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The average density of states in a disordered three-dimensional Weyl system is discussed in the case of a
continuous distribution of random scattering. Our results clearly indicate that the average density of states
does not vanish, reflecting the absence of a critical point for a metal-insulator transition. This calculation
supports recent suggestions of an avoided quantum critical point in the disordered three-dimensional Weyl
semimetal. However, the effective density of states can be very small such that the saddle-approximation
with a vanishing density of states might be valid for practical cases.
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Introduction.—The existence of a metal-insulator tran-
sition in disordered three-dimensional (3D) Weyl semimet-
als has been debated in the recent literature [1–11]. It is
closely related to the question, whether or not the average
density of states (DOS) at the spectral node vanishes below
some critical disorder strength. The self-consistent Born
approximation provides such a critical value with a vanish-
ing DOS for weak disorder. It has been argued that rare
regions of the random distribution may lead to a non-
vanishing average DOS, though [1]. This was supported by
recent numerical studies based on the T-matrix approach,
which gives an exponentially small DOS [8] but was
questioned in a recent study based on an instanton solution
[11]. In this short note we show that, depending on the type
and strength, a continuous distribution of disorder can
create a substantial average DOS at the spectral node in 3D
Weyl systems. This requires at least two impurities to create
a resonant state between these impurities. A single impurity
or a single instanton does not contribute to the spectral
weight at the Weyl node, though, in accordance with the
arguments in Ref. [11]. This supports the picture of an
avoided quantum critical point in the presence of a
distribution of impurities, as advocated in Ref. [8].
Model.—The 3D Weyl Hamiltonian for electrons with

momentum p⃗ is expanded in terms of Pauli matrices τj
(j ¼ 0, 1, 2, 3; τ0 is the 2 × 2 unit matrix) as H ¼
H0 −Uτ0, where

H0 ¼ vFτ⃗ · p⃗ with τ⃗ ¼ ðτ1; τ2; τ3Þ: ð1Þ

vF is the Fermi velocity and U is a disorder term,
represented by a random potential with mean hUi ¼ EF
(Fermi energy) and variance g. The average Hamiltonian
hHi ¼ H0 − EFτ0 generates a spherical Fermi surface with
radius jEFj, and with electrons (holes) for EF > 0
(EF < 0). Physical quantities are expressed in such units
that vFℏ ¼ 1.

The dc limit ω → 0 of the conductivity of 3D Weyl
fermions depends only on the scattering rate η and the
Fermi energy EF [7]:

σðη; EFÞ ¼ 2
e2

h
η2

Z
λ

0

ðη2 þ k2Þ2 þE2
Fð2η2 þ 2k2=3þE2

FÞ
½ðη2 − E2

F þ k2Þ2 þ 4η2E2
F�2

×
k2dk
2π2

ð2Þ

with momentum cutoff λ. At the node (EF ¼ 0) the dc
conductivity in Eq. (2) is reduced to the expression

σ ¼ 2
e2

h
η2

Z
λ

0

k2

ðη2 þ k2Þ2
dk
2π2

¼ e2η
2π2h

�
arctanð1=ζÞ − ζ

1þ ζ2

�
ðζ ¼ η=λÞ; ð3Þ

which becomes for λ ≫ η

σ ∼
e2

4πh
η: ð4Þ

The last result was also derived by Fradkin some time ago
[12]. In contrast to the 2D case, where σ ¼ e2=πh, the 3D
case gives a linearly increasing behavior with respect to the
scattering rate.
The results in Eqs. (2)–(4) clearly indicate that a metal-

insulator transition in disordered 3D Weyl systems is
directly linked to the scattering rate η. The latter describes
the broadening of the poles of the one-particle Green’s
function and is proportional to the average DOS

ρrðEFÞ ¼ lim
ϵ→0

1

π
Im½Ḡrrð−iϵÞ�;

Ḡð−iϵÞ ¼ hðH0 − Uτ0 − iϵÞ−1i; ð5Þ
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where Ḡrr is the diagonal element of Ḡ with respect to
space coordinates. The self-consistent Born approximation
[7,12] at the node EF ¼ 0 reads

η ¼ ηI with I ¼ γ½λ − η arctanðλ=ηÞ� ð6Þ

for the effective disorder strength γ ¼ g=2π2. There are two
solutions, namely, η ¼ 0 and a solution with η ≠ 0, which
exists only for sufficiently large γ. Moreover, η vanishes
continuously as we reduce γ. For η ∼ 0 we obtain the linear
behavior

η ∼
2λ

π
ðγλ − 1Þ; ð7Þ

where γc ¼ 1=λ appears as a critical point with η ¼ 0 for
γ ≤ γc and η > 0 for γ > γc.
Average density of states.—Few impurities: Lippmann-

