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Abstract. A novel method for the simultaneous, high-resolution measurement of the specific heat c and the
thermal conductivity κ is presented. A new experimental setup has been developed with special emphasis
on the elimination of systematic errors arising from radiative heat loss. A self-consistent data evaluation
method is implemented which takes the effects of the sample geometry on c and κ properly into account.
The measurements were performed over a broad temperature regime from 3 K up to room temperature on
three compounds from the family of strongly correlated electron systems. The differences in their thermal
properties and their highly sample-dependent sizes and shapes demonstrate the extended scope of the
proposed method.

1 Introduction

Simultaneous measurement of thermal conductivity and
specific heat can reveal complementary information about
the lattice and electronic properties and hence it is an ef-
ficient tool to study the physics of solids. Furthermore,
parallel measurement of these thermal properties is useful
to eliminate systematic errors arising from the difference
between samples used in the individual measurements and
from the possible changes in the experimental conditions.
On the basis of thermal transport data, one can identify
the heat carriers – such as electrons, phonons, magnons,
etc. – and characterize their scattering mechanism. On
the other hand, the measurement of specific heat is an
adequate method to study the electronic density of states
at the Fermi energy in metals, to determine the Debye
temperature of the phonon system and to investigate the
nature and the strength of electron-electron interaction in
solids. In particular, the latter has been extensively used
in a broad class of strongly correlated electron systems and
played a crucial role in the study of heavy fermion com-
pounds [1,2] as well as of the gap anisotropy in d-wave
superconductors [3,4]. Thermal properties are also of gen-
eral importance when studying anomalies associated with
phase transitions in order to specify the order of the tran-
sition and whether it is characteristic of the bulk of the
material or caused by a minority secondary phase.

In the present article we describe a flexible experimen-
tal approach, which is an improved version of the thermal
relaxation method proposed by Kwok et al. [5] for the si-
multaneous measurement of the thermal conductivity and
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specific heat. By taking the effect of radiative heat loss
into account, the new method extends the range of ap-
plicability to high temperatures (up to room temperature
and above) for single crystals with any shape. We have
tested the efficiency of the developed experimental setup
by focusing on anomalies in the specific heat and ther-
mal conductivity upon phase transitions of various kinds.
Our results on tiny single crystals of three different com-
pounds clearly demonstrate the accuracy of the new tech-
nique and its high sensitivity being able to capture even
very small anomalies in the temperature dependence of
either of the two quantities. Additionally, one can give a
rough estimation for the sample emissivity based on the
results obtained by the present method.

The structure of the paper is organized as follows. Sec-
tion 2 gives an overview about the experimental setup fol-
lowed by a detailed description of the methodology. In the
latter, we give a numerical scheme for the high-accuracy
determination of the thermal conductivity and specific
heat in the presence of radiative heat loss inevitable in
these experiments. New concepts to reduce the uncer-
tainty in the absolute value of both quantities – mainly
originating from the irregular and ill-defined shape of the
available crystals – and to evaluate the sample’s emissiv-
ity are also presented. Section 3 contains our results ob-
tained on high-quality single crystals of BaVS3, 2H -TaSe2

and κ-(ET)2Cu2(CN)3 in comparison with corresponding
data available in the literature. Both the sample geom-
etry and the temperature regime of interest vary among
these samples demonstrating the flexibility of the method.
The BaVS3 sample is rod-shaped with the dimensions of
8 × 0.5 × 0.5 mm3. We found that the effect of radiative
heat loss is strong, ∼25% at room temperature due to its
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large S/A surface aspect ratio (surface area over cross sec-
tion) which was previously pointed out in case of carbon
nanotube bundles [6]. 2H -TaSe2 and κ-(ET)2Cu2(CN)3
crystals have smaller surface aspect ratios correspond-
ing to their planar shape with approximate dimensions
of 4 × 3 × 0.4 mm3 and 2 × 1.5 × 0.15 mm3, respectively.

2 Experimental setup

Among the broad variety of the experimental
methods [7–11] developed for the measurement of
thermal conductivity and specific heat, we started from
the so-called thermal relaxation method [5,12]. We
improved this method by taking the effect of radiative
heat loss into account in a fully quantitative manner.
For the elimination of radiative heat loss of the sample
in the course of steady-state measurement of thermal
conductivity, Kwok et al. [5] described a procedure to
match the temperature profile of the radiation shield
to the one of the mounted sample by careful control of
the heat fluxes. While this method can be successfully
applied for large crystals with needle-like shape, it seems
to be problematic for small samples with arbitrary shape.
Furthermore, their algorithm is not capable for the
parallel measurement of thermal conductivity and specific
heat due to the incompatible time-scales of the long-term
thermal matching and the fine resolution monitoring of
the fast changes in the sample temperature during the
relaxation process.

