
Modal Interface Automata:
A Theory for Heterogeneous Specification of

Parallel Systems

Dissertation
zur Erlangung des Doktorgrades

an der Fakultät für Angewandte Informatik
der Universität Augsburg

vorgelegt von
Ferenc Péter Bujtor

Oktober 2018

Erstgutachter: Prof. Dr. Walter Vogler
Zweitgutachter: Prof. Dr. Alexander Knapp

Tag der Mündlichen Prüfung: 12. Oktober 2018

ii

Thanks / Danksagungen

I would like to thank Prof. Dr. Walter Vogler, my mentor, coauthor and
Ph.D. advisor. Thanks to you, I learned what a proper proof is and how to
write one.

I would like to thank my parents, who made it possible for me to study and
learn. Thanks to you I made it this far.

I would like to thank my love Alina, who always supported me. Thanks to
you I can stay motivated and happy.

Ich danke Prof. Dr. Walter Vogler, meinem Mentor, Koautor und Doktor-
vater. Dank Dir habe ich gelernt, was ein sauberer Beweis ist und wie man
ihn führt.

Ich danke meinen Eltern, die es mir ermöglicht haben zu lernen und zu
studieren. Dank Euch habe ich es soweit gebracht.

Ich danke meiner Liebsten Alina, die mich stets unterstützt hat. Dank Dir
kann ich motiviert und glücklich bleiben.

iii

iv

Abstract

This thesis presents the latest incarnation of the interface theory of Modal In-
terface Automata (MIA) which unifies several different types of specification
mechanisms. It allows for stepwise and aspect-oriented specifications and
provides structural operators, like parallel composition and hiding, logical
operators like conjunction and disjunction, and even temporal logic opera-
tors like Universal and Existential Next-operators and an Unless-operator.

MIA combines the modalities of (disjunctive) Modal Transition Systems
(dMTSs) with the input/output handling of Interface Automata (IA). Thus,
we examine the fundamentals of these two specification theories considering
different aspects of possible refinement relations before presenting the MIA
framework.

We examine failure semantics and failure/divergence semantics for dMTSs
and their justification via testing scenarios. We also examine the fundamen-
tal design decisions of IA: the pruning built into parallel composition and
the optimistic approach of the refinement. The resulting refinement rela-
tions are compared to the more traditional simulation relations on which the
refinement of MIA is built. Further insights from these examinations are also
incorporated into the interface theory that is MIA.

v

vi

Contents

1 Introduction 1
1.1 Notation and Basic Definitions 5

2 Notions of Refinement for MTS and dMTS 11
2.1 Introduction . 11
2.2 Definitions and the Concept of Testing 16
2.3 Deadlock-Testing . 18

2.3.1 F-Semantics for MTS 19
2.3.2 F-Semantics for dMTS 24
2.3.3 Compositionality . 32
2.3.4 Conjunction . 37
2.3.5 May-Testing . 44

2.4 Deadlock/Divergence-Testing 48
2.4.1 Test setting and the FD-Refinement 48
2.4.2 Robustness, Expressivity and Precongruence Results . 58
2.4.3 Action-Must-Testing 62

2.5 Overview . 66
2.6 Conclusion . 68

3 Interface Automata – Error Handling and Pruning 71
3.1 Introduction . 71
3.2 Definitions and Notation . 74
3.3 Optimistic Approach: Local Errors 78

3.3.1 Precongruence . 78
3.3.2 Comparison to Interface Automata 86

3.4 The Hyper-Optimistic and the Pessimistic Approach 94
3.5 Conclusion . 99

4 Modal Interface Automata 101
4.1 Introduction . 101
4.2 Modal Interface Automata: The Setting 107

vii

4.2.1 MIA-refinement with multiple initial states 113
4.2.2 Aspect-Oriented Specification 115

4.3 Structural Operators – Parallel Composition 118
4.3.1 Parallel Composition 118
4.3.2 Universal States in Input/Output Approaches 132
4.3.3 Hiding, Restriction and Relabelling 133
4.3.4 Parallel Composition with Hiding 138

4.4 Logical Operators – Conjunction and Disjunction 139
4.5 Temporal Operators – ACTL 146

4.5.1 Embedding in MIA . 149
4.5.2 ACTL Example . 161
4.5.3 Laws and Expressivity 163
4.5.4 HML-Characerization 167

4.6 Aspect-Oriented Specification – Alphabet Extension 171
4.6.1 Extending Logical Operators 172
4.6.2 Extending Structural Operators 175
4.6.3 Extending Temporal Operators 176
4.6.4 Examples . 178

4.7 Conclusion . 180

viii

Chapter 1

Introduction

Interface Theories [26, 22, 24, 42, 51, 59] are tools for modelling and analysing
concurrent systems in terms of their communications. They also support the
component-based design of concurrent systems and offer a semantic frame-
work for, e.g., software contracts [3] and web services [9]. The interface
specifications of such a theory describe at the same time assumptions to-
wards the environment for the correct functioning of a component and the
behaviour of said component.

In [26], de Alfaro and Henzinger proposed that an interface theory should
provide a model for the input/output behaviour of components, a (paral-
lel/structural) composition operator, usually accompanied with a notion of
compatibility, to build complex components, and a hierarchy for abstrac-
tion/implementation, i.e. a refinement relation. These should feature inde-
pendent implementability, i.e. the refinement should be compositional : Given
two compatible interfaces P and Q, if P can be refined to P ′ and Q to Q′,
then the composition P ‖ Q can be refined to P ′ ‖ Q′. Formally, this means
the refinement relation should not only be a preorder, but a precongruence
for parallel composition and in fact for all other relevant operators, as well.

When using a refinement relation (formally a preorder), a specification
P refines another specification Q (P v Q) if it is more specific and/or bet-
ter in some sense – or at least equal. This is a generalization from using
equivalence relations, as is often done, e.g. for process algebras [57, 39, 37]
and creates a formal hierarchy from abstract to more concrete specifications.
Thus, it allows for a stepwise design process starting from an abstract spec-
ification and making small local design decisions one after the other while
always preserving previous properties. There is a large spectrum of possible
refinements (and equivalence relations), as has been examined in several pa-
pers (cf. e.g. [68]). A simple one would be Labelled Transition Systems (LTS)
with simulation, which for example implies language inclusion (cf. Sect. 1.1

1

below for a formal definition). Thus, properties like ‘cannot perform trace
abb’ are preserved during refinement. This might be desirable, e.g. in the
context of error-avoidance.

Once a theory provides means to specify simple specifications and to refine
them, it is natural to require that an implementation should satisfy several
specifications. Thus, more recent interface theories also feature a conjunction
operator. With it one can specify different aspects of a system separately
and conjoin these simpler aspect specifications to a global one. This works
even better if the framework also provides a means of alphabet extension.
Then, when creating the aspect specifications a designer need only concern
himself with the actions regarding the aspect in question, which is quite a
natural desire (cf. e.g. [36, 59] and the input aspect of [27]).

From a more formal point of view, the conjunction P ∧Q of two specifica-
tions P and Q is refined exactly by the specifications refining both P and Q.
Should there be no common refinement, the conjunction is naturally unde-
fined; in this case P and Q are considered inconsistent. From a mathematical
point of view the conjunction is the greatest lower bound of the refinement
and thus unique (up to equivalence) if it exists. Therefore, when designing an
interface theory, the problem is not in defining what conjunction should be,
but in finding an operator, i.e. a construction, yielding a representative of the
equivalence class. The difficulty is that a conjunction P ∧ Q cannot always
be represented as a specification of the theory, even if P and Q have common
refinements; it is for example impossible for Modal Transition Systems [45]
with modal refinement (cf. [7] or Prop. 2.45 later on).

As mentioned by De Nicola et al. in [29], an equivalence-based approach
has the major disadvantage that even the most abstract specifications tend
to be too concrete. This may be mitigated by using refinement (with con-
junction and aspect specifications) instead, but the authors use a different
solution: They combine LTS with temporal logics, in particular ACTL, a
transition based variant of CTL on LTSs to allow for more abstract specifi-
cations of properties. Temporal logics provide compact and more intuitive
specifications for system properties [38, 37, 56] and are particularly suited to
deal with notions of necessity, possibility and eventuality [29].

In this thesis, we present the latest incarnation of Modal Interface Au-
tomata (MIA) (first presented in [12]). It is an interface theory built on
de Alfaro and Henzinger’s Interface Automata (IA) [27] for input/output be-
haviour and on an extension of Larsen’s Modal Transition Systems (MTS) [45]
for refinement. Additionally, it provides alphabet extension for better aspect
orientation. Furthermore, it features the usual structural operators, like par-
allel composition and hiding, as well as the logical operators, conjunction

2

and disjunction, and even a safety fragment of ACTL making MIA a truly
heterogeneous interface theory.

De Alfaro and Henzinger’s theory, Interface Automata [25, 26, 27], fits
their requirements for an interface theory. It features LTS with disjoint input-
and output-alphabets and an alternating simulation as refinement, where
during refinement inputs can be added and outputs removed. Its handling
of input/output behaviour and communication errors is the basis for several
more advanced interface theories [4, 42, 51, 59]. The main assumption is
that any output sent by one component must be immediately accepted by
a receiving component, otherwise a fatal error occurs. The intuition is that
any specified behaviour is better than a fatal error. This main assumption is,
in fact, not new; it has been presented in the deterministic context of speed
independent circuits in [32].

The main problem of IA is that it only aims for error prevention. Thus,
adding an input or removing an output during refinement is always allowed.
This leads to a blackhole process [51], which accepts all inputs and never sends
outputs, to be the optimal system. In practice, however, such a system is
quite useless. There have been several approaches to remedy this. One is to
forbid or at least consider the introduction of quiescence (cf. [22, 24]), the
absence of outputs, as in ioco-testing [64].

The solution we will use, is to combine IA with disjunctive Modal Transi-
tion Systems (dMTS) [51], an extension of MTS as introduced by Larsen [45].
Several such approaches exist [4, 42, 51, 53, 59]. MTS features two types
of transitions: Prescribed must-transitions and permitted may-transitions.
This allows to prescribe outputs. dMTS are an extension of MTS in that a
must-transition (with one label) can lead to a set of targets requiring only
one to be implemented. They are also a specialization of DMTS [44], where
must-transitions with different labels can be grouped together in a similar
manner. Using dMTS is necessary and sufficient to allow for a conjunction
operator: MTS would not allow for one (cf. [51]) while DMTS would be
unnecessarily complicated.

There have been several combinations of IA and MTS before. To the best
of our knowledge, the first was IOMTS [42] by Larsen et al.; however their
compositionality result was not correct. Modal I/O Automata (MIO) [4]
by Bauer et al. incorporate quite different design decisions from MIA, and
thus also different from the ideas of IA. Bauer et al.’s research focuses more
on notions of compatibility. MIA can be seen as an improvement of Modal
Interfaces (MI) [59], due to similar design decisions. In contrast to MI, MIA
allow for nondeterminism and features an associative parallel composition,
which is far from being a given when dealing with errors and pruning. We

3

will go into more detail in the chapter pertaining to MIA.

The rest of this thesis is structured as follows: We will first examine and
compare several refinement relations for MTS (and dMTS) in Chapter 2.
This combines the results and insights of [19] and [15] (extended abstracts
were published as [17] and [14]). We examine test-based refinements for
avoidance of deadlocks and divergences, as well as may- and two versions of
must-testing [30]. These lead to variations of Failure- and Failure/Divergence-
Semantics (cf. e.g. [69, 65]). We compare them among each other and to the
traditional alternating simulations known as modal refinement and observa-
tional modal refinement.

In Chapter 3 we will scrutinize two basic design decisions of IA: taking
an optimistic view and integrating pruning into parallel composition. For
this, we examine Error-IO-Transition-Systems (EIO), which are essentially
IA with explicit error states. These considerations have been published in [16]
as an extended abstract and fully in [18]. We will consider three different no-
tions of error-freedom for EIOs: For the hyper-optimistic approach the EIO
is still considered error-free if it cannot reach any error by internal actions.
For the optimistic approach it must not reach errors via locally controlled ac-
tions (internal and output); for the pessimistic approach it must not have any
reachable error. Furthermore, we do not assume pruning during parallel com-
position as correct, but instead use the traditional parallel composition for
LTS while marking error states as such. Our conclusions will in fact confirm
the design decisions of IA: It is appropriate to take an optimistic view, where
a component is only considered erroneous, if no environment can prevent it
from running into an error. Furthermore, we show that pruning (which in
IA is built into the parallel composition) is an equivalence-transformation on
EIO, i.e. we prove it correct.

After these considerations, the choices that went into the design of MIA
are no longer only design decisions, but consequences of more basic and less
disputable decisions. For a more detailed overview of these topics we refer
to the introductions of the respective chapters.

We will finally examine MIA in Chapter 4. This chapter is based on [13]
(extended abstract [12]), which first introduced MIA, and on [21] (extended
abstract [20]), which added temporal logics. However, contrary to these pa-
pers, we will here work with a modified version of the refinement relation,
as will be discussed in the chapter itself. Thus, most proofs and several con-
structions have been adjusted; this work is yet to be published. As mentioned
before, MIA combines the modalities of (d)MTS with the input/output han-
dling of IA. We will discuss the details and motivations for this combination
as well as variations found in the literature. We go on to introduce the struc-

4

tural and logical operators (including temporal logics). Finally, we will also
introduce an improved alphabet extension allowing for better aspect-oriented
specification; this, too, is yet to be published.

1.1 Notation and Basic Definitions

To introduce notational conventions we recall some standard definitions. We
also define LTS, its parallel composition, failure semantics and simulation,
which we will build upon in later chapters.

We assume a set Σ of visible actions and an additional internal action
τ ; we write Στ for Σ ∪ {τ} and the analog for other alphabets, i.e. subsets
of Σ. We let a range over Σ and α over Στ . Similarly, when distinguishing
between input and output alphabets I and O (we sometimes use I/O as a
shorthand), we let i, o and ω range over I, O and Oτ . For A ⊆ Στ , we denote
with A∗ and Aω the sets of finite and infinite words over A respectively. The
empty word is denoted by ε.

For v ∈ Σ∗ and w ∈ Σ∗ ∪ Σω we write v v w if v is a prefix of w, and
v @ w if additionally v 6= w. Some w ∈ Σ∗ is prefix-minimal in some set
L ⊆ Σ∗ if w ∈ L and for all v ∈ L: v v w implies v = w.

Definition 1.1. A Labeled Transition System (LTS) is a tuple (P,A,−→, p0)
where

1. P is a set of states,

2. p0 ∈ P is the initial state,

3. A ⊆ Σ is the alphabet,

4. −→ ⊆ P ×Aτ × P is the transition relation. �

For notational convenience, we denote an LTS (and the other systems
considered in the other chapters) with its state space, i.e. we denote (P,A,−→
, p0) by P . We write P(P) (Pfin(P)) for the (finite) powerset of P . As a
shorthand we write p01,A1 etc. for components of a system P1, p02,A2 etc.
for P2 and so on. We also use this notation for semantics and e.g. write F1

for F(P1) as defined later on.
We write p

α−→ p′ for (p, α, p′) ∈ −→ and p
α−→ if ∃p′. p α−→ p′. Extending

transitions to sequences w ∈ Σ∗τ , we write p
w−→ p′ (p

w−→) whenever there
is a run p

α1−→ p1
α2−→ · · · pn−1

αn−→ p′ (p
α1−→ p1

α2−→ · · · pn−1
αn−→) with

w = α1 · · ·αn. Similarly, we also use p
w−→ for infinite sequences w ∈ Σω

τ .
Furthermore, w|B denotes the action sequence obtained from w by delet-

ing all actions not in B ⊆ Στ and ŵ denotes w|Σ. We write p
w

=⇒ p′ for

5

w ∈ Σ∗ if ∃w′ ∈ Σ∗τ : w′|Σ = w ∧ p w′−→ p′, and p
w

=⇒ if p
w

=⇒ p′ for some
p′. Sometimes, we refer to a run p

w
=⇒ p′, thereby fixing a run giving rise to

p
w

=⇒ p′ for later reference.
For may-transitions of MTS, dMTS and MIA we use analogous notation

with dashed arrows. Where disjunctive must-transitions are involved, the
above definition for weak transitions and transition sequences does not work.
We will comment on this and provide solutions in the respective chapters
and use the above only for may-transitions.

In figures, we will analogously use dashed arrows for may-transitions and
solid (possibly split) ones for (disjunctive) must-transitions, which also imply
the underlying may-transitions. When distinguishing between inputs and
outputs, we write a? for inputs and a! for outputs.

The following definitions of parallel composition on LTS and traces are
quite standard. We will mostly use parallel composition without immediate
hiding of synchronising actions. In the following definition, the set of syn-
chronising actions is a parameter of the parallel composition operator. In
the chapters on EIOs and MIA, where we distinguish inputs and outputs, we
will use parallel composition with full synchronization, i.e. synchronization
on all common actions.

Definition 1.2. The parallel composition of two LTS P1 = (P1,A1,−→1,
p10) and P2 = (P2,A2, p20,−→2, p20) with synchronizing set A ⊆ Σ is defined
as the LTS P1 ‖A P2 = (P1 × P2, (p10, p20),A1 ∪ A2,−→12), where

−→12 = {
(
(p1, p2), α, (p′1, p2)

)
| p1

α−→1 p
′
1, α ∈ Στ \ A}

∪ {
(
(p1, p2), α, (p1, p

′
2)
)
| p2

α−→2 p
′
2, α ∈ Στ \ A}

∪ {
(
(p1, p2), a, (p′1, p

′
2)
)
| p1

a−→1 p
′
1, p2

a−→2 p
′
2, a ∈ A}

The parallel compositions of u, v ∈ Σ∗ is the set u ‖A v defined as follows:
w ∈ u ‖A v iff u = u1u2 · · ·un, v = v1v2 · · · vn and w = w1w2 · · ·wn with each
ui, vi ∈ Σ ∪ {ε} and wi ∈ Σ such that for every i we have ui = vi = wi ∈ A
or ε 6= ui = wi /∈ A ∧ vi = ε, or ε 6= vi = wi /∈ A ∧ ui = ε.

Intuitively, as is usual, the parallel composition tracks the states of both
component systems in the components of its states. Synchronizing actions
must be performed simultaneously by both, while non-synchronising and
internal actions are performed separately leaving the other component in the
same state.

Parallel composition can also be applied to traces.

Definition 1.3 (Parallel Composition on Traces). Given two composable
LTSs P1, P2, w1 ∈ A1, w2 ∈ A2,W1 ⊆ A∗1 and W2 ⊆ A∗2, we define

6

• w1 ‖ w2 = {w ∈ (A1 ∪ A2)∗ | w|A1 = w1 ∧ w|A2 = w2}

• w1 | w2 = {w|A12 | w ∈ w1 ‖ w2}

• W1 ‖ W2 =
⋃
{w1 ‖ w2 | w1 ∈ W1 ∧ w2 ∈ W2}

• W1 |W2 =
⋃
{w1 | w2 | w1 ∈ W1 ∧ w2 ∈ W2}

In the following chapters we will examine several domains of specifica-
tions, e.g. dMTS and consider a subset, e.g. LTS to be implementations. On
such a domain we can formally define refinements:

Definition 1.4. Let S be a class of systems and I ⊆ S a sub-class of
implementations. A refinement is a preorder, i.e. a reflexive and transitive
binary relation, on S.

Given a refinement relation vR, the set of R-implementations of a system
P is implR(P) = {S | S vR P, S is an implementation}.

We say that P thorough-R-refines MTS P ′ if R-impl(P) ⊆ R-impl(P ′).
We call R thorough if R-refinement and thorough-R-refinement coincide.

A simple and straightforward notion of refinement is language inclusion.
For our purposes the language (called basic language here) is the set of pos-
sible traces.

Definition 1.5. The basic language of an LTS P is L(P) = {w ∈ A∗ |
p0

w
=⇒}.
P language-refines another LTS Q if L(P) ⊆ L(Q).

For most purposes, however, this refinement is too coarse. It does not
reflect the nondeterminism and choice inherent in an LTS at all.

Failure semantics (cf. e.g. [65, 69, 70]) makes finer distinctions than
language inclusion. The idea is to enrich traces with a set of actions yielding
so called refusal pairs (w,X). The refusal set X is a set actions that the
system can refuse, all at once, after performing the trace w.

Definition 1.6. The failure semantics of an LTS P is F(P) = {(w,X) |
p0

w
=⇒ p, ∀a ∈ X : p 6a=⇒}.
P failure- (or F-)refines P ′, written P vF P ′, if F(P) ⊆ F(P ′). P and

P ′ are failure- (or F-)equivalent, written P =F P ′, if F(P)vF F(P ′) and
F(P ′)vF F(P).

We call (w,X) ∈ F(P) a refusal pair and X a refusal set; we say that
the respective p can refuse X.

7

This semantics reflects some degree of nondeterminism. For example, if
F(P) contains (w, {a}) and (w, {b}) but not (w, {a, b}), we can infer that
w can be performed in at least two different ways leading to two different
states.

Failure semantics describes the potential deadlocks of a system. The re-
fusal pair (w,X) implies that there is a state p, which can be reached by
w and which can refuse each action in X. If all actions can be refused, i.e.
we have (w,Σ), then the state or at least a state reached after w is a dead-
lock, i.e cannot perform any visible action. This is particularly interesting,
when considering parallel composition. The following well known lemma (cf.
e.g. 3.2.4. in [70]) shows how the failure semantics of a parallel composition
can be obtained from the semantics of the components and implies that vF
is a precongruence for ‖A. Furthermore, it also reflects how deadlocks can
appear in an LTS.

Lemma 1.7. For all LTS P and Q and all A ⊆ Σ: F(P ‖A Q) = {(w,X) |
(u, Y) ∈ F(P), (v, Z) ∈ F(Q), w ∈ u ‖A v,X ⊆ (Y ∩ Z) ∪ (A ∩ (Y ∪ Z))}.

Intuitively, for (w,X) ∈ F(P ‖A Q), P and Q synchronize on two traces
as described above. If both components refuse an action a afterwards, then
so does P ‖A Q. For a ∈ A, the components have to synchronize on a;
hence P ‖A Q refuses a already if one component does. Consequently a
deadlock, (w,Σ) ∈ F(P1 ‖A P2), can only appear, if both P1 and P2 can
perform w to states such that all non-synchronising actions are refused by
both (Y ∩ Z above) and synchronizing actions are refused by at least one of
the components (A ∩ (Y ∪ Z) above).

Because of this close connection to deadlocks, failure refinement arises if
one tests systems for deadlock freedom considering P better than Q if P is
deadlock free in all compositions in which Q is. This will be more thoroughly
examined and explained in Chapter 2.

Another well known concept of refinement is simulation: Given two LTS
P and Q, the idea is to match states of P to corresponding states of Q. p
can match q if q has at least the same transitions as p, each with matching
behavior afterwards. For the weak simulation, q is allowed to use internal
transitions for matching, as well.

Definition 1.8. Let P,Q be LTSs. A relation R ⊆ P × Q is a (strong)
simulation relation if for all (p, q) ∈ R:

p
α−→ p′ implies ∃q′ : q α−→ q′ and (p′, q′) ∈ R.

Similarly R ⊆ P ×Q is a weak simulation relation if for all (p, q) ∈ R:

8

p
α−→ p′ implies ∃q′ : q α̂

=⇒ q′ and (p′, q′) ∈ R.

We write p vsim q (vw-sim) and say that p is (weakly) simulated by q if
there exists a (weak) simulation relation R such that (p, q) ∈ R.

Furthermore, we extend this notion to LTSs and write P vsim Q if
p0 vsim q0 – analogously for vw-sim. �

As usual, vsim is the greatest simulation relation and a preorder, i.e. vsim
is a refinement relation. The analog is true for vw-sim.

Strong and weak simulation, as well as failure semantics are composi-
tional, i.e. the refinements are precongruences w.r.t. parallel composition.
We do not present the proofs here, since the results are well known and
corollaries of results in later chapters.

Proposition 1.9. Given LTS P ′, P and Q with P ′ v P , we have:

• P ′vF P implies P ′ ‖A QvF P ‖A Q,

• P ′ vsim P implies P ′ ‖A Q vsim P ‖A Q,

• P ′ vw-sim P implies P ′ ‖A Q vw-sim P ‖A Q,

As mentioned at the beginning, this property is highly desirable in any
refinement relation. It is key to a component based approach, since it allows
one to replace a component by a finer/better one thereby refining/improving
the whole system. In short, it allows for independent implementability.

Simulation-based refinement relations are often quite intuitive and cap-
ture more of the nondeterminism of a system than trace-based refinement
relations, like F -refinement. Indeed, strong simulation implies F -refinement
which in turn implies language inclusion. It is also known that simulation-
based refinements are, in general, cheaper to decide than refinements based
on trace inclusion. However, while simulations are intuitive, they tend to be
too strict and may sometimes reject implementations for unintuitive reasons.
In our fundamental examinations of (d)MTS and EIO we pursue refinement
relations that only reject implementations due to specific and well-defined
reasons. Such reasons involve the introduction of an unwanted property,
like a deadlock, either immediately or, more usually, in some environment.
Rejection of the latter is necessary to ensure that the refinement is a pre-
congruence. These pursuits lead us to trace-based characterizations, which
we consider to be optimal from this point of view. For MIAs, however, we
use a simulation-based refinement which seems more appropriate for several
reasons detailed in the introduction of the Chapter 4.

9

10

Chapter 2

Notions of Refinement for MTS
and dMTS

2.1 Introduction

The most important issue when refining a specification in a step-wise sys-
tem development is that any desirable property satisfied by the specification
is preserved. As mentioned before, in a component-based approach, it is
equally important that the refinement relation is a precongruence for parallel
composition: If we refine a component specification P to P ′, then replacing
P by P ′ in an overall specification P ‖ Q should lead to a refinement P ′ ‖ Q
– and the respective desirable property (or properties) is preserved. We are
convinced that, in such a setting, the optimal refinement notion is the one
that does not reject any P ′ as refinement of P unless this is necessary to
achieve these two goals. In other words, it is optimal to use the coarsest
precongruence, denote it by v, that guarantees preservation of the desirable
property. Efficiency to decide whether P ′ v P is of secondary importance; if
there is a finer, more efficiently decidable precongruence, one can still choose
to work with this as an under-approximation of v (cf. [65]) – the price is of
course that one restricts oneself to a subset of the set of reasonable refine-
ments.

Testing in the sense of De Nicola and Hennessy [30] is an approach that
usually leads to such an optimal refinement relation. A specification P sat-
isfies a test system T (you might think of it as a user) if P ‖ T has the
desired property under consideration, say deadlock freedom.1 Then P ′ re-
fines P according to the testing preorder vd, if P ′ satisfies at least all test
systems (users) that P satisfies. If vd is a precongruence, it is usually the

1In [30], the property is based on reaching some success state of T .

11

optimal one as explained above.

The problem is of course that vd is based on all possible test systems;
to understand and e.g. decide it, we need a characterization of P ′ vd P that
just refers to the behaviour of P and P ′. For LTS, such a characterization is
given by F(P ′) ⊆ F(P) (cf. Def. 1.6).

We will start this chapter by generalizing this deadlock testing to MTS
and then to dMTS. As mentioned in Chapter 1, an MTS has two kinds
of transitions: may-transitions, which describe permitted behaviour, and
must-transitions, describing required behaviour. dMTS additionally allow
for disjunctive must-transitions targeting several states and require that at
least one of them is implemented. Contrary to DMTS (introduced in [44]),
where any may-transitions originating from a single state can be grouped
together into a must-transition, dMTS also requires them to have the same
label. We will, however, not examine DMTS here for several reasons. Firstly,
despite having found quite some interest over the years (see e.g. [6] for a recent
publication), DMTS are difficult to handle; in particular, parallel composition
on DMTSs has only been defined 20 years after their invention [7]. The more
common definition found in [6] involves translating the two DMTSs into Non-
deterministic Acceptance Automata, building their parallel composition and
translating the result back into a DMTS. Secondly, dMTS suffice for our
purposes. We base MIA on them (cf. Ch. 4) rather than MTS to provide
a conjunction operator. Again DMTS would be unnecessarily complicated.
Finally, it will turn out, that, already for dMTS, failure refinement is not a
precongruence.

When defining the test-setting for MTS (and dMTS afterwards), we im-
mediately encounter a difficulty: It is not so clear what a deadlock in an MTS
is – does a may-transition save us from a deadlock? Since in MTS-settings
LTSs are often considered implementations, we solve this by not checking for
deadlock freedom on MTS, but on all its implementations instead. There
the notion of deadlock is rather clear. Thus, to make this work, we have to
associate each MTS P with a set of implementations.

However, since we are trying to define a refinement- (and thus imple-
mentation-) relation, it is not immediately clear what implementations we
should associate with P . The standard refinement relation for MTS and
(dMTS) is based on an alternating simulation, we will call it as-refinement2;
with this refinement relation, MTSs are more expressive than LTSs. So we
stick with the traditional concept of as-implementations; since as-refinement

2Usually, this relation is called modal refinement; this does not appear very suitable,
since there are certainly very different refinement relations for Modal Transition Systems,
as we will demonstrate.

12

is so strict, it seems indubitable that these really are implementations of P .

Since the characterization of the refinement defined by our test-setting is
quite intricate for dMTS and will turn out not to be precongruence, we will
start with examining only MTS. We characterise the refinement with a kind
of failure semantics extending the F -semantics of LTS. The characterization
answers our question about deadlocks showing that may-transitions do not
save us from a deadlock; intuitively, this is because there is an implementation
where the may-transition is omitted and thus a deadlock occurs. We show
the robustness of our test-scenario by running it again, this time using F -
implementations instead of as-implementations: The resulting refinement is
the same. Finally, we show that our refinement is thorough in contrast to
as-refinement.

We proceed to do the same examinations for dMTS. The characterization
is technically far more intricate than the one for MTS, which it nevertheless
extends. It uses the concept of so-called τ -choices to deal with disjunctive
τ -must-transitions and ready sets, a concept complementary to refusal sets;
we will offer some ideas how the process of determining the semantics of
a dMTS can be improved, thereby exhibiting a connection to stable-failure
semantics, cf. [8] or [57, Sect. 9.4]. It turns out that most problems arise
from divergences and disjunctive τ -must-transitions. Indeed, as preparatory
results, Sorokin, the second author of [15], already showed in his bachelor’s
thesis [62] that failure semantics for deadlock-testing is much easier to handle,
when we do not allow the internal action τ on disjunctive transitions or
require divergence freedom (as discussed later on) and use stable failures. It
should also be mentioned that Valmari [66] has considered deadlock testing
on LTS with a slightly different understanding of deadlock. In his setting,
the testing preorder can be characterized with stable-failure semantics. In
these cases, the refinement is also a precongruence, as it is for MTS.

Since in general the refinement fails to be a precongruence on dMTS,
it is just an over-approximation for the desired optimal precongruence from
above, complemented by as-refinement as under-approximation. We will also
show that, with this semantics, dMTS are not more expressive than MTS.
Therefore, we will not pursue the failure semantics further for dMTS, but
only for MTS.

We proceed to examine conjunction for our F -semantics on MTS. As
mentioned in Chapter 1, conjunction is an important operator if one wants
to describe various aspects of a specification separately and then combine
them into one overall specification.

Obviously, conjunction depends on the refinement notion. Conjunction
for MTSs w.r.t. as-refinement has already been defined in [46], but the re-

13

sult usually violates syntactic consistency ; the standard condition of syn-
tactic consistency requires each must-transition to have an underlying may-
transition as well, so that all required behaviour is permitted. In other words,
the conjunction operator is not closed on MTS. In fact, a conjunction w.r.t.
as-refinement does not always exist in MTS. In a setting without τ , [35]
presents a characterization when it exists and how to construct it in this
case. But the conjunction of MTSs exists in the class of dMTS as shown
for general MTSs w.r.t. a weak form of as-refinement in [51]. Before that, it
was shown that the conjunction for the τ -free case exists on the larger class
of DMTS (c.f. [7]). The latter two conjunction operators are closed on their
respective classes.

We will present a conjunction w.r.t. F -refinement. This operator is quite
different from the ones found in the literature, and it demonstrates that in
our setting the conjunction of two MTSs is always an MTS again – provided
the two have a common F -refinement; otherwise, conjunction is necessarily
undefined. This conjunction on MTS is very interesting, since MTS are
conceptionally much easier than dMTS or DMTS. As an aside, we also prove
the existence of a conjunction operator for dMTS with F -semantics.

However, intuitively, F -refinement can be regarded as too generous. It
ignores the interplay of may- and must-transitions to a large degree and
treats the MTS in question as action modal : when refining a state p with
several a-may-transitions, it only matters whether p has an a-must-transition
or not; regardless to which state it leads, p can be implemented by elevating
any a-may-transition to a must-transition. Essentially it would suffice to use
only one type of transitions and annotate each state with a set of actions
that have to be present.

Hence, we suggest a way to make F -refinement stricter by combining it
with a refinement based on may-testing [30]. So far, the success of a test
meant that the system in parallel with the test environment works without
deadlocking. In the may- and must-testing of De Nicola and Hennessy success
means that a successful state of the test environment may or must be reached
eventually.3 We develop may-testing for MTS with our implementation-based
testing scenario and characterize the resulting preorder as reverse language
inclusion based on must-transitions. Adding this to F -refinement makes finer
distinctions w.r.t. must-transitions. Conjunction, however, cannot be defined
on MTS for this stricter refinement.

In the second half of this chapter, we have a look at deadlock/divergence
testing, where test satisfaction means deadlock and divergence freedom. Di-

3The concepts of may- and must-testing are not to be confused with the may- and
must-transitions of MTS.

14

vergence (an infinite internal computation) is often regarded as undesirable
because it can block any communication with the environment. In addi-
tion, we have seen that most problems and complications with dMTS and
F -refinement stem from divergences.

Indeed, the idea of failures is best known as part of the, as we will call it,
traditional failure/divergence semantics, which arises from the must-testing
preorder of [30] – cf. [28] – and was developed as a denotational semantics
for CSP in [11]. The explicit treatment of divergence traces in the latter is
needed to make denotational semantics work in the presence of hiding.

Our results regarding deadlock and divergence are not just generaliza-
tions, but already new for LTS. It seems that so far such a deadlock/diver-
gence testing has only been mentioned once in [70], essentially in an LTS
setting; but the characterization claimed in [70, Thm. 3.2.6.i) 3rd and 4th
item] is wrong. We correct this here, characterizing the testing preorder with
a widely unknown semantics that combines failures with an unusual treat-
ment of traces leading to divergence; these traces and their continuations are
called divergence traces. So far, this semantics was presumably only studied
in [69] to solve a problem from [5]; previous results about this semantics are
very limited, so we regard it as still new – in particular, since we formu-
late it here for the first time on the basis of stable failures. This time, the
deadlock/divergence preorder is not only robust (in the sense F -semantics
was shown to be), it is also a precongruence, it can be seen as the coarsest
precongruence as described above, and the characterizing semantics is fairly
easy to handle.

In the traditional semantics, the failure part is flooded with divergence
traces in the sense that it contains any (w,X) where w is a divergence trace.
In our new semantics, there is an additional flooding: action a can also be
in X because wa is a divergence trace. This way, our semantics leads to a
coarser, hence better refinement; it is strictly coarser than the traditional
refinement already on LTS. We show that the new refinement is also a pre-
congruence for hiding, and it can be justified by a variation of De Nicola’s
and Hennessy’s must-testing as well.

The rest of this chapter is structured as follows. The second section intro-
duces basic definitions and notations. The third deals with deadlock-testing
and failure semantics for MTS and dMTS; it also includes its combinations
with may-testing and conjunction on MTS. The new deadlock-divergence-
testing and failure-divergence semantics are treated in the fourth section,
while the fifth gives an overview of the refinement relations we examined.
We conclude the chapter with a brief summary in the sixth section.

15

2.2 Definitions and the Concept of Testing

We start by formally defining MTS, dMTS and their traditional refinement
relations, the strong and weak alternating simulation. (The latter were orig-
inally defined as modal and observational modal refinement.)

Definition 2.1. A disjunctive modal transition system (dMTS) is a tuple
(P, p0,−→, 99K) where

1. P is a set of states,

2. p0 ∈ P is the initial state,

3. −→ ⊆ P × Στ × (Pfin(P) \ {∅}) is the (disjunctive) must-transition
relation,

4. 99K ⊆ P × Στ × P is the may-transition relation.

As is usual for (d)MTS, we require syntactic consistency, i.e. p
α−→ P ′

implies ∀p′ ∈ P ′ : p α
99K p′.

We identify p
α−→ {p′} with p

α−→ p′. If all must-transitions are of this
kind, i.e. −→ ⊆ P ×Σ×{{p} | p ∈ P}, then P is a modal transition system
(MTS). If −→ = 99K, P is (essentially) a LTS, which we also consider to be
an implementation. The alphabet of P is the set collecting all visible actions
occurring on may-transitions of P .

Intuitively, e.g. q
a−→ {q1, q2} means that we must have an a-transition

from q to q1 or q2. If we additionally have q
a−→ {q2, q3}, then either there is

at least an a-transition to q2 or at least an a-transitions to q1 and one to q3.
This does not exclude the possibility of implementing all three a-transitions.

Analogously, q
a
99K q1 means that an a to q1 is allowed.

Note that the meaning of =⇒ on dMTS is not obvious; a weak transition
(

α
=⇒) is defined in [52], and we will use a slightly different definition in

Chapter 4 later on. Here, we will use =⇒ only for LTS or MTS. Consequently,
the same holds for weak as-implementation (see definition below), which is
based on =⇒. If an MTS is known to be an implementation (an LTS), we
write all transitions as must-transitions.

Reachability is based on may-transitions, i.e. if p0
w

=⇒ p, w is called a
trace and p is a reachable state of P . A state p is must-stable, if p 6τ−→ and

stable if p 6τ99K.

Definition 2.2. Let P,Q be dMTSs. A relation R ⊆ P × Q is a (strong)
alternating refinement relation (as-relation) if for all (p, q) ∈ R:

16

p0

P

p1

p2

p3
send

deliver

reset send

quit
s0

S

s1 s2

s3

s4 s5
send deliver reset

quit
send

deliver

Figure 2.1: An example MTS P and one of its as-implementations S.

1. q
α−→ Q′ implies ∃P ′ : p α−→ P ′ and ∀p′∈P ′ : ∃q′∈Q′ : (p′, q′) ∈ R,

2. p
α
99K p′ implies ∃q′ : q α

99K q′ and (p′, q′) ∈ R,

Similarly, if P and Q are MTSs, R ⊆ P × Q is a weak alternating
refinement relation (was-relation) if for all (p, q) ∈ R:

1. q
α−→ q′ implies ∃P ′ : p α̂

=⇒ p′ and (p′, q′) ∈ R,

2. p
α
99K p′ implies ∃q′ : q α̂

=⇒ q′ and (p′, q′) ∈ R,

We write pvas q (vw -as) and say that p (strongly) as-refines q (was-
refines) if there exists an as-refinement (was-refinement) relation R such
that (p, q) ∈ R. Furthermore, we extend this notion to dMTSs (only MTSs
for was-refinement) and write P vas Q if p0vas q0.

As usual, vas is the greatest as-relation and a preorder, i.e. vas is a
refinement relation. Recall that for a refinement relation vR, the set of
R-implementations of a dMTS P is implR(P) = {S | S vR P, S is an
implementation}.

As an example consider Fig. 2.1. First observe that S is an imple-
mentation, since all may-transitions are must-transitions as well. It is an as-
refinement, and hence an as-implementation, of P (Svas P , S ∈ implas(P)
respectively) because of the relation R = {(s0, p0), (s1, p1), (s2, p0), (s3, p3),
(s4, p2), (s5, p1), (s4, p0)}. Note that as-refinement allows for unfolding of cy-
cles and at each unfolding different choices can be made w.r.t. the same
may-transition. In our example the cycle p0, p1 is unfolded to s0, s1, s2; s0

implements only the send -transition, while s2 implements only the reset- and
the quit-transition. Another interesting point is that s4 implements both, p0

and p2, as can be seen from R.
For further small examples regarding as-refinement, see Fig. 2.2 and

Fig. 2.5 below.

17

It is obvious that, on the one hand, our dMTS-setting with as-refinement
is a generalization of the MTS-setting with as-refinement (which in turn gen-
eralizes LTS with bisimulation equivalence). On the other hand, a disjunctive
must-transition in a dMTS describes a choice between transitions with the
same action and different target states; so a dMTS is a special DMTS (cf.
e.g. [44, 7]), where a disjunctive must-transition describes a choice between
transitions with different actions and different target states.

2.3 Deadlock-Testing

The idea of testing a system P as proposed in [30] (and briefly mentioned in
Sect. 1.1) is that P is put in parallel with a test system, and then the overall
system is checked for a desirable property like deadlock freedom (6 ∃p∀a ∈
Σ. p 6a=⇒, cf. Sect. 1.1). If these systems are MTSs or even dMTSs, it is
not obvious what deadlock in the presence of may-transitions really means.
Therefore, we propose the following modification: Only LTSs are considered
as test systems, and such a test system is not composed with P itself, but with
all its implementations. When all these parallel compositions are deadlock
free, P passes the test. Then, as usual, P is considered a refinement of
P ′ iff P passes at least all the tests passed by P ′. Intuitively, any user/test
environment that communicates well, i.e. in a deadlock-free manner, with (all
implementations of) P ′ will also communicate well with P . Thus replacing
P ′ by P will not introduce a deadlock in any environment. This testing
preorder captures what behaviour of a dMTS is relevant if we use it as a
component and want to develop deadlock-free systems.

Thus, our testing scenario uses parallel composition and the notion of
deadlock-freedom only for implementations. This allows us to study what
these should mean for dMTSs, instead of prescribing them. The only problem
with this idea is that it is not clear what an implementation of P is – in
particular, since the approach is about finding an adequate refinement and,
thus, implementation notion. Since it is a commonly accepted and strict
notion of implementation, we use as-implementations; it seems undoubtable
that these really should be implementations of P .

As we show after the characterization results, we could have opted for
a range of weaker refinement (and resulting implementation) notions than
vas . Refinement notions that allow additional actions in a refinement (e.g.
weak-alphabet-refinement of [34]) are out of the scope of this chapter.

Definition 2.3. A test (T,A) is a pair consisting of an implementation T
and a set A ⊆ Σ. For a refinement relation vr, a dMTS P r-deadlock-
satisfies a test (T,A) if S ‖A T is deadlock free for each S ∈ impl r(P).

18

P1

a

a

b

b

c

=F P2

a

a

b c

Figure 2.2: F -equivalent systems P1 and P2

Then, we write P satd
r (T,A).

A dMTS P r-deadlock-refines P ′ (P ≤d
r P

′), if for all tests (T,A) :
P ′ satd

r (T,A) =⇒ P satd
r (T,A)

This testing preorder is intuitively well justified but hard to work with,
since it refers to all possible test environments, i.e. an infinite number of
tests. We will characterize this preorder by failure-set inclusion, which only
refers to the systems that are compared. For ease of understanding, we will
first develop this characterization for MTS and then extend it to the more
intricate one for dMTS.

2.3.1 F-Semantics for MTS

Definition 2.4. The failure semantics of an MTS P is F(P) = {(w,X) |
p0

w
=⇒ p,∀a ∈ X : p 6a=⇒}. p failure- (or F-)refines P ′, written P vF P ′, if

F(P) ⊆ F(P ′). P and P ′ are failure- (or F-)equivalent, written P =F P
′, if

F(P)vF F(P ′) and F(P ′)vF F(P). We call (w,X) ∈ F(P) a refusal pair,
X a refusal set and say that the respective p can refuse X.

This definition generalizes failure semantics of LTS found e.g. in [70, 65]
and Sect. 1.1. Intuitively a refusal pair (w,X) represents a partial deadlock
(locking out all actions in X), which can occur after trace w. Observe that
the trace is based on may-transitions, while the refusal set is based on must-
transitions.

For a small example consider P1 and P2 in Fig. 2.2, where {(ε, {b, c}),
(a, {a, b, c}), (ab, {a, b, c}), (abc, {a, b, c})} are the elements of F(P1) = F(P2)
with maximal refusal sets; e.g. (a, {b}) is in F(P1) due to the upper a-
transition and in F(P2) due to the lower one. So both, P1 and P2 are
F -refinements of each other, but neither as- (or was-)refines the other.

As another example, consider Fig. 2.1. There, we have (send deliver reset
send deliver , {reset , deliver}) ∈ F(P)∩F(S), whereas (send deliver , {reset})
is only in F(P). For A = Σ \ {ω} and T in Fig. 2.3, (T,A) tests for the ab-
sence of (send deliver , {reset}): S ‖A T is isomorphic to T which, obviously,
cannot deadlock. Nevertheless, P does not pass (T,A), due to S ′ ∈ implas(P)

19

s′0

S ′

s′1 s′2 s′3
send deliver quit

t0

T

t1 t2 tω
send deliver reset

τ
τ

ω

Figure 2.3: Another implementation P ′ and a test T .

in Fig. 2.3 (among others); the resulting S ′ ‖A T is isomorphic to T without
the reset-transition and thus can reach the deadlock (s′2, t2).

The next two lemmas prepare the main result of this section, which char-
acterizes our refinement notion. The first one deals with the additional twist
of our testing scenario that we consider implementations of the MTS under
test. It shows that the F -semantics of an MTS is the collection of all refusal
pairs of its implementations.

Lemma 2.5. F(P) =
⋃
S∈implas(P)F(S)

Proof. ‘⊇’ For any S ∈ implas(P), (w,X) ∈ F(S) implies s0
w

=⇒ s ∧ ∀a ∈
X : s 6a=⇒. Because of Svw -as P , we conclude that p0

w
=⇒ p for some p with

svw -as p by Def. 2.2.2. Now Def. 2.2.1 implies ∀a ∈ X : p 6a=⇒. By definition
this means (w,X) ∈ F(P). ‘⊆’ is equivalent to (w,X) ∈ F(P) =⇒ ∃S ∈
implas(P) : (w,X) ∈ F(S). We give a construction for such an S.

Let (w,X) ∈ F(P) due to p0
v
99K p with w = v̂; let n be the length of v.

To construct S, we unfold P to some degree using n+ 1 copies of P .
We construct S = (S, (p0, 0),−→S,−→S) where:

• S = P × {0, 1, . . . , n}

• −→S= {((p, i), α, (p′, i+ 1)) | p α
99KP p′, 0 ≤ i < n} ∪

{(p, n), α, (p′, n)) | p α−→P p
′}

Now Svas P due to R = {((p, i), p) | 0 ≤ i ≤ n}. In particular, the run

p0
α1
99K p1

α2
99K · · · αn

99K pn = p in P with v = α1 · · ·αn is simulated in S by
(p0, 0)

α1−→ (p1, 1)
α2−→ · · · αn−→ (pn, n), and p = pn and (pn, n) have the same

must-transitions.

The second lemma exhibits a characteristic test for a refusal pair. In fact,
LTS T in Fig. 2.3 is the characteristic test for (send deliver , {reset}).

Lemma 2.6. (cf. [55, 70]) Let w = w1 · · ·wn ∈ Σ∗, X ⊆ Σ and T (w,X) as
depicted in Fig. 2.4. For all implementations S where an action ω does not
occur, the system S ‖Σ\{ω} T (w,X) can deadlock iff (w,X) ∈ F(S).

20

t0 t1 t2 · · · tn−1 tn tn+1

t′

w1 w2 w3 wn a ∈ X \ {ω}

ω
ω ω ω

ω

ω

Figure 2.4: T (w,X) with w = w1 · · ·wn.

Proof. Since T (w,X) can almost always reach t′ and perform arbitrarily
many ωs, the compositions can deadlock iff s0

w
=⇒ s where s can refuse

X.

Theorem 2.7. P as-deadlock refines P ′ if and only if P vF P ′.

Proof. ‘⇒’: Take (w,X) ∈ F(P) and choose a fresh ω not occurring in P
or P ′. Let A = Σ \ {ω}. By Lemma 2.5 we know that there is some as-
implementation S of P with (w,X) ∈ F(S). Therefore, S ‖A T (w,X) can
deadlock by Lemma 2.6 and thus P does not satisfy (T (w,X), A). Now our
premise implies that P ′ does not satisfy (T (w,X), A) either and, therefore,
there must be an as-implementation S ′ of P ′ such that S ′ ‖A T (w,X) can
deadlock. Again by Lemma 2.6 we get (w,X) ∈ F(S ′) and F(S ′) ⊆ F(P ′)
by Lemma 2.5.

‘⇐’: Let P vF P ′. We prove that P refines P ′; by contraposition, we
assume for some test (T,A) that ¬P satas(T,A). Thus there must be an
as-implementation S of P such that S ‖A T can deadlock, i.e. (w,Σ) ∈
F(S ‖A T). Since these are LTS, this implies ∃(u, Y) ∈ F(S) ⊆ F(P) ⊆
F(P ′), (v, Z) ∈ F(T) : w ∈ u ‖A v and Σ ⊆ (Y ∩ Z) ∪ (A ∩ (Y ∪ Z))
by Lemma 1.7. By Lemma 2.5 we know that there must be some as-
implementation S ′ of P ′ with (u, Y) ∈ F(S ′). Again by Lemma 1.7 we
get (w,Σ) ∈ F(S ′ ‖A T). This means that S ′ ‖A T can deadlock and
¬P ′ satas(T,A).

Our F -refinement is strictly coarser than both, strong and weak, as-
refinement. Obviously, this means implF(P) ⊆ implw -as(P) ⊆ implas(P) for
all MTS P . We do not have equality since otherwise the thorough refinements
would coincide; see Sect. 2.5 later on. This shows that alternating simulations
disallow some implementations that are perfectly correct from our semantical
viewpoint.

