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Short Note on the Density of States in 3D Weyl Semimetals
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The average density of states in a disordered three-dimensional Weyl system is discussed in the case of a
continuous distribution of random scattering. Our results clearly indicate that the average density of states
does not vanish, reflecting the absence of a critical point for a metal-insulator transition. This calculation
supports recent suggestions of an avoided quantum critical point in the disordered three-dimensional Weyl
semimetal. However, the effective density of states can be very small such that the saddle-approximation
with a vanishing density of states might be valid for practical cases.
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Introduction.—The existence of a metal-insulator tran-
sition in disordered three-dimensional (3D) Weyl semimet-
als has been debated in the recent literature [1-11]. It is
closely related to the question, whether or not the average
density of states (DOS) at the spectral node vanishes below
some critical disorder strength. The self-consistent Born
approximation provides such a critical value with a vanish-
ing DOS for weak disorder. It has been argued that rare
regions of the random distribution may lead to a non-
vanishing average DOS, though [1]. This was supported by
recent numerical studies based on the 7-matrix approach,
which gives an exponentially small DOS [8] but was
questioned in a recent study based on an instanton solution
[11]. In this short note we show that, depending on the type
and strength, a continuous distribution of disorder can
create a substantial average DOS at the spectral node in 3D
Weyl systems. This requires at least two impurities to create
aresonant state between these impurities. A single impurity
or a single instanton does not contribute to the spectral
weight at the Weyl node, though, in accordance with the
arguments in Ref. [11]. This supports the picture of an
avoided quantum critical point in the presence of a
distribution of impurities, as advocated in Ref. [8].

Model.—The 3D Weyl Hamiltonian for electrons with
momentum p is expanded in terms of Pauli matrices 7;
(=0, 1, 2, 3; 7y is the 2 x 2 unit matrix) as H =
Hy — Uz, where

HO = UF’_[" ﬁ with ’?: (71,12,73). (1)

vp is the Fermi velocity and U is a disorder term,
represented by a random potential with mean (U) = Ep
(Fermi energy) and variance g. The average Hamiltonian
(H) = Hy — Ert generates a spherical Fermi surface with
radius |Ep|, and with electrons (holes) for Ep >0
(Er < 0). Physical quantities are expressed in such units
that vph = 1.
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The dc limit @ — 0 of the conductivity of 3D Weyl
fermions depends only on the scattering rate # and the
Fermi energy Er [7]:

o) =25 7 [ (P + ) + E3 (207 +20/3+ E3)
’ h ((n? = E + k) + 4P EL)?
k>dk
— 2
x 272 ( )

with momentum cutoff A. At the node (Ey = 0) the dc
conductivity in Eq. (2) is reduced to the expression

_ 4 _
— g (w170~ ) €=,
which becomes for 1> #
&2
o~ m’?- (4)

The last result was also derived by Fradkin some time ago
[12]. In contrast to the 2D case, where ¢ = ¢2 /mh, the 3D
case gives a linearly increasing behavior with respect to the
scattering rate.

The results in Egs. (2)—(4) clearly indicate that a metal-
insulator transition in disordered 3D Weyl systems is
directly linked to the scattering rate #. The latter describes
the broadening of the poles of the one-particle Green’s
function and is proportional to the average DOS

I .
pe(Er) = lg%;lm[Grr(_le)]v

G(—ie) = ((Hy — Uz — ie)™"), (5)
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where G,, is the diagonal element of G with respect to
space coordinates. The self-consistent Born approximation
[7,12] at the node Er = 0 reads

n=nl with [ =y[A—narctan(1/n)] (6)

for the effective disorder strength y = g/2x°. There are two
solutions, namely, # = 0 and a solution with 5 # 0, which
exists only for sufficiently large y. Moreover, 1 vanishes
continuously as we reduce y. For 7 ~ 0 we obtain the linear
behavior

1~ i), )

where y. = 1/A appears as a critical point with # = 0 for
y<y.and n >0 for y > y,.