A schematic drawing of our experimental arrangement
is shown in Figure 1. Here the specimen itself is used as
the heat link between the heater and the base tempera-
ture of the sample holder. Because of the small sample size
(maximum a few millimeter in length), we use differential
thermocouples to monitor the temperature relative to the
base temperature T0 at the hot and cold ends (Fig. 1a) and
an additional one in the middle of the sample (Fig. 1b).
Chromel-constantan thermocouples are applicable over a
broad range of temperature from ∼3K up to 1140K. The
relative magnitude of the systematic errors arising from
the convecting heat loss through the thermocouple wires
can be kept below ∼10−5 by preparing spirals of the thin
(�20 μm) thermocouple wires. Tiny parts of commercial
ceramic resistors with typical resistance of ∼10 kΩ are
used as heaters contacted by similar spiraled wiring. It
is also ensured that the heat capacity of the specimens
are usually much larger than the total heat capacity of
the heater (typically 1000:1). In order to minimize con-
vecting heat loss along the sample, the sample chamber is
evacuated down to <10−5 mbar. To avoid an additional
thermal voltage drop along the wires the end of each ther-
mocouple wire is thermalized to a common heat trap of
T0 temperature.

2.1 Numerical model

In the absence of convection and radiative heat losses,
the steady-state heat flow through a one-dimensional

Fig. 1. (Color online) Schematic drawing of the sample cham-
ber. One end of the sample is attached to the base plate of T0

temperature while the heater is placed on its other end. Here
P H denotes the power dissipated by the heater. Thermocou-
ples are fixed to the sample using silver paste with thin mylar
foil in between for electrical isolation. Thick light color wires
correspond to chromel while thin dark ones are constantan.
The former is also used for the heater wiring. ΔTs labels the
temperature drop along the whole sample, while ΔTc/ΔTh is
the temperature difference between the cold/hot end and the
middle of the sample, respectively. Note that ΔT0 is normally
zero, i.e. the cold end of the sample has strong heat link to the
base plate. Upper part: standard arrangement for measuring
the temperature at the hot and cold ends of the sample rela-
tive to the T0 base temperature of the sample holder. Lower
part: improved arrangement for mapping the temperature pro-
file along the sample for facilitating geometrical corrections
(see Sect. 2.4 for details).

specimen has the following form in the frame of the linear
response theory:

jQ = −κ
∂T

∂x
,

where jQ is the heat current density driven by the temper-
ature gradient ∂T/∂x and κ is the thermal conductivity.
The one-dimensional form of the continuity principle reads
as

∂Q

∂t
+

∂jQ

∂x
= P (x),

where P (x) is the heating power density introduced at
position x. The ∂Q/∂t derivative of the heat density (also
a function of the position) can be expressed as

∂Q

∂t
=

c

v

∂T

∂t
,

with the c molar specific heat and v molar volume.
Analytical treatment of this problem is non-trivial due

to the singularity in the gradient of the heat flow at the
heater-sample connection. Thus, we used a numerical ap-
proach for the quantitative analysis and constructed a one-
dimensional model similar to the one proposed previously
by Kwok et al. [5] for the non-radiative case. We divide
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the sample into N + 1 equal segments, where the index 0
labels the segment attached to the base plate of the sam-
ple holder while the last segment N is connected to the
heater. We assume that the temperature is uniform inside
the individual segments. Therefore, in this discrete model
the actual temperature Ti depends only on the segment
number ranging from i = 0 to N , where T0 is the tem-
perature of the first segment (cold end of the sample). In
the following we assume, that due to the strong heat link
between the cold end of the sample and the base plate, T0

is equal to the base temperature of the sample holder.
After discretization the continuity principle applied to

the segments can be written in the form of

c
ρAL

MN
Ṫi = κ

AN

L
(Ti+1 − 2Ti + Ti−1)

for i = 1 . . .N − 1, and

c
ρAL

MN
ṪN = κ

AN

L
(−TN + TN−1) + PH ,

where M denotes the molar weight and ρ the mass density
of the specimen with length of L and perpendicular cross
section A. PH is the power dissipated by the heater at-
tached to the last segment (see Fig. 1 for correspondence).
In a steady-state Ṫi ≡ 0, thus the temperature values of
the individual segments relative to the base temperature
can be obtained by

ΔTi ≡ Ti − T0 = ΔTs − (N − i)
1
κ

L

AN
PH ,

where ΔTs = TN −T0 is the total temperature drop along
the sample. The condition ΔT0 ≡ 0 directly results in the
well-known relation for the heat conductivity coefficient
κ0 = PHL/ΔTsA.