21

Proposition 2.8. F-refinement is strictly coarser than weak as-refinement
which in turn is strictly coarser than as-refinement, i.e. P vas P

′ =⇒
P vw -as P

′ =⇒ P vF P ′, but P vas P
′ 6⇐= P vw -as P

′ 6⇐= P vF P ′.

Proof. The fact that weak as-refinement is strictly coarser than as-refinement
can easily be seen: An alternating simulation is also a weak one, by definition.
On the other hand an MTS P which can only perform p0

τa−→ was-refines an
MTS Q which can only perform q0

a−→, but not strongly.
So let us consider F -refinement and weak as-refinement.
‘⇒’: (w,X) ∈ F(P) implies p0

w
=⇒ p ∧ ∀a ∈ X : p 6a=⇒. Because

of P vw -as P
′, we conclude that p′0

w
=⇒ p′ for some p′ with pvw -as p

′ by
Def. 2.2.2. Now Def. 2.2.1 implies ∀a ∈ X : p′ 6a=⇒. By definition this means
(w,X) ∈ F(P ′).

‘6⇐’: We can consider systems without must-transitions, where F -inclusion
equates to language inclusion (arbitrary X can be refused) and alternating
simulation to simulation. It is well known that simulation is stricter than
language inclusion.

We have already seen that F -refinement does not imply as- or weak as-
refinement. As in the standard LTS-setting, the situation is different for
deterministic MTS. An MTS is deterministic if it is τ -free (has no τ -may-
transitions) and the may-transition relation is deterministic, i.e. ∀a ∈ Σ :

p
a
99K p′ ∧ p a

99K p′′ =⇒ p′ = p′′.

Proposition 2.9. For an MTS P and a deterministic MTS Q, we have
P vF Q⇔ P vw -as Q. If, in addition, P is τ -free, then P vF Q⇔ P vas Q.

Proof. ‘⇐’ is implied by Proposition 2.8 for arbitrary MTSs.

‘⇒’: For a deterministic Q, R = {(p, q) | ∃w ∈ Σ∗ : p0
w

=⇒ p′, q0
w
99K q′}

is a weak alternating simulation: For any (p, q) ∈ R with p
a
99K p′ we know

that (wa, ∅) ∈ F(P) and by assumption (wa, ∅) ∈ F(Q). Therefore, and

since Q is deterministic, q0
w
99K q

a
99K. For any (p, q) ∈ R with q

a−→ q′ we
know that (w, {a}) /∈ F(Q) and by assumption (w, {a}) /∈ F(P). Therefore
p

a
=⇒. In both cases the states reached are related by R again.

If, in addition, also P has no τ -transition, weak and strong alternating
simulations coincide.

We developed our testing approach, choosing the implementations of an
MTS to be defined according to as-refinement; this approach justified F -
refinement between MTSs. In this sense as-refinement supports F -refinement
and not itself. In Cor. 2.12 below, we show that using implementations based
on F -refinement again leads to F -refinement, thus F -refinement supports
itself.

22

Definition 2.10. An MTS P F -satisfies a test (T,A) if S ‖A T is deadlock
free for all S ∈ implF(P). We then write P satF(T,A).

We can observe that testing based on F -implementations coincides with
the one based on as-implementations already at the stage of test-satisfaction.
This implies the first main result of this section in Cor. 2.12 below.

Proposition 2.11. For an MTS P and a test (T,A), we have P satF(T,A)⇔
P satas(T,A).

Proof. ‘⇒’: By Proposition 2.8 every as-refinement is an F -refinement.
‘⇐’: ¬P satF(T,A) implies the existence of an F -implementation S, such
that S ‖A T can deadlock. This is because of some (w,Σ) ∈ F(S ‖A T),
which implies the existence of an appropriate (v,X) ∈ F(S) by Propo-
sition 2.29. Then (v,X) ∈ F(P) by definition of F -refinement and, by
Lemma 2.5, there is an S ′ ∈ implas(P) with (v,X) ∈ F(S ′). Therefore,
S ′ ‖A T can also deadlock because of (w,Σ) and thus ¬P satas(T,A).

Corollary 2.12. P vF P ′ if and only if for all tests (T,A) :
P ′ satF(T,A) =⇒ P satF(T,A).

Proof. Immediate from Thm. 2.7 and Proposition 2.11.

This corollary shows that F -refinement supports itself in our testing sce-
nario. Actually, we could also associate each MTS P with any set impl(P)
of implementations satisfying implas(P) ⊆ impl(P) ⊆ implF(P) and define
test satisfaction w.r.t. these sets. This impl -satisfaction is implied by F - and
implies as-satisfaction by choice, so all three coincide by Prop. 2.11. Hence,
analogously to Cor. 2.12, also impl supports F -refinement. For example,
we could use implw -as(p) – the set of weak-as-implementations of P – or we
could work with implementations according to a branching-version of weak-
as-refinement as argued for in [34]. For the definition of refinement, we could
even use an implication like: P ′ satas(T,A) =⇒ P satF(T,A) with the same
result.

At the beginning of Sect. 2.3, we discussed the use of as-implementations
in Def. 2.3. The above consideration shows that our choice is not so crucial,
and that we can claim quite some generality for our approach.

Thoroughness is another, quite prominent (and conceptually easier) no-
tion of a refinement supporting itself.

Here, we have the same picture as above: as-refinement is not thorough
(see e.g.[43]), but F -refinement is, as we show below in Thm. 2.14 with the
help of Lemma 2.13 – just as Lemma 2.5 was needed in the proof of Thm. 2.7.

Lemma 2.13. F(P) =
⋃
S∈implw-as(P)F(S) =

⋃
S∈implF (P)F(S)

23

Proof. 1.‘⊆’: (w,X) ∈ F(P) =⇒ ∃S ∈ implas(P) : (w,X) ∈ F(S) by
Lemma 2.5. Since by Proposition 2.8 implas(P) ⊆ implw -as(P), we are done.
2.‘⊆’: Immediate since by Proposition 2.8 implw -as(P) ⊆ implF(P).
3. The inclusion of the last in the first set is implied by the definition of
vF .

Theorem 2.14. P vF P ′ ⇔ implF(P) ⊆ implF(P ′)

Proof. ‘⇒’: Let S be an F -implementation of P , then SvF P vF P ′ by our
premise. Thus S is an F -implementation of P ′.

‘⇐’: Take an arbitrary (w,X) ∈ F(P). By Lemma 2.13 we know that
there is an F -implementation S of P with (w,X) ∈ F(S). By our premise, S
is also an F -implementation of P ′ and thus, again by Lemma 2.13, (w,X) ∈
F(P ′).

2.3.2 F-Semantics for dMTS

We now turn our attention to dMTS in general. Again, our aim is to show
that ≤d

as and ≤d
F coincide, and to characterize them with a kind of failure

semantics on dMTS. For this, we first need to further generalize the F -
semantics, which we already extended to MTS above.

We could use the same definition as before for dMTS, but its meaning,
of course, would depend on the notion of

a
=⇒ for dMTS. With

a
=⇒ defined

as in [52], the resulting semantics characterizes ≤d
as only for dMTS without

disjunctive τ -transitions as shown in [62].
To obtain a suitable semantics for general dMTS, we now describe an

alternative definition and generalize it to dMTS; this will lead to the desired
results. In order to differentiate between the ‘traditional’ failure semantics
(for LTS and MTS) and our new one (for dMTS), we will denote the former
by Ft for the remainder of this section.

The key concept for our alternative is that of a ready set. With the usual
definition, the ready set of some state p of an MTS P is simply defined as
ready t(p) = {a ∈ Σ | p a

=⇒}. The complement of ready t(p) (and each subset
of the complement) is a refusal set for traces w with p0

w
=⇒ p. Thus, given a

trace w, to determine all X with (w,X) ∈ Ft(P), it suffices to consider the
states with minimal ready sets among the states p with p0

w
=⇒ p.

For dMTS we define readies(p) as a set of sets of actions. The sets of
actions are ready sets of implementations of p, and all the minimal ones
among these ready sets are contained in readies(p). Each X ∈ readies(p) –
called a ready of p – arises from a τ -choice function f ; the idea is that f(p)
describes a minimal way to implement the disjunctive τ -must-transitions
starting from p.

24

Definition 2.15. Let P be a dMTS. A τ -choice f is a function that selects,
for each p ∈ P , a minimal subset f(p) ⊆ P such that ∀p τ−→ P ′ : ∃p′ ∈
P ′ ∩ f(p). We say that f reaches a state pn from p1 if p1

τ
99K p2

τ
99K · · · pn

such that pi+1 ∈ f(pi) for i = 1, . . . , n− 1.
The set of readies of a state p1 is readies(p1) = {Z ⊆ Σ | ∃τ -choice f :

a ∈ Z ⇔ f reaches some pn from p1 with pn
a−→}

The failure semantics of P is defined as F(P) = {(w,X) | ∃p0
w

=⇒ p :
∃Z ∈ readies(p) : X∩Z = ∅}. We say that (w,X) ‘is justified by’ or ‘in F(P)
due to’ the state p, the τ -choice f and the resulting Z in the definition of
F(P). Further, P F -refines another dMTS P ′ (P vF P ′) if F(P) ⊆ F(P ′).

Note that, in this definition, the run p0
w

=⇒ p might use a τ -transition
not selected by f , e.g. because it is a may-transition that is not underlying
any must-transition.

p0P

p1 p2

τ

a b

s0S

s1 s2

τ τ

a b

p′0P ′

p′1 p′2

τ

a b

τ

s′0S ′

s′2

s′′0

s′′1

τ τ
τ

b a

Figure 2.5: Two dMTSs P and P ′ with two as-implementations S and S ′

The small examples in Fig. 2.5 illustrate these points. For dMTS P , there
are only two τ -choices, which choose the left or the right τ -branch, yielding
readies(p0) = {{a}, {b}}. We ignore the as-implementation S, which would
lead us to add {a, b} to readies(p0); note that this additional ready would
not change F(P) according to Def. 2.15, since {a} ⊆ {a, b}. Also for dMTS
P ′, there are only two τ -choices, yielding readies(p′0) = {{a}, {b}}. In the as-
implementation S ′, p′0 is implemented by s′0 and s′′0, and both of these choose
one τ -branch. Again, we do not consider this as-implementation, since it is
an unfolding with additional states.

A τ -choice describes an implementation only as far as τ -transitions are
concerned: some τ -may-transitions are turned into τ -must-transitions, others
are deleted – and the states are not modified. Thus, our approach is far
from exhaustively searching through all implementations of P . In particular,
for finite P , all sets readies(p) can be computed by exhaustively searching
through all τ -choices. Once we have characterized the testing preorder ≤d

as ,
we will sketch how the F -semantics can be used to decide it.

25

As an aside, we mention that some choice-functions – very different from
our τ -choices – are defined in [33]. They are used for a simulation-style re-
finement (instead of a denotational-style characterization) and choose one
‘branch’ from every disjunctive transition. For instance for two equally la-
belled transitions from some state q to {1, 2}, {2, 3} respectively, 1 and 2
could be chosen, which is not minimal.

It is easy to see that we have indeed extended the previous Ft-semantics
to dMTS. Thus, the usual characterization for deadlock freedom of LTSs
carries over to the (intentionally) new F -semantics.

Proposition 2.16. For every MTS P , we have F(P) = Ft(P).

Proof. Since P has no disjunctive τ -transitions, the only possible τ -choice
selects the only target state for each τ -must-transition. This implies that for

every p ∈ P : readies(p) = {{a | p τ∗a−→}} = {ready t(p)}. Thus, for any state

p with p0
w

=⇒ p, the sets X with X ∩ {a | p τ∗a−→} = ∅ are exactly the sets
where p 6a=⇒ for all a ∈ X.

The next lemma is a key-result for connecting the F -semantics to our
implementation-oriented testing. It is essentially the extension of Lem. 2.13.
It also deals with the more complicated aspects of the F -semantics for dMTS.

Lemma 2.17. 1. F(P) =
⋃
S∈implas(P)F(S)

2. F(P) =
⋃
S∈implF (P)F(S)

Proof. 1.‘⊆’: Let (w,X) ∈ F(P) be justified by p1, f and Z and p0
v
99K p1

with w = v̂. As in the MTS-case (cf. 2.5, we construct an as-implementation
S by unfolding P to the level n, where n is the length of v. For this unfolding,
we use n+ 1 copies of P .

Let S = (S, (p0, 0),−→S,−→S) where

• S = P × {0, 1, . . . , n}

• −→S= {((p, i), α, (p′, i+ 1)) | p α
99KP p′, 0 ≤ i < n} ∪

{((p, n), α, (p′, n)) | p α−→P P
′, p′ ∈ P ′, p′ ∈ f(p) ∨ α 6= τ}

Now Svas P due to R = {((p, i), p) | p ∈ P, 0 ≤ i ≤ n} and (p0, 0)
w

=⇒
(p1, n).

Clearly, (p1, n)
ε

=⇒ (p, n) iff f reaches p from p1. Thus, Z = ready t(p1, n)
and (w,X) ∈ Ft(S) = F(S).

26

1.‘⊇’: Consider S ∈ implas(P) according to as-relation R and (w,X) ∈
Ft(S) due to some s0

w
=⇒ s1. Clearly, we have some p1 with p0

w
=⇒ p1 and

(s1, p1) ∈ R. Let Pτ be defined as the smallest set containing p1 and fulfilling
p ∈ Pτ ∧ p

τ−→ P ′ =⇒ P ′ ⊆ Pτ , and let Sτ be defined analogously from
s1. Let ZS = {a ∈ Σ | ∃s ∈ Sτ : s

a−→} = ready t(s1). Thus X ∩ ZS = ∅ by
choice of s1.

In the following, we will call p ∈ Pτ matched (by s) if there is some s ∈ Sτ
such that (s, p) ∈ R. If p

τ−→ P ′ for such a p, some p′ ∈ P ′ is also matched
– due to Def. 2.2.1 – by some s′ with s

τ−→ s′. Hence, there is a τ -choice
f for P with the following property: For every matched p ∈ Pτ and every
transition p

τ−→ P ′, all p′ ∈ P ′ ∩ f(p) are also matched. Note that p1 is
matched by s1.

Let ZP ∈ readies(p1) be the ready resulting from this f . Consider some

a ∈ ZP due to p1
τ
99K p2

τ
99K · · · pn

a−→ as in the definition of readies(p1).
Since p1 is matched, so is pn by choice of f – by sn, say. Hence, sn ∈ Sτ and
sn

a−→, i.e. a ∈ ZS. Therefore ZP ⊆ ZS, X ∩ZP = ∅, (w,X) ∈ F(P) and we
are done.

2.‘⊆’: Any as-implementation is also an F -implementation by ‘1.⊇’, and
we are done by ‘1.⊆’. 2.‘⊇’follows immediately from S ∈ implF(P).

In the previous section, we proved a result for MTSs, analogous to
Prop. 2.17, using that as-refinement implies F -refinement. Here, it seems
easier to proceed the other way round.

Corollary 2.18. For dMTSs P and Q, P vas Q =⇒ P vF Q. This impli-
cation is strict.

Proof. For each (w,X) ∈ F(P), there is S ∈ implas(P) with (w,X) ∈ F(S)
by Prop. 2.17. By transitivity of vas we know that S ∈ implas(Q) and
(w,X) ∈ F(Q), again by Prop. 2.17.

The strictness of this implication already holds for MTS 2.8. Indeed it
can already be seen on LTS, where as-refinement equals bisimilarity.

After these preparations we will prove that F -refinement characterizes
≤d

as . To achieve this, we first make three points, summed up in the lemma
below; the first two already appeared previously. The first point describes,
how the F -semantics of two LTSs are related to the F -semantics of their
parallel composition (Lem. 1.7).

The second point describes a characteristic test system T (w,X), which
only deadlocks if the tested implementation’s F -semantics contains (w,X)
(Lemma 2.6).

Finally, we observe that the same tests are satisfied, no matter whether
we use F -implementations or as-implementations.

27

Lemma 2.19. 1. For LTSs P and Q and A ⊆ Σ: F(P ‖A Q) = {(w,X) |
(u, Y) ∈ F(P), (v, Z) ∈ F(Q), w ∈ u ‖A v,X ⊆ (Y ∩ Z) ∪ (A ∩ (Y ∪
Z)) =: F(P) ‖A F(Q)}.

2. Let w = w1 · · ·wn ∈ Σ∗, X ⊆ Σ and T (w,X) be as depicted in Fig. 2.4.
For each implementation S whose alphabet does not contain an action
ω, the LTS S ‖Σ\{ω} T (w,X) can deadlock if and only if (w,X) ∈ F(S).

3. For each dMTS P and test (T,A), P satd
F (T,A)⇔ P satd

as (T,A).

Proof. Since the first two claims have been proven before, we only show the
third: ¬P satd

F (T,A)⇔ ¬P satd
as (T,A).

‘⇐’: If P fails the test due to the as-implementation S, then S is also an
F -implementation by Cor. 2.18.
‘⇒’: ¬P satd

F (T,A) implies the existence of an F -implementation SF , such
that SF ‖A T can deadlock. This means that there is some (w,Σ) ∈ F(SF ‖A
T) (cf. Lem. 1.7), which implies the existence of appropriate (u, Y) ∈ F(SF)
and (v, Z) ∈ F(T) by Lemma 2.19.1. Then (u, Y) ∈ F(P) by definition
of F -implementation and, by Prop. 2.17, there is an Sas ∈ implas(P) with
(u, Y) ∈ F(Sas). Therefore, Sas ‖A T can also deadlock because of (w,Σ)
and thus ¬P satd

as (T,A).

With this we can prove our main characterization result. The proof works
essentially in the same way as previously in the MTS-case.

Theorem 2.20. For dMTS, as-deadlock-refinement ≤d
as and F-refinement

vF coincide.

Proof. ‘⊆’: Consider dMTSs P and P ′ with P ≤d
as P

′ and take (w,X) ∈
F(P). We choose a fresh ω not occurring in P or P ′ and let A = Σ \ {ω}.
By Prop. 2.17, we know that there is some as-implementation S of P with
(w,X) ∈ F(S). Therefore, S ‖Σ\{ω} T (w,X) can deadlock by Lemma 2.19.2
and thus P does not satisfy (T (w,X), A). Now our premise implies that
P ′ does not satisfy (T (w,X), A) either and, therefore, there must be an
as-implementation S ′ of P ′ such that S ′ ‖Σ\{ω} T (w,X) can deadlock. By
Lemma 2.19.2 and Prop. 2.17, we get (w,X) ∈ F(S ′) ⊆ F(P ′).

‘⊇’: Let P vF P ′. To prove P ≤d
as P

′, we consider some test (T,A) with
¬P satd

as (T,A). Thus, there must be an as-implementation S of P such
that S ‖A T can deadlock, i.e. (w,Σ) ∈ F(S ‖A T). By Lemma 2.19.1 this
implies ∃(u, Y) ∈ F(S) ⊆ F(P) ⊆ F(P ′), (v, Z) ∈ F(T) : w ∈ u ‖A v and
Σ ⊆ (Y ∩ Z) ∪ (A ∩ (Y ∪ Z)). By Prop. 2.17, we know that there is some
as-implementation S ′ of P ′ with (u, Y) ∈ F(S ′). Again by Lemma 2.19.1
we get (w,Σ) ∈ F(S ′ ‖A T). This means that S ′ ‖A T can deadlock and
¬P ′ satd

as (T,A).

28

This characterization does not only give more insight into the testing
preorder, it also has an impact on decidability. Since the definition of ≤d

as

refers to arbitrary tests, it is not clear that ≤d
as is decidable for finite dMTS,

but vF is – by the following standard method [37]:

When comparing two finite dMTS, we can assume that Σ is finite. From
each of the dMTSs, say P , we construct a finite automaton by just considering
the may-transitions and adding a new, unique final state fail . From each
readies(p), we determine the refusal sets X that p contributes according to
Def. 2.15, and we add for each X an X-labelled transition from p to fail .
The automaton accepts exactly the words wX with (w,X) ∈ F(P), and the
automaton is finite, since Σ is finite. Hence vF can be decided by checking
inclusion for regular languages. This method can be made more efficient by
considering the fewer readies Z instead of the refusal sets X and matching
wZ in the first automaton by wZ ′ in the other, provided Z ′ ⊆ Z; recall that
a smaller Z ′ also justifies all refusal sets justified by the larger Z.

Compared to a setting with LTS (or even MTS) only, we have the ad-
ditional costs of inspecting all τ -choices. We will show how to limit these
costs, thereby also gaining additional insight into the F -semantics. First,
consider the graph on P with edges pp′ whenever p

τ−→ P ′ and p′ ∈ P ′. Call
the weakly connected components of this graph the weak components of P .
Each τ -choice of P is a combination of local τ -choices, one for each of these
weak components; such a local τ -choice is sufficient to determine readies(p)
for all states p of the respective weak component. Thus, it is much more
efficient to consider all local τ -choices instead of their combinations, whose
number can be exponential in the number of weak components. This idea
should be combined with the following ideas, which we describe for the un-
decomposed P .

Recall that a τ -choice f reaches a state pn from p1 if p1
τ
99K p2

τ
99K · · · pn

such that pi+1 ∈ f(pi) for i = 1, . . . , n − 1. Each such pn contributes its
‘must-enabled’ a ∈ Σ to the Z ∈ readies(p1) arising from f . Thus, having
fewer reachable states gives a smaller, i.e. more informative, ready. A simple
way to achieve this concerns transitions pi

τ−→ P ′ with pi ∈ P ′: We can
assume that f chooses pi to cover this transition; any other choice can only
lead to additional states being reached from p1. We can enforce the desirable
choice by simply removing the transition pi

τ−→ P ′. This will usually make
readies(p1) smaller, but for each missing Z, there is still some Z ′ ⊆ Z. Thus,
the modified readies(p1) may differ from the original one, but it still gives
rise to the same F -semantics. In short, before determining F(P), we remove
all transitions p

τ−→ P ′ with p ∈ P ′.
The next idea for increasing efficiency is more subtle and more interesting.

29

If a τ -choice f reaches a must-stable state pn from some p1 6= pn, the resulting
Z ∈ readies(p1) is irrelevant for F(P), because readies(pn) = {ready t(pn)}
and ready t(pn) ⊆ Z. The latter means that each (w,X) with p0

w
=⇒ p1 and

X ∩ Z = ∅ also arises from p0
w

=⇒ pn (!) and X ∩ ready t(pn) = ∅.
This observation has a consequence for divergence-free dMTS in general,

i.e. also for infinite ones. For each p1 reachable in such a dMTS and each
τ -choice f , f can reach a must-stable state from p1. Otherwise there would
be an infinite run from p1 along the τ -transitions selected by f . Hence it is
sufficient to consider the stable-failure semantics, e.g. defined on LTS in [8].
We generalize it to dMTS as follows:

Definition 2.21. The stable-failure semantics of a dMTS P is:
Fst(P) = {(w,X) | p0

w
=⇒ p, p is must-stable, and ∀a ∈ X : p 6a−→}

Proposition 2.22. For a divergence-free dMTS P , F(P) = Fst(P).

Now we return to finite dMTSs. To make use of the second idea from
above, the plan is to determine F(P) from the stable-failure semantics and
from a restricted set of τ -choices, defined on a separate dMTS TC (P), cf.
Thm. 2.23.

TC (P) has state set P , initial state p0 and, initially, the τ -must-transitions
of P ; at all stages, it only has the τ -may-transitions required by syntactic
consistency. We will reduce TC (P) and, in the end, we will consider the
τ -choices of TC (P) to obtain the reduced readies rr(p1) ⊆ readies(p1) in
P for all p1 still in TC (P) – in the same way as readies(p1) is obtained in
Def. 2.15. These τ -choices satisfy the defining condition of a τ -choice for all
these p1, but they are not defined for the other states of P . Finally, we will
add {(w,X) | ∃p0

w
=⇒ p : p ∈ TC (P) and ∃Z ∈ rr(p) : X ∩ Z = ∅} to

Fst(P).

The set readies(p) for a must-stable p is already taken account of in
Fst(P). Furthermore, p’s contribution to the readies of the other states is also
not needed: As argued above, if some τ -choice f reaches p from some p1, then
the resulting Z ∈ readies(p1) is irrelevant – i.e. it should not be considered.
Consequently, we remove p from TC (P) and replace each p′

τ−→ P ′ with
p ∈ P ′ by p′

τ−→ P ′ \ {p}. This forces a τ -choice to choose a different state
from P ′, i.e. the f just discussed is indeed not considered anymore.

To sum up, the first modification of TC (P) is that we remove all must-
stable states. In the intermediate stages of the construction, also empty
target states are allowed. In fact, and this is an invariant in the construction,
a transition p′

τ−→ ∅ indicates that any τ -choice f of P must reach a must-
stable state from p′. Again, with the argument from above, if f reaches p′

30

from some p (possibly = p′), the resulting Z ∈ readies(P) is not relevant.
Hence, iteratively, we remove each p′ with p′

τ−→ ∅.
Finally, for all p1 in TC (P), we determine rr(p1) on P analogously to the

definition of readies(p1), but with f being a τ -choice for TC (P). This gives
the following result:

Theorem 2.23. Let P be a finite dMTS and let TC (P) and rr(p1) for
p1 ∈ TC (P) be obtained by the algorithm above, then F(P) = {(w,X) |
∃p1 ∈ TC (P), p0

w
=⇒ p1, Z ∈ rr(p1) : X ∩ Z = ∅} ∪ Fst(P).

As an example consider Fig. 2.6. The two τ -choices reaching p7 from p0

give rise to {a, b, c, d}, {a, b, c, e} ∈ readies(p1). They are not needed because
of readies(p8) = {{d}} and readies(p9) = {{e}}. The method removes p8

and p9, and hence p7 from TC(P). Now there is just one τ -choice and
rr(p0) = {{a, b, f}}.

p0

P

p1

p2 p5 p6 p13

p7

p8

p9
a

b f

c d

e

Figure 2.6: Unlabelled transitions are the τ -transitions forming TC(P).

Further optimizations are possible. Consider a τ -choice on TC (P) and
the graph G with the states of TC (P) as vertices and edges pp′ whenever

p
τ
99K p′ in TC (P) and p′ ∈ f(p). Assume an SCC (strongly connected

component) C of G is reachable from some p1, but not vice versa. Then, we
can invoke the argument from above with C playing the role of the stable
state pn: Z ∈ rr(p1) arising from f is irrelevant due to Z ′ arising from f for
each p ∈ C (all these p have the same Z ′).

To use this observation, we compute the rr(p) with an outer loop over
all τ -choices f for TC (P). For each f , we obtain in an inner loop the
contribution Z for each p ∈ TC (P).

For this inner loop, we compute the SCCs described above in linear time.
Call an SCC a leaf, if there is no edge leaving it. For each leaf C, we choose
one p ∈ C; we determine the Z resulting from f for p and add it to rr(p).
The resulting sets rr(p) will in general be smaller than the original ones, but
they still make Thm. 2.23 true.

31

For the only τ -choice in the reduced TC(P) of Fig. 2.6 obtained above,
{p5, p6} is an SCC and a leaf. We finally obtain w.l.o.g.: rr(p5) = {{f}} and
rr(p0) = rr(p1) = rr(p2) = rr(p6) = ∅.

Although it is a bit complex to extract the F -semantics from a dMTS,
we have characterized the deadlock-oriented testing preorder with the same
kind of F -semantics as in the MTS-case; we make this more precise below.
Furthermore, we have the same robustness results. The first concerns thor-
oughness; the if-part of the following statement follows from Prop. 2.17, the
only-if part holds for every refinement relation vr.

Proposition 2.24. F-refinement is thorough, i.e. for dMTS P and P ′,
P vF P ′ if and only if implF(P) ⊆ implF(P ′).

The second robustness result concerns the question how our testing pre-
order depends on the choice to use as-implementations. The next proposition
is immediately implied by Lemma 2.19.3.

Proposition 2.25. The testing preorders ≤d
as and ≤d

F coincide.

Again, as for MTS, the same result holds for any ≤d
r in place of ≤d

F due
to Lemma 2.19.3, provided vr lies between vF and vas .

2.3.3 Compositionality

In a testing approach, systems are compared as components in the same
parallel contexts. Therefore, a testing preorder usually is a precongruence
for parallel composition, i.e. it supports modular refinement (cf. [18, Thm. 17]
for a general theorem). It is therefore surprising that this does not hold for
≤d

as on dMTSs. This can only happen because, in contrast to usual testing
scenarios, our test systems are only drawn from the subclass of LTSs, and
dMTSs are only checked on their implementations. It is maybe just a pleasant
surprise that ≤d

as is a precongruence on MTSs [19].
First, we present the definition of parallel composition for dMTS (cf.

e.g. [51]). Then, we will show that this parallel composition is compositional
w.r.t. F -refinement on MTS, but not on dMTS.

Definition 2.26. The parallel composition of two dMTSs P1 = (P1, p10,−→1,
99K1) and P2 = (P2, p20,−→2, 99K2) with synchronizing set A ⊆ Σ is defined
as the dMTS P1 ‖A P2 = (P1 × P2, (p10, p20),−→12, 99K12), where

−→12 = {
(
(p1, p2), α, P ′1 × {p2}

)
| p1

α−→1 P
′
1, α ∈ Στ \ A}

∪ {
(
(p1, p2), α, {p1} × P ′2

)
| p2

α−→2 P
′
2, α ∈ Στ \ A}

∪ {
(
(p1, p2), a, P ′1 × P ′2

)
| p1

a−→1 P
′
1, p2

a−→2 P
′
2, a ∈ A}

32

(p0, s0)P ‖A S (p1, s1) (p0, s2) (p0, s4) (p1, s5)

(p2, s0) (p3, s3) (p2, s2) (p2, s4)

send

reset send

deliver

quit

reset

reset

reset

reset

send

send

deliver

Figure 2.7: P ‖A S with A = Σ \ {reset}.

99K12 = {
(
(p1, p2), α, (p′1, p2)

)
| p1

α
99K1 p

′
1, α ∈ Στ \ A}

∪ {
(
(p1, p2), α, (p1, p

′
2)
)
| p2

α
99K2 p

′
2, α ∈ Στ \ A}

∪ {
(
(p1, p2), a, (p′1, p

′
2)
)
| p1

a
99K1 p

′
1, p2

a
99K2 p

′
2, a ∈ A}

Note that the parallel composition of two MTS again yield an MTS.
It is commonly known that the following lemma holds for LTS. Since it

only concerns may-transitions, it also holds for dMTS, and we will use it
without explicitly referencing it.

Lemma 2.27. For dMTSs P1, P2 we have in P1 ‖A P2: (p1, p2)
w

=⇒ (p′1, p
′
2)

if and only if ∃u, v ∈ Σ∗ : p1
u

=⇒ p′1, p2
v

=⇒ p′2 and w ∈ u ‖A v.

To illustrate how modalities are treated in ‖A, consider the MTS
P ‖Σ\{reset} S shown in Fig. 2.7 with P and S from Fig. 2.1. Note that
the send -may-transition of p0 and the send -must-transition of s0 result in a
may-transition only. Another interesting point is that (p2, s2) has no outgoing
send -transition, although p2 does have a send -must-transition.

To prove the result for MTS, we will use the following standard lemma
for parallel composition; see e.g. 3.1.7 in [70], which has a similar proof.

Lemma 2.28. Consider MTS P and Q with p ∈ P and q ∈ Q; further let
w ∈ Σ∗.

1. ∃u, v ∈ Σ∗ : w ∈ u ‖A v ∧ p
u

=⇒ p′ ∧ q v
=⇒ q′ iff (p, q)

w
=⇒ (p′, q′) in

P ‖A Q

2. ∃u, v ∈ Σ∗ : w ∈ u ‖A v ∧ p u
=⇒ p′ ∧ q v

=⇒ q′ iff (p, q)
w

=⇒ (p′, q′) in
P ‖A Q

The next proposition is a rather simple modification of Lem. 1.7. It
implies that vF is a precongruence for ‖A. We give a proof to point out the
details regarding modalities.

33

Proposition 2.29. For all MTS P and Q and all A ⊆ Σ: F(P ‖A Q) =
{(w,X) | (u, Y) ∈ F(P), (v, Z) ∈ F(Q), w ∈ u ‖A v,X ⊆ (Y ∩ Z) ∪ (A ∩
(Y ∪ Z))}.

Proof. ‘⊆ ’: Let (w,X) ∈ F(P ‖A Q); then there is p with (p0, q0)
w
99K (p, q)

and ∀a ∈ X : (p, q) 6a=⇒. By Lemma 2.28.1 there must be u, v ∈ Σ∗ such
that p0

u
=⇒ p, q0

v
=⇒ q and w ∈ u ‖A v. Let Y = {a ∈ Σ | p 6a=⇒} and

Z = {a ∈ Σ | q 6a=⇒}. Together with the definition of ‖A, Lemma 2.28.2
shows that for a ∈ X ∩ A we must have a ∈ Y or a ∈ Z, and for a ∈ X \ A
we must have a ∈ Y and a ∈ Z.

‘⊇ ’: Let (w,X) be an element of the r.h.s. and let p0
u

=⇒ p, q0
v

=⇒ q
be such, that w ∈ u ‖A v, p 6a=⇒ for all a ∈ Y and q 6a=⇒ for all a ∈ Z.
By Lemma 2.28.1 we have (p0, q0)

w
=⇒ (p, q). Consider a ∈ X. If a ∈ A

then a ∈ Y ∪ Z (since Y ∩ Z ⊆ Y ∪ Z), which implies p 6a=⇒ or q 6a=⇒. By
Lemma 2.28.2 we get (p, q) 6a=⇒. If a /∈ A then a ∈ Y ∩ Z, which implies
p 6a=⇒ and q 6a=⇒. By Lemma 2.28.2 we get again (p, q) 6a=⇒ and thus (w,X)
is in the l.h.s.

Corollary 2.30. On MTS vF is a precongruence for ‖A, i.e. P ′vF P implies
P ′ ‖A QvF P ‖A Q.

Having achieved the desired compositionality result for MTS, we proceed
to the counterexample for dMTSs: Figure 2.8 shows two F -equivalent dMTs
P and P ′, essentially because both can initially refuse either a, b or c, but
not more than one of them; in particular, when a τ -choice for P picks τ -
transitions from p1 to p2 and from p2 to p1, then p3 becomes unreachable
and c can be refused. However P ‖A P is not equivalent to P ‖A P ′ for
A = {a, b, c}. The former has (ε,Σ) in its F -semantics (the justifying τ -choice
is also illustrated in Fig. 2.8), while the latter has not. This example indicates
that the precongruence problem is related to divergence. And indeed, vF
is a precongruence for divergence-free dMTS; this result has been shown
in [62], and we will obtain it here as a corollary in Sect. 2.4, where we test
for divergence as well as deadlock.

Another standard way to proceed would be to look for the coarsest pre-
congruence contained in vF , cf. e.g. the problem with bisimilarity and choice
in CCS [57]. It is not at all clear how this coarsest precongruence for vF
could be characterized. Besides the interest that understanding the deadlock-
testing preorder has in itself, we can regard F -refinement as an overapprox-
imation of the coarsest precongruence, accompanied by as-refinement as an
underapproximation. That as-refinement is unnecessarily fine is already clear
on LTS, where as-refinement is bisimulation equivalence.

34

In the light of this negative result, it seems little attractive to generalize
our approach to full DMTSs. In this context, it should be noted that it
took 20 years to define a parallel composition for DMTS [7]. This definition
is quite indirect and hard to handle, and it seems that hardly any results
concerning this parallel composition are known.

p1P

p2 p3

τ

τ
τ

a

b c

p′0P ′

p′1 p′2 p′3

τ

a b a c b c

(p1, p1)part of P ‖A P (p1, p2) (p1, p3)

(p2, p1) (p2, p3)

(p3, p1) (p3, p2)·
a

τ

Figure 2.8: Equivalent systems P, P ′; the problematic (ε,Σ) ∈ F(P ‖A P)
is due to (p1, p2) and the τ -choice which is shown for the reachable part
(must-τ -labels omitted).

The considerable effort needed to develop our approach for dMTS resulted
in a very standard failure semantics. This is demonstrated by the fact that
LTS are already as expressive as dMTS in our approach.

To show this, we use the standard concept of F -consistent sets. The
conditions, FC1 – FC3, are known from the classical failure semantics [11].
We will prove that the F -semantics of a dMTS is F -consistent and that each
F -consistent set can be represented as an LTS.

Definition 2.31. An F-set M ⊆ Σ∗ × P(Σ) is called F -consistent, if it
satisfies

FC1) (w,X) ∈M =⇒ ∀Y ⊆ X : (w, Y) ∈M

FC2) (w,X) ∈M =⇒ ∀v v w : (v, ∅) ∈M

35

FC3) (w,X) ∈M ∧ ∀a ∈ Y : (wa, ∅) /∈M =⇒ (w,X ∪ Y) ∈M

Note that FC3 corresponds to syntactic consistency. If (w,X ∪ Y) /∈ M
then, roughly, some a ∈ Y cannot be refused after w, it must be possible
in the sense of 6a=⇒. Hence, a is allowed after w, wa is a possible trace and
(wa, ∅) ∈M .

Proposition 2.32. 1. For a dMTS P , F(P) is F-consistent.

2. For each F-consistent set4 M 6= ∅, there is an LTS P with F(P) = M .

Proof. 1.: For FC1 and FC2 consider some (w,X) ∈ F(P). By definition,
there is some p and with p0

w
=⇒ p and some Z ∈ readies(p) with Z ∩X = ∅.

Obviously, we have Z ∩ Y = ∅ for all subsets Y ⊆ X; furthermore, for all
prefixes v v w, we have some p′ with p0

v
=⇒ p′ and ∀Z ′ ∈ readies(p′) :

Z ′ ∩ ∅ = ∅.
For FC3 consider (w,X) ∈ F(P) due to some p0

w
=⇒ p, τ -choice f and

resulting set Z ∈ readies(p), and consider some Y with ∀a ∈ Y : (wa, ∅) /∈
F(P). This means for any a ∈ Y that p 6a=⇒, hence a /∈ Z. Therefore
Z ∩ (X ∪ Y) = ∅, and we are done.

2.: We define an LTS P as follows: P = {w | (w, ∅) ∈ M} ∪M , p0 = ε
(where ε ∈ P by FC2 since M 6= ∅), w

a−→ wa if (wa, ∅) ∈ M , w
τ−→

(w,X) if (w,X) ∈M , and (w,X)
a−→ wa if a /∈ X and (wa, ∅) ∈M .

To show that F(P) = M we use the traditional-style definition from
Def. 2.4, which for divergence-free MTS/LTS (like P) is the same as Fst , as
we have proven in Prop. 2.22.

Each (w,X) ∈M is represented by the state (w,X), which is reached by
p0

w−→ w
τ−→ (w,X).

For the converse, observe that a state (w, Y) may also refuse actions
a /∈ Y . Consider some (w,X) ∈ Fst(P). Since the w-states of P are not must-
stable, (w,X) is justified by some state (w, Y), where possibly X 6= Y . For
each a ∈ X, we have (w, Y) 6a−→ and, by construction, a ∈ Y or (wa, ∅) /∈M .
From this and (w, Y) ∈ M , we get that (w, Y ∪ X) ∈ M by FC3, and
(w,X) ∈M by FC1.

This translation of each dMTS P to an F -equivalent LTS P allows to
inherit positive results from an LTS- or MTS-setting, e.g. for conjunction:
In the next section, we will show that a conjunction operator exists for MTS
with F -refinement, i.e. for any two MTSs P and P ′, a third one P ∧P ′ exists
such that QvF P ∧ P ′ if and only if QvF P and QvF P ′ for each MTS

4To satisfy the ‘fresh-action assumption’ for dMTS, one should require here that there
always be a fresh action not occurring on any trace in the F-set.

36

Q – the characteristic property when applying conjunction to specifications.
Combining the results, the conjunction of dMTSs P and P ′ can be defined
as P ∧ P ′.

This idea does not work for parallel composition, since this operator al-
ready exists on dMTS. For P and P ′ shown in Fig. 2.8, P ‖A P and P ‖A P ′
are F -equivalent, since vF is a precongruence for parallel composition on
MTS. Thus, parallel composition on dMTS differs from the one on MTS.

Clearly, the above translation is only conceptual; in particular, it might
translate a finite dMTS into an infinite LTS. It could be that some dMTSs
are more compact than F -equivalent LTSs.

2.3.4 Conjunction

As already explained in the introduction, conjunction is an important oper-
ator if one wants to describe various aspects of a specification with separate
systems and, then, to combine these into one overall specification, which al-
lows exactly for all common refinements of the former ones. In the following,
we will define a conjunction operator on MTS w.r.t. F -refinement. Because
of the arguments at the end of the previous section, we will not consider
general dMTS for this. It should be noted that in our setting the conjunc-
tion of two MTS can be represented as an MTS. It is not necessary to resort
to a larger and more complicated class of MTS like DMTS or dMTS, as is
the case for MTS with as-refinement [51, 53]. To prove the operator correct,
we will show that the F -refinements of P1 ∧ P2 are exactly the common F -
refinements of P1 and P2. This also means that, naturally, P1 ∧ P2 can only
be defined if such a common F -refinement exists.

On the level of the F -semantics, conjunction corresponds more or less to
intersection. But actually, such an intersection is often not representable by
an MTS: the sets F(P) with P an MTS are F -consistent as shown in the
previous section, whereas their intersections often are not.

We start by showing how to obtain the greatest F -consistent set contained
in an F -set. As we will explain after Def. 2.35, this gives a first conjunction
operator, which is easier to understand and prove correct than the second
one further below.

Definition 2.33. For an F-set M , GFC (M) is defined stepwise as follows:

1. M1 := M \ {(w,X) | ∃Y ⊆ X : (w, Y) /∈M}

2. M2 := M1 \ {(w,X) | ∃v v w : (v, ∅) /∈M1}

37

3. GFC (M) := M2 \ (FIS (M2) ∪ {(w,X) | ∃v @ w : (v, ∅) ∈ FIS (M2)}),
where the F -inconsistency set FIS (M2) is defined as the least set sat-
isfying: If
(∗) (w,X) ∈ M2 ∧ (∃Y ∀a ∈ Y : ((wa, ∅) /∈ M2 ∨ (wa, ∅) ∈ FIS (M2)) ∧
(w,X ∪ Y) /∈M2),
then (w,X) ∈ FIS (M2).

In steps 1 – 3, we remove elements of M that lead to violation of FC1 –
FC3, respectively. This is obvious for the first two steps. Note that one must
ensure that later removals do not introduce violations of conditions enforced
earlier. The iteratively constructed FIS (M2) collects those (w,X) that lead
to a violation of FC3.

As an example, consider a case where M2 contains (ab, ∅) and (aba, ∅), but
none of (ab, {a}), (aba, {c}), or (abac, ∅). Regarding the definition of FIS (M2)
as a fixed point iteration, we initialize it as ∅ and then see immediately that
(aba, ∅) satisfies (∗) for Y = {c}. After adding this pair to FIS (M2), (ab, ∅)
also satisfies (∗) for Y = {a}.

In the end, FIS (M2) is removed from M2; since this can introduce new
violations of FC2, the respective refusal pairs are removed as well.

Because of (3), it is not so obvious that GFC (M) is well defined. Hence,
we prove now that there exists a least set satisfying the if-statement. For an
F -set F ⊆ M2 and (w,X) ∈ M2, we say that F derives (w,X), whenever
(∗) is true provided F ⊆ FIS (M2). A FIS-derivation tree for (w,X) is a
(possibly infinite) directed tree without infinite paths where the vertices are
elements of M2, (w,X) is the root and for each vertex (v, Z):
– (v, Z) in place of (w,X) makes (∗) true under the assumption that
FIS (M2) = ∅

or
– some minimal F derives (v, Z) and F is the set of children of (v, Z).

We argue that FIS (M2) is the set FIS of all (w,X) with a FIS-derivation
tree. On the one hand, by Noetherian induction, all these (w,X) must be
in FIS (M2). On the other hand, consider some (w,X) that makes (∗) true
with FIS in place of FIS (M2). Let F be the set of all (wa, ∅) ∈ FIS that are
needed to make the disjunction in (∗) true. Then, we get a FIS-derivation
tree for (w,X) by making each (wa, ∅) ∈ F a child of the new root (w,X) and
adding a FIS-derivation tree for each of these (wa, ∅). Thus, (w,X) ∈ FIS
and the defining if-statement for FIS (M2) is satisfied.

Since FIS (M2) is the least set with this property, FIS (M2) = FIS .

Proposition 2.34. The greatest F-consistent F-set M ′ contained in some
F-set M satisfies M ′ = GFC (M).

38

Proof. Clearly, refusal pairs removed in Step 1 of Def. 2.33 cannot be in M ′

and M1 satisfies FC1. Also, the refusal pairs removed in Step 2 cannot be
in M ′. Since, for some w, all (w,X) are removed if some (w,X) is, M2 still
satisfies FC1. If (w,X) ∈ M1, w′ v w and (w′, ∅) is removed due to some
v v w′, then (w,X) is also removed due to v, hence M2 also satisfies FC2.

For Step 3, observe that (∗) is monotonic in FIS (M2): If (w,X) satisfies
(∗) due to Y for some set in place of FIS (M2), then it also does for a larger
set. Hence, FIS (M2) is a least fixed point and defined.

Further, by transfinite induction, no (w,X) added to FIS (M2) can be in
M ′ due to FC3. Also note: (1) If (w,X) ∈M2 and for some X ′ ⊆ X, (w,X ′)
is added to FIS (M2) due to Y , then (w,X) is also added because of Y . The
reason is that (w,X ∪ Y) ∈ M2 would imply (w,X ′ ∪ Y) ∈ M2 since M2

satisfies FC1.

By construction, M2 \ FIS (M2) satisfies FC3. Removing (w,X) due to
some v @ w satisfying (v, ∅) ∈ FIS (M2) removes all refusal pairs (w,Z);
hence it can only influence FC3 if (w,X) = (ua, ∅). But in this case v v u; if
u = v, all (u,X) are removed from M2 by (1); for v @ u this is clear anyway.
In conclusion, GFC (M) satisfies FC3.

Now (1) shows that FC1 is preserved in GFC (M), since all (w, Y) are
removed if some (w,X) is removed due to v @ w. FC2 is preserved by
construction and FC1, and we are done.

For the discussion of conjunction, logical consistency is an important
notion.

Definition 2.35. MTSs P1 and P2 are logically consistent if they have a
common refinement.

The conjunction of MTSs P1 and P2 has to be refined exactly by the
common refinements of P1 and P2. If P1 and P2 are logically consistent, the
F -semantics of any common refinement is an F -consistent set contained in
F(P1) and F(P2); thus, this set is contained in GFC (F(P1)∩F(P2)), and the
latter is non-empty for logically consistent P1 and P2. For finite alphabets,
we now have an MTS with F -semantics equal to GFC (F(P1) ∩ F(P2)) by
Prop. 2.32, and we could take this as P1 ∧ P2. Therefore, the conjunction
exists for logically consistent P1 and P2 in this case. But the construction to
prove Prop. 2.32 usually builds an infinite LTS and is, therefore, not a real
algorithm. We will improve on this now; see the last statement of Thm. 2.37.

Definition 2.36. For MTSs P1 and P2, let P1 ‖may P2 denote the MTS
(P1, p01, ∅, 99K1) ‖Σ (P2, p02, ∅, 99K2). The (possibly infinite) powerset-MTS
R of P1 ‖may P2 is defined by:

39

• The initial state is r0 = {(p1, p2) | (p01, p02)
ε

=⇒ (p1, p2) in P1 ‖may
P2} =: Q0.

• For a ∈ Σ and Q ⊆ P1 × P2: Q
a
99K Q′ if Q′ = {(p′1, p′2) | ∃(p1, p2) ∈

Q : (p1, p2)
a

=⇒ (p′1, p
′
2) in P1 ‖may P2} 6= ∅

• −→R= ∅

• The states of R are all Q reachable from Q0, and 99KR is restricted
accordingly.

For a state (p1, p2) in Q ∈ R, define refuse(p1, p2) = {a ∈ Σ | p1 6a=⇒
∧ p2 6a=⇒}. Now we let the inconsistency set IS(R) be the least subset of R
such that Q ∈ IS(R) if each (p1, p2) ∈ Q satisfies:

(∗∗) ∃a ∈ Σ : a /∈ refuse(p1, p2) ∧ (∀Q′ : Q a
99K Q′ implies Q′ ∈ IS(R))

If Q0 ∈ IS(R), P1 ∧ P2 is undefined (and there is no common imple-
mentation of P1 and P2, see below). Otherwise, the conjunction P1 ∧ P2

has

• {Q | Q is reachable in R \ IS(R)} ∪ {(p1, p2, Q) | Q is reachable in
R \ IS(R), (p1, p2) ∈ Q does not satisfy (∗∗)} as state set and Q0 as
initial state;

• the may-transitions of R and the following must-transitions (with the
underlying may-transitions):

– Q
τ−→ (p1, p2, Q)

– ∀a /∈ refuse(p1, p2) : (p1, p2, Q)
a−→ Q′ for the Q′ satisfying Q

a
99K

Q′.
Observe that the latter transition exists since (p1, p2) does not sat-
isfy (∗∗).

For finite P1 and P2, Def. 2.36 presents an algorithm to determine P1∧P2

(if it exists). The next theorem states that P1 ∧P2 is indeed the conjunction
of P1 and P2.

The core of the algorithm is the construction of the iteratively increasing
set IS(R) (a fixed-point iteration), which corresponds to an iterative reduc-
tion of the state set of P1 ∧ P2. Constructions like this are known from the
literature: one identifies a logic inconsistency and removes a corresponding
state; this can create a new inconsistency, and so the removal has to be
repeated. This is called backward propagation of inconsistency in [49] and
pruning in [59].