Average density of states.—Few impurities: Lippmann-
Schwinger equation. At the node Ep = 0 the pure DOS
pox(Er = 0) vanishes. However, a few impurities have
already a significant effect on the local DOS: Assuming an
impurity potential Uy on N sites, we use the identity
(lattice version of the Lippmann-Schwinger equation)

(G3'=Un)' =G+ Go(1-UyPyGoPy)§' UnGy,  (8)
where Py is the projector on the impurity sites and (- - -)y!
is the inverse on the impurity sites. Although pg..(Er = 0)
vanishes, the second term on the right-hand side of Eq. (8)
can contribute with the poles of (1 — UyPyGoPy)y' to the
DOS. These poles are “rare events” and require a fine-
tuning of the impurity potential, whereas the generic case of
a general Uy would still have a vanishing DOS. In a
realistic situation the number of impurities is macroscopic
with a nonzero density in the infinite system. Then the
identity [Eq. (8)] cannot be used for practical calculations

|

and we have to average over many impurity realizations.
This leads to the average Green’s function of Eq. (5), which
will be calculated subsequently.

One vs two impurities: The Green’s function G, of the
system without impurities reads

, 1 ekt >
Go’r(—lé‘) = E/Bm (leTO + k- T>d3k
=ieyyto+7 -7, 9)

where B is the Brillouin zone of the underlying lattice and

1 eil;-r
=— | ——d%,
"B s+ R
1 eilzlrkj
=— | — LBk (j=1,2,3).
Vj |B| 862 —|—k2 (] )

Then the diagonal element Gi, = ieyr, vanishes with
€ ~ 0. This implies that for a single impurity there is no
bound state at finite impurity strength U, since in the
impurity term of the Lippmann-Schwinger equation,
Eq. (8), the 2 x 2 matrix

1

1-UP.GP) ' =———
( rPrGoPy) 1—i€}’0UrTO

(10)

has a pole at U, ~ co. The latter reflects the statement that a
potential well in 3D Weyl semimetals never generate
spectral density at zero energy [11]. For two impurities,
though, there is a resonant intersite bound state between the
impurities, since G ,_p (r' # r) does not vanish for ¢ - 0
but decays with a power law for |r — 1’| due to the Pauli
matrix coefficients y; in Eq. (9):

1 —ieyoU, 0 —Urrs =Uc(r1 —ir2)\ ™!
_ 0 1 —ieygUy  =Uc(ri +ir2) Uvrs
(1 - UP{r,r’}GOP{r,r’}) N= . . (11)
Urrs Ur(r1 —ira) 1 —iey Uy 0
Ur(r1 +ira) —Uvrs 0 1 —iey Uy
The degenerate eigenvalues of this matrix
(12)

1- i€]/0(Ur + Ul“)/2 + \/_UrUr’(y% + 7% + 7%) - 62)/%(Ur - Ur’)2/4

have poles for finite U,., U. Thus, the corresponding bound
states contribute with a nonvanishing density of states. In the
remainder of the Letter this result will be generalized to multi-
ple impurities with corresponding resonant bound states.

|

Distribution with simple poles: From here on we
consider a continuous distribution of the disorder potential
U with [[,P(U.)dU, and average one-particle Green’s
function
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FIG. 1. Poles of the one-particle Green’s function and the
Cauchy-Lorentz distribution. The contour of the U, integration
encloses only one pole of the Cauchy-Lorentz distribution but not
the other poles.

G(—ie) = / (Hy— Urg — ie) [ [P(U)dU,.  (13)

For e >0 the one-particle Green’s function (Hy—Ury—ie)~!
has poles for U, on the upper complex half-plane. Assuming
that the distribution density P(U,) has isolated poles in the
lower complex half-plane, the Cauchy integration can be
applied by closing the integration along the real axis in the
lower complex half-plane, as depicted in Fig. 1. The simplest
realization is the Cauchy-Lorentz distribution

1 n

Po(Uy) =—————. 14
CL( ) pu (Ur _ EF)2 I ’72 ( )
which gives
G(—ie) = [Hy — (Ep + ie + in)7y]~". (15)
The average DOS then reads
n -
pe(Er) = - [(Ho = Ert0)* + n°7o)i - (16)

The Cauchy-Lorentz distribution has an infinite second
moment (i.e., ¢ is infinite). A distribution with a finite
second moment can be created from the differential of the
Cauchy-Lorentz distribution with respect to #. Many dis-
tributions, like the popular Gaussian distribution

e

Vg ’

do not have a simple pole structure, though. Then another
approach can be applied to show that there is a nonvanishing
average DOS.