2.2 Effect of the radiative heat transfer

At high temperatures the radiative heat loss usually
strongly affects the measurement of the thermal proper-
ties, especially for thin specimens due to their large sur-
face aspect ratios. Considering thermal radiation from the
sample surface and assuming that the environment (base
plate and radiation shield) around the specimen has a uni-
form T0 temperature, the heat loss caused by the radiation
of the individual segments is given by

PR
i = −σSi(εsT

4
i − ε0T

4
0 ),

where εs and ε0 are the surface emissivity of the specimen
and of the surrounding sample holder, respectively, σ de-
notes the Stefan-Boltzmann constant while Si is the outer
surface area of the segments. Adding this term to the con-
tinuity principle leads to the following set of non-linear
equations:

2cṪi = κ
MN2

ρL2
(Ti+1 − 2Ti + Ti−1)

− σ
Mp

ρA
(εsT

4
i − ε0T

4
0 ) (1)

for i = 1 . . .N − 1, and

cṪN = κ
MN2

ρL2
(−TN + TN−1)

− σ
Mp

ρA
(εsT

4
N − ε0T

4
0 ) +

MN

ρAL
PH , (2)

where p is the perimeter of the perpendicular cross section.
In this case, steady-state temperature gradients can be
calculated according to

ΔTi = ΔTs +
σ

κ

pL2

AN2

N−i∑

j=1

j(εsT
4
i − ε0T

4
0 )

− (N − i)
1
κ

L

AN
PH . (3)

With the initial value κ0 for the thermal conductivity,
ΔTN , ΔTN−1 . . .ΔT0 can be calculated recursively. The
real value of the thermal conductivity can be iteratively
approached by stressing the ΔT0 → 0 self-consistency cri-
terion, i.e., the value of κ in a certain step of the iteration
is changed according to the value obtained for ΔT0 in the
same step. Note that the input parameters from the exper-
iment are ΔTs, PH and the factors describing the sample
geometry. Generally, εs and ε0 are free parameters. How-
ever, for our crystals it turned out to be a fairly good ap-
proximation to keep them equal to unity – corresponding
to black-body radiation – as will be discussed later. Be-
sides determining κ, this method also provides the steady-
state temperature profile along the sample which can re-
markably differ from a linear distribution in the presence
of radiation.

The effect of the radiative heat transfer on the ther-
mal conductivity as a function of temperature and the
dimensionless surface aspect ratio (S/A) is demonstrated
in Figure 2 using the typical values of κ0 = 4W/Km and
ΔTs = 0.5 K for the thermal conductivity and for the
total temperature drop, respectively, for the samples de-
scribed below. High values of the S/A geometrical parame-
ter correspond to a large surface area of efficient radiation
relative to the cross section area of the convective heat
flow. In this limit the radiative heat loss is expected to be
considerable, especially at high temperatures. The hori-
zontal lines in the figure indicate the S/A values of the
three different crystals, namely BaVS3, 2H -TaSe2 and κ-
(ET)2Cu2(CN)3.

2.3 Calculation of the specific heat in presence
of thermal radiation

As shown previously, the thermal conductivity can be cal-
culated from the experimentally determined steady-state
value of ΔTs by using equation (3). On the other hand,
for the evaluation of the specific heat the time depen-
dent ΔTs(t) has to be monitored during the experiment.
This time dependence can be reproduced by the adequate
choice of c in equations (1–2). For the numerical approach,
the time scale is also divided into discrete intervals as
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Fig. 2. (Color online) Color map of the relative error in the
thermal conductivity arising from radiative heat loss and the
corrected thermal conductivity value over the temperature-
surface aspect ratio (S/A) plane. Horizontal lines represent the
typical S/A values for the measured samples, see text for de-
tails. Values on the color scale refer to percentages.

t = jΔt. The actual temperature of the ith segment can
be calculated recursively from the earlier values according
to

Ti(t) � Ti,j = Ti,j−1 + Ṫi,j−1Δt. (4)