40

The approach of [59] works with deterministic MTS. A parallel product
like P1 ‖may P2 above is constructed as an MTS that might violate syntactic
consistency. An inconsistency is a state (i.e. a state pair from P1 × P2) that
is required, but not allowed to perform some a. Removal of this state deletes
further may-transitions, possibly leading to new inconsistencies and so on.
Not surprisingly, there are some similarities with our construction, but also
important differences that make our construction much more subtle.

Condition a /∈ refuse(p1, p2) says that (p1, p2), considered on its own, is
required to perform a while the next conjunct says that Q is not allowed
to do a, implying that a is required but not allowed for (p1, p2). Now, if
indeed some a is required but not allowed for (p1, p2), this is not a problem
(a relevant inconsistency) in itself, provided some other state pair in Q and
hence also Q may do an a. And even if the latter does not hold, the problem
only has an effect if all state pairs in Q satisfy (∗∗). Another subtle point is
that they may satisfy (∗∗) due to different actions a. Also see the examples
below.

Note that addition of some Q′ to IS(R) essentially removes Q′ and its
incoming may-transitions from R: when checking the second conjunct in (∗∗),
may-transitions leading to Q′ are considered as non-existent. To see that
IS(R) is well defined, one can use a similar argumentation as for FIS (M2) in
Def. 2.33. Instead of refusal pairs in M2, one has to consider states Q ∈ R.
For FIS (M2) we use FIS-derivation trees, which are directed trees where the
vertices are the elements of M2. Here, one has to use IS-derivation DAGs,
which are rooted directed acyclic graphs where the vertices are elements of
R.

Regarding P1∧P2, each state Q represents some trace of the conjunction;
each (p1, p2) ∈ Q gives rise to a refusal set for these traces, and the states
(p1, p2, Q) represent the respective refusal pairs.

Theorem 2.37. P1 ∧ P2 is defined iff P1 and P2 are logically consistent. In
this case, F(P1 ∧ P2) is the greatest F-consistent subset of F(P1) ∩ F(P2),
and an MTS S is a common F-refinement of P1 and P2 iff SvF P1 ∧ P2.

Furthermore, vF is a precongruence w.r.t. ∧ in the following sense: If
P1 and P2 are logically consistent and P1vF P ′1, then P ′1 and P2 are logically
consistent and P1 ∧ P2vF P ′1 ∧ P2.

If P1 and P2 are finite, then P1 ∧ P2 is also finite.

Proof. The last statement is obvious. Now, we observe that F(P1)∩F(P2) =
{(w,X) | (p01, p02)

w
=⇒ (p1, p2) in P1 ‖may P2 and pi can refuse X in Pi for

i = 1, 2} and that this set satisfies FC1 and FC2. We can also write this set

as {(w,X) | Q0
w
99K Q in R ∧ ∃(p1, p2) ∈ Q : pi can refuse X for i = 1, 2}.

41

Thus, the general idea is to represent just all (w,X) with Q0
w
99K Q and

∃(p1, p2) ∈ Q : X = refuse(p1, p2) in an MTS (and then all (w, Y) with
Y ⊆ X are represented as well by FC1). But as we have seen in Def. 2.33
Step 3, it might be necessary to remove some refusal pairs to achieve F -
consistency and represent G := GFC (F(P1) ∩ F(P2)).

The construction of IS(R) removes those w such that all (w,X) (or equiv-
alently: (w, ∅)) must be removed. For this, we first note that (∗∗) in Def. 2.36
is monotonic in IS(R), thus IS(R) is a least fixed point and defined.

Next, we prove by transfinite induction that, for all Q ∈ IS(R), Q0
w
99K Q

implies (w, ∅) /∈ G. For this, consider the set Y of all actions a that make
(∗∗) true for some (p1, p2) ∈ Q at the stage when Q is added to IS(R). We
have (w, Y) /∈ F(P1) ∩ F(P2), because otherwise, for i = 1, 2, there exists
some pi justifying (w, Y) ∈ F(Pi); for this (p1, p2) ∈ Q, we have ∀a ∈ Y :
a ∈ refuse(p1, p2), contradicting that Q is added to IS(R). Furthermore,

(wa, ∅) /∈ G for each a ∈ Y , either because ¬Q0
wa
99K or by induction applied

to the only Q′ with Q0
wa
99K Q′. Now, by FC3, (w, ∅) ∈ G would imply

(w, Y) ∈ G ⊆ F(P1) ∩ F(P2), a contradiction.

Observe that we have seen now that Q0 ∈ IS(R) implies that G is empty.
If P1 and P2 had a common F -refinement S, the F -consistent set F(S)
would be contained in G, i.e. P1 ∧ P2 undefined implies that P1 and P2 are
not consistent, showing one implication of the first claim in the theorem. So
assume now that Q0 /∈ IS(R).

Because of the statement just shown by transfinite induction, it would

suffice to represent just all (w,X) with Q0
w
99K Q in Q\IS(R) and ∃(p1, p2) ∈

Q : X = refuse(p1, p2). But this might still be too large; if some (p1, p2)
satisfies (∗∗) due to a, then (p1, p2) cannot justify (w,X ∪ {a}) and (w,X)
might violate FC3. We will now argue that we do not have to consider such
a pair (p1, p2) when representing all (w,X ′) ∈ G. More technically, we will
show that each (w,X ′) ∈ G with X ′ ⊆ refuse(p1, p2) is represented by some
(p′1, p

′
2) not satisfying (∗∗), i.e. X ′ ⊆ refuse(p′1, p

′
2).

Consider some Q0
w
99K Q in R \ IS(R) and Z = {a ∈ Σ | ¬Q a

99K in
R \ IS(R)}, i.e. (wa, ∅) /∈ G for all a ∈ Z. Note that Q was not added to
IS(R), so Z ⊆ refuse(p′1, p

′
2) for some (p′1, p

′
2) ∈ Q – namely exactly for those

(p′1, p
′
2) that do not satisfy (∗∗).

Further, consider some (p1, p2) ∈ Q satisfying (∗∗). Then (w,X ′) ∈ G
for some X ′ ⊆ refuse(p1, p2) implies (w,X ′ ∪Z) ∈ G by FC3, which must be
justified by some (p′1, p

′
2) ∈ Q with X ′ ∪ Z ⊆ refuse(p′1, p

′
2). Such a (p′1, p

′
2)

does not satisfy (∗∗) and it is therefore sufficient that in P1 ∧ P2 exactly the
respective sets refuse(p′1, p

′
2) are represented explicitly by (p′1, p

′
2, Q).

42

s0

S

s1

s2

s3

s4

a

b

c

d

t0

T

t0

t1 t2

t3

t6

t9

t11

t7

t10

t4 t5

t8

a a

b
a

b

c c
d

d c

b

{s0t0} =: Q0

R

{s1t1, s1t2} =: Q1

{s2t3, s2t5} =: Q2

{s3t6, s3t7} =: Q3

{s4t9} =: Q4

a

b

c

d

Q0

S ∧ T

(s0, t0, Q0)

Q1

(s1, t1, Q1)

Q2

(s2, t3, Q2)

τ

a

a
τ

b

b
τ

Figure 2.9: An example for conjunction

In conclusion, we have shown that F(P1∧P2) can be obtained by omitting
refusal pairs from F(P1)∩F(P2); hence, if P1∧P2 is defined, it demonstrates
the consistency of P1 and P2, finishing the proof of the first claim. At the
same time, the omitted refusal pairs are not in G. Hence, G ⊆ F(P1 ∧P2) ⊆
F(P1)∩F(P2), and G = F(P1 ∧P2) follows since F(P1 ∧P2) is F -consistent
and G is the greatest F -consistent set in F(P1) ∩ F(P2). The second claim
is now obvious, and also the third claim follows since F(S) is F -consistent.

For the precongruence claim, see the general proof in [51] Cor. 3.8.

We give a small example in Fig. 2.9 to illustrate some aspects of our
conjunction; we write S and T instead of P1 and P2 for ease of readability:
First, we show how inconsistent states are pruned and how the inconsistency
can propagate backwards. For this, recall the condition for a state pair to

be considered inconsistent: (∗∗) ∃a ∈ Σ : a /∈ refuse(s1, s2) ∧ (∀Q′ : Q
a
99K

Q′ implies Q′ ∈ IS(R))
Consider R’s state Q4. For its only state pair (s4, t9), we have b /∈

refuse(s4, t9) since t9
b

=⇒, and Q4 6b99K due to s4 6b=⇒. Thus, (s4, t9) is
inconsistent and Q4 is added to IS(R) and will be removed.

Similarly in Q3, the state pair (s3, t7) satisfies (∗∗) because of c /∈
refuse(s3, t7) due to t7

c
=⇒ and Q3 6c99K. Its other state pair, (s3, t6), also

satisfies the inconsistency criterion (∗∗), but for the different action d and

only because Q4 has been added to IS(R): d /∈ refuse(s3, t6), and Q3
d
99K Q

implies Q = Q4 ∈ IS(R). Thus, all state pairs of Q3 satisfy (∗∗) and Q3 is

43

P1

a

a

b

b

c

=F P2

a

a

b c

Figure 2.10: F -refinement is action-modal

added to IS(R). In other words, the inconsistency of Q4 propagates back-
wards to render Q3 inconsistent as well.

Next, (s2, t5) satisfies (∗∗) due to d, but refuse(s2, t3) = Σ – and Q2

‘survives’ although it contains some inconsistent state pair.

Second, we show some subtle effects. It is possible that some (s, t) ∈ Q ∈
S ∧ T satisfies (∗∗), but some Q

a
99K Q′ exists only due to (s, t) – i.e. for

all other (s′, t′) ∈ Q, s′ 6a99K or t′ 6a99K. It is important that such an a-may-
transition is not removed from Q together with (s, t). In our example, this

happens for (s1, t2), which satisfies (∗∗) due to a. The transition Q1
b
99K Q2

only exists because of (s1, t2)
b
99K (s2, t3). But the removal of the b-may-

transition from R would lead to a wrong result: an MTS consisting of just

two must-transitions
a−→ followed by

b−→ is a common F -implementation of
S and T , but would not be covered without the b-may-transition.

Additionally, (s2, t3) is only in Q2 because of (s1, t2); had we identified
(s1, t2) as inconsistent early and not generated (s2, t3), Q2 would be removed.
Even more subtly, (s1, t1) would satisfy (∗∗) due to b without the b-may-
transition of Q1, and consequently Q1 would be removed as well.

2.3.5 May-Testing

It is maybe a bit surprising that consideration of deadlock freedom leads to a
refinement notion that ignores the interplay of may- and must-transitions to
a large degree. For instance, the initial states in Fig. 2.10 demonstrate the
following: if p

a−→ for some state p and some a ∈ Σ, it does not matter which
a-transitions from p are must-transitions, as long as there is at least one.
Thus, despite their appearance, MTSs with F -refinement are only action-
modal transition systems [50] w.r.t. visible actions: it would suffice to have
just one type of visible transitions, and to attach to each state a subset of Σ
describing those actions that are to be treated as a must.

To distinguish the MTSs in Fig. 2.10, one can recall the approach of De
Nicola and Hennessy in [30]: may- and must-testing. Note that this has
nothing to do with the modalities of MTS, but instead with the reachability

44

requirement for success during a test. In both approaches, test systems have a
special success action ω and states that can perform ω are considered success
states. In must-testing, a test is passed if the the parallel composition reaches
a successful state in every maximal run; in may-testing it suffices to have one
such successful run. Traditionally, it is required for the success actions to be
performed in the latter, but this is obviously an equivalent requirement.

Must-testing is somewhat similar to our testing based on deadlock free-
dom and we will recall it later on (cf. Def. 2.48). De Nicola and Hennessy also
examined the intersection of the two refinements thereby creating a refine-
ment that is stricter than either. In this section, we will adapt may-testing
to our approach and use it to make F -refinement strict. Since the character-
ization again uses =⇒, but is otherwise not very intriguing, we will consider
it formally for MTS while commenting on the extension to dMTS.

Definition 2.38. In the rest of this section, a test is an implementation T
and ω ∈ Σ is a special action, which is only allowed in tests, but not in MTS
in general.
An MTS P may-satisfies a test T , P satmay-as T , if the following holds: for
each S ∈ implas(P), some run from the initial state of S ‖Σ\{ω} T reaches

a successful state (s, t) with (s, t)
ω−→. P may-refines P ′ if for all tests T :

P ′ satmay-as T =⇒ P satmay-as T .

Definition 2.39. For an MTS P , the must-language of P is the set
mustL(P) = {w | p0

w
=⇒} of must-traces of P . We write P vmustL P

′ if
mustL(P) ⊇ mustL(P ′) (note the inverse inclusion).

Before we prove that this reverse must-language inclusion indeed charac-
terises may-refinement, we relate it to other refinements we examined.

Proposition 2.40. vmustL is strictly coarser than as-refinement; it is neither
coarser nor finer than F-refinement.

Proof. It is easy to see that vas ⊂ vmustL. For P3 and P4 in Fig. 2.11,
we have P3vmustL P4, but not P3vF P4 and, hence, neither P3vas P4. For
P1 and P2 from Fig. 2.10, we have P2vF P1 but not P2vmustL P1 (whereas
P1vmustL P2).

Our next aim is to show that vmustL characterizes may-refinement. With
Lemma 2.28, one easily sees:

Proposition 2.41. For all MTS P1 and P2 and all A ⊆ Σ, mustL(P1 ‖A
P2) = {w | w ∈ u ‖A v for some u ∈ mustL(P1), v ∈ mustL(P2)}. vmustL is
a precongruence for ‖A.

45

s′0

P3

s′1
a

s′′0

P4

s0

P5

s1
a

t0

T1

t′1
a

ω t′0

T2

t′1 t′2
a ω

Figure 2.11: MTSs used in some proofs

t0 t1 · · · tn−1 tn tn+1

w1 w2 wn ω

Figure 2.12: T (w)

Lemma 2.42. Let w = w1 · · ·wn ∈ Σ∗ and T (w) as depicted in Fig. 2.12.
For all implementations S, the system S ‖Σ\{ω} T (w) can reach some suc-
cessful state iff w ∈ mustL(S).

Proof. T (w) can reach tn only by performing w and in the parallel composi-
tion this can only be done if S can perform it as well, i.e. w ∈ mustL(S).

Theorem 2.43. P may-refines P ′ iff P vmustL P
′.

Proof. ‘⇒’: If w ∈ mustL(P ′), then w ∈ mustL(S ′) for each as-imple-
mentation S ′ of P ′. Hence, P ′ satmay-as T (w) by Lemma 2.42, and this also
holds for P . Consider the as-implementation S of P that is obtained from
P by removing all may-transitions that are not also must-transitions. By
Lemma 2.42, we have w ∈ mustL(S) = mustL(P).

‘⇐’: Consider a test T with P ′ satmay-as T , and consider the as-imple-
mentation S ′ of P ′ obtained from P ′ as S is from P above. In S ′ ‖Σ\{ω} T ,

we have some (s′0, t0)
w

=⇒ (s′, t)
ω−→ where ω does not occur in w. By

Lemma 2.28, we have s′0
w

=⇒ s′ and t0
w

=⇒ t
ω−→. Hence, w ∈ mustL(S ′) =

mustL(P ′) ⊆ mustL(P). Since each as-implementation S of P satisfies
SvmustL P , we have w ∈ mustL(S) and we can combine a respective run
with t0

w
=⇒ t

ω−→ to see that a successful state (s, t) can be reached in
S ‖Σ\{ω} T as required.

We can now combine may-refinement with F -refinement resulting in the
mLF-refinement vmLF := vmustL ∩vF . This is a finer preorder than F -
refinement alone, and it can distinguish e.g. between the two MTSs of Fig. 2.10.
Since both, vmustL and vF are precongruences for ‖A, so is vmLF . In addition
vmustL turns out to be thorough, as we show in the following proposition.
Together with the thoroughness of F -refinement this means that vmLF is
also thorough.

46

P1

a a

b c

P2

a

b c

S1

a

b

S2

a

c

Q

a

b c

Figure 2.13: mLF -conjunction counterexample and their dMTS-conjunction
Q

Proposition 2.44. The preorder vmustL is thorough, i.e. P vmustL Q ⇔
mustL -impl(P) ⊆ mustL -impl(Q). Hence, vmLF is thorough.

Proof. We only show the first claim, where ‘⇒’ is analogous to the proof of
Thm. 2.14. For ‘⇐’, consider the mustL-implementation S of P obtained
by deleting all may-transitions of P that are not must-transitions. Now
mustL(P) = mustL(S) ⊇ mustL(Q).

When F -refinement is restricted to mLF -refinement, the closed conjunc-
tion operator is lost. In fact, the following proposition shows the non-
existence of conjunction also for e.g. as- and w-as-refinement, since vas ⊂
vw -as ⊂ vmLF (cf. Proposition 2.74). The proof uses the example from [7, 51],
where [7] proved the claim for as-refinement, whereas [51] considered a dif-
ferent version of weak alternating simulation, strictly between as- and w-as-
refinement.

Proposition 2.45. There exist MTSs P1 and P2 without a conjunction for
any refinement vR with vas ⊆ vR ⊆ vmLF , i.e. there is no MTS Q such
that for all MTS S: S vR P1 ∧ S vR P2 ⇔ S vR Q.

Proof. Consider the MTSs presented in Fig. 2.13. The systems S1 and S2

are both as-refinements of P1 and of P2. Thus, they are also common vR-
refinements of P1 and P2. Hence any conjunction Q of P1 and P2 would
have to satisfy Si vR Q implying SivmLF Q for i = 1, 2. This leads to
mustL(Q) ⊆ mustL(S1) ∩mustL(S2) = {ε, a}.

Similarly Q vR P2 implies mustL(Q) ⊇ mustL(P2) = {ε, a} and we can
conclude that mustL(Q) = {ε, a}. Therefore, there exists q with q0

a
=⇒ q

such that q 6d=⇒ for any d ∈ Σ, which implies (a,Σ) ∈ F(Q). But since
(a,Σ) /∈ F(P1), we get Q 6vmLF P1, contradicting Q vR P1.

47

As another variation, one could consider to replace the universal quantifi-
cation by an existential one in the definitions of satisfaction, i.e. Defs. 2.3 and
2.38. The resulting two refinement preorders turn out not to be plausible at
all. Some strange effects can be seen in the examples in Fig. 2.11. In the first
case, P3 satisfies (T1, {a}) due to its implementation P4. Hence, P5 does not
refine P3. In the second case, P3 satisfies (T2, {a}) due to its implementation
P5. Hence, P4 does not refine P3.

2.4 Deadlock/Divergence-Testing

Besides deadlocks, also divergence is often regarded as undesirable: an infi-
nite internal computation in a component prevents any communication with
the environment; furthermore, if a parallel system is run on one processor,
an infinite internal computation in one component can block the whole sys-
tem. Analogously to the previous section, we now develop a testing approach
where satisfaction depends on deadlock and divergence freedom. As already
stated in the introduction, it seems that so far such a deadlock/divergence
testing has only been mentioned once in [70], essentially in an LTS-setting
and with an incorrect characterization.

In this section, we will explore deadlock/divergence-testing and a new
version of failure/divergence-semantics which results from it and also com-
pare it to the more traditional semantics arising from must-testing. We will
not go into the details of traditional must-testing here; we just give some
results for comparison, referring to [19] for the details.

2.4.1 Test setting and the FD-Refinement

A technical benefit to be expected in the (still) new testing scenario is that
the characterizing semantics for dMTS might be less complicated than the F -
semantics, and one could hope to thereby solve the precongruence problem we
encountered in the Sect. 2.3.3, since both problems were related to divergence.
Another problem with F -refinement is that it fails to be a precongruence for
hiding, already on LTS. This is the reason that there is a special treatment
of divergence in the well-known denotational failures/divergence semantics
for CSP in [11]. For comparison, we first define this traditional semantics
(operationally, cf. [28]), and we immediately define it on MTS as in [19].

We start with a few definitions including the traditional failure/divergence-
semantics.

Definition 2.46. A state p of a dMTS is divergent, if it can perform an

48

infinite sequence of τ -transitions, i.e. p
τω

99K. If P does not have a divergent
state p, we call it divergence free.

Note that our notion of deadlock just concerns visible behaviour; a dead-
lock p can be divergent at the same time.

Definition 2.47. For any set L ⊆ Σ∗ of traces we define

1. cont(L) = {wu | w ∈ L, u ∈ Σ∗}; L is continuation-closed if L =
cont(L).

2. ∇L = {(w,X) | w ∈ L,X ⊆ Σ}

Definition 2.48. The traditional failure-divergence semantics of an MTS P
is given by:

1. D(P) = cont({w | p0
w

=⇒ p, p is divergent}), the set of divergence
traces of P

2. FDt(P) = Ft(P) ∪ ∇D(P)

P FDt-refines P ′, written P vFDt P
′, if D(P) ⊆ D(P ′) and FDt(P) ⊆

FDt(P
′).

Must-testing [28, 30] is suitable to justify this semantics on LTS – for
image-finite specifications, to be precise. We generalized this result to MTS
in [19]. A must-test is satisfied if a successful state (marked by a special
success action) of the test is always reached; cf. Sect. 2.4.3 for a new variant,
where the action must be performed.

Our general approach to testing aims for a refinement relation which
ensures that unwanted behaviour is not introduced during refinement. Con-
sidering deadlock and divergence as unwanted, we will arrive at a different
failure/divergence semantics and an FD-refinement, which already on LTS
differs from the traditional one. In fact, FD-refinement is coarser and there-
fore, in our view, better, than the traditional one. Again, this alternative
semantics has to our best knowledge only appeared in one publication: It
is used in [69] to solve a problem posed in [5], namely to characterize an
equivalence based on maximal traces and a parallel composition where syn-
chronized actions are hidden. Nothing else seems to have been known so far
– except that the implication in Prop. 2.52 below has already been proven
for LTS in [69].

Definition 2.49. For a refinement relation vr, a dMTS P r-deadlock-
divergence-satisfies a test (T,A) if S ‖A T is deadlock and divergence free

49

for each S ∈ impl r(P). Then, we write P satdd
r (T,A).

A dMTS P r-deadlock-divergence-refines P ′, P ≤dd
r P ′, if for all tests (T,A) :

P ′ satdd
r (T,A) =⇒ P satdd

r (T,A)

Similar as above, we will show that ≤dd
as and ≤dd

FD coincide, and we will
characterize them with the following (fairly) new variant of failure-divergence
semantics.

Definition 2.50. Let P be a dMTS. Its failure-divergence semantics is given
by:

1. D(P) is defined as for MTS in Def. 2.48.

2. FD(P) = {(w,X ∪X ′) | (w,X) ∈ Fst(P), ∀a ∈ X ′ : wa ∈ D(P)} ∪
∇D(P)

We say that P FD-refines another dMTS P ′, P vFD P ′, if FD(P) ⊆
FD(P ′) and D(P) ⊆ D(P ′).

We will also use the flooded language: LD(P) = {w | ∃X ⊆ Σ : (w,X) ∈
FD(P)}.

The new semantics shows, whether an LTS S can deadlock or diverge: It
is easy to see, that S is divergence free if and only if D(S) = ∅. If it is, then
S can deadlock if and only if there is some (w,Σ) ∈ FD(S). Actually, S can
deadlock or diverge if and only if (w,Σ) ∈ FD(S). Another pleasing property
is that FD(P) is always F -consistent, whereas Fst(P) might violate FC2.

Lemma 2.51. 1. An LTS S can deadlock or diverge if and only if (w,Σ) ∈
FD(S) for some w ∈ Σ∗.

2. For an MTS P : w /∈ D(P) ∧ (w,X) ∈ Ft(P) =⇒ (w,X) ∈ Fst(P)

3. For a dMTS P :

(a) FD(P) is F-consistent.

(b) If p0
w

=⇒, then w ∈ D(P) ∨ (w, ∅) ∈ Fst(P), which is equivalent
to w ∈ LD(P).

(c) If ∀a ∈ X : wa ∈ D(P) and (w,X0) ∈ FD(P), then (w,X0∪X) ∈
FD(P).

Proof. 1. If S can diverge, then there is some divergent state s reachable by
some w ∈ Σ∗. By definition w ∈ D(S) and thus (w,Σ) ∈ ∇D(S) ⊆ FD(S).

Otherwise, if S can deadlock, then there is some state s, reachable by
some w ∈ Σ∗, that can refuse all actions in Σ. Since S is divergence free,

50

we have s
ε

=⇒ s′ for some (must-)stable s′, which can still refuse all actions.
Thus (w,Σ) ∈ Fst(S) ⊆ FD(S).

Let (w,Σ) ∈ FD(S) and assume that S cannot diverge. Then (w,Σ) ∈
Fst(S) and S can deadlock.

2. (w,X) ∈ Ft(P) implies p0
w

=⇒ p for some suitable p ∈ P . Since p
cannot diverge by assumption, there is a stable (and thus must-stable) state
p′ with p

ε
=⇒ p′. Now p′ 6a−→ for all a ∈ X, otherwise p

ε
=⇒ p′

a−→ would
contradict a ∈ X with (w,X) ∈ Ft(P).

3a. Easy. For FC2 note that w ∈ D(P) or (w,X) ∈ Fst(P) implies that
v ∈ D(P) or (v, ∅) ∈ Fst(P) for all v v w, since after performing v the
system can must-stabilize or diverge as argued in 2.

3b. We have p0
w

=⇒ p for some p ∈ P . If p diverges, then w ∈ D(P)
and we are done. Otherwise, p

ε
=⇒ p′ for some must-stable p′, as above.

Therefore p0
w

=⇒ p′ and (w, ∅) ∈ Fst(P). The second statement is easy once
we note that (w,X) ∈ FD(P) implies (w, ∅) ∈ FD(P) by FC2.

3c. If w ∈ D(P), then (w,X0 ∪X) ∈ ∇D(P) ⊆ FD(P) and we are done.
Otherwise (w,X0) ∈ FD(P) implies some (w,X) ∈ Fst(P) and some X ′ such
that ∀a ∈ X ′ : wa ∈ D(P) with X ∪X ′ = X0. Since ∀a ∈ X : wa ∈ D(P),
we get ∀a ∈ X ′ ∪X : wa ∈ D(P) and thus (w,X0 ∪X) ∈ FD(P).

To get further acquainted with the new refinement, we compare it to the
traditional version. Since the latter has not been examined for dMTS, we
compare them on MTS. We show that our new refinement is strictly coarser,
i.e. it does not imply the traditional one but is implied by the latter.

To see the first claim, consider LTSs P and P ′ from Fig. 2.14. We have
D(P) = ∅ and D(P ′) = aΣ∗. Furthermore, we have FD(P) = {(ε,X) | X ⊆
Σ} = FDt(P) and FD(P ′) ⊇ {(ε,X) | X ⊆ Σ}, but (ε,Σ) /∈ FDt(P

′). Thus
P vFD P ′, but P 6vFDt P

′.

p0

P

p′0

P ′

p′1
a

τ

Figure 2.14: LTSs P and P ′ proving that P vFD P ′ =⇒ P vFDt P
′ does

not hold in general.

Proposition 2.52. For MTSs P and P ′ we have P vFDt P
′ =⇒ P vFD P ′.

The reverse implication does not hold in general, not even for LTSs.

51

Proof. It only remains to show the implication. Given P vFDt P
′, we have

D(P) ⊆ D(P ′). Consider (w,X0) ∈ FD(P). If w ∈ D(P ′) we are done;
otherwise, w /∈ D(P) and we have X0 = X ∪ X ′ with (w,X) ∈ Fst(P) ⊆
Ft(P) ⊆ FDt(P) ⊆ FDt(P

′) and wa ∈ D(P) for all a ∈ X ′. Thus, (w,X) ∈
Ft(P ′) and from Lemma 2.51.2 we get (w,X) ∈ Fst(P

′). Recalling D(P) ⊆
D(P ′), we conclude (w,X ∪X ′) ∈ FD(P ′) and we are done.

Intuitively, the FDt - and the FD-semantics agree that divergence is catas-
trophic and that failure information is important for deadlock-avoidance. For
the LTSs in Fig. 2.14, the FDt -semantics sees the difference that P can refuse
a initially, while P ′ surely offers it. In principle, this is very relevant if e.g.
a is a start signal for another component. But here, it will hardly make a
difference since the overall system runs into a catastrophe after a. Hence, we
believe that our new semantics is practically more relevant.

The next step is to show that our semantics is compositional for parallel
composition.

Theorem 2.53. For all dMTS P and Q and all A ⊆ Σ:

1. D(P ‖A Q) = cont
(
D(P) ‖A LD(Q) ∪ LD(P) ‖A D(Q)

)
2. FD(P ‖A Q) = ∇D(P ‖A Q) ∪
{(w,X ∪X ′) | (w,X) ∈ FD(P) ‖A FD(Q),∀a ∈ X ′ : wa ∈ D(P ‖A Q)}

Proof. 1. Note that a state (p, q) is divergent, if and only if p is divergent or
q is divergent (possibly both), because τs are not synchronized and no new
τ can arise during parallel composition. Since both sides are continuation-
closed, it suffices to show that each prefix-minimal w in one side is contained
in the other.

‘⊆’: Let w be prefix-minimal in D(P ‖A Q), thus (p0, q0)
w

=⇒ (p, q) for
some divergent (p, q). As just noted, this implies that p or q is divergent –
say, p is. We also know that p0

u
=⇒ p and q0

v
=⇒ q such that w ∈ u ‖A v.

Then u ∈ D(P) and v ∈ LD(Q) by Lemma 2.51.3b.
‘⊇’: Consider a prefix-minimal element w in the r.h.s., say w ∈ u ‖A v for

some u ∈ D(P) and v ∈ LD(Q). By choice of w, u must be prefix-minimal
in D(P), implying p0

u
=⇒ p for some divergent p. Otherwise, u would have

a proper prefix in D(P), which together with a prefix of v would lead to a
proper prefix of w in the r.h.s. By Lemma 2.51.3b, v ∈ D(Q) and the same
argument shows that q0

v
=⇒ q, or we have (v, ∅) ∈ Fst(Q) implying the

same. Thus (p0, q0)
w

=⇒ (p, q) and (p, q) is divergent.

2.‘⊆’: Consider (w,X0) ∈ FD(P ‖A Q). If w ∈ ∇D(P ‖A Q), we are
done. So assume otherwise, i.e. X0 = X ∪ X ′, (w,X) ∈ Fst(P ‖A Q) and

52

X ′ ⊆ {a | wa ∈ D(P ‖A Q)}. Since the flooding with X ′ is also performed
on the r.h.s., it remains to show that (w,X) ∈ FD(P) ‖A FD(Q)

Assume (w,X) ∈ Fst(P ‖A Q) due to (p0, q0)
w

=⇒ (p, q) with (p, q) must-
stable. Thus, there are u, v such that p0

u
=⇒ p, q0

v
=⇒ q, p and q are

must-stable and w ∈ u ‖A v. Choose Y = {a | p 6a−→} and Z = {a | q 6a−→}.
By the definition of ‖A on F -sets, we only have to check that X ⊆ (Y ∩

Z) ∪ (A ∩ (Y ∪ Z)). For a ∈ X we have (p, q) 6a−→. If a ∈ A, we get that
p 6a−→ or q 6a−→ and thus a ∈ A ∩ (Y ∪ Z). If a /∈ A, we get that p 6a−→ and
q 6a−→ and thus a ∈ Y ∩ Z.

‘⊇’: The first set, ∇D(P ‖A Q), is obviously contained in the l.h.s., so we
examine some (w,X ∪ X ′) with (w,X) ∈ FD(P) ‖A FD(Q) and ∀a ∈ X ′ :
wa ∈ D(P ‖A Q)}. Due to Lemma 2.51.3c, we only have to show that (w,X)
is contained in the l.h.s.

By the definition of ‖A, we have (u, Y) ∈ FD(P) and (v, Z) ∈ FD(Q) with
w ∈ u ‖A v and X ⊆ (Y ∩ Z) ∪ (A ∩ (Y ∪ Z)). If u ∈ D(P) or v ∈ D(Q),
then (w,X) ∈ ∇D(P ‖A Q) because of the first claim and we are done.

So we have p0
u

=⇒ p and q0
v

=⇒ q for some must-stable p and q and
(p0, q0)

w
=⇒ (p, q) with (p, q) being must-stable. For a ∈ X we consider the

cases a ∈ A and a /∈ A:

Take a ∈ X \ A. Then a ∈ Y ∩ Z and we have p 6a−→ or ua ∈ D(P) and
we have q 6a−→ or va ∈ D(Q). There are two possibilities: if p 6a−→ and q 6a−→,
then (p, q) 6a−→. Otherwise p0

ua
=⇒ p′ with p′ divergent or q0

va
=⇒ q′ with q′

divergent, possibly both – say the first. Then (p0, q0)
wa

=⇒ (p′, q) and (p′, q)
is divergent, hence wa ∈ D(P ‖A Q). In any case, a ∈ X is justified on the
l.h.s.

Take a ∈ X ∩ A. By definition a ∈ A ∩ (Y ∪ Z), thus we have p 6a−→
or ua ∈ D(P) or we have q 6a−→ or va ∈ D(Q); possibly we have some
combination. Again there are two possibilities: if p 6a−→ or q 6a−→, then

(p, q) 6a−→. Otherwise, say p0
ua

=⇒ p′ with p′ divergent and q0
v

=⇒ q
a
99K q′;

then also (p0, q0)
wa

=⇒ (p′, q′) with (p′, q′) divergent. Thus we are done.

As usual, compositionality implies that the respective refinement is a
precongruence. For divergence-free dMTS P and Q, D(P) is empty and
FD(P) reduces to Fst(P) and similarly for Q; according to Thm. 2.53, also
D(P ‖A Q) is empty and FD(P ‖A Q) is the parallel composition of Fst(P)
and Fst(Q). With Prop. 2.22, this implies the precongruence result an-
nounced in the previous section.

Corollary 2.54. 1. vFD is a precongruence for ‖A, i.e. P vFD P ′ =⇒
P ‖A QvFD P ′ ‖A Q.

53

2. For divergence-free dMTS, vF is a precongruence for parallel composi-
tion.

It is interesting to note, that the calculation of FD(P ‖A Q) is simpler if
P and Q synchronize on their common actions rather than on some arbitrary
set. In this case, the flooding with X ′ is not needed. Formally:

Proposition 2.55. Let P and Q be dMTSs and A be the intersection of their
alphabets. Then, FD(P ‖A Q) = ∇D(P ‖A Q) ∪ (FD(P) ‖A FD(Q)).

Proof. ‘⊇’ is implied by Thm. 2.53.2, since ∇D(P ‖A Q) ∪FD(P) ‖A FD(Q)
is included in the r.h.s. there.

‘⊆’: Consider (w,X0) ∈ FD(P ‖A Q). If w ∈ D(P ‖A Q), we are
done. So assume otherwise, i.e. X0 = X ∪ X ′, (w,X) ∈ Fst(P ‖A Q) and
X ′ ⊆ {a | wa ∈ D(P ‖A Q)}.

Assume (w,X) ∈ Fst(P ‖A Q) due to (p0, q0)
w

=⇒ (p, q) with (p, q)
must-stable. Thus, there are u, v such that p0

u
=⇒ p, q0

v
=⇒ q, p and q

are must-stable and w ∈ u ‖A v. Note that u and v are unique: Due to
the synchronization on common actions, they are the projections of w to the
alphabets of P andQ respectively. Choose Y = {a | p 6a−→}∪{a | ua ∈ D(P)}
and Z = {a | q 6a−→} ∪ {a | va ∈ D(Q)}.

By the definition of ‖A on F -sets, we have to check that X0 ⊆ (Y ∩Z)∪
(A ∩ (Y ∪ Z)). For a ∈ X, we proceed as in the previous proof: We have
(p, q) 6a−→. If a ∈ A, we get that p 6a−→ or q 6a−→ and thus a ∈ A ∩ (Y ∪ Z).
If a /∈ A, we get that p 6a−→ and q 6a−→ and thus a ∈ Y ∩ Z.

For a ∈ X ′, we have wa ∈ D(P ‖A Q). Since w 6∈ D(P ‖A Q), there must

be (p0, q0)
w

=⇒ (p′, q′)
a
99K (pd, qd) where (pd, qd) is divergent while (p′, q′) is

not. Hence pd or qd is divergent (possibly both), but neither p′ nor q′ is. Due
to the uniqueness of u and v, we have p0

u
=⇒ p′, q0

v
=⇒ q′. The following

two subcases remain:
If a ∈ A, we get that p′

a
99K pd and q′

a
99K qd. W.l.o.g. we assume pd to

be divergent. This implies ua ∈ D(P) and thus a ∈ A ∩ (Y ∪ Z).

If a /∈ A, we get that p′
a
99K pd or q′

a
99K qd, say the former. Since a is not

a common action, we have q 6a−→ implying a ∈ Z. Furthermore, pd diverges
since qd = q′ does not. Thus ua ∈ D(P), implying a ∈ Y and a ∈ Y ∩Z.

To see that the flooding with X ′ is needed in general when determining
FD(P ‖A Q), consider P and Q from Fig. 2.15. They do not synchronize
at all in P ‖∅ Q, even though they have the action a in common. We have
(ε, {a}) ∈ FD(P ‖∅ Q), but ε /∈ D(P ‖∅ Q) and (ε, {a}) /∈ FD(P) ‖∅ FD(Q),
because ε is only associated to refusal sets ⊆ Σ \ {a} in FD(Q).

54

p0P

p1

q0Q

q1

a
τ

a

p0q0P ‖∅ Q

p0q1

p1q0

p1q1

a

a

a
a
τ

τ

Figure 2.15: LTSs P , Q and P ‖∅ Q

Now we show that vFD coincides with the test preorders based on as-
or FD-implementations. We do not examine testing based on F -imple-
mentations, since F -refinement can freely introduce divergences, so every
dMTS would have implementations that diverge initially and thus fail all
tests. Again we need some lemmata. The first is the key result connecting
the FD-semantics to testing.

Lemma 2.56. Let P and P ′ be dMTSs.

1. P vas P
′ =⇒ P vFD P ′.

2. (a) D(P) =
⋃
S∈implas(P)D(S) =

⋃
S∈implFD(P)D(S)

(b) FD(P) =
⋃
S∈implas(P)FD(S) =

⋃
S∈implFD(P)FD(S)

Proof. 1. Take a w ∈ D(P). We have p0
w

=⇒ p
τω

99K. By p0vas p
′
0, each

of these transitions must be matched and thus p′0
w

=⇒ p′
τω

99K justifying
w ∈ D(P ′).

Take an element of FD(P). If it is in ∇D(P), we are done by the above.
So consider (w,X ∪ X ′) ∈ FD(P) with each a ∈ X ′ satisfying wa ∈ D(P)
and with (w,X) ∈ Fst(P) being justified by some p with p0

w
=⇒ p. This

must be matched by some p′0
w

=⇒ p′ with pvas p
′. Since p is must-stable, so

is p′ by definition of an as-relation. For all a ∈ X we have p 6a−→ and thus
p′ 6a−→, so p′ justifies (w,X) ∈ Fst(P

′). Since wa ∈ D(P) ⊆ D(P ′) for all
a ∈ X ′, we have (w,X ∪X ′) ∈ FD(P ′) and are done.

2. We have to check three inclusions for each subcase. For both (a) and
(b), the second inclusion follows from (1) and the third from the definition
of vFD. So we prove the first:

2a. For D(P) ⊆
⋃
S∈implas(P)D(S) consider S = (P, p0, 99KP , 99KP) with

D(P) = D(S).
2b. For FD(P) ⊆

⋃
S∈implas(P)FD(S) consider (w,X0) ∈ FD(P). If w ∈

D(P) we are done by (a); otherwise, X0 = X ∪ X ′ with (w,X) ∈ Fst(P)
justified by p and ∀a ∈ X ′ : wa ∈ D(P). We construct the implementation
by implementing all may-transitions and almost duplicating the state p with

55

t0 t1 · · · tn−1 tn tω
w1 w2 wn τ

τ
τ

τ

ω

Figure 2.16: Tτ (w) = w1 . . . wn

s: S = (P ·∪ {s}, p0,−→S,−→S) with −→S=99KP ∪{(p, τ, s)} ∪ {(s, a, p′) |
p

a−→ P ′, p′ ∈ P ′}. S is an as-implementation of P due to the relation
idP ∪ {(s, p)}, since p is must-stable in P , though possibly not in S.

Clearly, p0
w

=⇒S p
τ−→ s and s justifies (w,X) ∈ Fst(S). Since S has all

transitions of P , we have D(P) = D(S) implying wa ∈ D(S) for all a ∈ X ′.
Therefore (w,X ∪X ′) ∈ FD(S).

The second lemma shows how we can test for an element of the D- or
FD-sets. Note that Part 2b is unusually weak. Also note that the previous
results in this section, except for Lem. 2.51, are about properties of the FD-
semantics and not concerned with testing.

Lemma 2.57. Let S be an LTS, ω an action not in the alphabet of S and
A = Σ \ {ω}. For T (w,X) refer to Fig. 2.4 in Sect. 2.3.2; for Tτ (w) see
Fig 2.16.

1. w ∈ D(S) if and only if S ‖A Tτ (w) can diverge, which is equivalent to
S ‖A Tτ (w) can diverge or deadlock.

2. (a) If (w,X) ∈ FD(S), then S ‖A T (w,X) can deadlock or diverge.

(b) If S ‖A T (w,X) can deadlock or diverge, then w ∈ D(S), (w,X) ∈
Fst(S) or ∃a ∈ X : wa ∈ D(S).

Proof. 1. For the latter equivalence, observe that by construction of T and
ω /∈ A, S ‖A Tτ (w) can never deadlock.

For the if-part, we have S such that S ‖A Tτ (w) can diverge. Since T (w)
cannot diverge, there is some divergent s such that s0

v
=⇒ s with v v w,

implying w ∈ D(S).
For the only-if-part, we have S with w ∈ D(S); hence, for some i ≤ n

and v = w1 . . . wi, s0
v

=⇒ s for some divergent s. One can easily see that
S ‖A Tτ (w) can diverge, because of the run (s0, t0)

v
=⇒ (s, ti) and (s, ti) being

divergent.
2a. Since (w,X∪{ω}) ∈ FD(S) and (w, (Σ\X)∪{ω}) ∈ FD(T (w,X)) we

have (w,Σ) ∈ FD(S ‖A T (w,X)) by Thm. 2.53 and the definition of ‖A on

56

F -sets: ω is refused by both and each other a ∈ Σ by one of the components.
Hence we are done by Lemma 2.51.1.

2b. If S ‖A T (w,X) can diverge in some state (s, t), then it diverges due
to s. If t = t′, it already diverges in some (s, ti), so it does so in any case. If
i ≤ n, then w ∈ D(S). Otherwise, i = n+ 1 and there is a ∈ X : wa ∈ D(S).

If S ‖A T (w,X) cannot diverge, it can deadlock. This is only possible in
some (s, tn), since all other states can perform ω. It also means s 6a=⇒ for all
a ∈ X. Thus (w,X) ∈ Fst(S) by Lemma 2.51.2.

Finally, the following lemma extracts a common part of several proofs;
we will use it three times.

Lemma 2.58. Let S be an FD-implementation of a dMTS P and (T,A) a
test. If S ‖A T can deadlock or diverge, then there is some as-implementation
S ′ of P such that S ′ ‖A T can deadlock or diverge.

Proof. If S ‖A T can diverge, there is some prefix-minimal w ∈ D(S ‖A T).
By Thm. 2.53, we get that w ∈ D(S) ‖A LD(T) ∪ LD(S) ‖A D(T). If w
is in the first subset, we have some u ∈ D(S) ⊆ D(P) and v ∈ LD(T) such
that w ∈ u ‖A v. By 2.56.2. there is some as-implementation S ′ of P with
u ∈ D(S ′). Thus we get w ∈ D(S ′) ‖A LD(T), i.e. S ′ ‖A T can diverge.

If w is in the second subset, we have some (u, ∅) ∈ FD(S) ⊆ FD(P) and
v ∈ D(T) such that w ∈ u ‖A v. By 2.56.2, there is S ′ ∈ implas(P) with
(u, ∅) ∈ FD(S ′), i.e. u ∈ LD(S ′). Thus we get w ∈ LD(S ′) ‖A D(T), i.e.
S ′ ‖A T can diverge.

If S ‖A T cannot diverge, it can deadlock and D(S ‖A T) = ∅. This
means, by Lemma 2.51.1 and Thm. 2.53, that there is some (w,Σ) ∈ FD(S) ‖A
FD(T), i.e. there are (u, Y) ∈ FD(S) ⊆ FD(P) and (v, Z) ∈ FD(T) with
(w,X) ∈ (u, Y) ‖A (v, Z). By 2.56.2 we find some S ′ ∈ implas(P) with
(u, Y) ∈ FD(S ′). Thus (w,Σ) ∈ FD(S ′) ‖A FD(T) ⊆ FD(S ′ ‖A T) implying
(again by Lemma 2.51.1) that S ′ ‖A T can deadlock or diverge.

Theorem 2.59. For all dMTSs, as-deadlock-divergence-refinement and vFD
coincide.

Proof. ‘P as-deadlock-divergence-refines P ′ ⇒ P vFD P ′’:
For D-inclusion, the argument is quite the same as for must-testing in [19],
since divergence only depends on may-transitions. We present it only for
completeness. Consider a prefix-minimal w ∈ D(P). By Lemma 2.56.2, there
is some as-implementation S of P with w ∈ D(S). Due to Lemma 2.57.1,
S ‖A Tτ (w) can diverge. Thus P fails the test, and, by our premise, so does
P ′. This implies the existence of some S ′ ∈ implas(P ′) such that S ′ ‖A Tτ (w)

57

can deadlock or diverge. Due to Lemma 2.57.1 w ∈ D(S ′) and, finally,
w ∈ D(P ′) by Lemma 2.56.2.

Now consider (w,X0) ∈ FD(P). If w ∈ D(P ′) we are done, so let
w /∈ D(P ′). By Lemma 2.56.2 there is an implementation S ∈ implas(P)
with (w,X0) ∈ FD(S). Let X = X0 \ {a | wa ∈ D(P ′)} – note the use
of P ′. Then, we have (w,X) ∈ FD(S) by F -consistency of FD(S). By
Lemma 2.57.2a, ¬P satdd

as (T (w,X), A) for the respective test due to S. By
assumption ¬P ′ satdd

as (T (w,X), A), which by definition means that the test
fails due to some S ′ ∈ implas(P ′). By Lemma 2.57.2b we get w ∈ D(S ′),
(w,X) ∈ Fst(S

′) or ∃a ∈ X : wa ∈ D(S ′). The first and the last possi-
bility cannot hold by w /∈ D(P ′), choice of X and (due to Lemma 2.56.2)
D(S ′) ⊆ D(P ′). So we have (w,X) ∈ Fst(S

′) ⊆ FD(S ′) ⊆ FD(P ′). With
Lemma 2.51.3c we get (w,X0) ∈ FD(P ′) and we are done.

‘P as-deadlock-divergence-refines P ′ ⇐ P vFD P ′’:
We prove the as-deadlock-divergence-refinement by contraposition and as-
sume ¬P satdd

as (T,A) for some test (T,A). Thus, there must be an as-
implementation S of P where S ‖A T can diverge or deadlock. By Lem. 2.56.1
S is an FD-implementation of P and, by transitivity, of P ′. Therefore, by
Lemma 2.58, there is some S ′ ∈ implas(P ′) such that S ′ ‖A T can deadlock
or diverge, implying ¬P ′ satdd

as (T,A).

2.4.2 Robustness, Expressivity and Precongruence Re-
sults

Lemma 2.60. For each test (T,A), P satdd
FD (T,A)⇔ P satdd

as (T,A).

Proof. We prove this by showing ¬P satdd
FD (T,A)⇔ ¬P satdd

as (T,A).
‘⇒’: ¬P satdd

FD (T,A) implies the existence of an FD-implementation
S, such that S ‖A T can deadlock or diverge. By Lemma 2.58, there is
also an S ′ ∈ implas(P) such that S ′ ‖A T can deadlock or diverge and thus
¬P satdd

as (T,A).
‘⇐’: Follows similarly from Lem. 2.56.1, since each as-implementation is

an FD-implementation.

This immediately implies the following theorem, which shows that, anal-
ogously to deadlock testing, deadlock/divergence testing is robust: We can
base it on as- or FD-implementations or any notion in between. Using
Lemma 2.56, we can also prove that FD-refinement is thorough.

Theorem 2.61. For all dMTSs, as-deadlock-divergence-refinement and FD-
deadlock-divergence-refinement coincide. FD-refinement is thorough.

58

According to the general ideas described in the introduction, we should
show that FD-refinement is the coarsest precongruence for the operators ‖A
preserving deadlock and divergence freedom. For this, we have to generalize
the notion of deadlock and divergence freedom for dMTS.

Theorem 2.62. We say that a dMTS P can deadlock or diverge, if there is
some S ∈ implas(P) that can. This is equivalent to (w,Σ) ∈ FD(P). With
this notion, FD-refinement is the coarsest precongruence for the operators
‖A that preserves deadlock and divergence freedom.

Proof. The first claim follows from Lemma 2.51.1 and 2.56.2. For the second,
let P and P ′ be arbitrary dMTSs and A = Σ \ {ω}.

Assume P can deadlock or diverge and P vFD P ′. Then (w,Σ) ∈ FD(P) ⊆
FD(P ′), i.e. P ′ can deadlock or diverge as well. So, FD-refinement preserves
deadlock and divergence freedom.