Schwinger equation. At the node EF ¼ 0 the pure DOS
ρ0;rðEF ¼ 0Þ vanishes. However, a few impurities have
already a significant effect on the local DOS: Assuming an
impurity potential UN on N sites, we use the identity
(lattice version of the Lippmann-Schwinger equation)

ðG−1
0 −UNÞ−1¼G0þG0ð1−UNPNG0PNÞ−1N UNG0; ð8Þ

where PN is the projector on the impurity sites and ð� � �Þ−1N
is the inverse on the impurity sites. Although ρ0;rðEF ¼ 0Þ
vanishes, the second term on the right-hand side of Eq. (8)
can contribute with the poles of ð1 −UNPNG0PNÞ−1N to the
DOS. These poles are “rare events” and require a fine-
tuning of the impurity potential, whereas the generic case of
a general UN would still have a vanishing DOS. In a
realistic situation the number of impurities is macroscopic
with a nonzero density in the infinite system. Then the
identity [Eq. (8)] cannot be used for practical calculations

and we have to average over many impurity realizations.
This leads to the average Green’s function of Eq. (5), which
will be calculated subsequently.
One vs two impurities: The Green’s function G0 of the

system without impurities reads

G0;rð−iϵÞ ¼
1

jBj
Z
B

eik⃗·r

ϵ2 þ k2
ðiϵτ0 þ k⃗ · τ⃗Þd3k

≡ iϵγ0τ0 þ γ⃗ · τ⃗; ð9Þ

where B is the Brillouin zone of the underlying lattice and

γ0 ¼
1

jBj
Z
B

eik⃗·r

ϵ2 þ k2
d3k;

γj ¼
1

jBj
Z
B

eik⃗·rkj
ϵ2 þ k2

d3k ðj ¼ 1; 2; 3Þ:

Then the diagonal element G0;0 ¼ iϵγτ0 vanishes with
ϵ ∼ 0. This implies that for a single impurity there is no
bound state at finite impurity strength Ur, since in the
impurity term of the Lippmann-Schwinger equation,
Eq. (8), the 2 × 2 matrix

ð1 − UrPrG0PrÞ−1 ¼
1

1 − iϵγ0Ur
τ0 ð10Þ

has a pole atUr ∼∞. The latter reflects the statement that a
potential well in 3D Weyl semimetals never generate
spectral density at zero energy [11]. For two impurities,
though, there is a resonant intersite bound state between the
impurities, since G0;r−r0 (r0 ≠ r) does not vanish for ϵ → 0

but decays with a power law for jr − r0j due to the Pauli
matrix coefficients γj in Eq. (9):

ð1 −UPfr;r0gG0Pfr;r0gÞ−1 ¼

0
BBB@

1 − iϵγ0Ur 0 −Urγ3 −Urðγ1 − iγ2Þ
0 1 − iϵγ0Ur −Urðγ1 þ iγ2Þ Urγ3

Ur0γ3 Ur0ðγ1 − iγ2Þ 1 − iϵγ0Ur0 0

Ur0ðγ1 þ iγ2Þ −Ur0γ3 0 1 − iϵγ0Ur0

1
CCCA

−1

: ð11Þ

The degenerate eigenvalues of this matrix

1

1 − iϵγ0ðUr þUr0Þ=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−UrUr0ðγ21 þ γ22 þ γ23Þ − ϵ2γ20ðUr −Ur0Þ2=4

p ð12Þ

have poles for finiteUr,Ur0 . Thus, the corresponding bound
states contribute with a nonvanishing density of states. In the
remainder of theLetter this resultwill begeneralized tomulti-
ple impurities with corresponding resonant bound states.

Distribution with simple poles: From here on we
consider a continuous distribution of the disorder potential
U with

Q
rPðUrÞdUr and average one-particle Green’s

function
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Ḡð−iϵÞ ¼
Z

ðH0 − Uτ0 − iϵÞ−1
Y
r

PðUrÞdUr: ð13Þ

For ϵ>0 the one-particle Green’s function ðH0−Uτ0−iϵÞ−1
has poles forUr on the upper complex half-plane. Assuming
that the distribution density PðUrÞ has isolated poles in the
lower complex half-plane, the Cauchy integration can be
applied by closing the integration along the real axis in the
lower complex half-plane, as depicted in Fig. 1. The simplest
realization is the Cauchy-Lorentz distribution