This process is started with the initial set {Ti,0} corre-
sponding either to a uniform temperature distribution of
the sample or to the steady-state profile obtained from the
calculation of κ by equation (3). As a next step, the {Ṫi,0}
values are calculated by using equations (1–2). Finally,
equation (4) yields to the {Ti,1} set. Similarly, the time
evolution of each segment i.e., the full set of {Ti,j} can
be obtained recursively. At this point, for the calculation
of the specific heat we only use the ΔTs(t) ≡ TN (t) − T0

values. The agreement with the experimentally observed
time dependence of ΔTs is checked at the end of the recur-
sive process by means of a least-square fitting: the value
of c is optimized iteratively for the minimal deviation
between the calculated and experimental curves. (Since
κ is fully determined by the steady-state conditions, it
is not modified during these iterations.) In the absence
of radiative heat loss, after turning the heater instanta-
neously on or off the thermal relaxation can be well ap-
proximated by the exponential form of ΔTs(t)−ΔTs(0) ∝
exp[−t(v/L2)(κ/c)]. Although it does not give a satisfac-
tory description in the present case, we used this fitting to
determine the initial value of c for the iteration process.

In the actual calculations the sample was divided into
N = 10 . . .100 parts while for the time discretization
Δt = 10−3 . . . 10−4τ was used where τ is the character-
istic time scale of the relaxation. With these choices the
error due to the discretization was found to be less than
1%. While the typical values of τ are in the range of a few
seconds at low temperatures (T < 10K), they can grow
to several minutes due to the enhanced heat capacities of

the samples at room temperature. In the latter case the
relaxation is sufficiently slow and the standard method
of data acquisition can be used. On the other hand, an
increased read-out rate of the instruments is required at
low temperatures realized, for example, by buffering the
collected data first and recalling them in a next step.

So far we have stressed that the thermal conductiv-
ity is best determined from the steady-state equation and
the dynamics is only used for the calculation of the spe-
cific heat. Note that in this case the calculated value of
the specific heat is not independent from the value of the
thermal conductivity, i.e. inaccurate determination of the
latter also affects the former. However, at elevated tem-
peratures the thermal relaxation can slow down so much
that the approach of the steady-state would require ex-
tremely long measurement cycles. Under these conditions
it is feasible to obtain both κ and c by the iterative fitting
of the time dependence proposed for deducing the heat
capacity.

2.4 Geometrical correction and emissivity

Measurement of the geometrical parameters for single-
crystal samples with arbitrary shape can be carried out
only with large uncertainty. We describe a further im-
provement of the experimental method by which this er-
ror can be efficiently reduced and also the effect of radia-
tive loss can be directly checked. We placed an additional
thermocouple to the middle of the specimen in order to
monitor the temperature profile along the sample by mea-
suring the temperature drop in both parts of the sample
independently (see Fig. 1b).

Figure 3 shows the temperature drop in the two parts
relative to the total temperature difference for the BaVS3

(upper panel) and 2H -TaSe2 (lower panel) crystals. At
low temperatures, where the radiation is negligible, the
temperature increases from the cold towards the hot end
linearly in a steady-state. Therefore, in the T → 0 limit
the difference between ΔTc/ΔTs and ΔTh/ΔTs indicates
that the additional thermocouple is not placed precisely
in the middle of the crystal (or the cross section changes
along the length) but it divides the sample proportionally
to ΔTc/ΔTh. However, this ratio varies with increasing
temperature as the temperature profile along the sample is
no longer linear owing to radiative heat loss. The method
described for the evaluation of κ (based on Eq. (3) us-
ing ΔTs and the geometrical factors as input parameters)
provides a complete temperature profile along the sam-
ple. Since the position of the additional thermocouple is
unambiguously determined at low temperature, compari-
son of the temperature profile with the measured ΔTc and
ΔTh values becomes possible at any temperatures. This is
exemplified for BaVS3 by the black curves in Figure 3. If
the agreement with ΔTc(T ) and ΔTh(T ) is not satisfac-
tory, the geometrical factors A, L and p can be re-adjusted
and the evaluation of κ with the new parameter set has to
be performed repetitively until the temperature profile is
reasonably reproduced by approximating the real geome-
try of the crystal.
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Fig. 3. (Color online) Temperature drop along the two halves
of the samples for BaVS3 and 2H -TaSe2. ΔTc(T )/ΔTh(T )
correspond to the cold/hot part (measured in the three-
thermocouple arrangement) plotted by open/closed circles, re-
spectively. For BaVS3, thin and thick lines show the values
evaluated before and after the geometrical correction. See text
for details.