Now consider some precongruence v preserving deadlock and divergence
freedom; let P v P ′. To check P vFD P ′, firstly consider w ∈ D(P). There
exists some S ∈ implas(P) with w ∈ D(S) by Lemma 2.56.2 and S ‖A Tτ (w)
can deadlock or diverge by Lemma 2.57.1. Since as-refinement is a precongru-
ence for parallel composition [40], we get S ‖A Tτ (w) ∈ implas(P ‖A Tτ (w)).
By the properties of v, we have P ‖A Tτ (w) v P ′ ‖A Tτ (w) and some
S ′ ∈ implas(P ′ ‖A Tτ (w)) can deadlock or diverge.

Considering Tτ (w) and A, we see that S ′ cannot deadlock, since t
ω

=⇒ for
any state (p′, t) of P ′ ‖A Tτ (w). Thus, we further see that some v v w and
i ≥ 0 with vωi ∈ D(S ′) ⊆ D(P ′ ‖A Tτ (w)) (again using 2.56.2). Because of
our choice of A, we get that v ∈ D(P ′) since Tτ (w) cannot diverge; hence,
w ∈ D(P ′).

Secondly, consider some (w,X0) ∈ FD(P). If w ∈ D(P ′), we are done,
so assume w /∈ D(P ′). Let X = X0 \ {a | wa ∈ D(P ′)}; (w,X) ∈ FD(P)
by F -consistency. There exists some S ∈ implas(P) with (w,X) ∈ FD(S)
by Lemma 2.56.2. S ‖A T (w,X) can deadlock or diverge by Lemma 2.57.2a.
Since as-refinement is a precongruence for parallel composition, we get S ‖A
T (w,X) ∈ implas(P ‖A T (w,X)). By the properties of v, we have P ‖A
T (w,X) v P ′ ‖A T (w,X). Thus, with P ‖A T (w,X), also P ′ ‖A T (w,X)
and some S ′ ∈ implas(P ′ ‖A T (w,X)) can deadlock or diverge.

Observe that P ′ ‖A T (w,X) cannot diverge: Otherwise, since only P ′ can
give rise to a divergence, a divergence state of P ′ ‖A T (w,X) can be reached
without performing ω. This implies that w ∈ D(P ′) or wa ∈ D(P ′) for some
a ∈ X, a contradiction. Thus, S ′ cannot diverge either, due to as-refinement.

Hence, S ′ can deadlock – and this in a state matching some (p′, tn) of
P ′ ‖A T (w,X) since all other states enforce an ω-transition. We conclude
that (p′, tn) is a deadlock and (w,Σ) ∈ FD(P ′ ‖A T (w,X)). Since D(P ′ ‖A

59

T (w,X)) = ∅, Thm. 2.53 now gives (w,X) ∈ FD(P ′), and this implies
(w,X0) ∈ FD(P ′) with 2.51.3c.

We will show that our new vFD is a precongruence for hiding, like the
traditional vFDt . For this, we have to restrict ourselves slightly to image-
finite dMTS.

Definition 2.63. A dMTS P is image-finite if for all states p and all α ∈ Στ

there are only finitely many transitions p
α
99K p′.

Definition 2.64. Given a dMTS P and a set of actions A ⊆ Σ, the hiding
of A in P is the dMTS P/A obtained from P by replacing all transition labels
a ∈ A by τ .

It is known that failure inclusion is not a precongruence with respect to
hiding (already on LTS), as shown by the standard example in Fig. 2.17; cf.
e.g. [60]. One can see that P1 and P2 are equivalent w.r.t. our F -refinement,
since both can refuse {b} or {c} after any number of as. After hiding a,
however, P1/{a} can refuse {b} or {c} initially, whereas P2/{a} cannot refuse
any of them.

P1

a a

a a

b c

P2

a aa

ab c

P1/{a}

τ τ

τ τ

b c

P2/{a}

τ ττ

τb c

Figure 2.17: Failure semantics is not compositional for hiding

The following lemma exhibits the use of image-finiteness. It has been
proven e.g. in [19] for MTS, but holds here as well since it only concerns
may-transitions.

Lemma 2.65. If P is an image-finite dMTS, then for all infinite sequences

σ ∈ Σω such that p0
σ′

=⇒ and σ′ /∈ D(P) for each σ′ @ σ, we have p0
σ

=⇒.

Theorem 2.66. Let P be an image-finite dMTS and A ⊆ Σ be a set of
actions.

1. D(P/A) = cont({w|Σ\A | w ∈ D(P)} ∪ {w|Σ\A | ∃σ ∈ Aω : ∀σ′ @ σ :
(wσ′, ∅) ∈ FD(P)})

60

2. FD(P/A) = {(w|Σ\A, X ∪ X ′) | (w,X ∪ A) ∈ FD(P),∀a ∈ X ′ :
(w|Σ\A)a ∈ D(P/A)} ∪ ∇D(P/A).

Proof. 1. This has been proven for MTS in [19] based on vFDt . The present
proof only differs in Case ‘⊇’(b). We will refer to {w|Σ\A | w ∈ D(P)} and
{w|Σ\A | ∃σ ∈ Aω : ∀σ′ @ σ : (wσ′, ∅) ∈ FD(P)} as the first and second set
on the r.h.s. respectively.

‘⊆’: Take a prefix minimal v ∈ D(P/A), i.e. p0
v

=⇒P/A p with p divergent

in P/A. Then there is some w with w|Σ\A = v and p0
w

=⇒P p. There are

two possibilities: There is some u ∈ A∗ (possibly u = ε), such that p
u

=⇒P p
′

and p′ is divergent in P . Then wu ∈ D(P), and v = (wu)|Σ\A is contained
in the first set of the r.h.s. Otherwise, there has to be an infinite sequence
σ ∈ Aω such that p

σ
=⇒P . In this case, v is clearly in the second set of the

r.h.s. The inclusion follows since the r.h.s. is closed under continuation.

‘⊇’: It suffices to consider elements of the first or second set on the r.h.s.,
since D(P/A) is closed under continuation.

(a) Take a prefix minimal element w of D(P). Then p0
w

=⇒P p for some

divergent p. This implies p0

w|Σ\A
=⇒P/A p and p is still divergent in P/A, i.e.

w|Σ\A ∈ D(P/A). For each continuation wv of w, (wv)|Σ\A = w|Σ\Av|Σ\A is
a continuation of w|Σ\A, hence also in D(P/A).

(b) Let w ∈ Σ∗ and σ ∈ Aω be such that, for all finite prefixes σ′ of
σ, we have (wσ′, ∅) ∈ FD(P). If some wσ′ ∈ D(P), then we are done by

(a). Otherwise, by Lemma 2.51.3b, we have (wσ′, ∅) ∈ Fst(P) and p0
wσ′

=⇒P

for each σ′ @ σ (and p0
w′

=⇒P for each w′ v w). By Lemma 2.65 we get

that p0
wσ

=⇒P . This implies p0

(wσ)|Σ\A
=⇒ P\A, ending in an infinite sequence of

τ -transitions. Hence (wσ)|Σ\A = w|Σ\A ∈ D(P/A).

2. ‘⊆’: Take some (v,X0) ∈ FD(P/A). If (v,X0) ∈ ∇D(P/A) we are
done since the latter is contained in the r.h.s.; so consider X0 = X ∪ X ′,
(v,X) ∈ Fst(P/A) and X ′ ⊆ {a | va ∈ D(P/A)}.

We only have to show that (w,X ∪A) ∈ FD(P) for some w with w|Σ\A =
v. (v,X) ∈ Fst(P/A) is justified by some p must-stable in P/A with
p0

v
=⇒P/A p and p 6a−→P/A for all a ∈ X. From this we can deduce that

p0
w

=⇒P p for some w with w|Σ\A = v. Since p is must-stable in P/A, we have

p 6a−→P for all a ∈ A. The same holds for a ∈ X \ A, since the a-transitions
for these a are the same in P and P/A. Since hiding does not remove any τ -
transitions, p is also must-stable in P . Hence, (w,X∪A) ∈ Fst(P) ⊆ FD(P).

‘⊇’: Since ∇D(P/A) is contained in the l.h.s., we consider some (v,X∪X ′)
with v = w|Σ\A, (w,X ∪ A) ∈ FD(P) and X ′ ⊆ {a | va ∈ D(P/A)}. We
can assume that va /∈ D(P/A) for all a ∈ X, since for a violating a, we can

61

replace X by X \{a} and X ′ by X ′∪{a}. This leaves (v,X ∪X ′) unchanged
and the other statements remain true. We show (v,X) ∈ FD(P/A), and
then (v,X ∪X ′) ∈ FD(P/A) follows by Lemma 2.51.3c.

(w,X ∪A) ∈ FD(P) implies w ∈ D(P) – in which case we are done by 1.
– or p0

w
=⇒P p for some must-stable p with X ∪ A = Y ∪ Y ′, p 6a−→P for all

a ∈ Y and wa ∈ D(P) for all a ∈ Y ′.
Consider some a ∈ Y ′. From wa ∈ D(P) we deduce by 1. v(a|Σ\A) =

(wa)|Σ\A ∈ D(P/A). For a ∈ X \A we would get va ∈ D(P/A) contradicting
our choice of X and X ′. Thus a ∈ A and v ∈ D(P/A) and we are done.
Therefore, we can assume that Y ′ = ∅.

From p0
w

=⇒P p we obtain p0
v

=⇒P/A p. Furthermore, p is must-stable

in P/A, since it is must-stable in P and p 6a−→P for all a ∈ A ⊆ Y , since
p 6a−→P for all a ∈ Y . Lastly, p 6a−→P/A for all a ∈ X ⊆ Y . Hence (v,X) ∈
Fst(P/A) ⊆ FD(P/A).

Corollary 2.67. For image-finite dMTSs P1 and P2 and a set of actions
A ⊆ Σ, we have P1vFD P2 =⇒ P1/AvFD P2/A.

Finally, concerning expressiveness, we find that dMTSs are not more ex-
pressive than LTS also w.r.t. FD-semantics.

Proposition 2.68. For a dMTS P , we have P =FD S for the following LTS
S:

• S = P ∪ {p | p ∈ P, p stable} and s0 = p0.

• −→S=99KS=99KP ∪{(p, τ, p) | p, p ∈ S} ∪ {(p, a, p′) | p ∈ S, p
a−→P

P ′, p′ ∈ P ′}

Proof. We have D(P) = D(S) since both systems have the same divergent
runs on the states and transitions of P and the new states p allow for no
new traces. The (w,X) ∈ FD(P) justified by some stable p are exactly the
(w,X) ∈ FD(S) justified by p, since they have the same outgoing must-
transitions. Furthermore, any (w,X) ∈ FD(S) justified by some stable p, is
also justified by the corresponding p, since p can refuse at least all actions p
can.

2.4.3 Action-Must-Testing

We will now show that FD-refinement can also be justified by a new version
of must-testing. In the traditional variant, a test environment has success-
states, marked by outgoing ω-transitions for the special action ω. A test is
satisfied if some success-state is reached on each maximal run; we will call this

62

state-must-testing. Applying it to MTS, again by testing all implementations,
yields the FDt-semantics as we have shown in [19]. Presumably, applying
state-must-testing to dMTS will yield an analogous semantics. Here, we will
examine action-must-testing, where ω must be performed on all maximal
runs.

For the remainder of this section, a test is an implementation T . As
a general assumption, the special action ω is only allowed in tests, and A
denotes the synchronization set Σ \ {ω}.

Definition 2.69. A dMTS P as-action-must-satisfies T if, for each S ∈
implas(P), every maximal run (infinite or ending in a stable deadlock) of
S ‖A T contains the success action ω. Then, we write P satm

as T . A dMTS
P as-action-must-refines P ′, P ≤m

as P
′, if for all tests T : P ′ satm

as T =⇒
P satm

as T .
We define FD-action-must-satisfaction satm

FD and FD-action-must-re-
finement ≤m

FD analogously with S ∈ implFD(P).

We will show that action-must-refinement is characterized by FD-seman-
tics and thus equivalent to deadlock-divergence-refinement. For this, we can
use the lemmata from the deadlock-divergence-testing section. We mainly
need analogous results for Lemma 2.57 and Lemma 2.58.

Lemma 2.70. Let S be an LTS. For T (w,X) and Tτ (w) refer to Fig. 2.4
and 2.16; let C = S ‖A T (w,X).

1. w ∈ D(S) if and only if S ‖A Tτ (w) has a maximal run that does not
contain ω.

2. (a) If (w,X) ∈ FD(S), then C has a maximal run that does not con-
tain ω.

(b) If C has a maximal run that does not contain ω, then w ∈ D(S),
(w,X) ∈ Fst(S) or ∃a ∈ X : wa ∈ D(S).

Proof. 1. First consider w ∈ D(S); hence, for some i ≤ n and v = w1 . . . wi,
s0

v
=⇒ s for some divergent s. One can easily see that S ‖A Tτ (w) has the

maximal run (s0, t0)
v

=⇒ (s, ti)
τω

=⇒, which does not contain ω.
Second, S ‖A Tτ (w) has a maximal run that does not contain ω. By

construction of Tτ (w) this can only be because of a divergence; a deadlock
or an infinite visible run are impossible. Therefore, w ∈ D(S) follows from
Lem. 2.57.1.

2a. By Lemma 2.57.2a, C can deadlock in some state (s, t) or diverge. In
the latter case, it has to be S that performs infinitely many τs after a prefix

63

of w or some wa with a ∈ X \ {ω}, and some respective infinite run of C
does not contain ω.

If C does not diverge, we must have t = tn by construction of T (w,X)
and ω has not been performed before. Since C is divergence free, we can
assume s to be stable; thus, the run reaching (s, t) is maximal.

2b. The maximal run has at most n + 1 visible actions, hence C can
deadlock or diverge; we are done by Lemma 2.57.2b.

Lemma 2.71. Let S be an FD-implementation of an image-finite dMTS P
and T a test. If S ‖A T has a maximal run that does not contain ω, then
there is some as-implementation S ′ of P such that S ′ ‖A T has a maximal
run that does not contain ω.

Proof. We distinguish the following three possibilities: The run ends in an
infinite τ -sequence, it reaches a stable deadlock, or it performs some infinite
w ∈ Aω.

(α) In case of an infinite τ -sequence, there is some w ∈ D(S ‖A T) – let it
be prefix-minimal w.l.o.g. By Thm. 2.53, we get that w ∈ D(S) ‖A LD(T) ∪
LD(S) ‖A D(T). If w is in the first subset, we have some u ∈ D(S) ⊆ D(P)
and v ∈ LD(T) such that w ∈ u ‖A v (and actually u = v = w). By
Lemma 2.56.2 there is some as-implementation S ′ of P with u ∈ D(S ′).
Thus we get w ∈ D(S ′) ‖A LD(T), i.e. S ′ ‖A T can perform wτω.

If w is in the second subset, then (by F -consistency) we have (u, ∅) ∈
FD(S) ⊆ FD(P) and v ∈ D(T) such that w ∈ u ‖A v. By Lemma 2.56.2,
there is S ′ ∈ implas(P) with (u, ∅) ∈ FD(S ′), i.e. u ∈ LD(S ′). Thus we get
w ∈ LD(S ′) ‖A D(T), i.e. S ′ ‖A T can again perform wτω.

(β) In case of a stable deadlock, we have (s0, t0)
w

=⇒ (s, t) and (s, t) 6α−→
for all α ∈ Στ . Thus we have runs s0

w
=⇒ s and t0

w
=⇒ t with s and t

stable. Choose Z = {a ∈ Σ | t 6a−→}. Due to s, there is Y0 such that
(w, Y0) ∈ FD(S) ⊆ FD(P), Y0 ∪Z = Σ and Y0 ∩Z = {ω} w.l.o.g. (otherwise
set Y0 := (Y0 \ Z) ∪ {ω}). By Lemma 2.56.2, there is S ′ ∈ implas(P) with
(w, Y0) ∈ FD(S ′). If for some v v w we have s′0

v
=⇒ s′ with s′ divergent,

we are done as in (α), since v ∈ LD(T). So assume (w, Y0) ∈ FD(S ′) due
to some stable s′ (i.e. s′0

w
=⇒ s′). Let Y ∪ Y ′ = Y0 such that s′ 6a−→ for all

a ∈ Y and wa ∈ D(S ′) for all a ∈ Y ′. Consider a ∈ Y ′ (thus a 6= ω); then,

by choice of Y0, there is an infinite run (s′0, t0)
waτω
=⇒ not containing ω. Only

the case Y ′ = ∅ remains. Now (s′0, t0)
w

=⇒ (s′, t), (s′, t) is stable, and s′ 6ω−→,
t 6ω−→ and each other action is blocked by s′ or t.

(γ) In the final case, (s0, t0)
w

=⇒ with w ∈ Aω. This is the only case
where image-finiteness is needed. If v ∈ D(S ‖A T) for some v @ w, we
are done by (α), so assume otherwise. Since ω never occurs in w, s0

w
=⇒

64

and t0
w

=⇒. Therefore, for every prefix w′ of w, we have (w′, ∅) ∈ FD(S) ⊆
FD(P). Let S ′ be the as-implementation of P with the same state set and
−→S′ = 99KS′ = 99KP , which is also image-finite; then each (w′, ∅) ∈ FD(S ′).
Should any such (w′, ∅) be in ∇D(S ′), we are done as in (α) (first subcase).
Otherwise, we get that s′0

w
=⇒ by Lemma 2.65. Combining this with the run

t0
w

=⇒ from above, we get an infinite run (s′0, t0)
w

=⇒ that does not contain
ω.

Theorem 2.72. For a dMTS P and an image-finite dMTS P ′, P ≤m
as P

′ and
P vFD P ′ are equivalent.

Proof. ‘P ≤m
as P

′ ⇒ P vFD P ′’: Consider a prefix-minimal w ∈ D(P). By
Lemma 2.56.2, there is some as-implementation S of P with w ∈ D(S).
Due to Lemma 2.70.1, S ‖A Tτ (w) has a maximal run not containing ω.
Thus P fails the test, and, by our premise, so does P ′. This implies the
existence of some S ′ ∈ implas(P ′) such that S ′ ‖A Tτ (w) has a maximal run
not containing ω. Due to Lemma 2.70.1 w ∈ D(S ′) and, finally, w ∈ D(P ′)
by Lemma 2.56.2.

Also the case ‘(w,X0) ∈ FD(P)’ works as in the proof of Thm. 2.59,
using 2.70 in place of 2.56.

‘P ≤m
as P

′ ⇐ P vFD P ′’: We prove the as-action-must-refinement by con-
traposition and assume ¬P satm

as T for some test T . Thus, there must be an
as-implementation S of P where S ‖A T has a maximal run not containing
ω. By Lemma 2.56.1 S is an FD-implementation of P and, by transitivity,
of P ′. Therefore, by Lemma 2.71, there is some S ′ ∈ implas(P ′) such that
S ′ ‖A T has a maximal run not containing ω, implying ¬P ′ satm

as T . This is
the only place where the image-finiteness of P ′ is needed.

Finally, we show that action-must-testing based on as-implementations
coincides with that based on FD-implementations.

Proposition 2.73. For each test T and image-finite dMTS P , we have
P satm

FD T ⇔ P satm
as T . For image-finite dMTSs P and P ′, P ≤m

as P
′

and P ≤m
FD P

′ coincide.

Proof. The coincidence of ≤m
as and ≤m

FD immediately follows from the first
claim. We prove the latter by showing ¬P satm

FD T ⇔ ¬P satm
as T .

‘⇒’: ¬P satm
FD T implies the existence of an FD-implementation S,

such that S ‖A T has a maximal run not containing ω. By Lemma 2.71,
there is also an S ′ ∈ implas(P) such that S ′ ‖A T has a maximal run not
containing ω and thus ¬P satm

as (T,A).
‘⇐’: Follows, since each as-implementation is an FD-implementation.

65

2.5 Overview

In Fig. 2.18, we present an overview regarding strong and weak as-simulation
and F -refinement and its variants, as well as the thorough refinements based
on them. The arrows show the significant implications. If an arrow is nei-
ther shown nor implied by transitivity, the implication does not hold. The
examinations of vmLF and vFDt have formally only been examined for MTS.
Disregarding them, the results hold on dMTS in general.

(strong) as th. (strong) as FDt⇔ th. FDt FD ⇔ th. FD

weak as th. weak as vmLF ⇔ th. vmLF F ⇔ th. F

Figure 2.18: The implications between the refinement notions (th. = thor-
ough)

The strictness of the implication between strong and thorough strong as-
refinement had already been shown e.g. in [43] with the MTSs S and T in
Fig. 2.19, where P vas Q fails even though implas(P) ⊆ implas(Q).

The two most remarkable results in the next proposition are the follow-
ing (MTS from Fig. 2.19): We observed that U is a weak as-implementation
of P , but not of Q, which proves that thorough as-refinement does not im-
ply the thorough weak one. Furthermore, it was presumably believed that
P and Q also show that thorough weak as-refinement does not imply weak
as-refinement, since the two MTSs have no τ -transitions. Our U demon-
strates the flaw in this reasoning: its τ -transition makes a difference. Rolf
Hennicker [private communication] found a suitable modification Q′, also
shown in Fig. 2.19, to really refute the implication: P is a thorough weak
as-refinement of Q′, but not a weak as-refinement.

Proposition 2.74. The implications shown in Fig. 2.18 and their reflexive-
transitive closure are the only implications between these refinements.

Proof. It is clear from the definition that as-refinement implies weak as-
refinement. Also, all refinement relations imply their thorough counterparts,

P
a b

Q
a

a

b
U

a b
τ Q′

a b
τ

Figure 2.19: MTSs distinguishing the thorough refinements

66

analogously to ‘⇒’ in the proof of Thm. 2.14. By the same theorem and
Prop. 2.44, we know that F - and mLF -refinement are thorough. That FDt-
refinement is also thorough can be seen by a proof analogous to the one of
Thm. 2.14, using an analogue of Lemma 2.13 (cf. [19] for details). We have
shown it for FD-refinement in Thm. 2.61. For the following, we ignore these
four thorough variants.

In order to prove that the two thorough as-refinements imply mLF -
refinement, we show that they imply both, may- and F -refinement: For
F -refinement, let us consider MTSs P and Q where P is a thorough strong as-
refinement of Q. Applying Lem. 2.5 twice, we get F(P) =

⋃
P∈implas(P)F(S)

⊆
⋃
S∈implas(Q)F(S) = F(Q). Lemma 2.13 and an analogous argument show

the implication for the weak case. For may-refinement we argue similarly to
the proof of Prop. 2.44: we consider the strong and weak as-implementation S
of P obtained by removing all may-transitions that are not must-transitions.
On the one hand we have mustL(P) = mustL(S); on the other hand, by
repeated application of Def. 2.2.1, we get mustL(S) ⊇ mustL(Q).

As we have just seen, thorough strong as-refinement implies F -refinement,
and it refines D-inclusion with an analogous argument using an analogue of
Lemma 2.5 (again cf. [19]). In Prop. 2.52 we have proven P vFDt P

′ =⇒
P vFD P ′. Obviously mLF -refinement implies F -refinement. Thus we have
all implications.

From Prop. 2.40 we already know that F -refinement does not imply
may-refinement and, thus, it does not imply mLF -refinement either. From
Prop. 2.52 we also know that vFD does not imply vFDt . Furthermore, we
know from the examples in Figs. 2.17 and 2.20 that FD-refinement and
F -refinement are incomparable. Therefore vF implies none of the other
refinements and, in turn, is not implied by vFD ; we are done with it.

p0 p1 =F q0 q1
a a

τ

Figure 2.20: Failure equivalent LTS despite divergence

From vFD not implying vF , we can deduce that it does not imply any
of the other refinements. Since in Fig. 2.20 Qvw -as P , but not QvFD P , it
follows that:

(a) vw -as does not imply vFD .
Hence, there is no arrow from weak as, th. weak as or vmLF to FD,

and we can remove FD from consideration. (a) also implies that vmLF does
not imply thorough as-refinement. We proved before stating the proposition
that:

67

(b) thorough as-refinement does not imply thorough weak as-refinement.
This implies that vmLF does not imply thorough weak as-refinement and

that thorough as-refinement implies neither strong nor weak as-refinement.
Observe that from (a) we also know that neither weak as-refinement, nor

thorough weak as-refinement imply thorough as-refinement or as-refinement.
Finally, we have also shown before the proposition, that thorough weak as-
refinement does not imply weak as-refinement.

2.6 Conclusion

In this section, we presented a new refinement relation for MTS arising from
deadlock testing and demonstrated its generality and its advantages with
several results: Our F -refinement arises in numerous variants of our testing
scenario and, in contrast to as-refinement, it supports itself in this scenario
and is thorough; it also is a precongruence for parallel composition.

Generalizing our testing approach to dMTS, we again characterized the
preorder by a standard failure semantics; in particular, this allows to decide
the preorder. Unfortunately, it failed to be a precongruence for parallel
composition.

Returning to MTS, we also presented a conjunction operator and outlined
how one can be achieved for dMTS, as well.

To make F -refinement more discriminating, we combined it with mustL-
inclusion, arising from may-testing. But, we have shown that no conjunction
operator on MTS exists for the resulting mLF -refinement or any refinement
notions between it and as-refinement.

To achieve a precongruence wrt. hiding and to solve the problems with
F -refinement on dMTS we studied the new deadlock/divergence testing and
characterized it with a new failures-divergence refinement. This is coarser
and, hence, better than the standard variant. Our refinement is robust and
a precongruence for parallel composition and (for image-finite systems) also
for hiding. Furthermore, we have shown that this refinement also arises from
action-must-testing, a variant of must-testing, where a success-action has to
be executed, not only be executable.

Finally we gave an overview of the refinement relations we considered
throughout the section.

These testing approaches can be generalized to DMTS, where disjunctive
transitions can have different labels [44]. DMTS come with an alternating-
simulation-style refinement, but it is a strong simulation, where no additional
τ -transitions can be used while matching transitions. No weak simulation
exists. A somewhat unconventional definition of parallel composition for

68

τ -less DMTS can be found in [6]. It involves translating the DMTSs into
Nondeterministic Acceptance Automata (NAA), constructing their parallel
composition and translating the result back into a DMTS. The key step
corresponds to transforming a disjunctive into a conjunctive normal form,
where the latter corresponds to disjunctive must-transitions.

However, since this is a conservative extension of the dMTS setting, the
refinement resulting from deadlock testing cannot be a precongruence for par-
allel composition. We see little point in pursuing this line of thought. Nev-
ertheless, future work might include examining must-testing or deadlock/di-
vergence-testing for DMTS, where we would expect analogous results.

69

70

Chapter 3

Interface Automata – Error
Handling and Pruning

3.1 Introduction

In this chapter we will examine the fundamentals of interface automata as
introduced by de Alfaro and Henzinger e.g. in [27]. They are an abstract
description of the communication behaviour of a system or component in
terms of input and output actions. Based on this behavioural type, one can
study whether two systems are compatible if put in parallel, and one can
define a refinement for specifications. Compatibility, it this case, is defined
as some notion or error-freedom. As mentioned in Chapter 1, it is essential
for such a setting that the refinement relation is a precongruence for parallel
composition; in particular, if we refine two compatible specifications, it must
be guaranteed that the refined specifications are compatible again.

A basic intuition here is that outputs are under the control of the re-
spective system: if one component in a composition provides an output for
another, the latter must synchronize by performing the same action as input;
if this is not possible, the whole system might malfunction – such a catas-
trophic error state has to be avoided. In contrast to the I/O-automata of
[54], interface automata are not input enabled. Instead, a missing input in
a state corresponds to the requirement that an environment must not send
this input to this state.

There are two essential design decisions in the approach of [27] that we
will scrutinize in this chapter. First, the approach is optimistic: an error
state is not a problem, if it cannot be reached in a helpful environment, i.e.
an environment that prevents the system from running into an error. This
is reflected in the details of parallel composition, where from a standard

71

product automaton all states are removed that can reach an error state just
by locally controlled, i.e. output and internal, actions (often called pruning).
Although this definition has some intuitive justification, its details appear
somewhat arbitrary. This is also the case for the second decision to take some
alternating simulation as refinement relation. Actually, the same authors
used a slightly different relation for a slightly larger class of automata in the
earlier [25]; no real argument is given for the change.

Here, we will work out to what degree these design decisions can be
justified from some more basic and, hopefully, more agreeable ideas. We
model components as labelled transition systems (LTSs) with disjoint input
and output actions and an internal action, quite like the interface automata
of [27]. So as not to exclude any possibilities prematurely, our LTS have
explicit error states. For these Error-IO-Transition Systems (EIO), we con-
sider a standard parallel composition where, additionally, error states occur
as described above; a composed system also reaches an error state if one of
the components reaches one. It should be mentioned, that in contrast to
the previous chapter, we use parallel composition with immediate hiding, as
is usual for interface automata. The setting has been examined for parallel
composition without hiding by Schlosser in the bachelor’s thesis [61].

An indisputable requirement for a refinement relation is that an error-
free specification should only be refined by an error-free system. This can be
understood as a basic refinement relation, which is parametric in the exact
meaning of error-free: in the optimistic view, error-free means that no error
state can be reached by locally controlled actions only; in the pessimistic
view (cf. e.g. [4]), a system is error-free only if no error state is reachable at
all.

As mentioned before, for modular reasoning, which is at the heart of the
approach under study, the refinement relation v must be a precongruence:
if a component of a parallel composition is replaced by a refinement, the
composition itself gets refined, i.e. P1 v P2 implies P1 | Q v P2 | Q. Since
the basic relations fail to be precongruences in each case, we will characterize
(or at least approximate) the respective coarsest precongruence for parallel
composition that is contained in the basic relation. Such a fully abstract
precongruence is optimal for preserving error-freeness, since it does not dis-
tinguish components unnecessarily.

This approach is somewhat similar to the testing approach defined in the
previous chapter, but not the same. The refinement relations in the previous
chapter were defined by the interaction of their implementations with test-
environments; a test was passed if no undesirable state was reachable and
a refinement had to pass all tests of the specification. The result was not

72

always a precongruence. Here, we start with a very coarse relation that only
requires preservation of error-freedom – if the specification has no reachable
undesirable state then neither may the refinement. Then we find the coarsest
precongruence in this relation. This, of course, guarantees that the refine-
ment relation is compositional, i.e. a precongruence; Nevertheless, we will
have to examine how exactly the refined automata behaves in parallel with
environments, in particular when composed with more than one system.

In the optimistic case, the precongruence can be characterized as (com-
ponent-wise) inclusion for a pair of trace sets; the definition of one of these
uses pruning on traces. With this characterization we can prove that, essen-
tially, each EIO is equivalent w.r.t. the precongruence to one without error
states, where the latter can be obtained by pruning the former almost as
in [27]. Thus, we can work with EIO without error states, i.e. with interface
automata and (almost) with the parallel composition of [27], but our pruning
is proven to be correct.

While this justifies the first design decision in [27], our precongruence
shows that alternating simulation is unnecessarily strict. This is not really
new. A setting with input and outputs where unexpected inputs lead to errors
has been studied long before [27] for speed-independent (thus asynchronous)
circuits by Dill in [32]. The difference is that Dill does not start from an
operational model as we do (in particular, there is no parallel composition
for LTS), but on a semantic level with pairs of trace sets; he requires these
pairs to be input enabled. On this semantic level, he also uses pruning; a
normalized form of his pairs coincides with our pairs. Essentially, the full
abstraction result can also be found in [22], though for a slightly different
parallel composition and only for a congruence. Since that paper starts from
a declarative approach, our presentation and proofs are more direct, and they
prepare the reader for the succeeding sections.

In [22], EIO (called Logic IOLTS there) are seen as an alternative frame-
work to interface automata, and an error state is actually added to normalize
an EIO. In this chapter, we see error states only as a tool to study interface
automata and would prefer to remove them in the end1; with this view, we
discovered a subtle point about pruning. Interface automata in [27] are deter-
ministic w.r.t. input actions. Since we do not require this here, our pruning
is a bit different from the one in [27]. In fact, the interface automata in [25]
are also not input deterministic, but pruning used there is the same as the
one in [27]. As a consequence, Theorem 1 of [25] claiming associativity for

1But they will prove invaluable for MIA in the next chapter. The universal state u
there is essentially one state representing all error states. It cannot be removed and is
necessary for associativity of parallel composition.

73

parallel composition is wrong; in our setting, it is easily proven.

It might seem that we have actually prescribed pruning in our optimistic
approach since we consider only locally reachable errors as relevant and prun-
ing removes exactly those states that can reach an error locally. To fortify
the justification of pruning, we briefly describe the results for two other ap-
proaches. For a more detailed examination, we refer to [18].

The first is the ‘hyper-optimistic’ approach, where only internally reach-
able errors are relevant. This more generous notion of error-free leads to a
slightly stricter precongruence. We present a characterization that is again
based on pruning; the new idea is to extend traces with a set of outputs re-
moved during pruning. This is an interesting precongruence but, compared
to our first one, it looks unnecessarily complicated.

The other approach is the pessimistic approach, where every reachable
error is relevant, as advocated e.g. in [4]. For this case, we only present an
approximation of the fully abstract precongruence: we describe a precon-
gruence contained in the respective basic relation, which is based on three
trace sets and again employs pruning. We sketch how one might get the fully
abstract precongruence, but this will be technically so involved as to make
it unattractive. Even without a characterization, we can show that the fully
abstract precongruence is again stricter than the optimistic one, although
the notion of being error-free is less generous.

The next section will explain some basic notions and definitions. We ex-
amine the optimistic approach in Section 3.3 including a comparison to IA. In
Section 3.4 we summarize the results of the hyper-optimistic and pessimistic
approaches. Finally, in Section 3.5, we conclude with a comparison and give
arguments why we will prefer the optimistic variant in the future.

3.2 Definitions and Notation

First we define our scenario. In interface automata, internal actions have
names. For two automata to be composable, the internal action names of
one must be disjoint from all action names of the other; hence, standard
α-conversion for the names of internal actions is not fully supported.2 To
improve this, our EIOs have just one internal, unobservable action τ . Fur-
thermore, they have as additional component a set of error states; such states
can be created in a parallel composition.

2Strictly speaking, α-conversion in a refinement step is allowed in [27], since there is no
requirement regarding the alphabets of internal actions. But this is certainly an oversight
since, as an effect, refinement does not preserve compatibility, because it does not even
preserve composability; cf. Proposition 3.13.

74

Definition 3.1 (Error-IO-Transition-System). An Error-IO-Transition-Sys-
tem (EIO) is defined as a tuple (P, I, O,−→, p0, E), where

• P – a set of states

• I, O – disjoint sets of (visible) input and output actions

• −→ ⊆ P × (I ∪O ∪ {τ})× P – a transition relation

• p0 ∈ P – an initial state

• E ⊆ P – a set of error states

The actions of P are A := I ∪ O, and its signature is Sig(P) = (I, O). We
call P closed, if A = ∅.

In a parallel composition, all common actions are synchronized and then
immediately hidden. Two EIOs can only be composed, if their input and
output actions fit together, i.e. the EIOs have neither common inputs nor
common outputs. A state of the composition is an error state if one com-
ponent is in an error state (inherited error) or if one component sends an
output to the other one, which is not ready to receive it (new error).

Definition 3.2 (Parallel Composition). Two EIOs P1, P2 are composable if
I1 ∩ I2 = ∅ = O1 ∩ O2. The parallel composition without hiding is defined
for two composable EIOs as P1 ‖ P2 = (P1 × P2, I, O,−→, p0, E), where

• I = (I1\O2) ∪ (I2\O1)

• O = O1 ∪O2

• p0 = (p01, p02)

Furthermore, with Synch(P1, P2) = (I1 ∩ O2) ∪ (I2 ∩ O1) being the set of
synchronized actions, we define
−→ =

{
(
(p1, p2), α, (p′1, p2)

)
| (p1, α, p

′
1) ∈ −→1, α ∈ (A1 ∪ {τ})\Synch(P1, P2)} ∪

{
(
(p1, p2), α, (p1, p

′
2)
)
| (p2, α, p

′
2) ∈ −→2, α ∈ (A2 ∪ {τ})\Synch(P1, P2)} ∪

{
(
(p1, p2), α, (p′1, p

′
2)
)
| (p1, α, p

′
1)∈−→1, (p2, α, p

′
2)∈−→2, α∈Synch(P1, P2)}

E =
(P1 × E2) ∪ (E1 × P2) ‘inherited errors’
∪ {(p1, p2) | ∃a ∈ O1 ∩ I2 : p1

a−→ ∧p2 6a−→} ‘new errors’
∪ {(p1, p2) | ∃a ∈ I1 ∩O2 : p1 6a−→ ∧p2

a−→}
The parallel composition (with hiding) P1 | P2 differs only in the defi-

nition of its outputs and its transition function. We define O = (O1\I2) ∪

75

(O2\I1) and −→ as above, but with the third set consisting of transitions(
(p1, p2), τ, (p′1, p

′
2)
)
.

We introduce P12 as shorthand for P1 |P2 and similarly for its components
and semantics. We call an EIO P a partner of an EIO P ′ if their parallel
composition is closed, i.e. if they have dual signatures Sig(P) = (I, O) and
Sig(P ′) = (O, I).

For our results and proofs, we also define | and ‖ as parallel composition
on traces with and without hiding respectively. This corresponds to Def. 1.3
and extends it to parallel composition with hiding.

Definition 3.3 (Parallel Composition on Traces). Given two composable
EIOs P1, P2, w1 ∈ A1, w2 ∈ A2,W1 ⊆ A∗1 and W2 ⊆ A∗2, we define

• w1 ‖ w2 = {w ∈ (A1 ∪ A2)∗ | w|A1 = w1 ∧ w|A2 = w2}

• w1 | w2 = {w|A12 | w ∈ w1 ‖ w2}

• W1 ‖ W2 =
⋃
{w1 ‖ w2 | w1 ∈ W1 ∧ w2 ∈ W2}

• W1 |W2 =
⋃
{w1 | w2 | w1 ∈ W1 ∧ w2 ∈ W2}

For a short example consider Fig. 3.1. Here and in other figures, we will
mark an error state by a box. We have two systems P1 and P2 and their
parallel composition (with hiding). P1 represents a simple user interface. It
can be given a message (msg), which it passes on to a buffer. This buffering
can be cancel led, but if the buffering has already taken place, or no message
was given, we encounter an error. However, the system can recover from the
error, if it is given the recover command. P2 is a simple buffer with capacity
two; it can send the message on.

In their parallel composition the error in P1 (state p1e) is inherited and
appears in states (p1e, p20), (p1e, p21) and (p1e, p22). A new error is created in
(p11, p22): here p11 could perform the output buffer, but p22 is not ready to
receive it. In the parallel composition of [27] such an error state would be
removed as part of the composition, together with all its in- and outgoing
edges. In contrast, we leave it for later examination. The error states can
have outgoing edges, thus a system could recover from an error. However, we
consider an error to be catastrophic; hence, such a recovery will be useless
in the end.

Note further that an input without corresponding output does not pro-
duce an error. This is the case, for example, in the initial state (p10, p20).
The component state p20 is ready to receive a buffer signal, but since p10

does not send the signal, this behaviour simply disappears.

76

We will base our semantics on traces that can lead to error states. In this
context, we will use a pruning function, which removes all output actions from
the end of a trace. We also define a function for arbitrary continuation of
traces; generalizing this to trace sets, gives the continuation or suffix closure.

p10

P1P1

p11p1e
msg?

buffer!

cancel?cancel?

recover?

p20

P2P2

p21 p22

buffer?

send!

buffer?

send!

(p10, p20)

P1 | P2P1 | P2

(p1e, p20) (p11, p20)

(p10, p21)(p1e, p21) (p11, p21)

(p10, p22)(p1e, p22) (p11, p22)

cancel?

recover?

cancel?

recover?

cancel?

recover?

msg?

cancel?

msg?

cancel?

msg?

cancel?

send! send! send!

send! send! send!

τ

τ

Figure 3.1: An example for parallel composition

Definition 3.4 (Pruning and Continuation Functions). For an EIO P , we
define

• prune : A∗ → A∗, w 7→ u, where w = uv, u = ε ∨ u ∈ A∗ · I and
v ∈ O∗

• cont : A∗ → P(A∗), w 7→ {wu | u ∈ A∗}

• cont : P(A∗)→ P(A∗), L 7→
⋃
{cont(w) | w ∈ L}

For composable EIOs P1 and P2, consider a run of their parallel compo-
sition P1 ‖ P2 that justifies statement (p1, p2)

w
=⇒ (p1, p2) for w ∈ A∗. It is

well known and not difficult to see that such a run can be projected to runs
of P1 and P2, passing through all the first, second respective, components
of the states of the composed run. These projected runs justify pi

wi=⇒ pi

77

with w|Ai
= wi, i = 1, 2. Vice versa, any two runs of P1 and P2 justifying

pi
wi=⇒ pi with w|Ai

= wi, i = 1, 2, are projections of a unique run of P1 ‖ P2

justifying (p1, p2)
w

=⇒ (p1, p2). From this, the first claim of the next lemma
follows.

Each run of P1 ‖ P2 corresponds to one of P1 | P2 – simply replace some
actions by τ . We also call the projected runs of the former the projections
of the latter. In such a case, we also say that the pi

wi=⇒ pi, i = 1, 2, are

the projections of (p1, p2)
w′

=⇒ (p1, p2) in P1 | P2, where w′ ∈ w1 | w2.3 These
considerations justify the second claim of the next lemma.

Lemma 3.5 (Basic Language of Composition). For two composable EIOs
P1 and P2, we have

1. L(P1 ‖ P2) = L(P1) ‖ L(P2)

2. L(P1 | P2) = L(P1) | L(P2).

Returning to the example of Fig. 3.1, it is easy to see that msg buffer msg
cancel is in L(P1) and buffer send is in L(P2). Composing them according to
Def. 3.3 yields the set {msg msg cancel send,msg msg send cancel,msg send
msg cancel} ⊆ L(P1) | L(P2).

3.3 Optimistic Approach: Local Errors

We are now ready to consider some basic refinement relations. We will use
variations of the notation ‘P vB Q’ to denote that P in some basic sense is
an implementation of, i.e. refines, the specification Q.

3.3.1 Precongruence

In this section, we will start with a variant based on local (i.e. internal and
output) actions. We consider the following requirement: if a specification is
error-free in the sense that it cannot reach an error state by local actions only,
then any implementation must be error-free as well. This is an optimistic
view: it only considers processes to be faulty, if they can run into an error
on their own, i.e. using only local actions. Formally:

Definition 3.6 (Local Basic Relation). An error is locally reachable in an
EIO P , if ∃w ∈ O∗ : p0

w
=⇒ p ∈ E. For EIOs P and Q with the same

3This is a slight abuse of language, since these projections have additional actions and
are not really unique; the possible differences do not matter.

78

signature, we write P vBloc Q, whenever an error is locally reachable in P
only if an error is locally reachable in Q.

We let vcloc denote the fully abstract precongruence with respect to vBloc
and |, i.e. the coarsest precongruence with respect to | that is contained in
vBloc.

In order to characterize this coarsest precongruence, we will need several
trace sets. Of course, we are interested in those traces that can reach an
error state, the so-called strict error traces. Furthermore, consider an EIO
that can perform a trace w such that input a is not possible in the state
reached. If the environment allows this state to be reached by providing the
necessary inputs and then performs a as an output, a new error state arises
in the composition. Thus, we are also interested in the sequence wa and call
it a missing-input trace.

Definition 3.7 (Error Traces). We define the following trace sets for an EIO
P :

• strict error traces: StT (P) = {w ∈ A∗ | p0
w

=⇒ p ∈ E}

• pruned error traces: PrT (P) = {prune(w) | w ∈ StT (P)}

• missing-input traces: MIT (P) = {wa ∈ A∗ | p0
w

=⇒ p∧ a ∈ I ∧ p 6a−→}

The characterization we are looking for will be provided by the following
local error semantics; the intuitions are as follows. Errors arise in a composi-
tion because a component cannot accept some input after a trace or because
it performs a strict error trace; in the latter case, the error is already un-
avoidable if the error state can be reached by local actions only. Hence, we
consider the trace sets PrT and MIT in the definition of ET below. But as
already explained above, the other component must take part in such prob-
lematic behaviour, hence we are also interested in the basic language of a
component.

If along an action sequence an error can occur, it does not matter whether
the sequence can be performed at all, and if so, whether it leads to an error
state. Thus, we want to obliterate this information about such a sequence; for
this purpose, we close the set of problematic traces under continuation, and
we also include this extended set in the language; this technique of flooding
is well known e.g. in the context of failures semantics [11].

It will turn out that we can characterize vcloc as component-wise set in-
clusion for pairs (ET (P), EL(P)), and vloc denotes this relation.

Definition 3.8 (Local Error Semantics). Let P be an EIO.

79

• The set of error traces of P is ET (P) = cont(PrT (P))∪cont(MIT (P));

• the flooded language of P is EL(P) = L(P) ∪ ET (P).

For two EIOs P and Q with the same signature, we write

P vloc Q if ET (P) ⊆ ET (Q) and EL(P) ⊆ EL(Q)

and we call P and Q local-error equivalent, P =loc Q, if P vloc Q and
Q vloc P .

We illustrate some aspects of this semantics with a small example. Con-
sider the EIO P from Fig. 3.2. This system can receive some data via import.
Import does not always work properly, however, and sometimes the subse-
quent calc command is not accepted and no result is returned. Alternatively
the data can be entered manual ly. This causes the system to crash after
sending a crashed output.

The local error semantics of this EIO is ET (P) = {import} · I · A∗ ∪
{manual} · A∗ and EL(P) = ET (P) ∪ {import}. Observe that, according to
the semantics, p5 is as good as an error state, since it can reach one via an
output. An environment cannot stop P from reaching an error, as soon as it
sends manual. On the other hand, consider the behaviour after import. The
fact that calc can sometimes be accepted is irrelevant, since it might just as
well produce an error.

p0

PP

p1 p2 p3

p4

p5pe
import?

import?

calc? result!manual?crashed!

Figure 3.2: An example for the local error semantics

For the characterization result, it is crucial that the local error semantics
is compositional – which is desirable anyway.

Theorem 3.9 (Local Error Semantics for Composition). For two composable
EIOs P1, P2 and P12 = P1 | P2 we have:

1. ET12 = cont
(
prune

((
ET1 | EL2

)
∪
(
EL1 | ET2

)))
2. EL12 =

(
EL1 | EL2

)
∪ ET12

80

Proof. 1.a) ‘⊆’:
Since both sides are closed under cont, it suffices to consider a prefix-minimal
element w of ET12. This means w is in MIT12 or in PrT12.

First we consider the case, that w ∈MIT12:
We know that w = xa with (p01, p02)

x
=⇒ (p1, p2) 6a−→, a ∈ I12. Since a ∈ I12,

it holds that a ∈ I1 ·∪ I2 and a /∈ O1 ∪ O2. Let w.l.o.g. a ∈ I1. Thus by
projection we get p01

x1=⇒ p1 6a−→ and p02
x2=⇒ (i.e. x2 ∈ L2) with x ∈ x1 | x2.

Thus we know that x1a ∈ ET1 and x2 ∈ L2 ⊆ EL2, and it follows that
w ∈ (x1 | x2) · {a} ⊆ x1a | x2 ⊆ ET1 | EL2, which is contained in the r.h.s.
set.

Now we get to the second case: w ∈ PrT12

In this case we know that there exists u ∈ O∗12 such that (p01, p02)
w

=⇒
(p1, p2)

u
=⇒ (p′1, p

′
2) with (p′1, p

′
2) ∈ E12 and w = prune(wu).

By projection we get p01
w1=⇒ p1

u1=⇒ p′1 and p02
w2=⇒ p2

u2=⇒ p′2 with
w ∈ w1 | w2 and u ∈ u1 | u2. Since (p′1, p

′
2) ∈ E12 it follows that either

(p′1, p
′
2) is an inherited error due to p′1 ∈ E1 or p′2 ∈ E2, or it is a new error

due to some a ∈ O1 ∩ I2 with p′1
a−→ ∧p′2 6a−→ or some a ∈ I1 ∩ O2 with

p′1 6a−→ ∧p′2
a−→.

If it is an inherited error, then let p′1 ∈ E1 w.l.o.g. Thus, we know that
w1u1 ∈ StT1 ⊆ ET1. Because of p02

w2u2=⇒, we get w2u2 ∈ L2 ⊆ EL2. Hence
wu ∈ ET1 | EL2 and w = prune(wu) is in the r.h.s. set.

If (p′1, p
′
2) is a new error, let w.l.o.g. a ∈ I1 ∩ O2 with p′1 6a−→ ∧p′2

a−→.
Thus we know that w1u1a ∈ MIT1 ⊆ ET1 and w2u2a ∈ L2 ⊆ EL2. By
definition of | we know that w1u1a | w2u2a = w1u1 | w2u2 and thus we are
done as above.

1.b) ‘⊇’:
It should be noted that P1 ‖ P2 an P1 | P2 have the same states, error states
and input actions. Consequently, using the prune-function on some trace of
P1 ‖ P2 yields v = ε or v ending with some b ∈ I12 = IP1|P2 .

Again it suffices to consider a prefix-minimal element x. For such an x it
holds that:
x ∈ prune

((
ET1 | EL2

)
∪
(
ET2 | EL1

))
Since x is the result of the prune function, we consider xy ∈

(
ET1 | EL2

)
∪(

ET2 | EL1

)
with y ∈ O∗12. W.l.o.g we assume xy ∈ ET1 | EL2, i.e. there is

w1 ∈ ET1 and w2 ∈ EL2 with xy ∈ w1 | w2. We also get w ∈ w1 ‖ w2 such
that w|A12 = xy.

