̃) − (p − I(p))∇η`

)
dx

. `−1β
(
‖∇p‖2

L2(Ω\ωk−`−κ−2
j )

+ H−1‖∇p‖L2(Ω\ωk−`−κ−2
j )‖p − I(p)‖L2(Ω\ωk−`−κ−2

j )

)
(I3)
. `−1β ‖∇p‖2

L2(Ω\ωk−`−κ−2
j )

.

Hence, there exists a constant C independent of mesh size, contrast, number of patch extension layers,
such that

‖∇p‖2
L2(Ω\ωk

j)
≤ C`−1 β

α
‖∇p‖2

L2(Ω\ωk−`−κ−2
j )

. (17)

Choose ` := deC β
αe and observe that successive use of (17) yields

‖∇p‖2
L2(Ω\ωk

j)
≤ e−1 ‖∇p‖2

L2(Ω\ωk−`−κ−2
j )

≤ e−b
k−%
`+κ+2 c ‖∇p‖2L2(Ω\ω%j )

. e−
k

`+κ+2 ‖∇p‖2L2(Ω) .

The choice θ := e−(deCβ/αe+κ+2)−1
concludes the proof. �

Lemma 5 (localization error). For uc ∈ Vc, the correction operators Qm and QΩ satisfy∥∥∥∇(QΩuc − Qmuc
)∥∥∥

L2(Ω) .
β
αmd/2θ̃m

∥∥∥QΩum
c

∥∥∥
L2(Ω)

with θ̃ := θdĤ/He < 1 and θ from Lemma 4.

Proof. Recall the definition Qmuc :=
∑

̂∈Ĵ Qm
̂ (uc) with∫

ω̂m
̂

A∇Qm
̂ (uc) · ∇w dx = −

∫
Ω
ϕ̂ ̂A∇uc · ∇w dx︸                     ︷︷                     ︸

F ̂(w)

for all w ∈ Vf(ω̂m
̂ ), ̂ ∈ Ĵ .

11



Note that the right-hand side F ̂ of the local problem is zero for w ∈ Vf(Ω \ ω̂ ̂). Consider some fixed
̂ ∈ Ĵ and choose j ∈ J such that ω j ∩ ω̂ ̂ , ∅. Recall % =

⌈ Ĥ
H
⌉
, then we have ω̂ ̂ ⊆ ω

%
j and thus

Vf(Ω \ ω
%
j) ⊆ Vf(Ω \ ω̂ ̂). Hence F ̂ satisfies the conditions from Lemma 4.

Moreover, we get ωk
j ⊆ ω̂

m
̂ for k satisfying

m =
⌈ k·H

Ĥ

⌉
≤ k

⌈H
Ĥ

⌉
. (18)

Denote v := QΩuc − Qmuc ∈ Vf and note that I(v) = 0. Using the cut-off functions ηk,1
j from

Definition 7, we obtain

α
∥∥∥∇v

∥∥∥2
L2(Ω) ≤

∑
̂∈Ĵ

( (
A∇

(
QΩ
̂ uc − Qm

̂ uc
)
,∇(v(1 − ηk,1

j ))
)
L2(Ω)︸                                              ︷︷                                              ︸

I

+ (A∇
(
QΩ
̂ uc − Qm

̂ uc
)
,∇(vηk,1

j ))L2(Ω)︸                                       ︷︷                                       ︸
II

)
.

We bound the term I by

I ≤ β
∥∥∥∇(QΩ

̂ uc − Qm
̂ uc

)∥∥∥
L2(Ω)

∥∥∥∇(v(1 − ηk,1
j )

)∥∥∥
L2(ωk

j)

≤ β
∥∥∥∇(QΩ

̂ uc − Qm
̂ uc

)∥∥∥
L2(Ω)

(
‖∇v‖L2(ωk

j)
+

∥∥∥v∇
(
1 − ηk,1

j
)∥∥∥

L2(ωk
j\ω

k−1
j )

)
. β

∥∥∥∇(QΩ
̂ uc − Qm

̂ uc
)∥∥∥

L2(Ω)
(
‖∇v‖L2(ωk

j)
+ H−1 ‖v − I(v)‖L2(ωk

j\ω
k−1
j )

)
. β

∥∥∥∥∇(QΩ
̂ uc − Qm

̂ uc
)∥∥∥∥

L2(Ω)
‖∇v‖L2(ωk+1

j ) .

Lemma 3 yields the existence of ṽ ∈ Vf(Ω \ ωk−κ−3
j ) with∥∥∥∇(vηk,1

j − ṽ)
∥∥∥

L2(Ω) . ‖∇v‖L2(ωk+2
j ) .

We assume that m is large enough such that k ≥ % + κ + 3, then ṽ ∈ Vf(Ω \ ω̂ ̂) and hence∫
Ω

A∇
(
QΩ
̂ uc − Qm

̂ uc
)
· ∇ṽ dx = 0.

It follows that

II =
(
A∇

(
QΩ
̂ uc − Qm

̂ uc
)
,∇(vηk,1

j − ṽ)
)
L2(Ω)

. β
∥∥∥∥∇(QΩ

̂ uc − Qm
̂ uc

)∥∥∥∥
L2(Ω)

‖∇v‖L2(ωk+2
j ) .