PCLðUrÞ ¼
1

π

η

ðUr − EFÞ2 þ η2
; ð14Þ

which gives

Ḡð−iϵÞ ¼ ½H0 − ðEF þ iϵþ iηÞτ0�−1: ð15Þ

The average DOS then reads

ρrðEFÞ ¼
η

π
½ðH0 − EFτ0Þ2 þ η2τ0�−1rr : ð16Þ

The Cauchy-Lorentz distribution has an infinite second
moment (i.e., g is infinite). A distribution with a finite
second moment can be created from the differential of the
Cauchy-Lorentz distribution with respect to η. Many dis-
tributions, like the popular Gaussian distribution

PGðUrÞ ¼
1ffiffiffiffiffi
πg

p e−ðUr−EFÞ2=g; ð17Þ

do not have a simple pole structure, though. Then another
approach can be applied to show that there is a nonvanishing
average DOS.
Distribution without simple poles: Now we only assume

that the distribution of Ur is continuous. Then the path of
integration can also be deformed away from the poles of the
Green’s function to obtain a similar result as in the case of
simple poles. The calculation would be more complex,
though. Therefore, we use a different approach, whose

main idea is to divide the system into cubes fSg of finite
identical size (cf. Fig. 2). Then we estimate (i) the average
DOS inside an isolated cube and (ii) the contribution of the
boundary ∂S between the cubes. This approach was used
for a periodic lattice [13], for a random tight-binding model
with symmetric Hamiltonian [14] and for two-dimensional
Dirac fermions with random mass [15]. Later it was applied
to a S-wave superconductor with random order parameter
[16], and to a D-wave superconductor with random
chemical potential [17].
For the average local DOS

ρ̄r ¼
Z

ρrðUÞ
Y
r

PðUrÞdUr ð18Þ

we obtain from the estimation procedure with steps (i) and
(ii) the inequality (cf. Supplemental Material [18])

X
r∈S

ρ̄r ≥ inf
f−a≤U0

r≤ag

�Z
v

−v

X
r∈S

ρS;rðU0 þ EÞdE

× inf
−v≤w≤v

Y
r∈S

PðUr
0 þ wÞ

�
− P̄Sj∂Sj; ð19Þ

where jSj (j∂Sj) is the number of sites of S (∂S) and
P̄S ¼ inf

f−a≤Ur
0≤ag;−v≤w≤v

Y
r∈S

PðUr
0 þ wÞ:

P̄Sj∂Sj is the contribution of the boundary of a cube and the
integral is the integrated DOS on a cube S. The boundary
term is subtracted because we have removed the boundary.
In other words, the left-hand side of Eq. (19) is the average
DOS on the entire lattice, the right-hand side is the average
DOS on the isolated cube S.
The value of the lower bound requires an adjustment of

the still undetermined parameters a and v. The integrated
DOS

R
v
−v

P
r∈S ρS;rðU0 þ EÞdE on S is the number of

eigenvalues on the interval ½−v; v� of the S–projected
Hamiltonian H0 − U0. The projected Hamiltonian is an
jSj × jSj Hermitian matrix with finite elements, whose
eigenvalues are also finite. Thus, for a fixed a we can

U plane

pole of the CL distribution

pole of the CL distribution

poles of the Green’s function

closed integration contour

FIG. 1. Poles of the one-particle Green’s function and the
Cauchy-Lorentz distribution. The contour of the Ur integration
encloses only one pole of the Cauchy-Lorentz distribution but not
the other poles.

S
boundary

FIG. 2. Dividing the system into cubes fSg of size jSj with
boundary ∂S.
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choose a sufficiently large v such that all eigenvalues of the
projected Hamiltonian are inside the interval ½−v; v�. In this
case the integrated DOS is jSj and we get from Eq. (19) the
inequality

X
r∈S

ρ̄r ≥ P̄S½jSj − j∂Sj�: ð20Þ

S can always be chosen such that the size of the cube jSj is
larger than the size j∂Sj of its boundary. Then the right-
hand side of Eq. (19) is strictly positive. v should not be too
large, though, in order to avoid that P̄S becomes too small,
assuming that a typical PðUrÞ decays for large values. The
actual value of PS depends on the distribution and can be
exponentially small.
The average DOS of the entire lattice is estimated by the

sum over all cubes, normalized by its number N. Since all
cubes have the same lower bound, this sum is bounded by
the right-hand side of Eq. (20). This indicates that our
estimation works only for a macroscopic number of
impurities, the case of a single impurity [Eq. (10)] would
always give a lower bound zero.
Conclusion.—There is a crucial difference in terms of the

average DOS: For a discrete distribution the average DOS
is nonzero only if the disorder potential is “resonant” with
the pure Green’s function G0, according to the second term
in Eq. (8). In particular, a single impurity fails to create
spectral weight at the Weyl node. On the other hand, for a
dense distribution of impurities, represented by a continu-
ous random potential, there is always a nonvanishing
average DOS due to interimpurity bound states, provided
that the values of Ur cover the entire spectrum of H0.
The existence of a critical disorder strength γc, as