Below, we will treat several cases, and in each case we will show that
there is some v ∈ PrT (P1 ‖ P2) ∪MIT (P1 ‖ P2) which is a prefix of w and
either ends with an input action of P1 | P2 or is ε. In both cases v|A12 is a

81

prefix of x. In case of v|A12 = ε, the latter is obvious. Otherwise v|A12 ends
with some input action b ∈ I12 and it has to be a prefix of xy by construction
of w. Since y ∈ O∗12, this v|A12 has to be a prefix of x. Therefore x has a
prefix in PrT (P1 | P2) ∪MIT (P1 | P2) and we are done.

Let v1 be the shortest prefix of w1 that is in PrT1∪MIT1. If w2 ∈ L2, let
v2 = w2; otherwise, let v2 be the shortest prefix of w2 that is in PrT2∪MIT2.
Every action of v1 and v2 has its corresponding action in w. We now assume
that v2 = w2 ∈ L2 or the last action of v1 is before or the same as the
last action of v2. Otherwise, v2 ∈ PrT2 ∪MIT2 ends before v1 and this is
analogous to the case where v1 ends before v2. (Note that the case v2 = w2 ∈
L2 is needed to cover the situation where w2 ends before v1, but is not an
error trace.)

If v1 = ε, then choose v′2 = v′ = ε.
If v1 6= ε, then v1 by choice ends with some a ∈ I1, i.e. v1 = v′1a. Let v′

be the prefix of w that ends with the last action of v1 and let v′2 = v′|A2 . If
v2 ∈ L2 ∪ PrT2, then v′2 is a prefix of v2. If v2 ∈ MIT2 then it ends with
some b ∈ I2, i.e. b 6= a; according to the above assumption, in this case v1

must end before v2 and v′2 is a proper prefix of v2.

In all cases (including the case v1 = ε), we get (*) p02

v′2=⇒. Furthermore,
v′2 = v′|A2 is a prefix of v2, and v′ ∈ v1 ‖ v′2 is a prefix of w. Now we have to
consider two cases:

First we consider the case, that v1 ∈MIT1 (and v1 6= ε in this case):

In this case we have p01

v′1=⇒ p1 6a−→ and we let v′ = v′′a. We have to consider
two subcases:

1. If a is not a synchronizing action, i.e. a /∈ A2, then by (*) p02

v′2=⇒ p2

with v′′ ∈ v′1 ‖ v′2. Therefore (p01, p02)
v′′

=⇒ (p1, p2) 6a−→ with a ∈ I12.
Thus we can choose v := v′′a = v′ ∈MIT (P1 ‖ P2).

2. If a ∈ A2, then a ∈ O2 and v′2 = v′′2a. By (*) p02

v′′2=⇒ p2
a−→ with v′′ ∈

v′1 ‖ v′′2 . Thus, (p01, p02)
v′′

=⇒ (p1, p2) with p1 6a−→, a ∈ I1, p2
a−→ and

a ∈ O2; hence (p1, p2) ∈ E12. In this case we choose v := prune(v′′) ∈
PrT (P1 ‖ P2).

The second case is v1 ∈ PrT1 (where we might have v1 = ε).
In this case ∃u1 ∈ O∗1 : p01

v1=⇒ p1
u1=⇒ p′1 with p′1 ∈ E1.

Again p02

v′2=⇒ p2, this time with (p01, p02)
v′

=⇒ (p1, p2). We have two subcases
depending on ‘how long’ p2 can ‘take part’ in u1.

82

1. There is some u2 ∈ (O1 ∩ I2)∗ and some c ∈ (O1 ∩ I2) such that u2c is
a prefix of u1|I2 with p2

u2=⇒ p′2 6c−→.

Consider the prefix u′1c of u1 with u′1c|I2 = u2c. We know that p1

u′1=⇒
p′′1

c−→. Then u′1 ∈ u′1 ‖ u2 and (p1, p2)
u′1=⇒ (p′′1, p

′
2) ∈ E12, i.e. we get a

new error.
We can choose v := prune(v′u′1) ∈ PrT (P1 ‖ P2), which is a prefix of
v′, since u′1 ∈ O∗1.

2. Otherwise we have p2
u2=⇒ p′2 with u2 = u1|I2 . Then u1 ∈ u1 ‖ u2

and (p1, p2)
u1=⇒ (p′1, p

′
2) ∈ E12. This is an error inherited from P1.

Therefore we can again choose v := prune(v′u1) ∈ PrT (P1 ‖ P2),
which again is a prefix of v′.

2. Observe that: Li ⊆ ELi and ETi ⊆ ELi. For better readability, we
start from the right hand side of the equation:

(EL1 | EL2) ∪ ET12 =(
(L1 ∪ ET1) | (L2 ∪ ET2)

)
∪ ET12 =

(L1 | ET2)︸ ︷︷ ︸
⊆ET12 (1)

∪ (ET1 | L2)︸ ︷︷ ︸
⊆ET12 (1)

∪(L1 | L2) ∪ (ET1 | ET2)︸ ︷︷ ︸
⊆ET12 (1)

∪ET12 =

(L1 | L2) ∪ ET12
3.5.2
= L12 ∪ ET12 = EL12

The above theorem implies that parallel composition is monotonic w.r.t.
vloc, i.e. increasing the error traces and the flooded language of a component
increases the respective sets of the parallel composition. Note that |, cont
and prune are defined elementwise. Thus vloc is a precongruence, and next
we will show that it is the coarsest one. For this, we will construct a test
environment U for each relevant trace w of P that reveals that w is also a
suitable trace of Q. The proof technique is similar to the one used in the
previous chapter, e.g. for the proof of Thm. 2.7

Lemma 3.10. For two EIOs P and Q with the same signature, we have: if
U | P vBloc U |Q for all partners U of P , then P vloc Q.

Proof. Since P and Q have the same signature, we will write I for IP = IQ
and O for OP = OQ throughout this proof. P and Q have the same partners
U ; IU = O and OU = I for each of these.

Note that ε ∈ ET (P) signifies that an error is locally reachable in P ,
since this can only result from ε ∈ PrT (P). We have to show the following
inclusions to get P vloc Q:

83

p0 p1 · · · pn

pn+1

x1 x2 xn

x? 6=
x
1

x
?
6=
x

2

x?
∈ IU

xn+1!

x? ∈ IU

Figure 3.3: x? 6= xi indicates all x ∈ IU\{xi}, xn+1! indicates xn+1 ∈ OU

• ET (P) ⊆ ET (Q)

• EL(P) ⊆ EL(Q)

For the first inclusion we consider a prefix minimal element w ∈ ET (P).
It suffices to show that w or any of its prefixes is in ET (Q). The construction
for w = ε is a simple variant of the next one. If w = ε, then an error state is
locally reachable in P . Let U consist of the initial state only with a loop for
each x ∈ IU ; P can reach the same error state in P |U internally. Thus, Q |U
must also have a locally reachable error state. By definition of U , this can
only be inherited from Q. Thus, Q must have an error state that is reachable
by internal and output actions only, i.e. ε ∈ PrT (Q).

So we assume that w = x1 · · ·xnxn+1 ∈ A+ with n ≥ 0 and xn+1 ∈ I. We
consider the following partner U ; see Fig. 3.3.

• PU = {p0, p1, . . . pn+1}

• p0U = p0

• EU = ∅

• −→U = {(pi, xi+1, pi+1) | 0 ≤ i ≤ n}∪{(pi, x, pn+1) | x ∈ IU\{xi+1}, 0 ≤
i ≤ n} ∪ {(pn+1, x, pn+1) | x ∈ IU}

For w we can distinguish two cases. Both will lead to ε ∈ StT (P | U).

If w ∈ MIT (P), then in P ‖ U we have (p0P , p)
x1···xn=⇒ (p′, pn) with p′ 6xn+1−→

and pn
xn+1−→. Therefore (p′, pn) ∈ EP |U and ε ∈ StT (P | U).

If w ∈ PrT (P), then in P ‖ U we have (p0P , p0U)
w

=⇒ (p′′, pn+1)
u

=⇒ (p′, pn+1)
with some u ∈ O∗ and p′ ∈ EP . The latter implies (p′, pn+1) ∈ EP |U , and
again ε ∈ StT (P | U).

84

p0 p1 · · · pn−1 pn ∈ EU

p

x1 x2 xn−1 xn

x? 6=
x

1

x
? 6=

x
2 x? 6=

xn

x? ∈ IU

Figure 3.4: x? 6= xi indicates all x ∈ IU\{xi}

Since we now know that ε ∈ StT (P |U), we also know from P |U vBloc Q|U
that there is a locally reachable error in Q | U as well.
There are two kinds of error states Q | U can have: new or inherited. Since
each state of U enables every x ∈ O = IU , a locally reachable new error has
to be one where U enables an output a ∈ OU which is not enabled in Q. By
construction pn+1 enables no outputs, therefore such a new error state has

to be of the form (p′, pi) with i ≤ n, p′ 6xi+1−→ and xi+1 ∈ OU = I. Thus, by

projection p0Q
x1···xi=⇒ p′ 6xi+1−→ and therefore x1 · · ·xi+1 ∈ MIT (Q) ⊆ ET (Q) is

a prefix of w and we are done.
If the locally reachable error is due to an inherited error state, then by
projection U has performed some x1 · · ·xiu with u ∈ I∗U = O∗ (possibly
i = 0) and hence so has Q. With this, Q has reached some state in EQ.
Therefore prune(x1 · · ·xiu) = prune(x1 · · ·xi) ∈ StT (Q). Again this is a
prefix of w and in ET (Q) and we are done.

For the second inclusion it suffices to show that L(P)\ET (P) ⊆ EL(Q),
because of the first inclusion and the definition of EL.
For this we consider a w ∈ L(P)\ET (P) and show that it is in EL(Q).
If w = ε we are done, since ε always is in EL(Q). Therefore we consider
w = x1 · · ·xn with n ≥ 1 and construct a partner U (illustrated in Fig. 3.4)
with:

• PU = {p, p0, p1, . . . pn}

• p0U = p0

• EU = {pn}

• −→U = {(pi, xi+1, pi+1) | 0 ≤ i < n} ∪ {(pi, x, p) | x ∈ IU\{xi+1}, 0 ≤
i ≤ n} ∪ {(p, x, p) | x ∈ IU}

85

Because of p0P
w

=⇒ p we know that P |U has a locally reachable error. Thus,
because of P |U vBloc Q |U , Q also has to have a locally reachable error state.

Firstly, this could be a new error because of some xi ∈ OU and p0Q
x1···xi−1

=⇒
p′ 6xi−→. In this case x1 · · ·xi ∈ MIT (Q) and thus w ∈ EL(Q). Note, that
outputs of U are only enabled along this trace. Therefore there are no other
outputs of U , which could lead to a new error.
Secondly it could be a new error due to some a ∈ OQ, which U could not
match. But the only state of U in which not all inputs are enabled is pn,
which already is an error state. If this state is reachable in Q | U , then the
composed EIO has an inherited error and thus w ∈ L(Q) ⊆ EL(Q).
Thirdly it can be an error inherited from U . Since the only state in EU is
pn and all actions are synchronized, this is only possible if p0Q

x1···xn=⇒ . In this
case w ∈ L(Q) and we are done.

Finally, the error could have been inherited from Q. In this case p0Q
x1···xiu=⇒

p′ ∈ EQ, for some i ≥ 0 and u ∈ O∗. This means that x1 · · ·xiu ∈ StT (Q)
and thus prune(x1 · · ·xiu) = prune(x1 · · ·xi) ∈ PrT (Q) ⊆ EL(Q). Hence
again w ∈ EL(Q) and we are done.

Theorem 3.11 (Full Abstractness for Local Error Semantics). Let P and
Q be two EIOs with the same signature. Then P vcloc Q ⇔ P vloc Q; in
particular, vloc is a precongruence.

Proof. As noted above, Theorem 3.9 implies that vloc is a precongruence.
As mentioned in the proof of Lemma 3.10 above, ε ∈ ET (P) signifies that
an error is locally reachable in P . Hence, P vloc Q implies that ε ∈ ET (Q)
whenever ε ∈ ET (P), and thus also that P vBloc Q. This proves the reverse
implication.

For the implication, assume P vcloc Q; by definition of vcloc, this implies
P | U vcloc Q | U and then P | U vBloc Q | U for all EIOs U composable
with P in general and all partners of P in particular. Thus, we are done by
Lemma 3.10.

3.3.2 Comparison to Interface Automata

We will show now that, up to local-error equivalence, we can essentially work
with EIOs without error states. Such EIOs are exactly the interface automata
of [27], if they additionally are input-deterministic: if p

a−→ p′ and p
a−→ p′′

for some a ∈ I, then p′ = p′′. The only difference is that, in a setting with
EIOs without error states, we do not have EIOs anymore that show an error
initially.

86

Theorem 3.12 (Removing Error States). Let P be an EIO, and let prune(P)
be obtained from P by removing the illegal states in illegal(P) = {p ∈ P |
an error state is reachable from p by local actions}, their in- and out-going
transitions and all transitions p

a−→ p′ where p
a−→ p′′ with p′′ ∈ illegal(P)

for some a ∈ I. If p0 6∈ illegal(P), prune(P) is an EIO and local-error
equivalent to P .

Proof. We assume p0 6∈ illegal(P); then the claim about prune(P) being an
EIO is obvious.

For P vloc prune(P), consider some w ∈ PrT (P) and a suitable underly-
ing run p0

a1−→ p1
a2−→ · · · pn. Observe that pn is an illegal state and missing

in prune(P). So let pi be the first state on the run such that pi
ai+1−→ pi+1

is missing in prune(P). This means that pi is not illegal, ai+1 is an input,

and some p with pi
ai+1−→ p is illegal. This implies that some prefix of w is in

MIT (prune(P)), and w ∈ ET (prune(P)).

For wa ∈ MIT (P), we argue similarly. Either some suitable run under-
lying w is still in prune(P) and wa ∈ MIT (prune(P)), or some transition
of the run is missing in prune(P) and wa has a prefix in MIT (prune(P)).
Thus, ET (P) ⊆ ET (prune(P)).

Analogously for w ∈ L(P), either some run underlying w is still in
prune(P) and w ∈ L(prune(P)), or some transition of the run is missing
and w has a prefix in MIT (prune(P)). Thus, EL(P) ⊆ EL(prune(P)).

For ET (prune(P)) ⊆ ET (P), we just consider wa ∈ MIT (prune(P)),
where a ∈ I. Consider a suitable run p0 . . . p underlying w in prune(P).
Either, p has no a-transition in P and wa ∈ MIT (P), or p

a−→ p′ for some
illegal p′ and wa ∈ PrT (P). Thus, ET (prune(P)) ⊆ ET (P).

For w ∈ L(prune(P)), each run underlying w is still in P and w ∈
L(prune(P)). Thus, EL(P) ⊆ EL(P).

The respective pruning in the definition of parallel composition in [27]
only removes transitions from legal to illegal states. (Since then the illegal
states are unreachable, they can be removed as well.) The additional removal
of transitions p

a−→ p′ as described in the theorem is obviously redundant in
case of input determinism.

Thus, according to Theorem 3.12, we could work with EIOs without error
states; whenever we put such EIOs in parallel, we have to normalize the
result, i.e. we take prune(P1 | P2) as parallel composition. We only have to
make sure that this is well-defined: we call EIOs P1 and P2 compatible, if
the initial state of P1 | P2 is not illegal, and we only apply the new parallel
composition to compatible P1 and P2. For this, we have:

87

Proposition 3.13. If Q and Q′ are compatible EIOs and P vloc Q, then
also P and Q′ are compatible.

Proof. If P and Q′ are not compatible, then ε ∈ ET (P | Q′). Now ET (P |
Q′) ⊆ ET (P |Q) by Theorem 3.9, hence also P and Q are not compatible.

Thus, also on the level of transition systems, pruning as introduced in [27]
is justified according to our approach. But the refinement relation based on
alternating simulation in [27] is somewhat arbitrarily too strict, as we will
show below. To our best knowledge, alternating simulation as refinement
relation has first been considered for modal transition systems [46]; see [42]
for a comparison to the setting of interface automata.4

Since the refinement relation of [27] is a precongruence, one might be-
lieve that, due to our coarsest precongruence result, this refinement should
directly imply vloc. This is not really so obvious: we have considered par-
allel components that are not interface automata (due to violation of input
determinism), and this could have forced us to be too strict w.r.t. alternating
simulation. The next proposition shows that actually the implication holds.
It also shows that alternating simulation is unnecessarily strict if one is only
interested in avoiding local errors.

Definition 3.14. For EIOs P1 and P2 with the same signature, an alternat-
ing simulation relation from P1 to P2 is some R ⊆ P1×P2 with (p01, p02) ∈ R
such that for all (p1, p2) ∈ R we have:

1. If p2
a−→ p′2 and a ∈ I1, then p1

a−→ p′1 and (p′1, p
′
2) ∈ R.

2. If p1
a−→ p′1 and a ∈ O1, then p2 =⇒ a−→ p′2 and (p′1, p

′
2) ∈ R.

3. If p1
τ−→ p′1, then p2 =⇒ p′2 and (p′1, p

′
2) ∈ R.

Thus, implementation P1 must match a prescribed input immediately,
while an output or τ is allowed for P1 if P2 can match it using internal steps.

Proposition 3.15. If there exists some alternating simulation relation R
for interface automata P1 and P2, then P1 vloc P2. This implication is strict.

Proof. Since interface automata do not have error states, we just have to
consider wa ∈ MIT (P1) with a ∈ I for ET (P1) ⊆ ET (P2). Take a suitable
run in P1 underlying w, and build up a matching run in P2 as follows. To start
with, the initial states are related according to R. Each output or internal

4A concept called alternating simulation also appears in [2], but it is applied to so-called
alternating transition systems. It is accompanied by some alternating trace containment,
but we have been unable to see any connection.

88

o!

o2!

o1!

o!

o!

o2!

o1!

Figure 3.5: Local-error equivalent automata, unnecessarily distinguished by
alternating refinement

transition in P1 can be matched according to 3.14.2 or 3.14.3, reaching related
states again. If the runs have reached (p1, p2) ∈ R so far and the next
transition is p1

a−→ p′1 with a ∈ I1, then either p2 does not have an a-
transition and a prefix of w is in MIT (P2), or p2

a−→ p′2 and (p′1, p
′
2) ∈ R due

to input determinism. If the run in P1 ends and we have reached (p1, p2) ∈ R,
then p2 cannot have an a-transition due to 3.14.1 and wa ∈MIT (P2).

The treatment of w ∈ L(P1) is analogous, except that we do not have to
consider a missing action after w at the end.

To conclude that alternating simulations are really unnecessarily strict,
consider the interface automata in Fig. 3.5. They have no inputs and are
local-error equivalent since there are no error traces and the basic languages
are the same. But there exists no alternating refinement relation from the
first to the second, since whichever way the second interface automaton
matches o, it will forbid one of o1 or o2 afterwards.

Next, we will show associativity for parallel composition. As mentioned
in the introduction, Theorem 1 of [25] claiming this associativity is wrong
there due to an error in the definition of pruning; a proof of such a theorem
is a bit tricky when composition involves pruning, which is not the case in
our setting.

To demonstrate the problem, Fig. 3.6 shows three systems P,Q and R.
Their respective signatures are IP = {i}, OP = {o}, IQ = {o}, OQ = ∅, IR =
∅, OR = {i, x}. The system Q|R is isomorphic to R, the only difference being
its signature, since it now has o as an input. P and Q |R are not compatible
in [25], since the initial state of their parallel composition would be illegal –
as it is in our setting. (P |Q) |R however is a valid system according to [25],
as depicted in Fig. 3.6.

The problem arises when constructing P | Q as shown in Fig. 3.6: the
removal of illegal states as introduced in [25] removes only one of P ’s input
transitions – namely the one that leads to an error state – but leaves the
other in place. This problem disappears in later work of de Alfaro and
Henzinger on interface automata, where the automata are required to be

89

P: i/oP: i/o

i?i?

o!

Q: o/∅Q: o/∅ R: ∅/i, xR: ∅/i, x

i!

x!

P |Q: i/∅P |Q: i/∅

i?

Q |R: o/i, xQ |R: o/i, x

i!

x!

(P |Q) |R: ∅/x(P |Q) |R: ∅/x

τ

x!

Figure 3.6: Counter example for associativity in [25]

input deterministic. In our approach, P | Q has an i-transition to an error
state, and thus the initial state of (P |Q)|R has a τ -transition to an error state
and is illegal itself. Explained another way: our pruning of P |Q removes all
input transitions and therefore (P |Q) |R has an error state as initial state.

The problem also demonstrates the danger when one develops an un-
orthodox definition justified with informal intuitive arguments only. In this
chapter, pruning on EIOs is proven correct in Theorem 3.12, and this proof
would fail with some incorrect definition of pruning.

In our setting with error states associativity is easy, because the two
systems are easily seen to be isomorphic. Hence, associativity holds for any
sensible equivalence on EIOs.

Theorem 3.16. For pairwise composable EIOs P1, P2 and P3, P1 | (P2 | P3)
and (P1 | P2) | P3 are isomorphic and in particular local-error equivalent.

Proof. Both EIOs are isomorphic to an EIO with state set P1 × P2 × P3,
(p01, p02, p03) as initial state, signature as that of P1 |(P2 |P3) and the following
transitions and error states.

Transitions:

• (p1, p2, p3)
α−→ (p′1, p2, p3) if p1

α−→ p′1 and α ∈ (A1 ∪ {τ})\(A2 ∪ A3)
and similarly for transitions derived from P2 and P3 instead of P1

and

• (p1, p2, p3)
τ−→ (p′1, p

′
2, p3) if p1

a−→ p′1 and p2
a−→ p′2 for some a ∈

A1 ∩ A2 and similarly for transitions derived from other pairs instead
of P1 and P2. Clearly, if a visible action belongs to two alphabets, it
must be an input of one EIO and an output of another by assumption.
Also by assumption, a visible action cannot be common to all EIOs:

90

such an action would have to be a common input or a common output
of two systems.

Error states: (p1, p2, p3) is an error state

• if p1 ∈ E1 and similarly for E2 or E3 instead of E1

or

• if p1
a−→ p′1 and ¬p2

a−→ for some a ∈ O1 ∩ I2 or similarly for one of
the other five pairs instead of (P1, P2).

Observe that, in the latter item, (p2, p3) possibly is not an error state and
(p1, (p2, p3))) is a new one, while (p1, p2) is an error state and ((p1, p2), p3) is
an inherited one.

According to this theorem, also other equivalences in this chapter make
| associative, and commutativity is obvious in the sense that composability
is symmetric and that P | P ′ and P ′ | P are isomorphic for composable P
and P ′. In this context, it is useful to mention the following result, giving a
sufficient condition for a fully abstract precongruence. Although we regard
it as some form of folklore – see e.g. [70, Sect. 3.2] for similar considerations
–, we do not know whether exactly this result has been published before.
Theorem 3.17 is independent of our particular setting with EIOs and |, and
we will adapt it below to our setting.

Theorem 3.17. Let ≤B be a preorder on a set M such that some binary
operation ◦ is commutative and associative for the related equivalence =B,
and there exists Nil ∈M with Nil ◦ P =B P for all P ∈M . Let preorder ≤
satisfy for all P,Q ∈M : P ≤ Q iff U ◦ P ≤B U ◦Q for all U ∈M . Then ≤
is ≤c, the fully abstract precongruence for ≤B and ◦.

Proof. First, we observe that, for all P,Q ∈M , P ≤ Q⇒ P =B Nil ◦P ≤B
Nil ◦Q =B Q. Hence, ≤ is contained in ≤B.

Second, for all P,Q ∈ M : P ≤c Q ⇒ ∀U : U ◦ P ≤c U ◦ Q ⇒ ∀U :
U ◦ P ≤B U ◦Q⇒ P ≤ Q. Hence, ≤c is contained in ≤.

Third, we have to show that ≤ is a precongruence; then, with the first
observation, ≤ is also contained in ≤c. Consider arbitrary P,Q, V ∈M with
P ≤ Q. We have to show that V ◦P ≤ V ◦Q. P ≤ Q⇒ ∀U : (U ◦V)◦P ≤B
(U◦V)◦Q⇒ ∀U : U◦(V ◦P) ≤B U◦(V ◦Q) by associativity⇒ V ◦P ≤ V ◦Q.

Similarly, one can show P ◦ V ≤ Q ◦ V , using commutativity in addition
to associativity.

91

We now adapt this theorem to our setting, where we can choose Nil as an
EIO with just one state (the initial one), no transitions and empty alphabet.
The interesting point is that our operator | is only defined on composable
systems, i.e. it is a partial operator. Consequently, associativity is also only
given for pairwise composable systems. For the adapted theorem, our basic
relation has to support α-conversion and to respect isomorphism.

Definition 3.18 (Bijective Relabelling, Sensible Relation). A bijective rela-
belling function for an EIO P is a bijective function f : I ∪ O → A′. The
bijective relabelling of an EIO is the EIO f(P) = (P, f(I), f(O),−→′, p0, E)
where −→′ = {(p, f(a), p′) | (p, a, p′) ∈ −→}.

We call a relation ≤ between EIOs sensible if it relates only EIOs with
the same signature, respects isomorphism, i.e. for all isomorphic EIOs P
and P ′ we have P = P ′ (P ≤ P ′ and P ′ ≤ P), and it also respects bijective
relabelling in the sense that P ≤ P ′ implies f(P) ≤ f(P ′).

Lemma 3.19. Let vB be a sensible preorder on EIOs. Then | is commutative
and associative in the sense of Theorem 3.16 for the related equivalence =B.
Let preorder v satisfy for all EIOs P and Q: P v Q iff U | P vB U |Q for
all composable U . Then v respects bijective relabelling.

Proof. The first claim is obvious by the definition of sensible and Theo-
rem 3.16. Let f be a bijective relabelling for P (and hence for Q as well).
Assuming P v Q we have to show f(P) v f(Q), which is equivalent to
∀U composable with f(P) : U |f(P) vB U |f(Q). Consider such an EIO U .
We define a bijective relabelling g for U as follows: g(a) := f−1(a) if a ∈ Af(P)

and otherwise g(a) is some fresh a′ where a′ /∈ AP . Thus by construction
f(P) |U differs from P |g(U) only by bijective relabelling; analogously for Q:
common actions are relabelled according to f−1, as are the actions specific
to P . All actions of U that are not actions of f(P) are mapped to actions of
g(U) that are not actions of P .

Thus we have U | f(P) vB U | f(Q) ⇔ g(U) | P | vB g(U) | Q. Since
P v Q implies ∀V composable with P : V | P vB V |Q, this also holds for
g(U) and thus we are done.

Theorem 3.20. Let vB be a sensible preorder on EIOs. Let preorder v
satisfy for all EIOs P and Q: P v Q iff U | P vB U | Q for all composable
U . Then v is vc, the fully abstract precongruence for vB and |.

Proof. Note that there exists an EIO Nil that is composable with all EIOs
and satisfies Nil | P =B P , to wit: Nil = ({p0}, ∅, ∅, ∅, p0, ∅). Now the first
and second point are analogous to the proof of Theorem 3.17, restricting U
to EIOs composable with P .

92

For the third point, we consider EIOs P and Q with P v Q and an EIO
V composable with P (and hence also with Q), and we want to shown that
V |P v V |Q. By assumption this is equivalent to U | (V |P) vB U | (V |Q)
for all U composable with V | P ; so consider such a U .

If U is also composable with V and to P , then U | V is composable with
P . Thus we get P v Q⇒ (U |V)|P vB (U |V)|Q⇒ U |(V |P) vB U |(V |Q)
by associativity.

If not, then this must be because of an a ∈ AU ∩ Synch(V, P), otherwise
U wouldn’t be composable with V | P either. For this case, we relabel all
occurrences of each such action a in V , P and Q with a fresh action a′ not
in AU . We call the resulting EIOs V ′, P ′ and Q′. This bijective relabelling
can be seen as α-conversion since V | P and V | Q are identical to V ′ | P ′
and V ′ | Q′ respectively. Now, by construction, U, V ′ and P ′ are pairwise
composable, hence we have associativity in the sense of Theorem 3.16. By
Lemma 3.19 we also get P ′ v Q′. Thus we have P ′ v Q′ ⇒ (U | V ′) | P ′ vB
(U | V ′) |Q′ ⇒ U | (V ′ | P ′) vB U | (V ′ |Q′)⇒ U | (V | P) vB U | (V |Q).

Now that we have U | (V | P) vB U | (V | Q) for all U composable with
V | P , we have V | P v V |Q and are done.

Similarly, one can show P | V v Q | V , using commutativity in addition
to associativity.

This theorem tells us that, for proving thatvloc is fully abstract, it suffices
to consider parallel compositions with two components instead of arbitrary
ones. In the present setting, we get an even simpler characterization from
our earlier results, considering only partners as defined in Definition 3.2.

Corollary 3.21. For EIOs P and Q, we have P vloc Q if and only if U |
P vBloc U |Q for all partners U .

Proof. The implication is implied by Theorem 3.11; the reverse implication
is Lemma 3.10.

This result is relevant for the following reason: when a (possibly com-
posed) system is finally put to use, it is composed in parallel with a user,
resulting in a closed system. In other words, a user is a partner U , and
U | P vBloc U | Q means that the user is as happy with P as she was with
Q. For some people, a relation with such a characterization is of foremost
interest (see e.g. [63] where a “happy” partner is called a strategy), even
though it is not necessarily a precongruence.

The corollary will also be essential for proving below that the third pre-
congruence vcact is strictly finer than vloc.

93

3.4 The Hyper-Optimistic and the Pessimistic

Approach

It might seem that, above, we were able to justify pruning (of local actions)
just because we concentrated on locally reachable errors. To obtain an even
better justification for pruning, we briefly examine two other approaches: the
hyper-optimistic and the pessimistic. For a more elaborate discussion and
formal proofs, we refer to [18].

The first focuses on errors reached by internal actions only. The view
that only such errors count is even more optimistic than our first one, since
errors reachable by output actions are no longer considered dangerous. The
new idea for the resulting semantics is that each error trace is annotated
with a set of output actions; traces are pruned again and the set of a pruned
trace contains the output actions that are needed to reach an error state, i.e.
that occur in the unpruned trace. The intuition for this is: if the system
performs the trace while synchronizing with another one on the given output
actions, then an error state can be reached internally afterwards. If some
action o of these actions is not synchronized, the error state is only reached
by performing the still visible o and, hence, not significant.

Our base relation is now defined as:

Definition 3.22 (Internal Basic Relation). For an EIO P , an error is inter-
nally reachable, if ε ∈ StT (P). For EIOs P and Q with the same signature,
we write P vBint Q whenever an error is internally reachable in P only if an
error is internally reachable in Q. We denote the fully abstract precongruence
with respect to vBint and | by vcint.

Definition 3.23 (Function out, Error Pair). Given an EIO P , we define
out : A∗ → P(O) such that out(w) consists of all output actions in w. An
error pair over a signature (I, O) is a pair (w,X) ∈ (I ∪ O)∗ × P(O) with
out(w) ⊆ X.

Given two composable EIOs P1, P2, we define for an error pair (w,X)
over (I1, O1) and v ∈ A∗2:

(w,X) ‖ v = {(z, Y) | z ∈ w ‖ v, Y = X ∪ out(v)}
(w,X) | v = {(z|A12 , Y ∩ A12) | (z, Y) ∈ (w,X) ‖ v}
It is easy to see that these sets consist of error pairs over the signatures

of P1 ‖ P2 and P12 = P1 | P2 respectively. On error pairs over some (I, O),
we define the following prefix relation and the following functions, where we
generalize cont to sets as in Definition 3.4:

• (w,X) v (v, Y) if w v v and X ⊆ Y

94

• prune(w,X) := (prune(w), X) (an error pair again)

• cont(w,X) := {(v, Y) | (w,X) v (v, Y)} (consisting of error pairs)

Definition 3.24 (Sets of Error Pairs). We define the following sets of error
pairs for an EIO P :

• strict error pairs: StP (P) = {(w,X) | w ∈ StT (P), out(w) = X}

• pruned error pairs: PrP (P) = {prune(w,X) | (w,X) ∈ StP (P)}

• missing-input pairs: MIP (P) = {(w,X) | w ∈MIT (P), out(w) = X}

It is easy to see that these sets indeed consist of error pairs over (I, O),
and that they are an enhanced version of similar sets defined in the previous
section. It will turn out that we can characterize vcint as component-wise set
inclusion for pairs (EP (P), EPL(P)), where the latter is the basic language
of P flooded with a set of traces derived from EP (P); we also introduce a
sign for this relation.

Definition 3.25 (Internal Error Semantics). For an EIO P :

• the set of error pairs of P is EP (P) = cont(PrP (P))∪cont(MIP (P));

• the set of error pair traces of P is EPT (P) = {w | (w, out(w)) ∈
EP (P)};

• the flooded language of P , called error pair language, is EPL(P) =
L(P) ∪ EPT (P).

For two EIOs P and Q with the same signature, we write

P vint Q if EP (P) ⊆ EP (Q) and EPL(P) ⊆ EPL(Q).

It can be proven that vint is the coarsest (i.e. fully abstract) precongru-
ence for vBint and |. Two points are notable: although outputs do not play
a special role for vBint, pruning of outputs on traces is again essential for
our characterization. Since the concept of error-freeness underlying vBint is
more liberal than the one for vBloc, it is maybe surprising that the resulting
precongruence is strictly finer.

Proposition 3.26. The internal precongruence vint is strictly finer than the
local precongruence vloc, i.e. for all EIOs P and Q with the same signature,
P vint Q implies P vloc Q, but not the other way round.

95

P: Q:
o!

Figure 3.7: P vloc Q, but P 6vint Q

Proof. For the implication, inclusion of the ET -sets follows from the inclusion
of the EP -sets, since the former can be obtained from the latter by projection
of each pair in EP (P) to the first component. This is not necessarily true
for the EL- and the EPL-sets. Consider some w ∈ EL(P). If w ∈ ET (P),
we are done by the first part. If w ∈ L(P), then w ∈ EPL(P) ⊆ EPL(Q);
if w ∈ L(Q), we are done – and otherwise, w ∈ EPT (Q) is the projection of
a pair in EP (Q) and, hence, in ET (Q).

For the second claim, consider P and Q in Fig. 3.7 with I = ∅ and
O = {o}.

We have P vloc Q since ET (P) = ET (Q) = A∗ and EL(P) = EL(Q) =
A∗. But P 6vint Q since (ε, ∅) ∈ EP (P) = A∗ × {∅, {o}} but (ε, ∅) /∈
EP (Q) = A∗ × {{o}}. The second part can also be seen from P 6vBint Q,
since Q is error free in the internal sense, but P is not.

Finally, we turn to the pessimistic approach, which has already been
discussed in the literature e.g. in [4], and consider only those systems error
free that do not have any reachable error states.

Definition 3.27 (Pessimistic Basic Relation). An error is reachable in an
EIO P , if StT (P) 6= ∅. For EIOs P and Q with the same signature, we write
P vBact Q, whenever an error is reachable in P only if an error is reachable
in Q. We denote the fully abstract precongruence with respect to vBact and |
by vcact.

A pessimistic person might argue that systems with an error should just
not be used at all (such a view is presumably taken in [4]), and that it does
not make sense to distinguish between erroneous systems, as we will do with
vcact (since this is finer than vcloc, see below). This version of pessimism
has the severe disadvantage that parallel composition is not associative in
general. Consider P , Q and R and their inputs and outputs as given in
Fig. 3.8. P | Q has a reachable error, so (P | Q) | R is not considered – in
contrast to P | (Q | R), since Q | R and P | (Q | R) are completely error free
and consist just of the initial state.

It is easy to see that our local error semantics does not suffice to char-
acterize vcact, since it does not differentiate between a missing input and an
input leading to an error state as seen in Fig. 3.9. Since P 6vBact Q, we cannot
have P vcact Q.

96

P: x?P: x?

Q: i?;x!Q: i?;x!
i? x!

R: i!R: i! P |QP |Q i?

P | (Q |R)P | (Q |R)

Figure 3.8: counterexample for associativity

o!
i?

P:

=loc

6vBact
Q:

o!

Figure 3.9: vcloc does not imply vBact

We will now present an extension to the local error refinement that is
a precongruence for this pessimistic approach, albeit not the coarsest one.
CPT deals with the real errors and is based on pruning of outputs again;
MIC additionally considers the missing-input traces, this time without clos-
ing under continuation; another subtle point is that both, MIC and L, are
flooded with CPT .

Definition 3.28 (Pessimistic Error Semantics). Let P be an EIO.

• The set of continued pruned traces of P is:
CPT (P) = cont(prune(StT (P)));

• the set of flooded missing-input traces of P is:
MIC(P) = MIT (P) ∪ CPT (P);

• the CPT-flooded language of P is: LCP (P) = L(P) ∪ CPT (P).

For two EIOs P and Q with the same signature, we write P vact Q if
and only if CPT (P) ⊆ CPT (Q), MIC(P) ⊆ MIC(Q) and LCP (P) ⊆
LCP (Q).

Again, it can be shown that parallel composition is monotonic w.r.t. vact,
i.e. vact is a precongruence. However, it is not fully abstract regarding | and
vBact as illustrated by the following example. We will also sketch (without
proof) how we think one can get the coarsest refinement. The two EIOs P
and Q with I = {a, b} and O = ∅, depicted in Fig. 3.10, are not seen as
equivalent by our precongruence:

97

PP

a? b?

b? a?
QQ

a? b?

b?

Figure 3.10: First example for coarsest refinement

Q vact P , but P 6vact Q because ba is contained in CPT (P) but not in
CPT (Q). Yet P vcact Q holds, since there is no environment U such that
P | U 6vBact Q | U , cf. Theorem 3.20.

To prove this, we consider all possibilities for an environment U . If U is
not error free, then both P | U and Q | U have an error: since both, P and
Q, have no output actions, they cannot prevent U performing a run ending
with an error state; they can only cause the error to appear earlier. Hence,
we can concentrate on error free environments.

If a, b /∈ OU , then no synchronization takes place and both P and Q can
reach an error by performing ab autonomously. If a ∈ OU and b /∈ OU , it
might be that U never performs a and neither P | U nor Q | U can reach an
error. If a is performed, then afterwards b can be performed autonomously
by P or Q respectively, leading to an error. The case that only b ∈ OU is
analogous.

Also in the case a, b ∈ OU , no difference between P | U and Q | U can
be observed, since U not performing one a followed by b or vice versa would
prevent all errors; otherwise, an error occurs in both P | U and Q | U . The
only slight and unobservable difference appears if U performs ba. Then P |U
has an inherited and Q | U a new error.

This example also highlights the difficulty of characterizing vcact. It ap-
pears that under certain circumstances a missing-input trace (like ba for Q
in the example above) has to be added to the set CPT . This appears to be
the case if the missing-input trace and some error trace are the same when
projecting the missing action away. The next example in Fig. 3.11 illustrates
the need for this to be done iteratively. The trace ba should be included in
CPT but only because of ab ∈ CPT . Then, one can argue analogously to
the above that cbac has to be added as well, but only because ba has been
added before.

Hopefully, these considerations have convinced the reader that a char-
acterization of the coarsest refinement will be overly complicated, and that
it is not worth the effort to work it out in detail. But although we do not
have a characterization of vcact, we can nevertheless compare it to the local
precongruence vloc using Corollary 3.10; in contrast to the previous section,

98

PP

a?

b?
c?

b? a?

b?

a?

c?

QQ

a?

b?
c?

b? a?

b?

Figure 3.11: Second example for coarsest refinement

we have made the notion of error-freeness much stricter, but it turns out that
again this leads to a finer precongruence.

Theorem 3.29. The coarsest pessimistic precongruence vcact is strictly finer
than the local precongruence vloc , i.e. vcact$vloc. Hence, this also applies
for vcact.

Proof. vcact ⊆ vloc :
By definition of vcact, P vcact Q ⇒ ∀U : U |P vBact U |Q⇒ for all partners U
of P , U |P vBact U |Q. This is equivalent to P vloc Q by Corollary 3.21, since
U | P and U |Q are closed, and vBact and vBloc coincide on closed systems.
vcact 6⊇ vloc :

This follows from the two systems in Fig. 3.9, since vcact is finer than vBact.

3.5 Conclusion

To study the foundations of interface automata, we have chosen a variant with
explicit error states and a standard parallel composition extended according
to the characteristic idea: an output that is not expected by the recipient
creates an error. To determine an appropriate refinement relation, we started
from the basic idea that an error-free specification can only have error-free
implementations and then considered the respective coarsest precongruence
respecting this basic requirement. We have done this for three variants of
error-freeness and characterized or at least approximated the precongruence
with an essentially trace-style semantics.

We have started with the optimistic view that errors only count if they are
reached locally. Our result here shows that the simulation-style refinement
of [27] is unnecessarily strict, but that the pruning integrated into the parallel
composition of [27] is justified. Then, we briefly looked at a hyper-optimistic
version (only internally reachable errors count) and a pessimistic version
(each reachable error has to be avoided). Surprisingly, both variants lead
to a stricter precongruence, and both the semantics are also based on the

99

same idea of pruning outputs (justifying it further). Since they are more
complicated, one might prefer the local variant for its simplicity.

More intuitively, we believe that it also is based on the right concept. At
the heart of interface automata is the emergence of errors, and this relies
on the idea that each system controls its outputs and internal actions; so
a locally reachable error can indeed not be prevented by the environment.
The hyper-optimistic view is less intuitive, but at least it served to show that
output pruning does not rely so much on the idea that only locally reachable
errors count. Note that the error pairs used to describe the respective fully
abstract precongruence might remind one of the failure semantics in the
previous chapter; but the meaning of error pairs is very different, and this
new idea might also be helpful elsewhere. The pessimistic view has the
plausibility of controlling the worst case; but this is actually a misconception:
comparing a state where input i is missing with a state where it leads to an
error state, we see that both just formulate the same requirement for the
environment: the environment must take this state into account and avoid
producing i – there is no difference at all. Put another way, input transitions
are only taken if the input is provided; for the two states mentioned nothing
bad will happen without input i being produced. There are cases, where the
pessimistic approach may be more appropriate, for example when studying
assemblies or closed systems. However, then all three approaches coincide
and the optimistic one has the advantage of simplicity.

A final argument concerns the approach we described at the end of Sec-
tion 3.3.2; assume we call P better than Q if each user (partner) U encounters
an error with P only if the same can happen with Q. There are three variants
for what it means to encounter an error, but they all agree for closed systems
like P |U and Q |U . Hence, there is only one meaning for “better-than”, and
this is the precongruence vloc of the first variant due to Corollary 3.21.

All three of our semantics are language- (i.e. trace-)based; in particu-
lar, vloc is conceptually easy to decide for finite-state EIOs with automata-
theoretic methods. It is often argued that simulation-type refinement notions
should be used because they are more efficient to check (i.e. in low polynomial
time), while language-based notions are usually PSPACE-hard; see e.g. [25].
We believe that one should not mix up the search for a refinement notion
that reflects the semantical issues of interest with complexity issues. Once
the semantically most adequate refinement is determined, one can still ap-
proximate it with a stricter notion that can be checked efficiently. If P is a
refinement of Q in the stricter sense, it can safely be used in place of Q. If
it is not, one can still decide whether one wants to invest greater effort in
order to find out whether the use of P would really destroy some relevant
properties. More detailed arguments of this kind are brought forward in [65].

100

Chapter 4

Modal Interface Automata

4.1 Introduction

We now come to the main contribution of this thesis: the interface theory of
Modal Interface Automata (MIA).

In this chapter we present MIA and its supported operations. Essen-
tially, MIAs are state machines with disjoint input and output alphabets, as
in Interface Automata (cf. Chapter 3), and two transition relations, may and
must, as in disjunctive Modal Transition Systems (dMTS) (cf. Chapter 2).
Unlike previous versions of MIA [52, 53] and also unlike other similar theories,
we introduce a special universal state u capturing arbitrary behaviour. It es-
sentially is the set of error states of EIOs (cf. Chapter 3) compressed into one
state. But, in contrast to error states u cannot be removed in general. It can,
however, be replaced by different notations for arbitrary behaviour after an
input may-transition (cf. [41, 48]). Unlike previous versions of MIA, we allow
for multiple (in fact infinitely many) initial states. Intuitively, they are un-
derstood disjunctively, similar to the targets of disjunctive must-transitions:
each initial state of a refinement has to match at least one initial state of
the specification. The reason for this extension, next to a more intuitive
and simpler disjunction operator, is the introduction of temporal logics. The
technical reasons will be presented later on.

Unlike the previous chapters, the refinement relation we use is simulation
based. We have examined the coarsest, most optimal refinement relations for
avoiding new errors and deadlocks. However, while being optimal for their
respective purposes, they are not as intuitive and not as easily decidable as
a simulation type refinements. In particular the modalities of dMTS are lost
to a large degree when using trace-based semantics, like the F -semantics, as
we have shown.

101

Thus, while our simulation is finer than the trace based relations we could
have used, it still preserves relevant properties like error or deadlock freedom,
while capturing modalities neatly and intuitively. Furthermore, it can be
decided more efficiently. Last but not least, simulation based refinements are
well accepted in the community.

The refinement used here is based on the weak as-refinement (aka obser-
vational modal refinement) of dMTS, but it treats inputs slightly differently:

When an input must-transition q
i−→ Q′ is to be matched by a state p, only

trailing τ -transitions are allowed: we require p
i−→ ε

=⇒ P ′, not p
i

=⇒ P ′.
The reason for this is error avoidance: If q guarantees immediate acceptance
of the signal i, it cannot be refined to some p which would produce an error
when receiving i; recall that we require immediate acceptance of signals, as
in Chapter 3. Output must-transitions can be matched using leading and/or
trailing τ -transitions, i.e. just like with usual weak as-refinement.

The refinement used for MIA in [13] and [20] also forbids using leading
τs for matching input may-transitions. Here we lift this restriction. We
rightly believed that this would lead to complications with the pruning during
parallel composition; however, we overestimated the challenges we described
in [13, Remark 9]: While removal of input transitions has to propagate further
back, there is no need to propagate it forward as well. Furthermore, pruning
during hiding is not a technical necessity. Nevertheless, the latter is more
intuitive, than the usual hiding and thus we will explore it as an alternative
hiding operator.

Our theory supports a number of operators. It, of course, features a par-
allel composition operator (without immediate hiding), but also relabelling,
restriction (of inputs) and two hiding (of outputs) operators. These we col-
lectively refer to as structural operators1.

MIA also features the logical operators of conjunction and disjunction. As
mentioned before, the former is only possible since we base MIA on dMTS
rather than MTS. The construction of disjunction is simpler than for the
refinement used in [13], since we use multiple initial states; we will elaborate
on this later on.

Following the ideas of [29] and [50] we add temporal logics to MIA – in
particular a safety fragment of ACTL. With this our interface theory pro-
vides Existential and Universal Next-operators (collectively known as HML-
operators), as well as Always- and Unless-operators.

The Existential Next-operator 〈α〉ϕ requires the existence of an α-tran-
sition with certain behaviour afterwards specified by ϕ. Similarly, the Uni-

1In [13] we also presented a quotienting operator, but since it was mainly the contri-
bution of Fendrich, it is omitted from this thesis.

102

versal Next-operator [α]ϕ requires ϕ to be satisfied after any α-transition.
To extend expressiveness, we will use sets of labels as parameters instead
of α for both HML-operators. The Always-operator �ϕ requires ϕ to be
satisfied in any reachable state; we will also parametrize this operator with a
set of labels (�Bϕ) to require ϕ only in states reached by actions in B. The
Unless-operator ϕWψ intuitively requires ϕ to hold unless at some point ψ
holds at least once. It is an extension of the Always-operator, which therefore
will only be a stepping stone that eases understanding of the rather involved
Unless-operator. We also parametrize the Unless-operator ϕBWCψ: B, as
with the Always-operator restricts requirements to states reached by actions
in B. C strengthens the escape requirement: ϕ now has to hold (in all states
reached by actions in B) unless an action in C in performed and ψ holds
afterwards. All of these parametrizations are generalizations.

We embed these operators into the framework by giving constructions and
showing that satisfaction coincides with refinement. Thus, the operators can
freely be applied not only to formulae but to arbitrary MIAs again resulting
in MIAs. To use temporal logics, we have to restrict MIAs slightly, requiring
initial τ -closure: Each state reachable by internal transitions should also be
an initial state. This requirement seems intuitive to us, but is technically
only required for our ACTL operators, so we will not require it in the rest of
the chapter. Requiring initial τ -closure throughout, would necessitate only
a slight adjustment in the definitions and proofs (cf. [20]).

In the context of temporal logics and refinement often a Hennessy-Milner-
style characterization is considered desirable. We show that our ACTL logics
does not provide such a characterization, but we define a slightly different
logic which does. We consider it, however, to be of secondary importance,
since, in contrast to ACTL, it cannot be embedded into the theory.

Essentially, all these operators are on an equal footing and can be com-
bined arbitrarily. We can use MIAs as primitives of logical formulae and
transitions of MIAs can lead to formulae (technically to MIAs representing
formulae).

When specifying different aspects of a system separately, it is often ben-
eficial to concentrate on only some actions of the overall system. For exam-
ple, when designing a communications interface for a web-service, a designer
specifying interactions with a user should not need to concern himself with
actions only pertaining to e.g. maintenance.

Since the overall system has to satisfy the aspect specification, one has
to define a setting where a refinement might have more actions, i.e. a larger
alphabet than the specification Q. Furthermore, for conjunction, one has to
deal with operands that have different alphabets. For both, the question is:

103

what does Q specify regarding foreign actions, actions outside its scope? The
answer mostly found in literature [13, 53, 59] is that Q allows but disregards
foreign actions keeping all its requirements, permissions and prohibitions in
place.