Combining the estimates for I and II finally yields∥∥∥∇v
∥∥∥2

L2(Ω) .
β

α

∑
̂∈Ĵ

∥∥∥∇(QΩ
̂ uc − Qm

̂ uc
)∥∥∥

L2(Ω) ‖∇v‖L2(ωk+2
j ) (19)

.
β

α
kd/2

(∑
̂∈Ĵ

∥∥∥∇(QΩ
̂ uc − Qm

̂ uc
)∥∥∥2

L2(Ω)

)1/2
‖∇v‖L2(Ω) ,

provided that
∣∣∣∣{i ∈ J | ωi ⊆ ω

k+2
j }

∣∣∣∣ . kd/2.
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In order to bound
∥∥∥∇(QΩ

̂ uc − Qm
̂ uc

)∥∥∥2
L2(Ω), we use Galerkin orthogonality for the local problems,

which is ∥∥∥∇(QΩ
̂ uc − Qm

̂ uc
)∥∥∥2

L2(Ω) . inf
q∈Vf (ωk

j)

∥∥∥∇(QΩ
̂ uc − q)

∥∥∥2
L2(Ω). (20)

(I4) yields the existence of w̃ ∈ Vf such that

I(w̃) = I((1 − ηk,1
j )QΩ

̂ uc), ‖∇w̃‖L2(Ω) . ‖∇I((1 − ηk,1
j )QΩ

̂ uc)‖L2(Ω),

and supp(w̃)
κ
⊂
∼

supp((1 − ηk,1
j )QΩ

̂ uc) ⊆ ωk
j.

We observe ∥∥∥∇I((1 − ηk,1
j )QΩ

̂ uc)
∥∥∥2

L2(ωk+κ
j ) =

∥∥∥∇I((1 − ηk,1
j )QΩ

̂ uc)
∥∥∥2

L2(ωk+1
j \ω

k−2
j ). (21)

With p ̂ := (1 − ηk,1
j )QΩ

̂ uc − w̃ ∈ Vf(ωk+κ
j ), we obtain

∥∥∥∇(QΩ
̂ uc − Qm

̂ uc
)∥∥∥2

L2(Ω)

(20)
.

∥∥∥∇(ηk,1
j QΩ

̂ uc + (1 − ηk,1
j )QΩ

̂ uc − p ̂)
∥∥∥2

L2(Ω)

=
∥∥∥∇(ηk,1

j QΩ
̂ uc − w̃)

∥∥∥2
L2(Ω)

. ‖∇QΩ
̂ uc‖

2
L2(Ω\ωk−2

j )
+ ‖∇w̃‖2

L2(ωk+κ
j )

. ‖∇QΩ
̂ uc‖

2
L2(Ω\ωk−2

j )

+ ‖∇I((1 − ηk,1
j )QΩ

̂ uc)‖2
L2(ωk+κ

j )

(21)
. ‖∇QΩ

̂ uc‖
2
L2(Ω\ωk−2

j )

+ ‖∇I((1 − ηk,1
j )QΩ

̂ uc)‖2
L2(ωk+1

j \ω
k−2
j )

(I3)
. ‖∇QΩ

̂ uc‖
2
L2(Ω\ωk−3

j )

Lemma 4
. θ2(k−3)

∥∥∥∇QΩ
̂ uc

∥∥∥2
L2(Ω)

(18)
. θ̃2m

∥∥∥∇QΩ
̂ uc

∥∥∥2
L2(Ω). (22)

Combining (19) and (22) proves the lemma. �

4 Numerical Experiment

In this section, we present numerical results for a special realization of the Multiscale Partition of
Unity Method. We consider a “coarse” regular triangulation TH of Ω, where H denotes the maximum
diameter of an element of TH . ByNH we denote the set of vertices of the triangulation. We choose the
basis functions ϕz as in Example 1b), i.e., the continuous and piecewise affine nodal basis functions
associated with vertices z ∈ N = J . The second partition of unity (PU 2) is given by the indicator
functions of the elements of the triangulation, i.e. {ϕ̂ ̂ | ̂ ∈ Ĵ} := {χT | T ∈ TH}. The corrector
problems given by (4) are solved with a P1 Finite Element method on a fine grid with resolution
h = 2−8. The reference solution uh is therefore the P1 Finite Element approximation in a space with
mesh size h = 2−8.
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In order to estimate the accuracy of uh itself, we performed a second computation for the mesh size
h = 2−10. The relative L2-error between the Finite Element approximation on a uniform mesh with
resolution h = 2−8 and the Finite Element approximation on a uniform mesh with resolution h = 2−10

is 0.023. The relative H1-error is 0.3204. However, we only compute the errors of um
c with respect to

the reference solution (i.e. for h = 2−8), since this is the relevant error for investigating the effect of
the coarse grid resolution and the decay of the multiscale basis functions on um

c .
The extension patches ω̂m

̂ can be defined by using the structure of the coarse grid by setting

ω̂0
̂ := T j ∈ TH ,

ω̂m
̂ := ∪{T ∈ TH | T ∩ ω̂m−1

̂ , ∅} m = 1, 2, . . . .
(23)

Figure 2: Plot of the rapidly varying and highly heterogeneous diffusion coefficient aε given by equa-
tion (25), which takes values between 0.01 and 2. The structure is disturbed by an isolating
arc (purple) of thickness 0.05 and with conductivity 10−3.