The rod-shaped BaVS3 sample exhibiting a hexago-
nal cross-section was treated as a cylinder with a diame-
ter of d = 0.5 mm predetermined with an optical micro-
scope. However, using this value the calculated ΔTc(T )
and ΔTh(T ) lines strongly deviate from the experimental
data, especially at high temperature. After fine-tuning the
diameter in the iterative process described for κ, a good
agreement was obtained between thick lines and the exper-
imental data points shown in Figure 3 at a corresponding
sample diameter value of 0.66 mm. In the upper panel of
Figuer 4 the temperature dependence of κ is shown in the
three stages of the evaluation: (i) without and (ii) with
taking the effect of radiative loss into account and (iii)
after precise tuning of the geometrical parameters. It is
clearly visible that both type of corrections are relevant
for the magnitude and the temperature dependence of κ.
The same procedure resulted in ∼10−30% corrections for
the other two samples.

Using the sample emissivity value of εs = 1 was suffi-
cient for the data evaluation of all the measured crystals.
However, there are cases when the temperature profile of
the sample cannot be well reproduced solely by the ad-
justment of the geometrical parameters. This applies to
crystals deviating from the ideal black body behavior and
hence exhibiting an emissivity of less than unity. In these
cases εs should also be included among the least-square fit

parameters. We studied the emissivity of Inox (as a refer-
ence material) by this approach and obtained εs = 0.4±0.1
in a good agreement with the typical technical data.

3 Results and discussion

3.1 BaVS3

BaVS3 has a quasi-one-dimensional crystal structure
formed by face sharing VS3 octahedra chains along
the crystallographic c-axis with 3d1 electron configura-
tion on the vanadium ions. The t2g subspace of the
V(3d) shell is partly occupied by itinerant electrons
on the a1g(t2g) orbitals and quasi-localized electrons on
the eg(t2g) levels [13,14]. The magnetic and transport
properties of the material are expected to be extremely
sensitive to the precise balance of the two types of car-
riers [15,16]. Beside previous electric transport, magneti-
zation and spectroscopic studies, high-resolution specific
heat and thermal conductivity measurements can give
further insight into the nature of the electronic states
and the dominant scattering mechanism. With lower-
ing the temperature, BaVS3 undergoes three continuous
phase transitions; a second-order structural (hexagonal-
to-orthorhombic) phase transition at TS ∼ 250 K [17] fol-
lowed by a metal-to-insulator transition (MIT) accompa-
nied by a structural tetramerization [18] at TMI ∼ 69 K.
The onset of a long range magnetic order takes place at
TX ∼ 30 K in the form of an incommensurable antifer-
romagnetic ordering [19]. Our study shows that both the
high temperature structural and the MIT is accompanied
with anomalies in the specific heat, while the thermal con-
ductivity only indicates the onset of the MIT (see Fig. 4).

In the low-temperature insulating phase of BaVS3,
the thermal conductivity is dominated by the so-called
phonon peak (located typically at T ≈ ΘD/10) resulting
from the interplay between the increasing phonon popula-
tion and the enhanced phonon-phonon scattering towards
high temperatures. A cusp at T ≈ 69K clearly indicates
the onset of the insulator to metal transition. The en-
hancement of κ in the metallic phase is likely to have an
electronic origin. In the immediate vicinity of the transi-
tion, the thermal conductivity curve exhibits a tiny peak
(see inset of the upper panel in Fig. 4) interpreted in terms
of fluctuations characteristic to Peierls transitions [21–23].
Note that the absolute noise level is below 10 mW/Km
over the entire investigated temperature regime.

The specific heat data obtained for BaVS3 are pre-
sented in the lower panel of Figure 4 in comparison with
earlier results (open circles) obtained on powder samples
by Imai et al. [20] Because of its fundamental thermody-
namical nature, specific heat is often a more sensitive in-
dicator of phase transitions than transport properties. In
our study, owing to the high-quality single crystal sample
and the improved experimental resolution, a tiny anomaly
associated with the structural transition can be discerned.
Furthermore, the peak at the insulator to metal transi-
tion is sharper and enlarged in magnitude as compared to
the former results. The increasing difference between the
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Fig. 4. (Color online) Upper panel: thermal conductivity of
BaVS3. Data without/with considering the effect of radiative
heat loss (upper solid line/dashed line) and final data when the
geometric correction has also been taken into account (lower
solid line). Inset: anomaly in the close vicinity of the phase
transition. Lower panel: specific heat of BaVS3. Open circles
represent former results adopted from Imai et al. [20] Besides
the insulator to metal transition, the present study also reveals
a contribution associated with the structural transition at TS .

two curves toward room temperature is likely caused by
the effect of radiation not considered in the former study.
(These results will be discussed in details in a separate
paper). The accuracy of the measurement is better than
2 J/Kmol at any temperatures.