From a technical viewpoint, the refinement relation has to be extended
to allow for alphabet extension. This can be defined directly or by defining
an alphabet extension operator [Q]P which extends the alphabet of Q to the
one of P in a canonical way; then P v Q can be checked as before. For
state based settings, like MIA, such an alphabet extension operator usually
means adding some kind of loop: may-loops were argued for in [53], which
dealt with a previous incarnation of MIA. In the deterministic, trace-based
setting of Modal Interfaces [59], the authors used a mechanism corresponding
to may- and must-loops, naming the results weak and strong extensions.
However, their theory uses the former for conjunction and the latter for
parallel composition. This usage of separate refinement relations for different
operators renders their theory incoherent.

In Section 4.2.2, after MIAs have been formally defined, we will discuss
two other intuitive ideas on how to deal with foreign actions, other than
adding may-loops. We will incorporate flexible mechanism into MIA that al-
lows to specify various intuitions about the impact of foreign actions, and in
such a way that different ideas might apply to different states: we introduce
special new actions νI , νO acting as placeholders for foreign actions. Refine-
ment without alphabet extension will treat them as it does any other labels
of may-transitions. With these a designer can specify which kind of alphabet
extension he desires at this state, giving different degrees of importance and
different meaning to different states instead of forcing a uniform understand-
ing on all states vis-a-vis foreign actions and other aspect specifications. We
believe ours to be a very flexible and elegant solution to the problem, which
also generalizes and unifies several previous approaches.

In Chapter 1, we briefly mentioned some previous work concerning com-
binations of IA and MTS. Assuming the knowledge of previous chapters and
some intuition about MIA, we now go into more detail.

The first to examine relations between IA and MTS were Larsen et al.
in [42]. They examined the similarities between the two approaches, which
already had similar refinement relations: alternating simulations. They
provided a translation from IA to MTS: input transitions became must-
transitions and output transitions became may-transitions. In addition, to
be able to freely add input transitions during refinement (as is allowed in IA),
they introduced a dedicated state which allowed for arbitrary behaviour – we
came to call this a true-state; a missing input of IA became a may-transition

104

to the true-state. A true-state is very similar to the universal state we use
in MIA. However, while the intention is the same, there is a key difference
between the two concepts: the universal state retains its special property af-
ter parallel composition. This is very important for associativity of parallel
composition (cf. Modal Interfaces below).

Larsen et al. went on to define IOMTS, a combination of IA and MTS fea-
turing an IA-style refinement and an MTS-style parallel composition. How-
ever, their claim of compositionality, or rather its restricted version of inde-
pendent implementability, was wrong as has been shown in [59].

In the same latter, Raclet et al. present the deterministic setting of
Modal Interfaces (MI) and attempt to repair the flaw of IOMTS. However,
their result fails to show precongruence, as the claim compares two different
composition operators. Furthermore, their claim of associativity is flawed.
Their treatment of errors (while being trace-based) corresponds to a true-
state. Since this, unlike a universal state, loses its special status during
parallel composition, the order of compositions is not irrelevant. MIA, as
presented here2, can be seen as a nondeterministic extension of MI. We also
correct the associativity flaw using the universal state.

As mentioned above, Raclet et al. also examine two versions of alphabet
extension for MI: weak extension corresponds to the addition of may-loops at
each state and strong extension to adding must-loops. Their theory uses the
former for conjunction and the latter for parallel composition. This usage of
separate refinement relations for different operators renders MI an incoherent
theory.

To improve on IOMTS and MI, Lüttgen and Vogler developed the first
two incarnations of Modal Interface Automata (let us call them MIA-1 and
MIA-2 respectively) in [51] and [53]3. Their aim was not only to find a com-
bination of IA and MTS into which IA can be embedded, but also to provide
conjunction operators for IA, MTS and their combinations. To achieve this
for the setting including modality they introduced and used dMTS instead
of MTS, since, as we have seen in Chapter 2, no conjunction is possible for
traditional MTS.

The refinement relation used for MIA-1 and MIA-2 is based more on the
one for IA rather than MTS. Therefore, there is no forbidding inputs in the
MIA-1 setting and there are consequently no pure input may-transitions, i.e.
input may-transitions without an accompanying must-transition. Inputs are
either must, or missing and thus underspecified; in case of the latter an input
transition can be introduced arbitrarily. Furthermore, input determinism is

2and already the version of [13]
3The second paper was co-authored by Fendrich.

105

required. It should be noted, that MIA-1, as well as IA, IOMTS and MI,
(mostly) lack internal transitions.

For MIA-2, the authors introduce internal transitions, in particular al-
lowing for internal disjunctive must-transitions and weak must-transitions.
As we mentioned in Chapter 2, this is far from being as straightforward as
weak may-transitions.

The authors consider alphabet extension in this setting and illustrate the
occurring problems: allowing foreign inputs to knock out the specification
is, in general, undesired and the addition of input must-transitions would
force specification of undesired inputs. Since no pure input may-transitions
are allowed in this setting, the options are exhausted. They conclude that
for outputs may-loops are a solution, but in general they leave the problem
open.

They go on to examine a pessimistic version of MIA-2 where they can al-
low for pure input may-transitions and present, for the first time, conjunction
and disjunction operators for a nondeterministic pessimistic setting. In this
pessimistic setting they also achieve alphabet extension by adding may-loops.

We base the refinement relation of our MIA framework here on the re-
finement of MTS rather than IA. Thus inputs can be forbidden, pure input
may-transitions are possible and we use the universal state to symbolize un-
derspecification. Formalizing underspecification is necessary for the IA-style
parallel composition and its pruning, as we have seen in Chapter 3 and will
see here. The pure may-transitions allow for an elegant alphabet extension
operator. In [13], as mentioned above, we also added may loops to achieve a
persistent alphabet extension operator, thus solving the open problem men-
tioned above. Here, we go even further with the mechanism of new-action
labels, as explained above.

In [47] and [48], Luthmann et al. use the third MIA-model, first presented
in [12], to examine how modalities can be added to ioco testing (cf. [64]).
They use a different notation for essentially the same model: They swap the
meanings of a nonexistent input transition and an input transition leading
to a universal state. Thus, nonexistent transitions can be added arbitrarily,
while forbidden transitions have to lead to a special state.

A similar notational variant was examined by Kühbacher in his Bache-
lor’s thesis [41], where he also removed the universal state. Instead of input
transitions leading to the universal state, he annotated each state with a set
of inputs, which were allowed to be implemented arbitrarily.

Modal I/O Automata (MIO) [4] by Bauer et al. incorporate quite dif-
ferent design decisions than MIA; these are also different from the ideas of
IA. The authors define a pessimistic setting and consider all compositions

106

that can produce an error to be incompatible. We have argued against this
in Chapter 3. Furthermore, they examine the effects of weaker notions of
compatibility not requiring signals to be accepted immediately.

Thus, while MIO might at first glance look similar to MIA (they both
mix modalities with inputs and outputs), they are actually quite different
approaches.

The rest of this chapter is structured as follows. In the next section we
formally define MIA, weak transition relations and the refinement relation.
We also discuss the need for multiple initial states and the ideas behind the
new actions used for alphabet extension. We discuss the structural, logical
and temporal logic operators in Sect. 4.3, 4.4 and 4.5 respectively. The latter
also includes discussions on HML-characterizations of our refinement. In
Sect. 4.6 we introduce alphabet extension and extend the refinement and the
operators accordingly.

4.2 Modal Interface Automata: The Setting

We begin by formally defining MIAs.

Definition 4.1 (Modal Interface Automata). A Modal Interface Automaton
(MIA) is a tuple (P, I, O,−→, 99K, P0, u), where

• P is the set of states containing the possibly empty set of initial states
P0 and the universal state u,

• I ⊆ Σ and O ⊆ Σ are disjoint alphabets of input and output actions;
A =df I ·∪O is called the alphabet and we define Aτ =df A ∪ {τ},

• −→⊆ P×Aτ×(P(P)\{∅}) is the disjunctive must-transition relation,
with P(P) being the powerset of P ,

• 99K⊆ P × (Aτ ∪ {νI , νO})× P is the may-transition relation.

We require the following conditions:

1. For all α ∈ Aτ , p
α−→ P ′ implies ∀p′∈P ′. p α

99K p′ (syntactic consis-
tency),

2. u appears in transitions only as the target state of input may-transitions
(sink condition).

107

Condition 1 states that whatever is required should be allowed; this syntactic
consistency is a natural and standard condition (see [45]). Regarding Con-
dition 2, recall that we use u to express that an input is optional in some
state, with arbitrary behaviour afterwards. Note that there might very well
be ordinary states without any outgoing transitions for some input i; in other
words, a MIA does not have to be input-enabled like the IO-Automata in [54].

Observe that, as with dMTS in Chapter 2, our disjunctive must-transitions
have a single label, in contrast to Disjunctive MTS (DMTS) [44]. In the con-
text of MTS, this is sufficient for intuitively and compactly representing (a)
conjunction, as shown in [52], and (b) parallel composition, which would oth-
erwise require an indirect definition via, e.g., Acceptance Automata [1, 58],
as suggested in [6]. Our restriction to single labels does not seem to restrict
the expressible sets of implementations, i.e., τ -free labelled transition sys-
tems (LTS), as studied by Fecher and Schmidt [33] and Beneš et al. [6], due
to allowing arbitrary sets of initial states in MIAs. The main reason for using
sets of initial states instead of single initial states (as in previous versions of
MIA) are temporal operators. We will go into more detail after the definition
of refinement.

We define the τ -closure of a set of states P ′ as {p′ | ∃p ∈ P ′. p ε
=⇒ p′}.

We write p0 for P0 if P0 = {p0} and P [P ′] for the MIA P with the τ -closure
of P ′ as the set of initial states instead of P0 (or P [p′] if P ′ = {p′}).

We now define weak must- and may-transition relations that abstract
from transitions labelled by τ , as is needed for MIA refinement. It is an
alternative, more general definition than the one presented in [53]. In [53]
and [12], we have failed to notice that our conjunction operator applied to
infinite MIAs can result in infinite target sets of disjunctive must-transitions
(Rule (Must) in Def. 4.33; see p. 141 for an example of this). Consequently,
we now allow such target sets in Def. 4.1 above. As a consequence, we
modify also the definition of weak transitions; in order to derive adequate
weak must-transitions, they are built up back-to-front.

Definition 4.2 (Weak Transition Relations). For an arbitrary MIA P , we
define weak must- and may-transition relations, =⇒ and =⇒ respectively,
as the smallest relations satisfying the following conditions, where we write

P ′
α̂

=⇒ P ′′ as a shorthand for ∀p ∈ P ′ ∃Pp. p
α̂

=⇒ Pp and P ′′ =
⋃
p∈P ′ Pp:

1. p
ε

=⇒ {p} for all p ∈ P ,

2. p
τ−→ P ′ and P ′

α̂
=⇒ P ′′ implies p

α̂
=⇒ P ′′,

3. p
a−→ P ′ and P ′

ε
=⇒ P ′′ implies p

a
=⇒ P ′′,

108

0

1

2

3

4

5

6

7

8

τ

τ

o! i?

o!

o!
0′ 1′ 2′

o! i?

Figure 4.1: Examples of weak transitions and refinement.

4. p
ε

=⇒ p,

5. p
ε

=⇒ p′′
τ
99K p′ implies p

ε
=⇒ p′,

6. p
ε

=⇒ p′′
α
99K p′′′

ε
=⇒ p′ implies p

α
=⇒ p′.

We write
a−→ ε

=⇒ for transitions that are built up according to Case 3 and call

them trailing-weak must-transitions. Similarly,
a
99K

ε
=⇒ stands for trailing-

weak may-transitions.

For examples of weak transitions, consider the MIA on the left-hand side
of Fig. 4.1. By applying Def. 4.2.1 and 4.2.2, any τ -transition is also a
weak ε-transition. Similarly, every a-transition is also a weak a-transition by
Def. 4.2.1 and 4.2.3. Transition 2

τ−→ {4, 5} can be extended to 2
o

=⇒ {7, 8}
by applying Def. 4.2.2. Hence, 0

τ−→ {1, 2} extends to 0
o

=⇒ {3, 7, 8}. Ob-
serve that our weak must-transitions correspond to standard weak transitions
of LTS in the case that only must-transitions with a single target state are
used.

When reasoning about weak must-transitions, e.g., in Lems. 4.3 and 4.23
below, we consider a derivation of a weak must-transition according to Def. 4.2
as a tree and each node as being larger than the nodes from which it is derived.
Although the tree might be infinitely branching, larger-than is a Noetherian
partial order. Hence, one can apply (Noetherian, transfinite) induction on
the derivation of a weak must-transition.

Lemma 4.3. Consider an arbitrary MIA P .

(a) p
ε

=⇒ P̄ and P̄
α̂

=⇒ P ′ implies p
α̂

=⇒ P ′,

(b) p
a

=⇒ P̄ and P̄
ε

=⇒ P ′ implies p
a

=⇒ P ′.

Proof. (a) We proceed by induction on the definition of p
ε

=⇒ P̄ . Regarding
Def. 4.2.1, the claim is trivial. Now assume that p

ε
=⇒ P̄ is due to Def. 4.2.2,

i.e., we have p
τ−→ P ′′ and, for each p′′ ∈ P ′′, there is some P̄p′′ with p′′

ε
=⇒

P̄p′′ and P̄ =
⋃
p′′∈P ′′ P̄p′′ . By premise P̄

α̂
=⇒ P ′, some Pp̄ exists for each p̄ ∈ P̄

109

such that p̄
α̂

=⇒ Pp̄ and P ′ =
⋃
p̄∈P̄ Pp̄. For each p′′ ∈ P ′′, P ′p′′ =df

⋃
p̄∈P̄p′′

Pp̄

satisfies P̄p′′
α̂

=⇒ P ′p′′ and, by induction hypothesis, p′′
α̂

=⇒ P ′p′′ . By Def. 4.2.2,

this implies p
α̂

=⇒
⋃
p′′∈P ′′ P

′
p′′ . This target set is clearly the union of some Pp̄

with p̄ ∈ P̄ ; moreover, each p̄ ∈ P̄ is in some P̄p′′ , and the target set covers
P ′p′′ ⊇ Pp̄. Hence, the target set is P ′ and we are done. The case of Def. 4.2.3
does not apply.

(b) Similarly to (a), we apply induction on the derivation of p
a

=⇒ P̄ .
Case 1 of Def. 4.2 does not apply. Case 2 is shown as above, observing that
we need p′′

a
=⇒ twice, p̄

ε
=⇒, P̄p′′

ε
=⇒ and p

a
=⇒. Case 3 is also similar

to Case 2 in (a), except that all weak transitions not originating in p are
labelled ε, and we use (a) instead of the induction hypothesis.

Now we define our simulation-based refinement relation. It is a weak al-
ternating simulation that is conceptually similar to the observational modal
refinement found, e.g., in [40]. A notable aspect, originating from IA [27],
is that inputs-must-transitions have to be matched immediately, i.e., only
trailing τs are allowed. Intuitively, this is because of the requirement that
a signal sent from one system must be received immediately; otherwise, it
is considered an error (communication mismatch). Since one wishes not to
introduce new errors during refinement, a refined system must immediately
provide all specified inputs.

We treat the universal state u as completely underspecified, i.e., any
state refines it; this is only possible since u is not an ordinary state. Recall
that we have an i-may-transition from some state p to u to express that,
like in the IA-approach, p can be refined by a state with an i-transition
followed by arbitrary behaviour. We define our refinement preorder for MIAs
with common input and output alphabets here and relax this restriction in
Sect. 4.6.

The new actions νI and νO are, for now, treated like normal inputs and
outputs. They will play a special role when we extend this definition in
Def. 4.63. For convenience (use in definitions and proofs), we define the
refinement in two steps.

Definition 4.4 (MIA Refinement). Let P,Q be MIAs with common in-
put/output alphabets. A relation R ⊆ P ×Q is a MIA-refinement relation if
for all (p, q) ∈ R with q 6= uQ:

(i) p 6= uP ,

(ii) q
i−→ Q′ implies

∃P ′. p i−→ ε
=⇒ P ′ and ∀p′∈P ′ ∃q′∈Q′. (p′, q′) ∈ R,

110

(iii) q
ω−→ Q′ implies

∃P ′. p ω̂
=⇒ P ′ and ∀p′∈P ′ ∃q′∈Q′. (p′, q′) ∈ R,

(iv) p
α
99K p′ implies

∃q′. q α̂
=⇒ q′ and (p′, q′) ∈ R.

We write p v q and say that p MIA-refines q (or that p matches q) if there
exists a MIA-refinement relation R such that (p, q) ∈ R, and we let p wv q
stand for p v q and q v p and call it MIA-equivalence.

We lift the definition to MIAs by defining p v Q if ∃q0 ∈ Q0. p v q0 and
P v Q if ∀p0 ∈ P0. p0 v Q. We call P MIA-equivalent to Q (P wv Q) if
P v Q and Q v P .

Item (i) ensures that the universal state does not refine any other state.

Intuitively, Item (iv) says that p
α
99K p′ is allowed by q, since a matching

behaviour is specified in Q. As far as can be observed, q
α̂

=⇒ q′ shows the
same behaviour, but allows additional unobservable τ -transitions. In case
α = τ , the standard usage of α̂ allows that the matching behaviour might be
empty and q = q′. Note that this also covers new actions.

Conversely, Item (iii) ensures that q
α−→ Q′ is implemented by p. The

∀-quantified formula ensures that the choice of target states in Q′ is narrowed
down by the matching P ′. Item (ii) deals with inputs in a similar way, except
that only trailing τs are allowed. This fits to the intuition behind parallel
composition in [12, 25]: whenever a signal i is sent to a component Q in
state q, a communication mismatch occurs if q cannot accept it immediately.
An i-must-transition originating from q guarantees that the signal will be
accepted, i.e. it is safe for another component to send it. Since refinement
should not introduce new communication mismatches, any refinement p of q
also has to immediately accept the signal, i.e. p needs to have an outgoing
i-must-transition.

An example of a refinement can be found in Fig. 4.1, where the left MIA re-
fines the right one due to the refinement relation {(0, 0′), (1, 0′), (2, 0′), (4, 0′),
(5, 0′), (3, 1′), (7, 1′), (8, 1′), (6, 2′)}. Observe how the refined states 3 and 7
(and 8) of state 1′ implement the outgoing i?-may-transition differently.

For another example, consider the weak transition p0
o

=⇒ P ′ =df {p′1,
p′2, . . .} of ‘finite but unbounded depth’ in Fig. 4.2, which arises from our
back-to-front definition (cf. Def. 4.2). This weak transition is intuitively
justified, since each target of the disjunctive τ -must-transition guarantees o.
Technically, each pi refines q1 and, hence, p0 refines q0 according to Def. 4.4.
Therefore, p0

o
=⇒ P ′ is needed to make Prop. 4.5 (iii) below true for q0

o
=⇒ q′1.

111

p0

p1 · p′1

p2 · · p′2

· · ·...

τ

τ o

τ τ o q0 q1 q′1
τ o

Figure 4.2: Example of refining a weak transition.

As we show next, Lem. 4.3 allows us to replace the transition in the
premises of (ii) and (iii) above by a trailing weak and a weak one, respectively;
the analogous replacement in (iv) is standard. This result is needed for
proving that v is a preorder.

Proposition 4.5. Let R ⊆ P ×Q be a MIA-refinement relation for MIAs P
and Q, and let (p, q) ∈ R with q 6= uQ. Then, the following generalizations
of Def. 4.4(ii)–(iv) hold:

(ii) q
i−→ ε

=⇒ Q′ implies ∃P ′. p i−→ ε
=⇒ P ′ and ∀p′∈P ′ ∃q′∈Q′. (p′, q′) ∈

R,

(iii) q
ω̂

=⇒ Q′ implies ∃P ′. p ω̂
=⇒ P ′ and ∀p′∈P ′ ∃q′∈Q′. (p′, q′) ∈ R,

(iv) p
α̂

=⇒ p′ implies ∃q′. q α̂
=⇒ q′ and (p′, q′) ∈ R.

Proof. The proof of Part (iv) is standard; the proof of Part (ii) is very similar
to that of Part (iii), although the third case below is not relevant for Part (ii);
thus, we focus on proving Part (iii) concerning weak disjunctive transitions.

We proceed by induction on the definition of q
ω̂

=⇒ Q′:

• Let ω = τ and Q′ = {q}. Then, we choose P ′ =df {p}.

• Let q
τ−→ Q̄ and ∀q̄ ∈ Q̄ ∃Qq̄. q̄

ω̂
=⇒ Qq̄ with Q′ =

⋃
q̄∈Q̄Qq̄ according

to Def. 4.2.2. By assumption, a weak transition p
ε

=⇒ P̄ with ∀p̄ ∈ P̄
∃q̄ ∈ Q̄. (p̄, q̄) ∈ R exists. Choosing for each p̄ ∈ P̄ a suitable q̄, we

get some Pp̄ such that p̄
ω̂

=⇒ PP̄ and ∀p′ ∈ Pp̄ ∃q′ ∈ Qq̄. (p
′, q′) ∈ R by

induction hypothesis. By Lem. 4.3(a), we obtain p
ω̂

=⇒ P ′ =df

⋃
p̄∈P̄ Pp̄.

• Let q
ω̂

=⇒ Q′ due to Def. 4.2.3, i.e., ω̂ = o, q
o−→ Q̄, ∀q̄ ∈ Q̄. q̄ ε

=⇒ Qq̄

and Q′ =
⋃
q̄∈Q̄Qq̄. The proof then proceeds as in the previous case,

using Lem. 4.3(b).

112

Corollary 4.6. MIA refinement v is a preorder and the largest MIA-refine-
ment relation.

Proof. Reflexivity immediately follows from the fact that the identity rela-
tion on states is a MIA-refinement relation. For transitivity one shows that
the composition of two MIA-refinement relations is again a MIA-refinement
relation, using Prop. 4.5 and following the lines of [57]. The second claim
follows since MIA-refinement relations are easily seen to be closed under
union.

4.2.1 MIA-refinement with multiple initial states

Traditionally, in a setting with single initial states (p0 or q0 respectively)
one defines that P v Q if p0 v q0. In the context of the HML-operators
[a] and 〈a〉, we want to specify systems that after an action a behave like
a MIA Q. We expect this specification to be obtained from Q by adding
some a-may-transition targeting the initial state. This might fail with the
traditional definition of P v Q if the initial state of Q has a must-transition
in conflict with a τ -may-transition.

As an example, consider MIAs Q and Q′ in Fig. 4.3. One would expect
Q′ to behave like Q after performing a. However, Q′ can be refined by P ′,
because p′1 can be matched with q′2. This way, after a the b-must-transition
is completely ignored. However no refinement of Q can do this.

q0

Q

q1

q2

b

τ

q′00

Q′

q′0 q′1

q′2

a b

τ

p′0

P ′

p′1
a

Figure 4.3: Treatment of initial states during refinement.

A way to solve this in a setting with single initial states is to define an
initially loose MIA-refinement where P vL Q if p0 v q for some q with
q0

ε
=⇒ q. In our example, P ′[p′1] vL Q, since p′1 v q2. However, with this

refinement, we cannot define the disjunction of two MIAs with the charac-
teristic property of disjunction, namely P ∨Q vL R iff P vL R and Q vL R
for any MIA R:

113

Consider the MIAs in Fig. 4.4; for this paragraph, ignore the MIA P ∨Q
shown. Since P vL R and Q vL R by p0 v rp and q0 v rq, any MIA P ∨Q
would have to refine R, i.e. the initial state pq0 of P ∨Q would have to match
r0, rp or rq. If it matched rp, it would not allow o′, also not from a state pq′

with pq0
ε

=⇒ pq′ (since none of these states can have an o′-may-transition);
thus, Q would not refine P ∨Q, contradicting the characteristic property for
R vL P ∨Q. Analogously, pq0 cannot match rq. Finally, pq0 cannot match r0

either, since then a MIA consisting of a single o-must-transition would refine
P ∨Q, which would be absurd.

p0P p1
o q0Q q1

o′

r0R r1

rp rp1

rq rq1

o

τ

τ

o

o′

P ∨Q

p0 p1

q0 q1

o

o′

Figure 4.4: Disjunction problem.

Usually it is easy to define disjunction for systems with several initial
states, as in Def. 4.1 (cf. e.g. [6]). If we define P v′L Q by ∀p0 ∈ P0 ∃q0 ∈
Q0, q ∈ Q. (q0

ε
=⇒ q and p0 v q), then the disjunction P ∨Q can be defined

as the disjoint union of the states, initial states and transitions of P and Q,
barring the universal states, which have to be merged into one (cf. P ∨Q in
Fig. 4.4 and the formal definition below).

This refinement works fine for our purposes; but it is technically easier to
avoid weak transitions, so we prefer an alternative (but equivalent) definition.
We allow for several initial states, but require the set of initial states to be
closed under τ -may-transitions. However, this initial τ -closure will only be
necessary for the temporal operators presented in Sect. 4.5. In the rest we
will simply allow for multiple initial states.

Note that this refinement coincides with the one presented in [12] on the
domain of MIAs where both are applicable. This domain consists of MIAs
with single initial states that lack outgoing τ -transitions. We identify two
further special types of MIAs:

Definition 4.7 (Universal and Empty MIAs). A MIA P is called empty if
it has no initial state (P0 = ∅). A MIA P is called universal if it has its
universal state among its initial states (u ∈ P0).

114

It is easy to see that all empty MIAs are equivalent, as are all universal
ones. We will use F = ({u}, I, O, ∅, ∅, ∅, u) and U = ({u}, I, O, ∅, ∅, {u}, u) as
representatives for these classes.

An empty MIA stands for logical inconsistency and arises from the con-
junction of two logically inconsistent (i.e. contradictory) MIAs. In our logic,
F will play the role of false. A universal MIA arises from the parallel composi-
tion of incompatible systems, i.e. it represents an immediate communication
mismatch. We consider such a mismatch to be erroneous and fatal. Thus,
any specification is better than, i.e. a refinement of U. Nevertheless, U will
not play the role of true for reasons detailed at the beginning of Sect. 4.5.

4.2.2 Aspect-Oriented Specification

As mentioned above, the main question for aspect-oriented specification is:
given an aspect specification Q that is only concerned with some actions of
the overall specification, what does it specify regarding foreign actions? This
is relevant when checking whether some overall implementation P with a
larger alphabet satisfies Q, i.e. whether P v Q. To encompass such cases,
the notion of refinement is extended in [13] and [59] by defining an alphabet
extension operator [Q]P . It extends the alphabet of Q to that of P while
adding transitions for the new actions; then P v [Q]P is required. With
this, the alphabet extension of Q shows explicitly, what requirements Q has
regarding foreign actions. It is also possible to define an extended version
of refinement directly. This was, in part, done in [27], where refinement
allowed for alphabet modification: inputs could be added and outputs could
be removed during refinement. We will present both variants for the new
alphabet extension later on.

There are several intuitive possibilities what an aspect specification could
require regarding foreign actions, each suited for different circumstances. We
will discuss three possibilities now: persistent, knockout and forbidding. The
first of these is the one usually found in the literature, while the other two
are rare or do not appear at all (to the best of our knowledge). Since we aim
for strong expressiveness, we will eventually propose a flexible solution that
combines the advantages and possibilities of all three concepts.

We will also consider technical aspects of each version, in particular, how
it can be integrated into our existing notion of refinement derived from [13].
Since this is simulation based, each state of a refinement P has to be matched
by an appropriate state of its specification Q, such that all requirements and
prohibitions are preserved with appropriate future behaviour

The version of alphabet extension that has been used in [13] (and in [59]

115

for a trace-based setting) is persistent alphabet extension. Intuitively, a MIA
allows but disregards foreign actions keeping all its requirements, permissions
and prohibitions in place. Technically, a state p refining q may perform an
action foreign to q reaching a state p′, but p′ must essentially match q again.

This notion is useful e.g. for safety properties that should always hold,
no matter what actions occur in the overall system. As an example con-
sider the specification P in Fig. 4.5 with alphabet A = {in, out}. It only
allows in and out to alternate starting with in. One could also look at it as
initially prohibiting out and, after in, prohibiting in. Under persistent al-
phabet extension it allows the use of any foreign action without lifting these
prohibitions.

Thus R (Fig. 4.5) is a refinement of P : r0 matches p0. After the initial in
transition r1 matches p1. So must r2, since the foreign a-transition between
them is ignored by P . R′ however is not a refinement of P , as r′1 would have
to match p1, which prohibits in-transitions.

p0P

p1

in?out !

r0R r2

r1r3

in? a!

out !

out !

b?

k0K

in?

out !

r′0

R′R′

r′1 r′2

in?

in?

out !
a!

q0Q forbid

q1 ko

in?

in?, out !

Figure 4.5: Examples of alphabet extensions: may/must-transitions are de-
noted by dashed/solid arrows; in figures, inputs/outputs are marked by ?/!
after the label.

Another possibility is that after an unforeseen action, the specification
can be ignored, i.e. foreign actions lift all requirements of the specification.
Since a foreign action effectively knocks out the specification, we speak of
knockout alphabet extension. It appears as half of the alphabet modification
in [27], where foreign inputs can be added arbitrarily; outputs can only be
removed since this fits the setting more easily. Technically, any transition in
the refinement labelled with a foreign input need not be matched at all, thus
allowing arbitrary subsequent behaviour

Knockout extension can be used to specify properties like ‘in should be
enabled as long as only actions in and out occur’, without having to list
all possible (and maybe unknown) actions that can lift the requirement. K

116

in Fig. 4.5 describes this property and R′ satisfies it, i.e. R′ refines K: r′0
and r′1 both match k0, since they enable in. The a-transition, however need
not be matched in K and thus r′2 can prohibit in-transitions. R however
does not refine K, since r1 would be required to match k0, but lacks an
in-must-transition.

Both versions are reasonable and we can imagine a setting where one
would like to combine them, e.g. to require persistent behaviour for one
communication channel (in and out) and knockout behaviour for another
channel (in’ and out’). To achieve this, one would introduce state predicates
that would allow a designer to specify a state as persistent or as one that can
be knocked out.

Continuing along this line of thinking, one could desire additional choices,
for example to completely prohibit all foreign actions. A setting where all
states are understood as forbidding would be rather useless: while technically
one could extend the alphabet of a MIA, it would be impossible to use these
new actions. However, in combination with a knockout-predicate, forbidding
can be used to specify that a system should not do anything until it receives
the in-signal. This is depicted as Q in Fig. 4.5, with ‘forbid’ and ‘ko’ denoting
the state predicates. R satisfies this requirement, as it initially only allows
for an in-transition. However, R′ does not satisfy Q, since an a-transition is
allowed in r′0, but forbidden in q0 as a foreign action.

In this chapter, we propose an even more flexible definition of alphabet
extension: instead of using state predicates, we treat foreign actions explicitly
with special ν-transitions, differentiating between new input (νI) and new
output (νO) transitions. This will allow us to model all three presented
versions of alphabet extension and more. Essentially, P in the persistent,
K in the knockout and Q in the combined setting would look like P ′, K ′

and Q′ in Fig. 4.6. We will go into this in further detail and present a more
elaborate in Sect. 4.6.4 after the technical part.

p0P ′

p1

in?out !

ν

ν

k0K ′

ktt

in?

out !

ν ν, in?, out !

q0Q′

q1 qtt

in?
ν

in?, out !

ν, in?, out !

Figure 4.6: Alphabet extension with ν standing for νI and νO.

117

4.3 Structural Operators – Parallel Compo-

sition

Interface Automata (IA) [26, 27] are equipped with an interleaving parallel
operator, where an action occurring as an input in one interface is synchro-
nized with the same action occurring as an output in some other interface;
the synchronized action is hidden, i.e., labelled by τ . Since our work builds
upon Modal Interfaces (MI) [59] we instead consider here a parallel com-
position, where the synchronization of an interface’s output action involves
all concurrently running interfaces that have the action as input. Moreover,
we include a separate operator for hiding outputs (cf. [54]). This properly
generalises the binary communication of IA to multicast in MIA.

4.3.1 Parallel Composition

We present a parallel operator ‖ on MIA in the same way as we did in [52, 53],
except that common actions are not hidden immediately. Parallel composi-
tion is defined in two stages, similarly as in IA. First, a standard product ⊗
between two MIAs is introduced. Then, errors are identified, i.e., states
where an output is not matched by an appropriate input, and all states from
which reaching an error cannot be prevented are pruned, i.e., removed.

Recall that, according to our intuition, outputs are under the control of
one component. Therefore we exclude MIAs sharing output actions from
parallel composition.

Definition 4.8 (Parallel Product). MIAs P1, P2 are composable if O1∩O2 =
∅. For such MIAs we define the product P1 ⊗ P2 = ((P1 × P2) ∪ {u12},I,O,
−→,99K,P01×P02, u12), where u12 is a fresh state, I =df (I1 ∪ I2) \ (O1 ∪O2)
and O =df O1 ∪O2, and where −→ and 99K are the least relations satisfying
the following rules:

(PMust1) (p1, p2)
α−→ P ′1 × {p2} if p1

α−→ P ′1 and α /∈ A2

(PMust2) (p1, p2)
α−→ {p1} × P ′2 if p2

α−→ P ′2 and α /∈ A1

(PMust3) (p1, p2)
a−→ P ′1 × P ′2 if p1

a−→ P ′1, p2
a−→ P ′2 and a ∈ A1 ∩ A2

(PMay1) (p1, p2)
α
99K (p′1, p2) if p1

α
99K p′1 and α /∈ A2

(PMay2) (p1, p2)
α
99K (p1, p

′
2) if p2

α
99K p′2 and α /∈ A1

(PMay3) (p1, p2)
a
99K (p′1, p

′
2) if p1

a
99K p′1, p2

a
99K p′2 and a ∈ A1 ∩ A2

Note that νI and νO are treated by rules (PMay1) and (PMay2).
From the parallel product, parallel composition is obtained by pruning, i.e.,
one removes errors and states leading up to them via local actions, so called
illegal states. This also cuts all input transitions leading to an illegal state.

118

In [16] we showed that de Alfaro and Henzinger have defined pruning in
an inappropriate way in [25], such that associativity is violated. We remedied
this by cutting not only an i-transition from some state p to an illegal state,
but also all other i-transitions from p. However, since we allow for leading
τ -transitions in the refinement of input-may-transitions, we also have to cut
i-transitions from states that can reach p via τ -transitions. We discuss this
further after the definition. Not only did we prove that this is correct, the
solution is also intuitive since, this way, p describes the requirement that a
helpful environment must not produce input i. This requirement is described
in input-deterministic settings like [27] without any remedy.

Now, in [25, 16], p can be refined by a state with an i-transition and
arbitrary behaviour afterwards. As explained above, we express this by in-
troducing an i-may-transition to the universal state. This construction is
necessary to achieve compositionality and associativity for parallel compo-
sition; see Fig. 10 in [52] for the compositionality flaw in IOMTS [42] and
Fig. 4.8 for the associativity problem in MI [59], respectively.

Definition 4.9 (Parallel Composition). Given a parallel product P1 ⊗ P2, a
state (p1, p2) is a new error if there is some a ∈ A1∩A2 such that (a) a ∈ O1,

p1
a
99K and p2 6a−→, or (b) a ∈ O2, p2

a
99K and p1 6a−→. It is an inherited error

if one of its components is a universal state, i.e., if it is of the form (u1, p2)
or (p1, u2).

We define the set E ⊆ P1 × P2 of illegal states as the least set such that

(p1, p2) ∈ E if (i) (p1, p2) is a new or inherited error or (ii) (p1, p2)
ω
99K

(p′1, p
′
2) and (p′1, p

′
2) ∈ E.

The parallel composition P1 ‖ P2 is obtained from P1 ⊗ P2 by pruning

illegal states as follows: first, if there is a state (p1, p2) /∈ E with (p1, p2)
i
99K

(p′1, p
′
2) ∈ E for some i ∈ I∪{νI}, then all must- and may-transitions labelled

i and starting at a state (p1, p2) with (p1, p2)
ε

=⇒ (p1, p2) are removed, and a

single transition (p1, p2)
i
99K u12 is added to each. Second, if an initial state

is illegal, it is removed from the set of initial states and u12 is added. In
this case P1 and P2 are called incompatible and P1 ‖ P2 is a universal MIA,
otherwise they are called compatible. Finally, all unreachable states except
for u12 and all their incoming and outgoing transitions are removed. Note
that this contains all states in E. If (p1, p2) ∈ P1 ‖ P2, we write p1 ‖ p2 and
call p1 and p2 compatible.

Observe that the parallel composition of MIAs results in a well-defined MIA.
Firstly, this is true for the parallel product; in particular, u12 does not have
any transitions. Secondly, pruning guarantees that all target sets of must-
transitions are non-empty, and it preserves syntactic consistency and the sink

119

condition. As an aside, even if we would not have required the sink condition
in Def. 4.1, it would be enforced when applying parallel composition. Due
to the universality of u, P1 ‖ P2 is universally refineable if P1 and P2 are
incompatible. Observe also that, in P ⊗ Q, a transition from a legal state
to an illegal one must be an input transition, which is removed. Hence, for
compatible P1 and P2, all illegal states are removed as well. All transitions
of P1 ‖ P2 exist in P1 ⊗ P2, except for transitions to u12.

Before proving associativity and compositionality for ‖, we explain how
and why the pruning in Def. 4.9 differs from previous versions of MIA.

In [13] we used a simpler pruning, which only replaces i-transitions orig-

inating from a state (p1, p2) /∈ E with (p1, p2)
i
99K (p′1, p

′
2) ∈ E. This cutting

did not propagate backwards over τ -paths. Let us denote this old parallel
composition as ‖. While ‖ is compositional for the refinement of [13], it is
not so for our current refinement4:

Consider P and Q from Fig. 4.7 and observe that P v Q. Also consider
R =df ({r0, uR}, {d}, ∅, ∅, ∅, {r0}, uR), a MIA without any transitions and

with d as input and only action. The old parallel compositions Q ‖R and

P ‖R are shown, and it is easy to see that P ‖R 6v Q ‖R since q0 ‖ r0
i−→

q ‖ r0 cannot be matched as p0 ‖ r0 does not have any i-must-transition.
The new parallel composition (cf. Def. 4.9) cuts all i-transitions of P⊗Q. The
resulting Q ‖ R is also depicted and in fact MIA-equivalent to P ‖R = P ‖ R.

q0Q q̄

q′ q′′ q′′′

i?

τ

i? d!

p0P p̄

p′′ p′′′

i?

i?

d!

q0 ‖ r0

Q ‖R

q̄ ‖ r0

q′ ‖ r0
uQ ‖R

i?

τ

i?

p0 ‖ r0P ‖R=P ‖ R uP ‖R
i?

q0 ‖ r0

Q ‖ R

q′ ‖ r0

uQ ‖R

i?

τ

i?

Figure 4.7: Illustration of pruning, where AP = AQ = {i}/{d} and AR =
{d}/∅.

This pruning is also intuitively sensible: consider a system S intending

4In [13, Rem. 9], we claimed that ‘defining a general fix is much more involved since
backward and forward propagation along τs is necessary’. This is actually not the case.

120

p0P : · ·a? b! q0Q: b? r0R: j?

(p0 ‖ q0) ‖ r0 tt ‖ r0
a?

j?

a?, b!

j?

p0 ‖ (q0 ‖ r0) tt
a?

j?

a?, b!, j?

Figure 4.8: Differences between our state u and tt in [59], where AP =
{a}/{b}, AQ = {b}/∅ and AR = {j}/∅.

to send the signal i to Q ‖R. It cannot know whether Q ‖R is still in state
q0 ‖ r0, where it could accept the signal, or if it has already switched to state
q′ ‖ r0 such that a mismatch occurs. So S is incompatible with Q ‖R as well
as with Q ‖ R. For a system not intending to send i at this point, there is
no difference either. Thus, a user cannot see a difference between Q ‖R and
Q ‖ R.
In [59], Raclet et al. use a similar approach to pruning, but without an ex-
plicit universal state. Instead, when pruning illegal states, they introduce a
state we denote as tt, which almost behaves like our universal state. By con-
struction, this state has only input may-transitions as incoming transitions.
Furthermore, it has a may-loop for every action of the parallel composition
so that it can be refined by any state, much like our universal state (see
Def. 4.4(i)). But tt behaves differently in a parallel composition. To see this,
consider the MIAs P , Q, R in Fig. 4.8, where we construct (P ‖ Q) ‖ R ac-
cording to [59]. Since tt is an ordinary state, it is combined with r0 inheriting
the j-must-loop. In our approach, the combination with r0 is an inherited
error, and the target state just has a j-may-loop.

More importantly, there is the severe problem that parallel composition
in [59] is not associative. Consider P ‖ (Q ‖ R), also shown in Fig. 4.8,
which is not equivalent according to wv (and the equivalence in [59]) to
(P ‖ Q) ‖ R, due to the j-must-loop at tt ‖ r0. Note that our example does
not rely on the multicast aspect of our parallel composition; it works just as
well for the classic IA parallel composition.

We now prove that our parallel composition is indeed associative, starting
with two lemmas.

Lemma 4.10. If P , Q are composable MIAs, p ‖ q ∈ P ‖ Q, o ∈ OP‖Q and
i ∈ IP‖Q, then:

1. p ‖ q o
99K iff p

o
99K and o ∈ OP , or q

o
99K and o ∈ OQ.

121

2. If p 6i−→ and i ∈ IP or if q 6i−→ and i ∈ IQ, then p ‖ q 6i−→. The reverse
implication does not hold in general.

Proof. 1. Implication “⇒” is obvious. If implication “⇐” were false, then

(p, q) would be a new error or (p, q)
o
99K (p′, q′) in P ⊗ Q with p′ ‖ q′ un-

defined. Both would render (p, q) illegal and p ‖ q undefined, leading to a
contradiction.

2. This implication is also obvious, but the reverse implication does not
hold since the must-transition of p ‖ q might have been cut during pruning.

Lemma 4.11. Given three MIAs P1, P2 and P3, we have:

1. (P1 ‖ P2) ‖ P3 is defined iff P1, P2 and P3 are pairwise composable iff
P1 ‖ (P2 ‖ P3) is defined as well.

2. (P1 ‖ P2) ‖ P3 is equal to S obtained from applying pruning in one step
to (P1 ⊗ P2) ⊗ P3 (up to the name of the respective universal state).
For this purpose, a state ((p1, p2), p3) is a new error if, for some i 6= j

with i, j ∈ {1, 2, 3}, there is some a ∈ Ai ∩ Aj such that a ∈ Oi, pi
a
99K

and pj 6a−→; it is an inherited one, if pi = ui for some i ∈ {1, 2, 3}.

Proof. 1. is easy. 2. For reasons of readability we use P , Q, R instead of P1,
P2, P3 and write (p, q, r) for ((p, q), r). Let EPQR denote the illegal states of
(P ⊗ Q) ⊗ R as defined above when constructing S. We denote the illegal
states of P ⊗ Q and (P ‖ Q) ⊗ R by EPQ and E(P‖Q)⊗R respectively. Fur-
thermore, let ErrPQR, ErrPQ and Err(P‖Q)⊗R be the errors of the respective
systems. We also say that two states p and q produce an error, if (p, q) is an

error due to p
a
99K and q 6a−→ while a ∈ OP ∩ IQ or vice versa.

Our first aim is to show that EPQR = (EPQ×R)∪ (E(P‖Q)⊗R \ ({uP‖Q}×
R)).

Part “⊆” We prove that (p, q, r) ∈ EPQR is contained in the r.h.s. by
induction on the length of a local transition sequence from (p, q, r) to an error
in ErrPQR. For the base case, we show ErrPQR ⊆ (EPQ × R) ∪ (E(P‖Q)⊗R \
({uP‖Q} ×R)).

Consider (p, q, r) ∈ ErrPQR. If (p, q) is illegal in P ⊗ Q (this covers the
cases that p or q is universal or that p and q produce an error), then (p, q, r) ∈
EPQ×R. Otherwise, r = uR and (p, q, r) ∈ Err(P‖Q)⊗R \ ({uP‖Q}×R) ⊆
E(P‖Q)⊗R \ ({uP‖Q}×R), or r produces the error with p or q (or possibly

both). W.l.o.g. let p and r produce the error because p
a
99K and r 6a−→ for

some a ∈ OP ∩ IR or because p 6a−→ and r
a
99K for some a ∈ IP ∩ OR. By

122

Lem. 4.10.1, this leads to p ‖ q a
99K and r 6a−→ or, by Lem. 4.10.2, to p ‖ q 6a−→

and r
a
99K. Again, (p, q, r) ∈ Err(P‖Q)⊗R \ ({uP‖Q} ×R).

For the induction step, consider (p, q, r) ∈ EPQR such that (p, q, r)
ω
99K

(p′, q′, r′) ∈ EPQR and (p′, q′, r′) ∈ (EPQ × R) ∪ (E(P‖Q)⊗R \ ({uP‖Q} × R))
by induction hypothesis. By the argument at the beginning of the base
case, we can assume that p ‖ q is defined and, thus, (p ‖ q, r) exists in
(P ‖ Q)⊗R. Thus, if (p′, q′, r′) ∈ E(P‖Q)⊗R \ ({uP‖Q} ×R)), then (p, q, r) ∈
E(P‖Q)⊗R \ ({uP‖Q} ×R)) by the definition of E.

Finally, consider (p′, q′, r′) ∈ EPQ × R. If the ω-transition is only per-
formed by r, then (p′, q′, r′) = (p, q, r′) and, thus, (p, q) ∈ EPQ, contradicting

that (p, q) is not illegal. Otherwise, if ω ∈ OP⊗Q ∪ {τ}, then (p, q)
ω
99K

(p′, q′) ∈ EPQ and (p, q)∈EPQ, a contradiction. Thus, ω ∈ IP⊗Q and r per-

forms ω as an output since, overall, it is an output. As (p, q)
ω
99K (p′, q′) ∈

EPQ, this input transition is cut when pruning P ⊗ Q, implying p ‖ q 6ω−→.
This shows again that (p, q, r) ∈ Err(P‖Q)⊗R \ ({uP‖Q} ×R).

Part “⊇” We show that (EPQ×R)∪ (E(P‖Q)⊗R \ ({uP‖Q} ×R)) ⊆ EPQR.

First, we establish EPQ×R ⊆ EPQR: We prove that (p, q, r) ∈ EPQ×R is
contained in EPQR by induction on the length of a local transition sequence
from (p, q) to an error in ErrPQ. In the base case (p, q) ∈ ErrPQ, we have
that p and q produce an error or one of them is an error state. In either
case (p, q, r) ∈ ErrPQR ⊆ EPQR. For the induction step, consider some

(p, q)
ω
99K (p′, q′) ∈ EPQ where, by induction hypothesis, {(p′, q′)} × R ⊆

EPQR. If ω /∈ AR, then (p, q, r)
ω
99K (p′, q′, r) ∈ EPQR, and we are done.

If ω ∈ AR, then we must have ω ∈ IR. Now, either (p, q, r) ∈ ErrPQR or

(p, q, r)
ω
99K (p′, q′, r′) ∈ EPQR for some r′, and in either case we are done.

Second, we establish E(P‖Q)⊗R \ ({uP‖Q} × R) ⊆ EPQR. We prove that
(p, q, r)∈E(P‖Q)⊗R \ ({uP‖Q} ×R) is contained in EPQR by induction on the
length of a local transition sequence from (p ‖ q, r) to an error in Err(P‖Q)⊗R.
In the base case (p ‖ q, r) ∈ Err(P‖Q)⊗R \ ({uP‖Q}×R), we have that r = uR
and, thus, (p, q, r) ∈ ErrPQR ⊆ EPQR, or that p ‖ q and r produce an error.

The latter means either p ‖ q a
99K and r 6a−→ for some a ∈ (OP ∪ OQ) ∩ IR,

implying p
a
99K and a ∈ OP or q

a
99K and a ∈ OQ by Lem. 4.10.1, and

hence (p, q, r) ∈ ErrPQR ⊆ EPQR; or p ‖ q 6a−→ and r
a
99K for some a ∈

(IP ∪ IQ) ∩ OR. Here, p ‖ q 6a−→ can have several reasons. We might have

p 6a−→ and a ∈ IP , or q 6a−→ and a ∈ IQ, and in both cases (p, q, r) ∈ ErrPQR
due to r

a
99K . Otherwise, (p, q)

a−→ and (p, q)
ε

=⇒ a
99K (p′, q′) ∈ EPQ; in this

case, (p, q, r)
ε

=⇒ a
99K (p′, q′, r′) ∈ EPQ × R ⊆ EPQR by the above, implying

123

(p, q, r) ∈ EPQR since a ∈ O(P⊗Q)⊗R. For the induction step, consider some

(p ‖ q, r) ω
99K (p′ ‖ q′, r′) ∈ E(P‖Q)⊗R; since (p′, q′, r′) ∈ EPQR by induction

hypothesis, we are done with the ‘⊇’-case and, thus, with establishing the
desired equality.

Denoting the universal state of (P ‖ Q) ‖ R and S by u, we now show
that the state space (P × Q × R) \ EPQR ∪ {u} of S coincides with the
one of (P ‖ Q) ‖ R (up to the name of the universal state). The states of
(P ‖ Q) ‖ R are:

(((P ×Q) \ EPQ ∪ {uP‖Q})×R) \ E(P‖Q)⊗R ∪ {u}
= ((P ×Q×R) \ (EPQ ×R) ∪ ({uP‖Q} ×R)) \ E(P‖Q)⊗R ∪ {u}

= (P ×Q×R) \ ((EPQ ×R) ∪ E(P‖Q)⊗R)︸ ︷︷ ︸
=(P×Q×R)\EPQR

∪({(uP‖Q} ×R) \ E(P‖Q)⊗R︸ ︷︷ ︸
=∅

∪{u})

For the last step, note that (P ×Q×R) ∩ ({uP‖Q} ×R) = ∅.