We consider the following model problem. Let Ω := ]0, 1[2 and ε := 0.05. Find uε ∈ V with

− div
(
aε(x)∇uε(x)

)
= x1 −

1
2 in Ω (24)

∇uε(x) · ν = 0 on ∂Ω.

The scalar diffusion coefficient aε in equation (24) is depicted in Figure 2. It has a contrast of order
103 and is constructed from the highly heterogeneous distribution

cε(x1, x2) := 1 + 1
10

4∑
j=0

j∑
i=0

(
2

j+1 cos
(⌊

ix2 −
x1

1+i
⌋

+
⌊

ix1
ε

⌋
+

⌊
x2
ε

⌋))
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and an isolating arc of radius r := 0.9, thickness ε
2 and center c0 := (1 − ε, ε). The coefficient aε is

then given by

aε(x) :=

10−3 if
∣∣∣|x − c0| − r

∣∣∣ < ε
2 , x2 > ε and x1 < 1 − ε

(h ◦ cε)(x) else,
(25)

with h(t) :=


t4 for 1

2 < t < 1
t

3
2 for 1 < t < 3

2

t else.

Figure 3: The top picture shows the P1 finite element reference solution uh for h = 2−8. The left
bottom picture shows the multiscale approximation um

c for (H,m) = (2−2, 1) together with
the corresponding coarse grid. This solution already shows the essential features of uh. The
right bottom picture shows the multiscale approximation um

c for (H,m) = (2−3, 2) together
with the corresponding coarse grid.

In our computation, we picked the truncation parameter m (according to (23)) to be in the span
between 0 and 2 and the coarse mesh size H to be in the span between 2−1 (i.e. h = H8) and 2−4 (i.e.
h = H2). The results are depicted in Table 1. We observe that error stagnates if we decrease only
H, without increasing m at the same time. However, already the modification (H,m) = (2−m−1,m) 7→
(2−m−2,m + 1) leads to a dramatic error reduction. Despite the high contrast of order 103, we already
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Table 1: Results for the relative error between the Multiscale Partition of Unity approximation
um

c and a reference solution uh on a fine grid of mesh size h = 2−8 ≈ 0.0039 �
ε which fully resolves the micro structure of the coefficient aε. We use the notation
‖um

c − uh‖
rel
L2(Ω)

:= ‖um
c − uh‖L2(Ω)/‖uh‖L2(Ω) and analogously the same for ‖um

c − uh‖
rel
H1(Ω)

. The

truncation parameter m determines the patch size and is given by (23).

H m ‖um
c − uh‖

rel
L2(Ω)

‖um
c − uh‖

rel
H1(Ω)

2−1 0 0.867827 0.93475
2−2 0 0.865630 0.96525
2−2 1 0.167501 0.37387
2−3 1 0.257826 0.61681
2−3 2 0.037841 0.16525
2−4 2 0.063645 0.25613

obtain a highly accurate approximation for (H,m) = (2−3, 2). In this case, the multiscale approx-
imation looks almost identical to the FEM reference solution for h = 2−8 (see Figure 3). Further
numerical experiments can be found in [19, 20, 28].
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[4] Ivo Babuška, Gabriel Caloz, and John E. Osborn, Special finite element methods for a class of
second order elliptic problems with rough coefficients, SIAM J. Numer. Anal. 31 (1994), no. 4,
945–981. MR 1286212 (95g:65146)
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[23] Thomas J. R. Hughes, Gonzalo R. Feijóo, Luca Mazzei, and Jean-Baptiste Quincy, The varia-
tional multiscale method—a paradigm for computational mechanics, Comput. Methods Appl.
Mech. Engrg. 166 (1998), no. 1-2, 3–24. MR 1660141 (99m:65239)

[24] Dae-Jin Kim, C. Armando Duarte, and S. Pedro Proença, A generalized finite element method
with global-local enrichment functions for confined plasticity problems, Computational Mechan-
ics 50 (2012), no. 5, 563–578 (English).

[25] T. Jadwiga Liszka, C. Armando Duarte, and Woitek Tworzydlo, hp-meshless cloud method,
Computer Methods in Applied Mechanics and Engineering 139 (1996), no. 14, 263–288.

[26] Axel Målqvist, Multiscale methods for elliptic problems, Multiscale Model. Simul. 9 (2011),
no. 3, 1064–1086. MR 2831590 (2012j:65419)

[27] Axel Målqvist and Daniel Peterseim, Computation of eigenvalues by numerical upscaling, Nu-
merische Mathematik (2014), 1–25 (English).

[28] , Localization of elliptic multiscale problems, Math. Comp. 83 (2014), no. 290, 2583–
2603. MR 3246801
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