indicated by the self-consistent approximation in Eq. (7),
contradicts the existence of a lower nonzero bound of the
average DOS in the section “Distribution without simple
poles.” Therefore, the self-consistent calculation is not
sufficiently accurate to describe the transport properties
of the 3D Weyl semimetal properly. Since the lower bound
of the average DOS is only a qualitative, although rigorous,
estimation, still a reliable approximation is necessary to

obtain an approximative value for the average DOS. The
exact result obtained for the Cauchy-Lorentz distribution in
the section “Distribution with simple poles” gives only a
hint, because this distribution is not generic. A possible
option is a N−α expansion with noninteger α [19].

We are grateful to A. Altland for useful discussions. This
work was supported by a grant of the Julian Schwinger
Foundation.

[1] R. Nandkishore, D. A. Huse, and S. L. Sondhi, Phys. Rev. B
89, 245110 (2014).

[2] B. Sbierski, G. Pohl, E. J. Bergholtz, and P. W. Brouwer,
Phys. Rev. Lett. 113, 026602 (2014).

[3] S. V. Syzranov, V. Gurarie, and L. Radzihovsky, Phys. Rev.
Lett. 114, 166601 (2015).

[4] J. H. Pixley, D. A. Huse, and S. Das Sarma, Phys. Rev. X 6,
021042 (2016).

[5] J. H. Pixley, P. Goswami, and S. Das Sarma, Phys. Rev. B
93, 085103 (2016).

[6] J. H. Pixley, D. A. Huse, and S. Das Sarma, Phys. Rev. B 94,
121107(R) (2016).

[7] K. Ziegler, Eur. Phys. J. B 89, 268 (2016).
[8] J. H. Pixley, Y.-Z. Chou, P. Goswami, D. A. Huse, R.

Nandkishore, L. Radzihovsky, and S. Das Sarma, Phys.
Rev. B 95, 235101 (2017).

[9] B. Sbierski, K. A. Madsen, P. W. Brouwer, and C. Karrasch,
Phys. Rev. B 96, 064203 (2017).

[10] A. Sinner and K. Ziegler, Phys. Rev. B 96, 165140
(2017).

[11] M. Buchhold, S. Diehl, and A. Altland, arXiv:1805.00018.
[12] E. Fradkin, Phys. Rev. B 33, 3263 (1986).
[13] W. Ledermann, Proc. R. Soc. London 182, 362 (1944).
[14] F. Wegner, Z. Phys. B 44, 9 (1981).
[15] K. Ziegler, Nucl. Phys. 285, 606 (1987).
[16] K. Ziegler, Commun. Math. Phys. 120, 177 (1988).
[17] K. Ziegler, M. H. Hettler, and P. J. Hirschfeld, Phys. Rev. B

57, 10825 (1998).
[18] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.121.166401 for a de-
tailed derivation of the lower bound.

[19] K. Ziegler, Phys. Lett. 99A, 19 (1983).

PHYSICAL REVIEW LETTERS 121, 166401 (2018)

166401-4

https://doi.org/10.1103/PhysRevB.89.245110
https://doi.org/10.1103/PhysRevB.89.245110
https://doi.org/10.1103/PhysRevLett.113.026602
https://doi.org/10.1103/PhysRevLett.114.166601
https://doi.org/10.1103/PhysRevLett.114.166601
https://doi.org/10.1103/PhysRevX.6.021042
https://doi.org/10.1103/PhysRevX.6.021042
https://doi.org/10.1103/PhysRevB.93.085103
https://doi.org/10.1103/PhysRevB.93.085103
https://doi.org/10.1103/PhysRevB.94.121107
https://doi.org/10.1103/PhysRevB.94.121107
https://doi.org/10.1140/epjb/e2016-70454-2
https://doi.org/10.1103/PhysRevB.95.235101
https://doi.org/10.1103/PhysRevB.95.235101
https://doi.org/10.1103/PhysRevB.96.064203
https://doi.org/10.1103/PhysRevB.96.165140
https://doi.org/10.1103/PhysRevB.96.165140
http://arXiv.org/abs/1805.00018
https://doi.org/10.1103/PhysRevB.33.3263
https://doi.org/10.1098/rspa.1944.0011
https://doi.org/10.1007/BF01292646
https://doi.org/10.1016/0550-3213(87)90357-9
https://doi.org/10.1007/BF01217961
https://doi.org/10.1103/PhysRevB.57.10825
https://doi.org/10.1103/PhysRevB.57.10825
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.166401
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.166401
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.166401
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.166401
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.166401
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.166401
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.166401
https://doi.org/10.1016/0375-9601(83)90055-5