Finally, we prove that the transitions of (P ‖ Q) ‖ R and S are the same.

For transitions to u, consider (p ‖ q) ‖ r i
99K u for some i ∈ I(P‖Q)‖R. This

transition exists iff (p ‖ q, r) i
99K and (p ‖ q, r) ε

=⇒ i
99K (t, r′) ∈ E(P‖Q)⊗R

for some t and r′. Now, either t = p′ ‖ q′ for some p′ and q′, and we have

(t, r′) ∈ E(P‖Q)⊗R \ ({uP‖Q} × R); or (p ‖ q, r) i
99K (uP‖Q, r

′), which holds iff

(p, q)
i
99K and (p, q)

ε
=⇒ i
99K (p′, q′) ∈ EPQ and either r

i
99K r′ or i /∈ AR and

r = r′. This is equivalent to (p, q, r)
i
99K and (p, q, r)

ε
=⇒ i
99K (p′, q′, r′) ∈

EPQ × R. Both cases together show: (p ‖ q) ‖ r i
99K u iff (p, q, r)

i
99KP⊗Q⊗R

and (p, q, r)
ε

=⇒ i
99KP⊗Q⊗R (p′, q′, r′) ∈ EPQR iff (p, q, r)

i
99KS u in S.

For transitions between the states of S, which are also the states of (P ‖
Q) ‖ R, observe that these are exactly the transitions inherited from (P ⊗
Q)⊗ R minus all i-transitions from any s with s

i
99K u. In (P ‖ Q) ‖ R, all

transitions are inherited indirectly from (P ⊗ Q) ⊗ R; if s
i
99K u, s clearly

has no other i-transitions.

It remains for us to show that no a-transition from some state s ∈ S
is missing, if s 6a99K u. Assume the contrary, namely that a transition s =

(p, q, r)
a
99KP⊗Q⊗R (p′, q′, r′) of S is missing in (P ‖ Q) ‖ R although s 6a99K u.

This can only be due to pruning; recall that (p ‖ q) ‖ r and (p′ ‖ q′) ‖ r′ are
states of (P ‖ Q) ‖ R.

If (p, q) 6a99KP⊗Q, then a /∈ AP ∪ AQ, and the missing transition was lost

when pruning (P ‖ Q)⊗R, contradicting s 6a99K u. Thus, (p, q)
a
99KP⊗Q (p′, q′).

124

If p ‖ q 6a99K p′ ‖ q′, then we have p ‖ q a
99K uP‖Q and (p ‖ q, r) is

illegal if a ∈ OR or (p ‖ q) ‖ r a
99K u, a contradiction in both cases. Thus,

(p ‖ q, r) a
99K (p′ ‖ q′, r′) in (P ‖ Q) ⊗ R. Again in this case, the transition

was lost when pruning (P ‖ Q)⊗R, a contradiction.

This lemma immediately implies the desired associativity:

Theorem 4.12. Parallel composition is associative in the sense that, for
MIAs P , Q and R, if (P ‖ Q) ‖ R is defined, then P ‖ (Q ‖ R) is defined
and both are isomorphic, and vice versa.

Now we proceed to show that MIA refinement is compositional w.r.t. parallel
composition, which essentially means that P1 v Q1 implies P1 ‖ P2 v Q1 ‖
P2 for all MIAs P1, Q1 and P2. The proof requires the following two lemmas:

Lemma 4.13 (Illegal states and refinement). For MIAs P1, P2 and Q1,
let EP be the E-set of P1 ⊗ P2 and EQ be the one of Q1 ⊗ P2. Further, let
p1 ∈ P1, p2 ∈ P2 and q1 ∈ Q1 such that p1 v q1. Then, (p1, p2) ∈ EP implies
(q1, p2) ∈ EQ.

Proof. Let I1/O1 be the alphabets of P1 and Q1, let I2/O2 be the alphabets of
P2, and let I/O be the alphabets of the products. The proof is by induction
on the length of a path from (p1, p2) to an error of P1 ⊗ P2:

(Base) Let (p1, p2) be an error.

• Let p1
a
99K with a ∈ O1 ∩ I2 and p2 6a−→. Then, for some q′1, we

have q1
ε

=⇒ q′1
a
99K by p1 v q1; hence, (q1, p2)

ε
=⇒ (q′1, p2) ∈ EQ

and (q1, p2) ∈ EQ as well.

• Let p2
a
99K with a ∈ O2 ∩ I1 and p1 6a−→. If q1

a−→, we have
a contradiction to p1 v q1; otherwise, (q1, p2) is an error since
a ∈ I1 ∩O2.

• If p1 = uP1 , then q1 = uQ1 because of p1 v q1, and thus (q1, p2) ∈
EQ.

• Case p2 = uP2 is obvious.

(Step) For a shortest path from state (p1, p2) to an error, consider the first

transition (p1, p2)
ω
99K (p′1, p

′
2) ∈ EP , where ω ∈ O∪{τ}. The transition

is due to either Rule (PMay1), (PMay2) or (PMay3). The treatment of
(PMay3) is easier than in [13] since, there, ω can be in O1 or in I1∩O2.
In all cases we find some q′1 ∈ Q1 such that (q′1, p

′
2) is locally reachable

from (q1, p2) and p′1 v q′1. The latter implies (q′1, p
′
2) ∈ EQ by induction

hypothesis.

125

(PMay1) p1
ω
99K p′1, p2 = p′2, ω /∈ A2. Due to p1 v q1, there is a q′1

such that q1
ω̂

=⇒ q′1 and p′1 v q′1, and (q1, p2)
ω̂

=⇒ (q′1, p2) by
applications of (PMay1). By induction hypothesis, (q′1, p2) ∈ EQ
and, therefore, (q1, p2) ∈ EQ.

(PMay2) p1 = p′1, p2
ω
99K p′2 and ω /∈ A1. Using (PMay2) we obtain

(q1, p2)
ω
99K (q1, p

′
2), so that (q1, p

′
2) ∈ EQ by induction hypothesis.

Hence, (q1, p2) ∈ EQ, too.

(PMay3) ω = o, p1
o
99K p′1 and p2

o
99K p′2 with o ∈ A1 ∩A2. Note that

o is an output for the product and one of its components, but an

input for the other. By p1 v q1 we have q1
ε

=⇒ q′′1
o
99K q′′′1

ε
=⇒ q′1

for some q′1, q
′′
1 , q
′′′
1 with p′1 v q′1. Therefore, we get (q1, p2)

ε
=⇒

(q′′1 , p2)
o
99K (q′′′1 , p

′
2)

ε
=⇒ (q′1, p

′
2) via (PMay1) and (PMay3). By

induction hypothesis, (q′1, p
′
2) ∈ EQ and, hence, (q1, p2) ∈ EQ,

too.

The next lemma generalises the synchronization according to Rule (PMust3)
to weak transitions:

Lemma 4.14 (Weak Must-Transitions). Let P , Q be composable MIAs.

1. For α /∈ AQ, p
α̂

=⇒ P ′ and q ∈ Q implies (p, q)
α̂

=⇒ P ′×{q} in P ⊗Q.

2. If p
a

=⇒ P ′ (or p
a−→ ε

=⇒ P ′) and q
a−→ Q′ for some a ∈ AP ∩AQ, then

(p, q)
a

=⇒ P ′ ×Q′ (or (p, q)
a−→ ε

=⇒ P ′ ×Q′) in P ⊗Q.

Proof. Claim 1: Clearly, the mapping P → P × {q} : p 7→ (p, q) is an
isomorphism if we only consider must-transitions labelled with the given α
or τ and states in P × {q} in P ⊗Q.

Claim 2: By induction on the definition of p
a

=⇒ P ′. In Case 2 of Def. 4.2,
we have p

τ−→ P̄ and a suitable p̄
a

=⇒ Pp̄ for each p̄ ∈ P̄ , such that P ′ =⋃
p̄∈P̄ Pp̄. Then, (p, q)

τ−→ P̄ × {q} due to (PMust1), and (p̄, q)
a

=⇒ Pp̄ ×Q′

by induction hypothesis; this yields (p, q)
a

=⇒ P ′ × Q′ due to Def. 4.2.2. In
Case 3 (the only one for the variant concerning

a−→ ε
=⇒), we have p

a−→ P̄
and a suitable p̄

ε
=⇒ Pp̄ for each p̄ ∈ P̄ such that P ′ =

⋃
p̄∈P̄ Pp̄. Then,

(p, q)
a−→ P̄×Q′ by (PMust3) and, for each (p̄, q′) ∈ P̄×Q′, we get (p̄, q′)

ε
=⇒

Pp̄ × {q′} by Claim 1, hence P̄ × Q′ ε
=⇒ P ′ × Q′. By Def. 4.2.3 we obtain

(p, q)
a

=⇒ P ′ ×Q′.

The proof for the following compositionality theorem has many similari-
ties to the corresponding proof in [5] (where leading τs are not allowed when

126

matching input-may-transitions), but the details are more involved due to the
more intricate definition of pruning. It is remarkable that our new pruning
is needed to deal with must-transitions (Subcases (PMust1) and (PMust3)
in Case (ii)). This might be surprising since cutting propagates backwards
over τ -may-transitions only.

Theorem 4.15 (Compositionality of Parallel Composition). Let P1, P2 and
Q1 be MIAs and P1 v Q1. Assume that Q1 and P2 are composable, then:

1. P1 and P2 are composable; they are compatible if Q and P2 are.

2. P1 ‖ P2 v Q1 ‖ P2.

Proof. Part 1 is trivial and follows from Lem. 4.13 respectively. We denote
the universal state of P1 ‖ P2 and Q1 ‖ P2 by uP and uQ, respectively. EP
stands for the E-set of P1⊗P2 and EQ for the one of Q1⊗P2, as in Lem. 4.13.
To establish Part 2, we prove that

R =df {(p1 ‖ p2, q1 ‖ p2) | p1 v q1} ∪ ((P1 ‖ P2)× {uQ})

is a MIA-refinement relation by checking the conditions of Def. 4.4. Then,
we are done: If Q1 and P2 are incompatible, the initial states of P1 ‖ P2

are matched by uQ. Otherwise, P1 and P2 are also compatible by Part 1.
Each initial state of P1 ‖ P2 has the form p01 ‖ p02 with p01 ∈ P01 and
p02 ∈ P02. By P1 v Q1 there is a matching q01 ∈ Q01 for p01 and thus
(p01 ‖ p02, q01 ‖ p02) ∈ R.

For the second subset, the check is trivial; so consider some (p1 ‖ p2, q1 ‖
p2) ∈ R:

(i) Obvious, since p1 ‖ p2 6= uP .

(ii) Let q1 ‖ p2
i−→ Q̄ due to either Rule (PMust1), (PMust2) or (PMust3).

Recall that (q1, p2)
i−→ Q̄ in Q1 ⊗ P2 as well and that Q̄ only consists

of legal states.

(PMust1) q1
i−→ Q′1 and Q̄ = Q′1 × {p2}. Then, by p1 v q1, there

is a P ′1 ⊆ P1 such that p1
i−→ ε

=⇒P ′1 and ∀p′1∈P ′1 ∃q′1∈Q′1. p′1 v q′1.

Now, (p1, p2)
i−→ ε

=⇒ P ′1×{p2} in P1⊗P2 by repeated application
of Rule (PMust1) and since i /∈ A2. For every (p′1, p2) ∈ P ′1×{p2},
we have a suitable (q′1, p2) ∈ Q′1 × {p2}; moreover, (p′1, p2) /∈ EP
by Lem. 4.13 since (q′1, p2) /∈ EQ. Thus, we have (p′1 ‖ p2, q

′
1 ‖ p2)

∈ R.

127

It remains for us to show that (p1, p2)
i−→ ε

=⇒ P ′1×{p2} also exists
in P1 ‖ P2, i.e., that no state (p′′1, p2) along this weak transition
is pruned. More generally, let us consider any p̄1 and p′′1 with

p1
i
99K p̄1

ε
=⇒ p′′1, implying (p1, p2)

i
99K (p̄1, p2)

ε
=⇒ (p′′1, p2).

Because of p1
i
99K p̄1 and p1 v q1, there must be some q̄1 with

q1
i

=⇒ q̄1 which implies (q1, p2)
i

=⇒ (q̄1, p2), and p̄1 v q̄1. If

(q̄1, p2) ∈ EQ, then the i-transition on (q1, p2)
i

=⇒ (q̄1, p2) would
lead to an illegal state and all outgoing i-transitions from q1 ‖ p2

would have been pruned, contradicting our assumptions. This
argument depends on our new pruning; without the backwards
propagation of cutting (as e.g. in [13]) it would not work. Thus,
(p̄1, p2) /∈ EP by Lem. 4.13, which implies by definition of EP that
(p′′1, p2) /∈ EP , too.

(PMust2) p2
i−→ P ′2 and Q̄ = {q1} × P ′2. Then, (p1, p2)

i−→ P̄ =
{p1} × P ′2 according to (PMust2) and since i /∈ A1. For (p1, p

′
2) ∈

P̄ , we get (p1, p
′
2) /∈ EP due to Lem. 4.13, because (q1, p

′
2) /∈ EQ.

Thus, p1 ‖ p2
i−→ P̄ and, for every p1 ‖ p′2 ∈ P̄ , we have q1 ‖ p′2 ∈

Q̄ with (p1 ‖ p′2, q1 ‖ p′2) ∈ R.

(PMust3) q1
i−→ Q′1, p2

i−→ P ′2 and Q̄ = Q′1 × P ′2. (Note that
i ∈ I1 ∩ I2.) Then, by p1 v q1, there is a set P ′1 ⊆ P1 such that

p1
i−→ ε

=⇒ P ′1 and ∀p′1∈P ′1 ∃q′1∈Q′1. p′1 v q′1. By Lem. 4.14 we get

(p1, p2)
i−→ ε

=⇒ P ′1 × P ′2. As in Case (PMust1) above, the states
in P ′1 × P ′2 are matched by Q̄ according to R.

Again, similarly to Case (PMust1), we have to show that

(p1, p2)
i−→ ε

=⇒ P ′1 × P ′2 also exists in P1 ‖ P2, i.e., no state
(p′′1, p

′
2) along this weak transition is pruned. More generally, let

us consider any p̄1 and p′′1 with p1
i
99K p̄1

ε
=⇒ p′′1 and some p′2

with p2
i
99K p′2, implying (p1, p2)

i
99K (p̄1, p

′
2)

ε
=⇒ (p′′1, p

′
2). Be-

cause of p1
i
99K p̄1 and p1 v q1, there must be some q̄1 with

q1
i

=⇒ q̄1, which implies (q1, p2)
i

=⇒ (q̄1, p
′
2), and p̄1 v q̄1. If

(q̄1, p
′
2) ∈ EQ, then all outgoing i-transitions from q1 ‖ p2 would

have been pruned, contradicting our assumptions as above; thus
(p′′1, p

′
2) /∈ EP follows.

(iii) Let q1 ‖ p2
ω−→ Q̄ due to either (PMust1), (PMust2) or (PMust3).

Again the transition and the states exist in Q1 ⊗ P2.

(PMust1) q1
ω−→ Q′1, ω /∈ A2 and Q̄ = Q′1 × {p2}. Then, by p1 v q1,

128

there exists P ′1 ⊆ P1 such that p1
ω̂

=⇒ P ′1 and ∀p′1∈P ′1 ∃q′1∈Q′1. p′1 v
q′1. Now, (p1, p2)

ω̂
=⇒ P ′1 × {p2} according to (PMust1) and

since ω /∈ A2. Because p1 ‖ p2 is defined, this also holds for
all pairs along this weak transition by the definition of EP . For
p′1 ∈ P ′1 we have a suitable q′1 ∈ Q′1 such that, for the arbitrary
p′1 ‖ p2, we may also infer (p′1 ‖ p2, q

′
1 ‖ q2) ∈ R.

(PMust2) p2
ω−→P2 P

′
2, ω /∈ A1 and Q̄ = {q1} × P ′2. In this case we

obtain that (p1, p2)
ω−→ P̄ = {p1} × P ′2 by (PMust2) and ω /∈ A1.

For (p1, p
′
2) ∈ P̄ we get (p1, p

′
2) /∈ EP due to Lem. 4.13 since

(q1, p
′
2) /∈ EQ. Thus, p1 ‖ p2

ω−→ P̄ and therefore also p1 ‖ p2
ω̂

=⇒
P̄ . For (p1, p

′
2) ∈ P̄ , we also have (p1 ‖ p′2, q1 ‖ p′2) ∈ R.

(PMust3) ω = o, q1
o−→ Q′1, p2

o−→ P ′2 for some action o ∈ (O1∩I2)∪
(I1∩O2), and Q̄ = Q′1×P ′2. By p1 v q1, there exists some P ′1 ⊆ P1

with p1
o

=⇒ P ′1 (possibly p1
o−→ ε

=⇒ P ′1, if o ∈ I1) such that ∀p′1∈P ′1
∃q′1∈Q′1. p′1 v q′1. Now, (p1, p2)

o
=⇒ P ′1×P ′2 by Lem. 4.14 and, as in

Case (PMust1) above, all pairs along this weak transition exist in
P1×P2. Hence, p1 ‖ p2

o
=⇒ P ′1×P ′2 and, for all p′1 ‖ p′2 ∈ P ′1×P ′2,

we have some q′ ∈ Q′ such that (p′1 ‖ p′2, q′1 ‖ p′2) ∈ R.

(iv) First, consider p1 ‖ p2
i
99K uP due to pruning, i.e.

(p1, p2)
ε

=⇒ (p′′1, p
′′
2)

i
99K (p′1, p

′
2) ∈ EP and (p1, p2)

i
99K in P1 ⊗ P2.

(PMay1) i /∈ A2, i.e. p1
ε

=⇒ p′′1
i
99K p′1 and p′2 = p′′2 = p2. By p1 v q1

and Prop. 4.5, we have some q′1 with q1
i

=⇒ q′1 and p′1 v q′1. With

(PMay1) we get (q1, p2)
i

=⇒ (q′1, p2), since we have (q′1, p2) ∈ EQ
by Lem. 4.13. Therefore, q1 ‖ p2

i
=⇒ uQ by pruning.

(PMay2) i /∈ A1, i.e. p2
ε

=⇒P2 p
′′
2

i
99K p′2 and p′1 = p′′1 = p1. Then,

(q1, p2)
i

=⇒ (q1, p
′
2) by (PMay2). Since (p1, p

′
2) = (p′1, p

′
2) ∈ EP ,

we get (q1, p
′
2) ∈ EQ by Lem. 4.13. Hence, q1 ‖ p2

i
=⇒ uQ by

pruning.

(PMay3) p1
i
99K p′1 and p2

i
99K p′2 for some action i ∈ I1 ∩ I2. Due to

p1 v q1, we get q1
i

=⇒ q′1 for some q′1 such that p′1 v q′1. Hence,

(q1, p2)
i

=⇒ (q′1, p
′
2) by Rules (PMay1) and (PMay3). Lem. 4.13

yields (q′1, p
′
2) ∈ EQ. Therefore, q1 ‖ p2

i
=⇒ uQ by pruning.

Second, we consider p1 ‖ p2
α
99K p′1 ‖ p′2, due to one of the Rules (PMay1)

through (PMay3).

129

(PMay1) p1
α
99K p′1, α /∈ A2 and p′2 = p2. By p1 v q1, we have q1

α̂
=⇒

q′1 for some q′1 such that p′1 v q′1. Hence, (q1, p2)
α̂

=⇒ (q′1, p2) by
repeated application of (PMay1) and since α /∈ A2. Note that
(q1, p2) /∈ EQ, since q1 ‖ p2 is defined by assumption. Therefore, if

any state along (q1, p2)
α̂

=⇒ (q′1, p2) is in EQ, then we have α ∈ I
and (q1, p2)

α
=⇒ uQ. Then, we are done by (p1 ‖ p2, uQ) ∈ R;

otherwise, we have q1 ‖ p2
α̂

=⇒ q′1 ‖ p2 with (p′1 ‖ p2, q
′
1 ‖ p2) ∈ R.

(PMay2) p2
α
99K p′2, α /∈ A1 and p′1 = p1. Then, (q1, p2)

α
99K (q1, p

′
2)

by (PMay2) and due to p1 v q1. If the latter state (q1, p
′
2) were

in EQ, then we either have α ∈ I and (q1, p2)
α
99K uQ, or (q1, p2) ∈

EQ. In the first case we are done and in the second case q1 ‖
p2 would not be defined. Thus, we have q1‖p2

α
99K q1‖p′2 and

(p1‖p′2, q1‖p′2) ∈ R.

(PMay3) α = a, p1
a
99K p′1 and p2

a
99K p′2 for some action a ∈

A1 ∩ A2. Due to p1 v q1, we get q1
ε

=⇒ q′′1
a
99K q′′′1

ε
=⇒

q′1 for some q′1, q
′′
1 , q
′′′
1 ∈ Q such that p′1 v q′1. Now, we ob-

tain (q1, p2)
ε

=⇒ (q′′1 , p2)
a
99K (q′′′1 , p

′
2)

ε
=⇒ (q′1, p

′
2) by (PMay1)

and (PMay3). Hence, q1 ‖ p2
a

=⇒ q′1 ‖ p′2 and (p′1 ‖ p′2, q′1 ‖ p′2) ∈
R or q1 ‖ p2

a
=⇒ uQ, as in Case (PMay1) above.

We close this subsection on parallel composition with a discussion of legal
environments as introduced for IA in [27]. Intuitively, a legal (or helpful)
environment for a composition P ⊗Q is a MIA V that prevents P ⊗Q from
running into an error. In the final application, the parallel composition is
embedded in such a legal environment, which may for example represent a
user.

In [27], the concept of legal environments is used to justify the pruning,
by showing that two systems are compatible if and only if there is a legal en-
vironment for them. The intuition is that two IA are only compatible if there
is an environment that can use them without producing errors. If there is no
such environment, the parallel composition may as well be undefined. Note
that, two IAs are incompatible if their parallel composition is not defined due
to the initial state being removed by pruning. Correspondingly, two MIAs
are incompatible if the initial state of the parallel composition contains u due
to pruning.

Definition 4.16 (Legal Environment). A legal environment for MIAs P and
Q is a MIA V with:

1. V is composable with P ⊗Q,

130

2. I(P⊗Q)⊗V = ∅,

3. The reachable states of (P ⊗Q)⊗ V contain neither new nor inherited
errors in the sense of Lem. 4.11.

Note that, since (P ⊗ Q) ⊗ V only has locally controlled actions, all
reachable errors are locally reachable. Usually, in frameworks with binary
communication, an environment is defined to have the outputs of P ⊗ Q
as inputs and vice versa; thus, their composition is closed. Here, such a
signature results in the product only having output and internal actions,
which is natural for multicasting such as ours. One can then close the system
with hiding all outputs. To generalize our additional result in Prop. 4.18,
we only require that composition with an environment results in a system
without inputs.

This notion of legal environment provides a characterization of compati-
bility:

Proposition 4.17. MIAs P and Q are compatible if and only if there exists
a legal environment for them.

Proof. ‘⇒’: If P and Q are compatible, then P ⊗Q has no locally reachable
errors. Composing it with a MIA V that accepts all inputs (via must-loops
at the initial state) but provides no outputs, yields only those states that are
locally reachable from (p0, q0). Thus V is a legal environment for P and Q.

‘⇐’: Assume, towards a contradiction, that P and Q are not compatible,
i.e. P ⊗ Q has a locally reachable error in (p, q). Then, for any MIA V ,
(P ⊗Q)⊗ V either has a reachable state ((p, q), v) resulting in an inherited
error, or there is a first output transition on the path to (p, q) which V
prevents by not providing the corresponding input transition. This results
in a locally reachable new error in (P ⊗ Q) ⊗ V . Either way V is no legal
environment.

In terms of justification, we can do better than this. We show that prun-
ing only removes behaviour from P ⊗ Q that is never reached in any legal
environment, i.e. (P ⊗Q)⊗V = (P ‖ Q)⊗V . Our result shows that pruning
does not change the behaviour when the compostion is used properly, i.e. in
a legal environment. Note that our result is actually more general, since we
do not need Condition 2 on Def. 4.16.

Proposition 4.18. For MIAs P and Q and a corresponding legal environ-
ment V , we have (P ⊗ Q) ⊗ V = (P ‖ Q) ⊗ V (up to the names of the
respective universal states).

131

Proof. Due to Def. 4.16, the pruning in Lem. 4.11 does not change (P⊗Q)⊗V
and its universal state is unreachable. Furthermore, it equals (P ‖ Q) ‖ V
(up to name of the universal state). Since the universal state is unreachable
in (P ‖ Q) ‖ V , pruning of (P ‖ Q) ⊗ V left the MIA unchanged and the
claim follows.

4.3.2 Universal States in Input/Output Approaches

States that, like our universal state u, represent arbitrary behaviour and have
only input transitions as ingoing transitions date back at least to the thesis of
Dill [32]. His work is focussed on a trace-based semantics, consisting of a set
of ordinary traces and a set of so-called failure traces. The latter deal with
behaviour resulting from communication mismatches. LTS-representations
of the semantics have a special state that has arbitrary behaviour due to
looping transitions for all actions. This state completes the LTS by making
the other states input-enabled, and it is not an ordinary state since it is the
only one representing the failure traces. The notion of input-enabledness is
purely syntactic: a state s is input-enabled if it has an outgoing i-transition
(must or may in case of modalities), for each input i. Considering an LTS
in [32], an i-transition from s to the special state indicates that s cannot
safely receive this input. This is just the same as a missing input in IA, and
the LTS really is an IA. The representation based on a special state is just
more convenient for a trace-based semantics expressing that, as in standard
IA, a missing input can always be added in a refinement step.

A similar completion can be found in a process-algebraic setting in [31],
where it is called demonic: if a process p does not have an i-transition ac-
cording to the standard operational rules, then there are additional rules
that give p an i-transition to a process having arbitrary behaviour, essen-
tially due to loops. The latter process is an ordinary process, and com-
munication mismatches are not considered. A variant of demonic comple-
tion is also used in [67] to achieve compositionality for parallel composition
in the ioco-approach to conformance testing; this approach also disregards
communication mismatches. The suggestion is to apply the completion to
the specification first, each time the ioco-implementation relation is checked.
That the completion uses ordinary states makes sense only because ioco does
not support stepwise refinement and assumes that implementations are al-
ways input-enabled. Applying the suggested solution in IA would force each
refinement to be input-enabled, violating the very idea of IA.

This problem with ordinary universal states in an IA-approach can be
fixed as in [22, 16], where universal states are called error states. The se-
mantics and the special treatment of error states in these papers is similar

132

to the one in [32], but error states do not necessarily complete an IA and
do not need loops. They arise in case of a communication mismatch in a
parallel composition, just as in this chapter. The problem with ordinary
universal states vanishes when modalities are added, since input-transitions
to the universal state and the loops at this state can be declared to be of
may-modality. Completion with this idea is used in [42] when translating
IA with their refinement relation to MTSs. There, an input may-transition
always expresses that the respective input is allowed in a refinement, but at
present the input cannot be received safely.

As already discussed above, an ordinary state tt with may-loops is inserted
during parallel composition in [59] as target for input transitions that have
been cut due to pruning. This way, a precongruence is achieved, and it works
fine for refinement that tt is regarded as an ordinary state. However, parallel
composition is not associative this way; to avoid this problem, we insert u
during parallel composition and give it a special treatment in refinement. It is
important to note that we do not perform completion, i.e., for some ordinary
state, an input can also be forbidden in all refinements, in accordance with
the MTS-view.

4.3.3 Hiding, Restriction and Relabelling

We now turn to relabelling, hiding and restriction, which are common oper-
ators in process algebra [39, 57]. While relabelling is rather straightforward,
we define hiding only for outputs and restriction only for inputs. The intu-
ition behind this is that both operators block communication channels. Since
outputs are under the control of the system, they are still performed, even if
the signal no longer reaches the environment. It still can represent internal
communication within components of the system. Inputs however can only
be performed as a result of an outside stimulus. Once the signal is blocked
the system cannot spontaneously decide to receive it. The same concept
appeared in the IA-like setting of [23], albeit as a combined operator.

Definition 4.19 (Relabelling). Let P = (P, I, O,−→P , 99KP , p0, u) be a
MIA. We call a function f : Σ→ Σ a relabelling function. If f(I)∩f(O) = ∅,
then the relabelling of P is defined as P [fI , fO] =df (P, f(I), f(O),−→P [fI ,fO],
99KP [fI ,fO], p0, u) where all transition labels a are replaced by f(a).

Note that when relabelling some a to b, both can be foreign actions, but
neither can be νI or νO.

Definition 4.20 (Restriction). Given a MIA P = (P, I, O,−→P , 99KP , P0, u)
and a set L ⊆ Σ \ O. Then, restricting L in P yields the MIA P \ L =df

133

p0P

p′

p u

i?

o! i?

p0P/L

p′

p u

i?

τ i?

r0R

l0P//L=(P/L) ‖ R l u

i?

τ i?

Figure 4.9: Problem with standard hiding. L = {o} and AR = ∅.

(P, I\L,O,−→P\L, 99KP\L, P0, u), where all transitions with a label contained
in L are deleted.

Definition 4.21 (Hiding). Given a MIA P = (P, I, O,−→P , 99KP , P0, u)
and a set L ⊆ Σ \ I. Then, hiding L in P is the MIA P/L =df (P, I,
O \L,−→P/L, 99KP/L, P0, u), where all transition labels o ∈ L are replaced by
τ .

The definition of hiding is natural and standard, but a usual equivalence
fails, namely (P/L) ‖ R wv (P ‖ R)/L for L ∩ AR = ∅. Consider P and R
from Fig. 4.9. P ‖ R and P are equal up to the names of states, hence so are
(P ‖ R)/L and P/L. Here, (P/L) ‖ R (also depicted) is not MIA-equivalent
to (P ‖ R)/L, since the first is missing an initial i-must-transition.

A solution for this is to perform during hiding the same normalization
as results from our pruning during parallel composition: for P//L we replace
all labels in L by τ and identify states p that then can reach the universal

state using τ -transitions and one final input i (p
ε

=⇒ i
99K uP). From such a

state we replace all outgoing i-transitions (if present) by a single one to the
universal state (cf. Fig. 4.9).

Definition 4.22 (Hiding with pruning). Given a MIA P = (P, I, O,−→P ,
99KP ,P0, u) and a set L ⊆ Σ\I. Then, P norm-hiding L is the MIA P//L =df

(P, I, O \L,−→P//L, 99KP//L, P0, u), where the transitions are changed as fol-

lows: from each state p with p
w

=⇒ i
99K uP and p

i
99K (with w ∈ L∗ and

i ∈ I), all outgoing i-transitions are removed and one transition p
i
99KP//L uP

is added. Each label o ∈ L is replaced by τ .

Observe that all four of the above operators yield well-defined MIAs;
in particular, the sink condition is preserved by hiding (with and without
pruning) since L ∩ I = ∅.

134

Lemma 4.23 (Weak Must-Transitions under Hiding). Let P be a MIA, L∩
I = ∅ and o ∈ L ∩O. If p

o
=⇒P P

′, then p
ε

=⇒P/L P
′ and p

ε
=⇒P//L P

′.

Proof. By induction on the definition of p
o

=⇒P P ′. If p
o

=⇒P P ′ is due to
Def. 4.2.3, then the claim is obvious. Otherwise, p

o
=⇒P P ′ is due to some

p
τ−→P P̄ and P̄

o
=⇒P P

′ according to Def. 4.2.2. By induction hypothesis,
we have p̄

ε
=⇒P/L Pp̄ for each p̄ ∈ P̄ and P ′ =

⋃
p̄∈P̄ Pp̄. By Def. 4.2.2, we

obtain p
ε

=⇒P/L P
′. The same holds for P//L, since it differs from P/L only

on input transitions.

As desired, MIA-refinement is a precongruence w.r.t. relabelling, restriction
and hiding:

Proposition 4.24. Let P , Q be MIAs with P v Q and L be an appropriate
set, then:

1. P [fI , fO] v Q[fI , fO] for an appropriate relabelling function f .

2. P \ L v Q \ L.

3. P/L v Q/L.

4. P//L v Q//L.

Proof. The proofs for 1. and 2. are straightforward and 3. is very similar to
but simpler than 4. We show the last explicitly:

Since P v Q, there is a MIA-refinement relation R′. We show that R =
R′ ∪ {(p, uQ//L)} is a MIA-refinement relation. We consider some (p, q) ∈ R
with q 6= uQ//L (i.e. in the first subset) and check the points of Def. 4.4.

(i) q 6= uQ//L implies q 6= uQ by construction. Due to p v q we get p 6= uP
and again by construction p 6= uP//L.

(ii) q
i−→Q//L Q′: by construction q

i−→ Q′ and thus, there exists a P ′

matching Q′ with p
i−→ ε

=⇒P//L P ′. If p
i−→P//L then p

i−→ ε
=⇒P//L

P ′ and we are done. Otherwise the i-transition was removed during

pruning due to p
w

=⇒ i
99KP uP with w ∈ L∗. Because of p v q we get

q
w

=⇒ i
99KQ uQ. Thus all i-transitions originating from q are removed

during pruning and q 6i−→Q//L which contradict our assumptions for this
case.

135

(iii) q
ω−→Q//L Q

′: if ω ∈ O \ L or ω = τ and q
τ−→Q Q′ the claim can be

shown analogously to (ii) without the possibility of pruning. Otherwise,
we have q

τ−→Q//L Q
′ due to q

o−→Q Q
′ with o ∈ L. Then there is some

P ′ matching Q′ in R and p
o

=⇒ P ′. By Lem. 4.23 we get p
ε

=⇒P//L P
′

and are done.

(iv) p
α
99KP//L p′: the first possibility is that α ∈ A ∪ {νI , νO} or α = τ and

p
τ
99KP p′; either way p

α
99KP p′. Then q

α̂
=⇒Q q′ with (p′, q′) ∈ R. If

the respective α-transition is pruned during hiding, then q
α

=⇒Q//L

uQ//L and we are done since (p′, uQ//L) ∈ R. Otherwise, we have

q
α̂

=⇒Q//L q′ and (p′, q′) ∈ R. The second possibility is that α = τ

and p
τ
99KP//L p′ due to p

o
99KP p′ and o ∈ L. Then q

o
=⇒Q q′ with

(p′, q′) ∈ R′ and thus q
τ

=⇒Q//L q
′ and (p′, q′) ∈ R.

MIA-refinement indeed satisfies the law described above for our modified
hiding. The completely new proof is fairly hard.

Proposition 4.25. Let P , Q be MIAs with P v Q and L ⊆ Σ \ (IP ∪ AQ).
Then (P//L) ‖ Q is equal to (P ‖ Q)//L.

Proof. Observe that the parallel products (P//L) ⊗ Q and P ⊗ Q have the
same states. The set of illegal states is also the same: firstly, no error is
caused by o ∈ L since, by assumption, o is not synchronising. Secondly,
pruning during // at worst removes input must-transitions from P , thus all
errors in the second product are also errors in the first. The additional errors
of (P//L)⊗Q can only arise from a state (p, q) where an a ∈ IP ∩OQ was cut

at p and q
a
99K. This implies p

w
=⇒ p′

i
99K u for some w ∈ (L ∩ OP)∗. Since

i ∈ OQ, (p′, q) is an error and (p, q) is an illegal state of P ⊗ Q. Thirdly,
the definition of illegal states treats outputs and τs the same, thus, it is not
affected by hiding. Thus, and since hiding does not change the set of states,
the states of the final systems (P//L) ‖ Q and (P ‖ Q)//L are the same.

Consider some (p, q) appearing in both final systems (P//L) ‖ Q and
(P ‖ Q)//L and an α-transition of (p, q) in either system. For ease of notation
we denote the states of P//L by pL and of (P ‖ Q)//L by p ‖ qL in the
remainder of this proof; we also will write l for an illegal state and lL for the
same state after hiding.

If the transition is internal due to hiding some o ∈ OP ∩ L, it is a non-
synchronising output of P ‖ Q and thus the same in both final systems.
Similarly, if α = τ and not due to hiding or if α is a non-synchronising
output of either system, it is not changed by hiding and treated the same by

136

both parallel compositions. Synchronising outputs of P are also treated the
same, since cutting only concerns inputs (and illegal states are not considered
any more). The latter argument is also true for a synchronising output of Q,
i.e. a ∈ OQ∩IP , if it is not cut at p during hiding of P . If cut, we have p

w
=⇒

p′
a
99K u with w ∈ L∗ and p

a
99K; also q

a
99K q′, otherwise there is no transition

in the final systems. Then, on the one hand pL
a
99K u and, hence (pL, q) ∈ E,

which is a contradiction. On the other hand, (p, q)
w

=⇒ (p′, q)
a
99K (u, q′) in

P ⊗Q, thus (p, q) ∈ E, a contradiction again.

Inputs of the final systems that are not cut during any pruning procedure
are the same. Thus, it only remains to consider the inputs of the final systems
that are cut during parallel composition or during hiding in either system.

Consider an input i cut at p ‖ qL during hiding of (P ‖ Q)//L, i.e.

p ‖ qL
i
99K u due to p ‖ q w

=⇒ p′ ‖ q′ i
99K u with some w ∈ L∗ and

p ‖ q
i
99K. Considering backward propagation of cutting, we then have

p ‖ q w
=⇒ p′ ‖ q′ ε

=⇒ p′′ ‖ q′′ i
99K l for some illegal state l ∈ E and p ‖ q i

99K,

implying pL ‖ q
ε

=⇒ p′L ‖ q′
ε

=⇒ p′′L ‖ q′′
i
99K lL (where lL might also

be an inherited error due to cutting while hiding) and pL ‖ q
i
99K. Thus

all i-transitions of pL ‖ q are cut during parallel composition and we get

pL ‖ q
i
99K u.

If i is cut at p ‖ q during parallel composition of P ‖ Q, we have p ‖
q

ε
=⇒ p′′ ‖ q′′ i

99K l for some illegal state l ∈ E and p ‖ q i
99K. Similarly

to the above, we get pL ‖ q
ε

=⇒ p′′L ‖ q′′
i
99K lL and pL ‖ q

i
99K. Again, all

i-transitions of pL ‖ q are cut and pL ‖ q
i
99K u.

Now consider an input of P cut during P//L. We have already covered
i ∈ IP ∩ OQ showing that the states (pL, q) and (p, q) are illegal and thus

removed in the final systems. Otherwise, p
w

=⇒ p′
i
99K u with w ∈ L∗ and

p
i
99K and again q

i
99K q′. Then on the one hand pL

i
99K u and hence, during

parallel composition, i-transitions of (pL, q) are cut. On the other hand,

p ‖ q w
=⇒ p′ ‖ q i

99K u and p ‖ q i
99K, thus all i-transitions of p ‖ q are cut

during pruning.

Finally, consider an input i cut at pL ‖ q during parallel composition of

(P//L) ‖ Q. This implies pL ‖ q
ε

=⇒ p′L ‖ q′
i
99K lL and pL ‖ q

i
99K. If i ∈ IP

is cut at p′L during P//L it is cut at pL as well, and this is covered by the

previous case; otherwise, we deduce p ‖ q ε
=⇒ p′ ‖ q′ i

99K l and p ‖ q i
99K.

Thus, all i-transitions of p ‖ q are cut and p ‖ q i
99K u, just as with pL ‖ q.

137

4.3.4 Parallel Composition with Hiding

We now turn our attention to parallel composition with immediate hiding on
synchronized actions, thereby enforcing binary communication. This parallel
composition is used by de Alfaro and Henzinger for Interface Automata (IA)
in [25, 27]. We show here that the standard IA parallel composition can be
expressed via our multicast parallel composition and hiding.

Definition 4.26 (Parallel Product and Composition with Hiding). MIAs P1

and P2 are H-composable if O1 ∩ O2 = ∅ = I1 ∩ I2. We then define the
product with hiding in the same way as the parallel product in Def. 4.8,
except for O =df (O1 ∪ O2) \ (I1 ∪ I2) and a change of Rules (PMust3) and
(PMay3):

(PMust3’) (p1, p2)
τ−→ P ′1 × P ′2 if p1

a−→ P ′1 and p2
a−→ P ′2 for some a,

(PMay3’) (p1, p2)
τ
99K (p′1, p

′
2) if p1

a
99K p′1 and p2

a
99K p′2 for some a.

From this parallel product with hiding, we get the parallel composition with
hiding P1 | P2 by the same pruning procedure as in Def. 4.9.

It can easily be seen that the parallel product with hiding can be expressed
by our parallel product without hiding and the hiding operator. Pruning
does not change this, since it treats outputs and internal actions equally.

Proposition 4.27. Let P1, P2 be H-composable MIAs and S = A1 ∩ A2 be
the set of synchronising actions. Then, P1 | P2 = (P1 ‖ P2)/S.

Associativity is a natural property of parallel composition, so one would
expect that (P | Q) | R = P | (Q | R) for some suitable equivalence = (e.g.,
equality up to isomorphism) provided that one side is defined. This law looks
much less natural if we rewrite it according to Prop. 4.27; it is wrong in the
version of | in [25]. Here, associativity can be proved from Thm. 4.12 and
the following proposition.

Proposition 4.28. For composable MIAs P and Q we have the following
laws, where = means that the respective MIAs are identical (up to the naming
of the respective universal states in Part (iii)).

(i) P/L = P if AP ∩ L = ∅.

(ii) P/L/L′ = P/(L ∪ L′) if L ∩ IP = L′ ∩ IP = ∅.

(iii) (P ‖ Q)/L = (P/L) ‖ (Q/L) if AP ∩ AQ ∩ L = ∅.

138

Proof. Parts (i) and (ii) are straightforward. We thus focus on proving
Part (iii). P ⊗ Q and P/L ⊗ Q/L are the same due to the condition
AP ∩AQ∩L, except that transition labels o ∈ L in the former are replaced by
τ in the latter; observe that (PMust3) and (PMay3) are never applicable to
o ∈ L by assumption, and the other rules work for o ∈ L and τ in the same
way. Also by assumption, the same states are considered as errors in both
products. As a consequence and since pruning makes no difference between
output- and τ -transitions, it deletes the same states in both systems and the
same input transitions get redirected to the respective universal states of the
parallel compositions. Finally, applying hiding to P ‖ Q for the first system
makes the MIAs identical.

Using this proposition we may now prove the associativity of |.

Proposition 4.29. Parallel composition with hiding is associative in the
sense, that for pairwise H-composable MIAs P , Q and R, if (P | Q) | R is
defined, then P | (Q |R) is defined as well and both are isomorphic, and vice
versa.

Proof. Let P , Q, R be pairwise H-composable MIAs. We set SPQ =df AP ∩
AQ, APQ =df (AP ∪ AQ) \ SPQ, etc. and let SPQR =df SPQ ∪ SPR ∪ SQR.
Note that (∗) SPQ ∩ AR = ∅ since, otherwise AR would contain an action
that is an input in one of P and Q and an output in the other, contradicting
H-composability of R with one of the other MIAs. Furthermore, (∗∗) SPQ ∪
(APQ ∩ AR) = SPQ ∪ (((AP ∪ AQ)/SPQ) ∩ AR)

(∗)
= SPQ ∪ (((AP ∪ AQ) ∩

AR)/SPQ) = SPQ∪((AP ∪AQ)∩AR) = SPQ∪(AP ∩AR)∪(AQ∩AR) = SPQR.
We now obtain:

(P |Q) |R = ((P ‖ Q)/SPQ ‖ R)/(APQ ∩ AR) (Prop. 4.27)

= ((P ‖ Q)/SPQ ‖ R/SPQ)/(APQ ∩ AR) (Prop. 4.28(i) and (∗))
= ((P ‖ Q) ‖ R)/SPQ/(APQ ∩ AR) (Prop. 4.28(iii) and (∗))
= ((P ‖ Q) ‖ R)/SPQR (Prop. 4.28(ii) and (∗∗))
= (P ‖ (Q ‖ R))/SPQR (Thm. 4.12)

= P | (Q |R) (symmetrically)

4.4 Logical Operators – Conjunction and Dis-

junction

The main feature of our heterogeneous setting is that it features not only
structural, but also logical operators. It supports not only conjunction and

139

disjunction, but also temporal logics. We start with disjunction, which, as
mentioned before, is rather straightforward, since we allow for multiple initial
states: Assuming w.l.o.g. that the disjuncts have the same universal state,
the disjunction is simply the union of the disjuncts.

Definition 4.30 (Disjunction). MIAs P and Q are u-disjoint, if their state
spaces are disjoint, except for their common universal state, i.e. P ∩ Q =
{uP} = {uQ}.

Two given MIAs are w.l.o.g. u-disjoint MIAs P = (P, I, O,−→P , 99KP ,
P0, u) and Q = (Q, I,O,−→Q, 99KQ, Q0, u), and we define P ∨ Q as (P ∪
Q, I,O,−→P ·∪ −→Q, 99KP ·∪ 99KQ, P0 ∪Q0, u).

The proof that ∨ is indeed or and compositional can be taken from [20].

Theorem 4.31 (∨ is or). For all MIAs P , Q and R, we have P ∨Q v R if
and only if P v R and Q v R.

Proof. By definition, P ∨ Q v R means that for each p0 ∈ P0 and each
q0 ∈ Q0 there exist r0, r

′
0 ∈ R0 such that p0 v r0 and q0 v r′0, which is

equivalent to P v R and Q v R.

Corollary 4.32 (Compositionality of ∨). MIA-refinement is compositional
w.r.t. disjunction. P1 v Q1 and P2 v Q2 implies P1 ∨ P2 v Q1 ∨ Q2 for all
MIAs P1, P2, Q1 and Q2.

Besides parallel composition and quotienting, conjunction is one of the
most important operators of interface theories. It allows one to specify dif-
ferent perspectives of a system separately, from which an overall specification
can be determined by conjunctive composition. More formally, the conjunc-
tion should be the coarsest specification that refines the given perspective
specifications, i.e., it should characterise the greatest lower bound of the
refinement preorder. Similarly to parallel composition, the construction is
defined in two steps: first a conjunctive product P&Q is calculated via oper-
ational rules; the treatment of multiple initial states is straightforward. In a
second step inconsistencies are identified and removed. The remaining states
(p, q) of P ∧Q are written as p∧ q. This construction may remove all initial
states if P and Q are inconsistent, i.e. have no common refinement, resulting
in an empty MIA.

Definition 4.33 (Conjunctive Product). Consider MIAs (P, I, O,−→P , 99KP
, P0, uP) and (Q, I,O,−→Q, 99KQ, Q0, uQ) with common alphabets. The con-
junctive product is defined as P&Q =df (P × Q, I,O,−→, 99K, P0 × Q0),
(uP , uQ)) by the following operational transition rules and their symmetric
counterparts:

140

P : p0

p′0

p1

p′1

p2

p′2

· · ·

· · ·

τ τ

o o o

Q: q0 q1
o

Figure 4.10: Example of a conjunction leading to a transition with an infinite
target set.

(Must1) (p, q)
α−→

{(p′, q′) | p′ ∈ P ′, q α̂
=⇒Q q

′} if p
α−→P P

′, q
α̂

=⇒Q, q 6= uQ
(UMust1) (p, uQ)

α−→ P ′ × {uQ} if p
α−→P P

′

(May1) (p, q)
α
99K (p′, q′) if p

α
=⇒P p

′ and q
α̂

=⇒Q q
′

(UMay1) (p, uQ)
α
99K (p′, uQ) if p

α
99KP p′

We refer to Rules (Must1) and its symmetric counterpart (Must2) col-
lectively as (Must)-rules and analogously for the other rules. Note that νI
and νO are also treated by the (May)- and (UMay)-rules. Note also that this
definition is similar to the one in [53], except for the treatment of inputs and
the universal state.

The weak transitions in the (Must)-Rules may lead to disjunctive tran-
sitions with infinite target sets, which were prohibited in [12]. For example,
consider the conjunction of the MIAs P and Q depicted in Fig. 4.10. In-
finitely many weak o-transitions start from p0, yielding an infinite disjunctive
o-transition at p0∧q0 due to Rule (OMust2). We addressed this issue by gen-
eralising MIAs (cf. Def. 4.1) to allow infinite target sets of must-transitions
and by adapting Def. 4.2 accordingly. Note that the aforementioned problem
arises only for an infinite-state MIA (cf. P in Fig. 4.10) and is not a problem
in practice, where MIAs are expected to be finite state.

The list of rules is short compared to the ones in previous versions
(e.g. [13]). This is because we previously had to give separate rules for
inputs and outputs for both may- and must- transitions and another one
for τ -may-transitions. The relaxation of the refinement relation makes these
separate treatments unnecessary. This may be surprising in the case of must-
transitions, but note that the condition for adding a must-transition depends
on weak may-transitions, which were also treated differently depending on
whether they were labeled with an input or an output.

The conjunctive product is inherently different from the parallel prod-
uct: single transitions are defined through weak transitions, e.g., as in Rules
(Must), (May), and τ -transitions synchronise by Rule (May). Furthermore,
as given by Rules (UMust) and (UMay), the universal states are neutral

141

elements for the conjunctive product, whereas they are absorbing for the
parallel product.

The following definition deals with inconsistencies: these arise if one con-
junct requires an action that the other prohibits. Again, this definition is
shorter than in previous versions of MIA, for the same reasons: for item (F1)

we had to differentiate between inputs and outputs, requiring q
a
99K for the

first and q
a

=⇒ for the latter. Now it is q
a

=⇒ for both.