Distribution without simple poles: Now we only assume
that the distribution of U, is continuous. Then the path of
integration can also be deformed away from the poles of the
Green’s function to obtain a similar result as in the case of
simple poles. The calculation would be more complex,
though. Therefore, we use a different approach, whose

Pg(Uy) = (17)

boundary

FIG. 2. Dividing the system into cubes {S} of size |S| with
boundary 9S.

main idea is to divide the system into cubes {S} of finite
identical size (cf. Fig. 2). Then we estimate (i) the average
DOS inside an isolated cube and (ii) the contribution of the
boundary 0S between the cubes. This approach was used
for a periodic lattice [13], for a random tight-binding model
with symmetric Hamiltonian [14] and for two-dimensional
Dirac fermions with random mass [15]. Later it was applied
to a S-wave superconductor with random order parameter
[16], and to a D-wave superconductor with random
chemical potential [17].
For the average local DOS

Pr= /pr(U)HP(Ur)dUr (18)

we obtain from the estimation procedure with steps (i) and
(ii) the inequality (cf. Supplemental Material [18])

D pez inf { / 2 pselU' +E)E

res res

x inf P(Ur’+w)]—l_’s|85|, (19)

—v<w<v
- T res
where |S| (|0S]) is the number of sites of S (9S) and

Py = inf I[P +w).
€S

{—a<U,/'<a},—v<w<v -

P|0S)| is the contribution of the boundary of a cube and the
integral is the integrated DOS on a cube S. The boundary
term is subtracted because we have removed the boundary.
In other words, the left-hand side of Eq. (19) is the average
DOS on the entire lattice, the right-hand side is the average
DOS on the isolated cube S.

The value of the lower bound requires an adjustment of
the still undetermined parameters a and ». The integrated
DOS [* > cspsr(U + E)dE on S is the number of
eigenvalues on the interval [—v,v] of the S—projected
Hamiltonian H, — U’. The projected Hamiltonian is an
|S| % |S| Hermitian matrix with finite elements, whose
eigenvalues are also finite. Thus, for a fixed a we can
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choose a sufficiently large » such that all eigenvalues of the
projected Hamiltonian are inside the interval [—v, v]. In this
case the integrated DOS is |S| and we get from Eq. (19) the
inequality

S e 2 Ps(ls| - |os]] (20)

res

S can always be chosen such that the size of the cube |S] is
larger than the size |0S| of its boundary. Then the right-
hand side of Eq. (19) is strictly positive. v should not be too
large, though, in order to avoid that Pg becomes too small,
assuming that a typical P(U,) decays for large values. The
actual value of Pg depends on the distribution and can be
exponentially small.

The average DOS of the entire lattice is estimated by the
sum over all cubes, normalized by its number N. Since all
cubes have the same lower bound, this sum is bounded by
the right-hand side of Eq. (20). This indicates that our
estimation works only for a macroscopic number of
impurities, the case of a single impurity [Eq. (10)] would
always give a lower bound zero.

Conclusion.—There is a crucial difference in terms of the
average DOS: For a discrete distribution the average DOS
is nonzero only if the disorder potential is “resonant” with
the pure Green’s function Gy, according to the second term
in Eq. (8). In particular, a single impurity fails to create
spectral weight at the Weyl node. On the other hand, for a
dense distribution of impurities, represented by a continu-
ous random potential, there is always a nonvanishing
average DOS due to interimpurity bound states, provided
that the values of U, cover the entire spectrum of H,,.

The existence of a critical disorder strength y., as
indicated by the self-consistent approximation in Eq. (7),
contradicts the existence of a lower nonzero bound of the
average DOS in the section “Distribution without simple
poles.” Therefore, the self-consistent calculation is not
sufficiently accurate to describe the transport properties
of the 3D Weyl semimetal properly. Since the lower bound
of the average DOS is only a qualitative, although rigorous,
estimation, still a reliable approximation is necessary to

obtain an approximative value for the average DOS. The
exact result obtained for the Cauchy-Lorentz distribution in
the section “Distribution with simple poles” gives only a
hint, because this distribution is not generic. A possible
option is a N™% expansion with noninteger a [19].
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