3.2 TaSe2

The transition-metal dichalcogenide 2H -TaSe2 has a
quasi-two-dimensional lattice structure and exhibits two
charge density wave (CDW) phase transitions, a second-
order one at TNIC ∼ 120 K from a semi-metal to an incom-
mensurate CDW state and a first-order lock-in transition
at ∼90 K from the incommensurate to a commensurate
CDW phase [24,25]. Though the presence of these tran-
sitions has been reported three decades ago the detailed
microscopic picture is still under debate. Among the ther-
mal properties, we found that both transitions can be dis-
cerned in the κ(T ) curve, while the specific heat shows
a pronounced structure at TNIC (see Fig. 5). The criti-
cal temperature of the second-order transition is in good
agreement with the previous results of Craven at al. [28]
The difference in the magnitude of the specific heat data
between the two experiments (about 50%) is possibly due
to the uncertainty of the sample geometry in the former
study.

Fig. 5. (Color online) Temperature dependence of the thermal
properties of 2H -TaSe2 as followed in the thermal conductivity
across the two CDW transitions at TNIC ≈ 120 K and TICC ≈
90 K (main panel) and in the specific heat in the vicinity of
TNIC (inset). For comparison, specific heat data close to TNIC

adopted from reference [28] are also plotted after multiplying
by a factor of 1.5 (see text for details).

The CDW transition at TNIC appears as a dip in
the thermal conductivity and as a sharp peak in the
specific heat curve in good agreement with previous
results [26–28]. Below TNIC the thermal conductivity tends
to increase as a result of the CDW ordering i.e., the
reduced scattering rate both for phonons and electrons.
Upon the second transition the κ(T ) curve shows a kink
followed by a further enhancement corresponding to the
phonon peak below which it starts falling proportionally
to ∼T 3. The accuracy of the data acquisition is similar to
the one obtained for BaVS3.

3.3 κ-(ET)2Cu2(CN)3

κ-(ET)2Cu2(CN)3 is believed to be a triangular-lattice
Mott insulator [29]. ET molecules are strongly dimer-
ized [30] and the valence of the dimers is +1 i.e., the
conduction band is effectively half-filled. Due to the on-
site Coulomb repulsion, the system is a Mott insulator,
although the ratio of the Coulomb interaction U and the
effective bandwidth W is close to the critical value. The
unusual temperature dependence of the magnetic suscep-
tibility and the absence of a long-range magnetic order
indicate a spin-liquid state in this system [29]. A hump
structure in the heat capacity and a tiny anomaly in the
thermal conductivity around T = 6K has been interpreted
recently as a possible crossover into a quantum spin liq-
uid phase [31,32]. In Figure 6 we report only the thermal
conductivity data over a broad temperature range which
confirms the presence of such an anomaly.

After the initial decrease of κ below room temperature
a broad minimum around 150K is observed followed by a
large and broad peak likely related to the opposite tem-
perature dependence of the phonon population and anhar-
monicity. The lower edge of the phonon peak (enlarged in
the inset) exhibits a shoulder-like anomaly which has been
recently observed [31] and was also reported in the specific
heat studies carried out by Yamashita et al. [32].
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Fig. 6. (Color online). Thermal conductivity of κ-
(ET)2Cu2(CN)3 in the range of T = 3−300 K. The inset shows
κ(T ) in the low-temperature region together with data adopted
from reference [31] (thin lines). Although κ(T ) is slightly sam-
ple dependent, please note that the anomaly around T = 6 K
common for each crystal.

4 Conclusions

In conclusion, we described a method for the simultane-
ous, high-resolution measurement of the specific heat and
thermal conductivity. Both the experimental arrangement
(based on the thermal relaxation technique) and the data
evaluation process have been improved in order to elimi-
nate the systematic error arising from the radiative heat
loss. In order to reduce the uncertainty in the absolute
value of κ and c we also proposed a process for the ac-
curate determination of the sample geometry using a self-
consistent analysis of the experimental data. By studying
three compounds – with different size, shape and ther-
mal properties – we demonstrated that our technique is
capable for the accurate determination of κ and c up to
high temperatures even for small samples with arbitrary
shape. The results are compared with data from the liter-
ature whenever available.
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