Definition 4.34 (Conjunction). Given a conjunctive product P&Q, the set
F ⊆ P ×Q of (logically) inconsistent states is defined as the least set satis-
fying the following rules for all p 6= uP and q 6= uQ:

(F1) p
a−→P and not q

a
=⇒Q implies (p, q) ∈ F

(F2) not p
a

=⇒P and q
a−→Q implies (p, q) ∈ F

(F3) (p, q)
α−→ K ′ and K ′ ⊆ F implies (p, q) ∈ F

The conjunction P∧Q is obtained by deleting all states (p, q) ∈ F from P&Q.
This also removes any may- or must-transition exiting a deleted state and
any may-transition entering a deleted state; in addition, deleted states are
removed from targets of disjunctive must-transitions. We write p ∧ q for
state (p, q) of P ∧ Q; all such states are defined – and consistent – by con-
struction. Note that, if P0×Q0 ⊆ F , then the conjunction of P and Q is an
empty MIA, i.e. inconsistent.

As mentioned, disjunctive transitions are essential to the conjunction op-
erator. The (Must)-Rules generate them, even if the conjuncts themselves
do not have any. To illustrate this and their treatment in the presence of
inconsistencies, we recall an example and its discussion from [51, Fig. 5] in
Fig. 4.11. There, it is presented for dMTS not MIA, but we can easily adapt
it by designating all actions as outputs. Observe that, while P and Q have
no truly disjunctive must-transitions, the a transitions yield one with three
targets in P&Q. Since (4, 6) is inconsistent (due to d) and the inconsistency
propagates back to (3, 5) over c, both are removed. p ∧ q remains, however,
since (3, 5) was not the only target of its disjunctive transition.

Next, we prove that conjunction as defined above is the greatest lower
bound w.r.t. MIA refinement. To this end, we introduce the notion of a
witness as in [53]:

Definition 4.35 (Witness). A witness W of P&Q is a subset of P ×Q such
that the following conditions hold for all (p, q) ∈ W :

(W1) p
a−→P implies q

a
=⇒Q or q = uQ

(W2) q
a−→Q implies p

a
=⇒P or p = uP

(W3) (p, q)
α−→ K ′ implies K ′ ∩W 6= ∅

142

p0

1 2 3

4

a
a

a

b c c
d

q0

5

6

b c

a

(p0, q0)

(1,5) (2,5) (3,5)F

(4,6)F

b

a

b c

p0 ∧ q0

1∧5 2∧5

b

a

b

Figure 4.11: Disjunctive transitions during conjunction

Intuitively, a witness is a set of state pairs that ensure that none of them
justifies (F1), (F2) or (F3) and, thus, the set witnesses their consistency.

Lemma 4.36 (Concrete Witness). Let P , Q and R be MIAs with common
alphabets.

1. For any witness W of P&Q, we have F ∩W = ∅.

2. The set {(p, q) ∈ P × Q | ∃r ∈ R. r v p and r v q} is a witness of
P&Q.

Proof. While the first statement of the lemma is quite obvious, we prove here
that W =df {(p, q) ∈ P ×Q | ∃r ∈ R. r v p and r v q} is a witness of P&Q:

(W1) p
a−→P P ′ implies r

a
=⇒R R′ for some R′ by r v p. Choose some

r′ ∈ R′. Then, r
a

=⇒R r′ by syntactic consistency, and q
a

=⇒Q or
q = uQ by r v q.

(W2) Analogous to (W1).

(W3) Consider (p, q) ∈ W due to r. If (p, q)
α−→ K ′ by (Must1), then,

p
α−→P P ′, q

α̂
=⇒, q 6= uQ and K ′ = {(p′, q′) | p′∈P ′, q α̂

=⇒Q q′}.
By r v p and p 6= uP , we get some R′ ⊆ R with r

α̂
=⇒R R′ and

∀r′∈R′ ∃p′∈P ′. r′ v p′. Choose r′∈R′; now, r
α̂

=⇒R r
′ due to syntactic

consistency, and q
α̂

=⇒Q q′ with r′ v q′ by r v q. Thus, we have
p′ ∈ P ′ and q′ such that (p′, q′) ∈ K ′ ∩W due to r′.

Otherwise, if (p, uQ)
α−→ K ′ by (UMust1), then, p

α−→P P ′ and K ′ =
P ′ × {uQ}. As before, by r v p and p 6= uP , we get some R′ ⊆ R with

r
α̂

=⇒R R′ and ∀r′∈R′ ∃p′∈P ′. r′ v p′. Choose r′∈R′; now, r
α̂

=⇒R r′

due to syntactic consistency, and obviously r′ v uQ. Thus, we have
p′ ∈ P ′ and q′ = uQ such that (p′, q′) ∈ K ′ ∩W due to r′.

143

On the basis of this lemma we can now establish the desired greatest lower
bound result for ∧, which implies the compositionality of v w.r.t. ∧ (cf. [53]).

Theorem 4.37 (∧ is and). For MIAs P , Q and R, we have:

1. There is some r with r v p and r v q if and only if p ∧ q is defined.

2. If p ∧ q is defined, then r v p and r v q if and only if r v p ∧ q.

3. R v P and R v Q if and only if R v P ∧Q.

Proof. 1. ‘⇒’: We assume some r with r v p and r v q. By Lem. 4.36.2,
there exists a witness W containing (p, q). Thus, Lem. 4.36.1 implies (p, q) /∈
F , i.e. p ∧ q is defined.

1. and 2. ‘⇐’: For reasons of symmetry, it suffices to show that R =df

{(r, p) | ∃q.r v p ∧ q} is a MIA-refinement relation. Then, in particular, 1.
‘⇐’ follows by choosing r = p ∧ q.

Note that (UMust1) and (UMay1) produce an isomorphic copy of P . The
refinement conditions for states (r, p) ∈ R due to q = uQ hold by definition
of R, and we can ignore these rules in the rest of this proof.

We check the conditions of Def. 4.4 for some (r, p) ∈ R due to q, where
p 6= uP :

• p 6= uP implies p ∧ q 6= uP ∧ uQ. By r v p ∧ q, we have r 6= uR.

• Let p
α−→P P ′; then, q

α̂
=⇒Q. For α 6= τ , this is because, otherwise,

p ∧ q would not be defined due to (F1); otherwise it is trivial. Hence,

by (Must1), p ∧ q α−→ {p′ ∧ q′ | p′ ∈ P ′, q
α̂

=⇒Q q′, p′ ∧ q′ defined}.
By r v p ∧ q, we get r

α̂
=⇒R R′ (r

α−→ ε
=⇒ R′ in case of α ∈ I)

such that ∀r′∈R′ ∃p′∧q′. p′ ∈ P ′, q
α̂

=⇒Q q′ and r′ v p′∧q′. Thus,
∀r′∈R′ ∃p′∈P ′. (r′, p′) ∈ R.

• r α
99KR r′ implies ∃p′ ∧ q′. p ∧ q α̂

=⇒ p′ ∧ q′ and r′ v p′ ∧ q′. The
contribution of p in this weak transition sequence (cf. (May), (UMay1)

and (UMay2)) gives p
α̂

=⇒P p′, and, thus, we have (r′, p′) ∈ R due
to q′.

2. ‘⇒’: Here, we show that R =df {(r, p ∧ q) | r v p and r v q} is a MIA-
refinement relation. By Claim 1, p ∧ q is defined whenever r v p and r v q.
As above, the conditions of Def. 4.4 are clear if p = uP or q = uQ. We verify
the remaining.

• If p∧q 6= uP ∧uQ, then w.l.o.g. p 6= uP . By r v p, we also have r 6= uR.

144

• Let p∧q α−→ S ′; w.l.o.g., this is due to p
α−→P P

′ and S ′ = {p′∧q′ | p′ ∈
P ′, q

α̂
=⇒Q q′, p′ ∧ q′ defined}. Because of r v p, we have r

α̂
=⇒R R′

(and r
α−→ ε

=⇒ R′ in case of α ∈ I) so that ∀r′∈R′ ∃p′∈P ′. r′ v p′.
Consider some arbitrary r′ ∈ R′ and the respective p′ ∈ P ′. Then,

r
α̂

=⇒R r′ by syntactic consistency and, due to r v q and Prop. 4.5,

there exists some q′ with q
α̂

=⇒Q q
′ and r′ v q′. Thus, p′ ∧ q′ ∈ S ′ and

(r′, p′ ∧ q′) ∈ R.

• Let r
α
99KR r′, and consider p

α̂
=⇒P p

′ and q
α̂

=⇒Q q
′ satisfying r′ v p′

and r′ v q′. Thus, p ∧ q α
99K p′ ∧ q′ by (May) or p ∧ q = p′ ∧ q′ and

either way (r′, p′ ∧ q′) ∈ R.

3. By definition, R v P∧Qmeans ∀r0 ∈ R0 ∃p0∧q0 ∈ P0∧Q0. r0 v p0∧q0.
By 2. this is equivalent to ∀r0 ∈ R0 ∃p0∧q0 ∈ P0∧Q0. (r0 v p0 and r0 v q0).
The latter is equivalent to ∀r0 ∈ R0 ∃p0 ∈ P0. r0 v p0 and ∀r0 ∈ R0 ∃q0 ∈
Q0. r0 v q0; recall for the reverse implication that by 1. each required p0 ∧ q0

is present in the conjunction, since there is an r0 refining both p0 and q0.
By definition, the last two formulae mean R v P and R v Q and we are
done.

Corollary 4.38. MIA refinement is compositional w.r.t. conjunction.

Clearly, conjunction is commutative. Furthermore, any conjunction operator
that satisfies the statement of Thm. 4.37 for some preorder v is associative.

Lemma 4.39. Let P , Q, R and S be MIAs.

1. P ∧ (Q ∧R) is defined iff (P ∧Q) ∧R is defined.

2. If P ∧ (Q ∧R) is defined, then S v P ∧ (Q ∧R) iff S v (P ∧Q) ∧R.

Proof. 1. Thm. 4.37.1–3 imply that P ∧ (Q ∧ R) is defined iff ∃S. S v
P and S v Q ∧ R iff ∃S. S v P and S v Q and S v R iff ∃S. S v P ∧
Q and S v R iff (P ∧ Q) ∧ R is defined. Claim 2 follows directly from
multiple applications of Thm. 4.37.3.

As a consequence of Lem. 4.39 we obtain strong associativity of conjunction.

Theorem 4.40 (Associativity of Conjunction). Conjunction is associative
in the sense that, if one of P ∧ (Q∧R) and (P ∧Q)∧R is defined, then both
are defined and P ∧ (Q ∧R) wv (P ∧Q) ∧R.

145

4.5 Temporal Operators – ACTL

As reasoned for at the end of Section 4.2, we will require initial τ -closure for
MIAs in this section. Like MIAs, our formulae have the same fixed alphabets
I and O for now. As we have shown in [21], our operators preserve this
property. We will work with single sets of parameters instead of explicitly
partitioning them into inputs and outputs, since, with fixed I and O, the
partitioning is set. When allowing for alphabet extension in Sect. 4.6 we will
be more specific with this.

We define satisfaction so that universal MIAs do not satisfy any formulae.
In fact, the formula tt can be understood as ‘is not a universal MIA’. An
intuitive reason for this is that U stands for a communication mismatch and
one will hardly want to specify such a deadly error. Another reason is that
〈o〉P should specify that a system can perform an o-must-transition and
behave like P afterwards. For a universal MIA P , this allows to produce an
error after o, and such a system should be regarded as an error itself from
the perspective of pruning a parallel composition. Hence, the system does
not have an o-must-transition in contrast to the idea of 〈o〉P .

A universal MIA not satisfying any formula fits our goal that P satisfies a
formula ϕ if and only if P refines the MIA-representation of ϕ. The latter is
never universal; since a universal MIA only refines universal ones, it does not
need to satisfy any formula. Additionally, the universal state u is in a way
an artefact: One can define MIA and MIA-refinement equivalently without u
but with a different addition describing arbitrary implementability of specific
inputs (cf. [41, 48]).

We now define our variant of ACTL.

Definition 4.41 (ACTL). Let C ⊆ B ⊆ A, Bε ⊆ A ∪ {ε} and P w6 vU be a
MIA. ACTL-formulae ϕ are given by:

ϕ ::= tt | ff | [B]ϕ | 〈Bε〉ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕBWCϕ.
The semantics of ACTL is defined inductively as follows:

P |= tt always
P |= ff if P0 = ∅
P |= [B]ϕ if ∀p0 ∈ P0 ∀a ∈ B ∀p′.

(p0
a
99K p′ implies P [p′] |= ϕ)

P |= 〈Bε〉ϕ if ∀p0 ∈ P0 ∃α ∈ Bε, P
′ ⊆ P. P [P ′] |= ϕ and

either α ∈ I and p0
α−→ ε

=⇒ P ′

or α ∈ O ∪ {ε} and p0
α

=⇒ P ′

P |= ϕ ∧ ψ if P |= ϕ and P |= ψ
P |= ϕ ∨ ψ if ∀p0 ∈ P0 P [p0] |= ϕ or P [p0] |= ψ

146

P |= ϕBWCψ if ∀p0 ∈ P0 ∀p1, p2, . . . , pn ∈ P ∀α1, α2, . . . , αn ∈ B ∪ {τ}.
(p0

α1
99K p1

α2
99K p2 · · ·

αn
99K pn implies

((∃1 ≤ i ≤ n. αi ∈ C and P [pi] |= ψ) or P [pn] |= ϕ))

We define, LA(P) =df {ϕ | P |= ϕ, ϕ is an ACTL-formula} as the set of
ACTL-formulae that the MIA P satisfies. We write [a] or 〈α〉 if a or α is
the only element in the respective set.

Before discussing the details and choices of our semantics, we present a
lemma to ease understanding. It is easy to show by structural induction. For
the first item, induction is only needed for ϕ ∧ ψ. It implies the second and
third item.

Lemma 4.42. Let P be a MIA and ϕ be a formula.

1. P |= ϕ if and only if ∀p0 ∈ P0. P [p0] |= ϕ.

2. P |= ϕ∧ψ if and only if ∀p0 ∈ P0. P [p0] |= ϕ and ∀p0 ∈ P0. P [p0] |= ψ.

3. P |= ϕ implies P [P ′0] |= ϕ for all P ′0 ⊆ P0.

The first two operators tt and ff are standard and rather intuitive. For [B],

using
a

=⇒ instead of
a
99K would look more natural (and more restrictive),

since all ways of performing a should be covered. But, in fact, this is an
equivalent definition: Clearly the version with

a
=⇒ implies our condition.

Vice versa, assume p0
a

=⇒ p′ due to p0
ε

=⇒ p′0
a
99K p

ε
=⇒ p′; since p′0 ∈ P0

(due to initial τ -closure), we require P [p] |= ϕ above and p′ is initial in P [p].
By Lem. 4.42.1, P [p′] |= ϕ holds also in our setting.

For 〈Bε〉, we have to define the operator by using weak transitions since
these properties are supposed to be retained during refinement: Consider
MIAs consisting of q0

o−→ q′ and p0
τ−→ p

o−→ p′ respectively. They are
MIA-equivalent, but only Q would satisfy 〈o〉tt if leading τ -transitions were
not permitted for outputs in the definition.

A similar argument can be made for trailing τ -transitions for both inputs
and outputs: Consider MIAs P and Q from Fig. 4.12 and ϕ = 〈a〉〈i〉tt. We
have P wv Q and both satisfy ϕ. But if not permitting trailing τs in the
definition of 〈Bε〉, only Q would satisfy ϕ.

If one only defines [b]ϕ and 〈b〉ϕ for single actions b, one cannot derive
[B]ϕ or 〈Bε〉ϕ in general. The first is impossible for infinite B and the second
already for finite B. We will go into more detail later in Prop. 4.57. A formula
like 〈A〉tt is useful to describe deadlock freedom; see our main example in
Sect. 4.5.2.

147

P
a

τ

i

o
Q

a

a

o

τ

i

Figure 4.12: MIAs used in the arguments for trailing τ -transitions in Def. 4.41
and the power of the 〈Bε〉-operator.

We allow for 〈ε〉ϕ, which is standard, but not for [ε]ϕ, since it would
be redundant. One would define P |= [ε]ϕ as ∀p0 ∈ P0. p0

ε
=⇒ p implies

P [p] |= ϕ. Since p ∈ P0, this is already required for P |= ϕ by Lem. 4.42.1,
hence [ε]ϕ would be equivalent to ϕ.

In contrast to ∧, we cannot define P |= ϕ ∨ ψ by P |= ϕ or P |= ψ
without changing its meaning. For an example consider again the MIAs in
Fig. 4.4. By our definition P ∨Q |= 〈o〉tt ∨ 〈o′〉tt, but neither P ∨Q |= 〈o〉tt
nor P ∨Q |= 〈o′〉tt. Our definition is necessary for our translation of formulae
into MIAs; we present a formal argument after Cor. 4.52.

To explain the intuition behind the Unless-operator we say that a state
p satisfies ϕ if P [p] |= ϕ. Intuitively, ϕBWCψ means that ϕ must hold in all
states reachable by actions b ∈ B unless an action c ∈ C is performed and
ψ holds afterwards. In particular, this means that P |= ψ does not imply
P |= ϕBWCψ, as it would usually do, since the Unless-operator requires a c-
transition to lead to a state satisfying ψ. A variant satisfying this implication
can be expressed by ψ ∨ (ϕAWAψ) (cf. Def. 4.43). Note that C ⊆ B is
not a restriction: Taking any transition labelled with some a /∈ B can end
the requirement for ϕ without having to satisfy ψ afterwards. For a better
understanding, we refer to the brief example after the following definition.

We can derive some further typical operators, like Always or an un-
parametrized Unless.

Definition 4.43 (ACTL derived operators). Let B ⊆ A and P w6 vU be a
MIA.

P |= en(B) if p |= 〈B〉tt
i.e. ∀p0 ∈ P0 (∃i ∈ B ∩ I. p0

i−→ ε
=⇒) or (∃o ∈ B ∩O. p0

o
=⇒)

P |= dis(B) if P |= [B]ff

i.e. ∀p0 ∈ P0 ∀a ∈ B. p0 6a99K
P |= �Bϕ if P |= ϕBW∅ff

i.e. ∀p1, p2, . . . , pn ∀α1, α2, . . . , αn ∈ B ∪ {τ}.
(p0

α1
99K p1

α2
99K p2 · · ·

αn
99K pn implies P [pn] |= ϕ)

148

P |= �ϕ if P |= �Aϕ
i.e. ∀p1, p2, . . . , pn. (p0

α1
99K p1

α2
99K p2 · · ·

αn
99K pn) implies P [pn] |= ϕ)

P |= ϕWψ if P |= ψ ∨ (ϕAWAψ)
i.e. ∀p1, p2, . . . , pn ∀α1, α2, . . . , αn ∈ Aτ .

(p0
α1
99K p1

α2
99K p2 · · ·

αn
99K pn implies

(P [pn] |= ϕ or ∃0 ≤ i ≤ n. P [pi] |= ψ))

Note that en(B) is defined on sets B ⊆ A and, thus, does not allow
for en(ε). Of course, the formula 〈Bε〉tt with ε ∈ Bε is defined, but it is
equivalent to tt since p0

ε
=⇒ p0 is always true.

As an example we can easily formalize that a system is ready to accept
a signal i as an input by en(i). A more interesting specification is that the
system should be allowed to operate, i.e. accept inputs and send outputs,
while remaining capable of receiving i until doing so. This can be formalized
by en(i)AW{i}tt. It requires i to remain enabled, and the only way to escape
this requirement is actually taking an i-transition, i.e. receiving the signal i.
This highly desirable property could not be specified without the parameter
C in our definition of unless.

4.5.1 Embedding in MIA

For a truly heterogeneous specification method, we now define how to apply
the logical connectives to arbitrary non-universal MIAs. In particular, this
will also give us a translation from a formula to a MIA. We will show com-
patibility of satisfaction with refinement, in the sense that P |= ϕ iff P v ϕ,
where ϕ is a MIA-representation of ϕ. Conjunction and disjunction are al-
ready defined on MIAs, so we start by defining tt, ff and the Next-operators.

Definition 4.44 (Temporal operators on MIAs: tt, ff, 〈Bε〉 and [B]). Let
Qw6 vU be a MIA. ff is represented by the empty MIA F. The represen-
tation of tt is depicted in Fig. 4.13, as are constructions for 〈Bε〉Q (for
B = {a, b, ε}) and [B]Q.

A state labelled by Q0 means that Q is reached here: An incoming may-
transition represents a bundle of may-transitions, one for each initial state
of Q (and each a ∈ B), and an incoming must-transition is one disjunctive
must-transition to Q0. The depicted state uQ is the universal state of Q and
of 〈Bε〉Q or [B]Q respectively.

The MIA for 〈Bε〉 has states {tt0} ∪ {xα0 | α ∈ Bε} ∪ Q. The second
subset is the set of its initial states.

tt is the most permissive non-universal MIA; it needs a universal state
to be completely arbitrary after an input. Note that tt is embedded in the

149

tt0

tt

u

o ∈ Oν

i ∈ Iν

x0

[B]Q

tt0 uQ

Q0
a ∈ B

o ∈ Oν \B i ∈ Iν \B

o ∈ Oν
i ∈ Iν

〈{a, b, ε}〉Q :

xb0

xa0

xε0

tt0

uQ

Q0

a

o ∈ Oν

i ∈ Iν

b

o ∈ Oν

i ∈ Iν

τ

o ∈ Oν

i ∈ Iν

o ∈ Oν

i ∈ Iν

τ

τ

τ

τ

ττ

Figure 4.13: MIA constructions for tt, [B] and 〈{a, b, ε}〉. The must-
transitions are disjunctive. Iν and Oν stand for I ∪ {νI} and O ∪ {νO}
respectively.

[B]Q and 〈Bε〉Q. The MIA [B]Q specifies that Q must be refined after any
a ∈ B. For other actions, it behaves like tt. Similarly, the initial states of
〈Bε〉Q behave like tt, but additionally require together that at least one of
the α ∈ Bε be implemented.

Before we define the construction for the Unless-operator, we first present
one for the Always-operator. This is technically not necessary since Always
is a derived operator, but we will use it as part of the definition of the Unless-
operator and we believe it eases understanding to see this construction on its
own. The basic idea of the construction is to build up conjunctions of states
while adding q0 after each transition. It is already used in [50], albeit in a
simpler setting with a very specific treatment of τs and absence of action-sets
as indices.

We define �BQ in two steps, similar to our construction of the conjunc-

150

tion: first we define a ‘Proto-Always’, then we remove logical inconsistencies.
The idea behind this construction is that a set of states {q1, . . . , qn} will

behave like the conjunction of the states, except that after each transition
labelled with some a ∈ B another copy of some q0 ∈ Q0 is added. This
ensures that Q is refined by every state of the new MIA. Apart from this, the
transitions are defined similarly to the transitions of the conjunctive product.
As mentioned before, the universal state is neutral w.r.t. conjunction, cf.
(UMay1), and thus we remove it from sets {q0, . . . , qn}. In conjunctions∧
{q′1, . . . , q′n}, as introduced after Thm. 4.37, it is neutral by definition of

the conjunction and thus we can remove it as well if we want, except if it is
the only conjunct.

Taking a transition labelled by some a /∈ B ends adding q0, and the target
is a conjunction

∧
{q′1, . . . , q′n}, which ensures the remaining requirements for

the states that have been passed. This conjunction may be undefined, i.e.
non-existent, since its elements can be inconsistent. In this case, no may-
transition is added in (MayK) below. Similarly, undefined

∧
{q′1, . . . , q′n} are

not added to the target set in (IMustK) or (OMustK). In an extreme case,
this may give ∅ as target set. Since the removal of inconsistencies propagates
backward over must-transitions, we need to retain this information. There-
fore, we allow must-transitions to lead to ∅. Otherwise, the Proto-Always is a
MIA, and we call it a pseudo-MIA. Note that syntactic consistency vacuously
holds for transitions to ∅.

Observe that for {q′1, . . . , q′n, q0} and
∧
{q′1, . . . , q′n} in the targets, some

of the elements of the sets may be listed more than once; hence the size of a
set might be shrunk after a transition. For states

∧
{q′1, . . . , q′n}, we import

the respective iterated conjunction MIA.

Definition 4.45 (Temporal operators on MIAs: Proto-Always). Let B ⊆
A and Q be a non-universal MIA. The Proto-Always is the pseudo-MIA
�BQ = (Q ·∪K ·∪ {∅}, I, O,−→� , 99K� , {S | ∃q0 ∈ Q0. {q0}

ε
=⇒� S}, {uQ}),

where Q = Pfin(Q) \ {∅} is the set of non-empty finite subsets of Q and
K = {

∧
{q1, . . . , qn} | {q1, . . . , qn} ⊆ Q,

∧
{q1, . . . , qn} is defined} the set of

all (finite) conjunctions of states of Q. The sets −→� and 99K� contain all
transitions of the conjunctions and the ones given by the following rules:

(IMust) {q1, . . . , qn}
i−→�

{{q′1, . . . , q′n, q0} \ {u} | q′l ∈ Q′l, q0 ∈ Q0,∀k ∈ {1, . . . , n} \ {l}. qk
i

=⇒ q′k}
if i ∈ B, l ∈ {1, . . . , n} and ql

i−→ Q′l
(IMustK) {q1, . . . , qn}

i−→�
{
∧
{q′1, . . . , q′n} | q′l ∈ Q′l, ∀k ∈ {1, . . . , n} \ {l}. qk

i
=⇒ q′k}

151

if i /∈ B, l ∈ {1, . . . , n} and ql
i−→ Q′l

(OMust) {q1, . . . , qn}
ω−→�

{{q′1, . . . , q′n, q0} | q′l ∈ Q′l, q0 ∈ Q0, ∀k ∈ {1, . . . , n} \ {l}. qk
ω̂

=⇒ q′k}
if ω ∈ B ∪ {τ}, l ∈ {1, . . . , n} and ql

ω−→ Q′l
(OMustK) {q1, . . . , qn}

o−→�
{
∧
{q′1, . . . , q′n} | q′l ∈ Q′l, ∀k ∈ {1, . . . , n} \ {l}. qk

o
=⇒ q′k}

if o /∈ B, l ∈ {1, . . . , n} and ql
o−→ Q′l

(May) {q1, . . . , qn}
α
99K� {q′1, . . . , q′n, q0} \ {u}

if α ∈ B ∪ {τ}, q0 ∈ Q0, (∀k ∈ {1, . . . , n}. qk
α̂

=⇒ q′k),

and ∃k ∈ {1, . . . , n}. qk
α

=⇒
(MayK) {q1, . . . , qn}

a
99K�

∧
{q′1, . . . , q′n}

if a /∈ B and ∀k ∈ {1, . . . , n}. qk
a

=⇒ q′k
(MayN) {q1, . . . , qn}

ν
99K�

∧
{q′1, . . . , q′n}

if ν /∈ {νI , νO} and ∀k ∈ {1, . . . , n}. qk
ν

=⇒ q′k

Indeed, �BQ is a pseudo-MIA. Note that, for �Q, the rules ending in K
are never used and can be omitted, as well as the set K.

We iteratively determine the set of inconsistent states of the Proto-Always.
We consider states in Q to be inconsistent if there is one element requiring an
action and another forbidding it. As in the conjunction construction in [12],

the latter means 6o=⇒ for outputs and 6i99K for inputs. It suffices to check
for states, where one element has an a-must-transition, but the state has
no strong a-may-transition: by construction of the Proto-Always (cf. (May)

and (MayK)), q
o

=⇒ if and only if q
o
99K. Having identified such immediate

inconsistencies, we consider states that have a must-transition to a set of
inconsistent states (in particular, the empty set) to be inconsistent as well.
After removing all these inconsistent states, we have the desired MIA �BQ.

Definition 4.46 (Temporal operators on MIAs: Always). Given a Proto-
Always �BQ, the set F ⊆ �BQ of (logically) inconsistent states is defined
as the least set satisfying the following conditions for all q ∈ Q:

(1) (∃qi ∈ q. qi
a−→) ∧ q 6a99K implies q ∈ F

(2) q
α−→ Q

′ ⊆ F implies q ∈ F (especially for Q
′
= ∅)

The MIA �BQ is obtained by deleting all states in F from �BQ. This
also removes any may- or must-transitions exiting and any may-transitions
entering a deleted state; in addition, deleted states are removed from targets
of disjunctive must-transitions.

For later use we present the following lemma. Intuitively, it states that a
state {q1, . . . , qn} is finer or equal to the conjunction q1 ∧ q2 ∧ . . .∧, qn.

152

Lemma 4.47. Let P and Qw6 vU be MIAs and q ∈ �BQ. We write q ∈∧
{q1, . . . , qn} if q ∈ {q1, . . . , qn}. If p v q then for all qi ∈ q we have p v qi.

The reverse implication does not hold.

Proof. We partition the state space �BQ into Q ·∪K as in Def. 4.45. To prove
the implication, we show that R = {(p, ql) | p ∈ P, ∃q ∈ Q. ql ∈ q and p v
q}∪ v is a MIA-refinement relation. The correctness of v is obvious. We
take a pair (p, ql) due to q = {q1, . . . , qn} from the first subset and check the
items of Def. 4.4. We have ql 6= uQ by construction and the assumption on
Q.

(i) Since ql 6= uQ, we have q 6= {uQ}. Thus, p 6= uP , since p v q.

(ii) ql
i−→ Q′l. If not ∀qk ∈ q. qk

i
=⇒, then q 6i99K (cf. (May) and (MayK))

and q is logically inconsistent implying q /∈ �BQ. So we assume other-

wise and get q
i−→.

If i /∈ B, we get q
i−→ Q

′
= {

∧
{q′1, . . . , q′l, . . . , q′n} | q′l ∈ Q′l,∀k ∈

{1, . . . , n}\{l}. qk
i

=⇒ q′k} by (IMustK). Since p v q, we have p
i−→ ε

=⇒
P ′ for some P ′ with ∀p′ ∈ P ′ ∃q′ ∈ Q′. p′ v q′. For the respective q′l ∈ q′,
we have p′ v q′l by Thm. 4.37.2.

If i ∈ B, we get q
i−→ Q

′
= {{q′1, . . . , q′l, . . . , q′n, q0}\{u} | q′l ∈ Q′l,∀k ∈

{1, . . . , n}\{l}. pk
i

=⇒ p′k} by (IMust). Since p v q, we have p
i−→ ε

=⇒
P ′ for some P ′ with ∀p′ ∈ P ′ ∃q′ ∈ Q′. p′ v q′. Since p′ v q′, each pair
(p′, q′k) with q′k ∈ q′ is in the first subset. This includes (p′, q′l) for some
q′l ∈ Q′l in particular; observe that q′l is indeed in q′ since q′l 6= uQ is not

possible for a target of ql
i−→ Q′l.

(iii) ql
ω−→ Q′ is analogous.

(iv) p
α
99K p′ implies ∃q′. q α

=⇒ q′ and p′ v q′. This transition exists because
of (May) or (MayK). If we have α = τ and ql ∈ q′ then (p′, ql) is in the
first subset of R, no matter if q = q′ or q

τ
=⇒ q′. Otherwise, we have

ql
α

=⇒ q′l and q′l ∈ q′ or q′l = uQ and are done due to the first subset,
Thm. 4.37.2 or Def. 4.4.

To show that the reverse does not hold in general consider a MIA Q =
({q0, q1, u}, I, O, 99K,−→, {q0}, u) with o ∈ O and the transitions q0

o−→ q1

(including the underlying may-transition) and q1
o
99K q1. Obviously, q0 v

q0 and thus, q0 refines all ql in {q0}, the initial state of �AQ. However,
{q0}

o−→ {q1, q0}
o−→ {q1, q0}; the second transition cannot be matched in

Q, thus q0 6v {q0}.

153

The Unless construction essentially creates all states and transitions the
Always construction does. In addition, there is the possibility of taking a
C-transition while finally adding a conjunct from R0 instead of Q0. For
must-transitions with a ∈ C this means also adding some r0 to the target
state. Like the Proto-Always, the Proto-Unless is a pseudo MIA, i.e. it can
have must-transitions targeting the empty state.

Definition 4.48 (Temporal operators on MIAs: Proto-Unless). Let C ⊆
B ⊆ A and Q and R be MIAs. The Proto-Unless is the pseudo-MIA
QBWCR = (Q ·∪K ·∪K ′ ·∪ {∅}, I, O,−→W , 99KW , {S | ∃q0 ∈ Q0. {q0}

ε
=⇒W

S}, {uQ}), where Q = Pfin(Q)\{∅} is the powerset of Q, K = {
∧
{q1, . . . , qn} |

{q1, . . . , qn} ⊆ Q,
∧
{q1, . . . , qn} is defined } the set of all possible consistent

conjunctions of states of Q and K ′ = {
∧
{q1, . . . , qn, r} | {q1, . . . , qn} ⊆

Q, r ∈ R,
∧
{q1, . . . , qn, r} is defined} the set of all possible consistent con-

junctions of states of Q and one of R. The sets −→W and 99KW contain all
transitions of the conjunctions, all transitions of the Proto-Always except for
must-transitions with labels in C, and the ones given by the following rules:

(IMustW) {q1, . . . , qn}
i−→W

{{q′1, . . . , q′n, q0} \ {u} | q′l ∈ Q′l, q0 ∈ Q0,∀k ∈ {1, . . . , n} \ {l}. qk
i

=⇒ q′k}
∪ {

∧
{q′1, . . . , q′n, r0} | q′l ∈ Q′l, r0 ∈ R0,∀k ∈ {1, . . . , n} \ {l}. qk

i
=⇒ q′k}

if i ∈ C, l ∈ {1, . . . , n} and ql
i−→ Q′l

(OMustW) {q1, . . . , ql, . . . , qn}
o−→W

{{q′1, . . . , q′n, q0} | q′l ∈ Q′l, q0 ∈ Q0,∀k ∈ {1, . . . , n} \ {l}. qk
o

=⇒ q′k}
∪ {
∧
{q′1, . . . , q′n, r0} | q′l ∈ Q′l, r0 ∈ R0,∀k ∈ {1, . . . , n} \ {l}. qk

o
=⇒ q′k}

if o ∈ C, l ∈ {1, . . . , n} and ql
o−→ Q′l

(MayW) {q1, . . . , qn}
a
99KW

∧
{q′1, . . . , q′n, r0}

if a ∈ C, r0 ∈ R0 and ∀k ∈ {1, . . . , n}. qk
a

=⇒ q′k

Definition 4.49 (Temporal operators on MIAs: Unless). Given a Proto-
Unless QBWCR, we arrive at the Unless MIA QBWCR by applying the same
pruning as for Always in Def. 4.46.

Similarly to Always, we present a lemma stating that the states of the
Unless-MIA behave like a conjunction of the component states or finer.

Lemma 4.50. Let P and Qw6 vUw6 vR be MIAs, C ⊆ B ⊆ A and q ∈
QBWCR. We write q ∈

∧
{q1, . . . , qn} if q ∈ {q1, . . . , qn}. If p v q then, for

all qi ∈ q, we have p v qi. (The reverse implication does not hold.)

Proof. We partition the state space PBWCQ into Q ·∪K ·∪K ′ as in Def. 4.48.
To prove the implication, we show that R = {(p, ql) | p ∈ P, ∃q ∈ Q. ql ∈

154

q and p v q}∪ v is a MIA-refinement relation. The correctness of v is
obvious. We take a pair (p, ql) due to q = {q1, . . . , qn} from the first subset
and check the items of Def. 4.4. We have ql 6= uQ by construction and the
assumption on Q.

(i) Since ql 6= uQ, we have q 6= {uQ}. Thus, p 6= uP , since p v q.

(ii) ql
i−→ Q′l. If not ∀qk ∈ q. qk

i
=⇒, then q 6i99K (cf. (May), (MayK) and

(MayW)) and q is logically inconsistent implying q /∈ PBWCQ. So we

assume otherwise and get q
i−→.

The case i /∈ C, has been shown as part of the proof of Lem. 4.47.

It remains to examine the case i ∈ C. We get q
i−→ Q

′
with Q

′
=

{{q′1, . . . , q′n, q0} \ {uQ} | q′l ∈ Q′l, q0 ∈ Q0,∀k ∈ {1, . . . , n} \ {l}. qk
i

=⇒
q′k} ∪ {

∧
{q′1, . . . , q′n, r0} | q′l ∈ Q′l, r0 ∈ R0,∀k ∈ {1, . . . , n} \ {l}. qk

i
=⇒

q′k} by (IMustW). Since p v q, we have p
i−→ ε

=⇒ P ′ for some P ′ with

∀p′ ∈ P ′ ∃q′ ∈ Q′. p′ v q′. Since p′ v q′, each pair (p′, q′k) with q′k ∈ q′
is in the first subset of R if q′ is in the first subset of Q

′
and in the

second subset of R if q′ is in the second subset of Q
′
. This includes

(p′, q′l) for some q′l ∈ Q′l in particular.

(iii) ql
ω−→ Q′ is analogous.

(iv) p
α
99K p′ implies ∃q′. q α

=⇒ q′ and p′ v q′. If we have ω = τ and
ql ∈ q′ then (p′, ql) is in the first subset of R, no matter if q = q′ or
q

τ
=⇒ q′. Otherwise, this transition exists because of (May), (MayK)

or (MayW), and in either case, we have ql
α

=⇒ q′l and q′l ∈ q′ or q′l = uQ
and are done due to the first subset, Thm. 4.37.2 or Def. 4.4.

The reverse implication does not hold, already for �Q = QAW∅ff as
shown in Lem. 4.47.

Now we have shown how to translate each logical operator into an oper-
ator on MIAs. In particular, we can translate each formula ϕ into a MIA,
which we now also denote by ϕ.

To achieve the result that satisfaction and refinement coincide, we show
more generally that the logical operators applied to MIAs fit the definition
of satisfaction. For conjunction, we know this already.

Theorem 4.51 (Temporal MIA operators vs. formulae). For non-universal
MIAs P , Q and R and for sets C ⊆ B ⊆ A and Bε ⊆ A ∪ {ε}, we have

155

P v tt always
P v ff iff P0 = ∅
P v [B]Q iff ∀p0 ∈ P0 ∀a ∈ B ∀p′. (p0

a
99K p′ implies P [p′] v Q)

P v 〈Bε〉Q iff ∀p0 ∈ P0 ∃α ∈ Bε, P
′. P [P ′] v Q and

either α ∈ I and p0
α−→ ε

=⇒ P ′

or α ∈ O ∪ {ε} and p0
α

=⇒ P ′

P v Q ∧R iff P v Q and P v R
P v Q ∨R iff ∀p0 ∈ P0 P [p0] v Q or P [p0] v R
P v �BQ iff ∀p0 ∈ P0 ∀p1, p2, . . . , pn ∈ P ∀α1, α2, . . . , αn ∈ B ∪ {τ}.

(p0
α1
99K p1

α2
99K · · · pn implies P [pn] v Q)

P v QBWCR iff ∀p0 ∈ P0 ∀p1, p2, . . . , pn ∈ P
∀α1, α2, . . . , αn ∈ B ∪ {τ}.

(p0
α1
99K p1

α2
99K p2 · · ·

αn
99K pn implies

((∃1 ≤ i ≤ n. αi ∈ C and P [pi] v R) or P [pn] v Q))

Proof. The case ff is obvious. The case ∧ has been proven in Thm. 4.37. For
the next three cases refer to Fig. 4.13 for the respective meaning of labels i,
o and a and for names of states of the respective right-hand MIA; note that
they mostly include νI or νO.

Case tt:
‘⇒’ is obvious. For ‘⇐’ we show that Rtt = {(p, tt0) | p ∈ P \{uP}}∪{(p, u) |
p ∈ P} is a MIA-refinement relation. The pairs in the second subset are
obviously correct. For the first subset recall that u is only reachable by input

may-transitions. Thus for p
ω
99K p′ the pair (p′, tt0) is contained in the first

subset and for p
i
99K p′ (p′, u) is contained in the second. It is easy to see

that for each p0 ∈ P0 the pair (p0, tt0) is contained in the first subset (recall
that p0 6= uP by assumption).

Case [B]Q:

‘⇒’: Consider some p0 ∈ P0 and p′ ∈ P with p0
a
99K p′ for some a ∈ B. Since

P v [B]Q, we know that p0 v x0. Thus, p′ can only be matched by some q
in the τ -closure of some state in Q0, i.e. q ∈ Q0. Then, all p′′ with p′

ε
=⇒ p′′

are matched by some element of Q0. Thus, P [p′] v Q.
‘⇐’: We show that R = {(p0, x0) | p0 ∈ P0} ∪ {(p, q) | p ∈ P, q ∈ Q, p v

q} ∪ Rtt is a MIA-refinement relation. The last subset is correct, as argued
in case tt. Obviously, the second subset is correct as well. Since x0 has
no must-transitions, we only have to consider the may-transitions of some
p0 ∈ P0. Each o- and i-transition (with o /∈ B and i /∈ B respectively) of p0

is matched by x0
o
99K tt0 or x0

i
99K u respectively. The resulting pairs are in

Rtt. Each τ -transition of p0 can only lead to an initial state p′0 ∈ P0. This

156

is matched by x0 not taking any transition and (p′0, x0) is in the first subset.
Each a-transition of p0 with a ∈ B leads, by assumption, to some p′ with
P [p′] v Q, i.e. for each p′ exists a q0 ∈ Q0 with p′ v q0. Thus, (p′, q0) is
contained in the second subset and we are done.

Case 〈Bε〉Q:
‘⇒’: Consider some p0 ∈ P0. Since P v 〈Bε〉Q, we know that p0 v xα0 for
some α ∈ Bε. Due to the must-transition of xα0, there exists some P ′ such
that for each p′ ∈ P ′ there is a q0 ∈ Q0 with p′ v q0 and with p0

α
=⇒ P ′

if α ∈ O ∪ {ε} or with p0
α−→ ε

=⇒ P ′ if α ∈ I. Furthermore, each p′′ in
the τ -closure of P ′ must match some q′0 ∈ Q0, since Q0 is τ -closed. Thus,
P [P ′] v Q.

‘⇐’: We show that R = {(p0, xα0) | p0 ∈ P0, α ∈ Bε, P [P ′] v Q,α ∈
I and p0

α−→ ε
=⇒ P ′ or α ∈ O and p0

α
=⇒ P ′ or α = ε and p0

ε
=⇒ P ′} ∪

{(p, q) | p ∈ P, q ∈ Q, p v q}∪Rtt is a MIA-refinement relation. The last two
subsets are correct, as argued in the case [B]Q above. The first components
of the pairs in the first subset contain all p0 ∈ P0. Consider such a p0 of a pair
(p0, xα0). Each a-may-transition of p0 (including a-transitions with a ∈ Bε)
can be matched by a transition from xα0 to tt0 or u, and the resulting pairs are
contained inRtt. A τ -transition of p0 can only lead to an initial state p′0 ∈ P0.
This is matched by xα0

ε
=⇒ xβ0 (possibly equal to xα0) such that (p′0, xβ0)

is in the first subset. The α-must-transition xα0
α−→ Q0 is matched by the

weak α-must-transition to P ′ that p0 must have by assumption. Note that
the type of weak transition fits the refinement for α ∈ I and for α ∈ O∪{τ}.
Since P [P ′] v Q, we have for each p′ ∈ P ′ some q0 ∈ Q0 with p′ v q0. The
pairs (p′, q0) are in the second subset and we are done.

Case Q ∨R:
‘⇒’: Consider some p0 ∈ P0. There is some qr0 ∈ Q0 ∪ R0 with p0 v qr0;
w.l.o.g. qr0 ∈ Q0. Since each p′0 in the τ -closure of p0 can be matched by
some q′0 in the τ -closure of qr0, we have P [p0] v Q and are done.

‘⇐’: Consider some p0 ∈ P0. We have P [p0] v Q or P [p0] v R, say the
former. Thus there is some q0 ∈ Q0 with p0 v q0. Since q0 is an initial state
of Q ∨R, we are done.

Case �BQ:
‘⇒’: Consider some p0, p1, . . . , pn and α1, . . . , αn as in the claim. Since
P v �BQ and all αl ∈ B ∪ {τ}, the may-transitions must be matched by
�BQ using transitions resulting from (May). Thus pn is matched by some
{q1, . . . , qn, q0} for some q0 ∈ Q0. By Lem. 4.47 this implies pn v q0.

If pn
ε

=⇒ p, we extend the path of the αi and get pn v q0 for the same
reason. Thus P [pn] v Q.

‘⇐’: We partition the state space �BQ into Q ·∪K as in Def. 4.45. Recall

157

that we write q ∈
∧
{q1, . . . , qn} if q ∈ {q1, . . . , qn} for ease of notation.

We show that R = {(p, q) | q ∈ Q, ∃p0 ∈ P0, w ∈ B∗. p0
w

=⇒ p and ∀qk ∈
q. p v qk}∪ v is a MIA-refinement relation.

To see that this suffices, choose p0 ∈ P0. By assumption with n = 0, we
have P [p0] v Q, i.e. ∃q0 ∈ Q0. p0 v q0. For q0 = {q0}, we have (p0, q0) in the
first subset of R. Hence, ∀p0 ∈ P0 ∃q0 ∈ (�BQ)0. (p0, q0) ∈ R.

The correctness of v is obvious. We take a pair (p, q) due to p0 and w
from the first subset and check the items of Def. 4.4; assume q 6= {uQ}.

(i) Since q 6= {uQ}, there is some qk ∈ q with qk 6= u. Now p v qk implies
p 6= uP .

(ii) q
i−→ Q

′
is analogous to the next case.

(iii) Consider q
ω−→ Q

′
with q = {q1, . . . , ql, . . . , qn}, ql

ω−→ Q′l and, depend-
ing on whether ω ∈ B ∪ {τ} or not, we have

1. Q
′

= {{q′1, . . . , q′n, q0} | q′l ∈ Q′l, q0 ∈ Q0,∀k ∈ {1, . . . , n} \ {l}.
qk

ω̂
=⇒ q′k}, or

2. Q
′
= {
∧
{q′1, . . . , q′n} | q′l ∈ Q′l,∀k ∈ {1, . . . , n} \ {l}. qk

ω̂
=⇒ q′k}.

Since ∀qk ∈ q. p v qk, we have p v ql and therefore there exists some

p
ω̂

=⇒ P ′ matching ql
ω−→ Q′l. Consider some p′ ∈ P ′ and q′l ∈ Q′l

with p′ v q′l. Because of syntactic consistency, we have p
ω̂

=⇒ p′.
Again by ∀qk ∈ q. p v qk and Prop. 4.5(iv) we get ∀k ∈ {1, . . . , n} \
{l} ∃q′k. qk

ω̂
=⇒ q′k ∧ p′ v q′k. Thus, in Case 2 we are done, since we

have a q′ =
∧
{q′1, . . . , q′n} ∈ Ql

′
with ∀q′k ∈ q. p′ v q′k and thus p′ v q′

by Thm. 4.37.2.

For Case 1, we also have p0
w

=⇒ p
ω̂

=⇒ p′ with wω̂ ∈ B∗. Thus P [p′] v
Q, implying ∃q0 ∈ Q0. p

′ v q0. Again, we have a q′ = {q′1, . . . , q′n, q0} ∈
Ql
′

with ∀q′k ∈ q. p′ v q′k and thus (p′, q′) ∈ R.

(iv) Consider p
α
99K p′. From ∀qk ∈ q. p v qk we get ∀qk ∈ q ∃q′k. qk

α̂
=⇒

q′k ∧ p′ v q′k. If ∀k. qk = q′k, we have (p′, q) in the first subset of R and

are done. Otherwise, by construction of �BQ, we get q
α
99K.

If α ∈ B ∪ {τ}, then q
α
99K q′ = {q′1, . . . , q′n, q0} for each q0 ∈ Q0 by

(May). We already established p′ v q′k for all q′k ∈ {q′1, . . . , q′n}. We now

have p0
w

=⇒ p
α
99K p′ with wα ∈ B∗. Therefore, P [p′] v Q implying

∃q0 ∈ Q0. p
′ v q0. Thus, p′ v q for all q ∈ {q′1, . . . , q′n, q0} implying

(p′, q′) ∈ R.

158

If α /∈ B ∪ {τ}, then q
α
99K c′ =

∧
{q′1, . . . , q′n} for each q0 ∈ Q0 by

(MayK) . As we established p′ v q′k for all q′k ∈ c′, we get p′ v c′.

Case QBWCR:
‘⇒’: Consider some p0, p1, . . . , pn and α1, . . . , αn as in the claim. Since
P v QBWCR and all αj ∈ B ∪ {τ}, the may-transitions must be matched
by QBWCR using transitions resulting from (May), or there is a transition

pi−1
αi
99K pi with αi ∈ C due to (MayW). In the first case, pn is matched by

some {q1, . . . , qm, q0} for some q0 ∈ Q0; by Lem. 4.50 this implies pn v q′0.
If pn

ε
=⇒ p, we extend the path of the αj and get pn v q0 ∈ Q0 for the

same reason. Thus P [pn] v Q. In the second case, pi is matched by some
{q1, . . . , qm, r0} for some r0 ∈ R0; by Lem. 4.50 this implies pi v r0. If
pi

ε
=⇒ p′, then by Prop. 4.5 there is some r0

ε
=⇒ r′0 with p′ v r′0 and

r′0 ∈ R0 by initial τ -closure of R. Thus, P [pi] v R.
‘⇐’: We partition the state space QBWCR into Q ·∪K ·∪K ′ as in Def. 4.48

and again write q ∈
∧
{q1, . . . , qm} if q ∈ {q1, . . . , qm} for ease of notation.

We show that R = {(pn, q) | q ∈ Q,∃p0 ∈ P0, α1, . . . , αn ∈ B. p0
α1
99K

p1
α2
99K · · · pn−1

αn
99K pn and ∀qk ∈ q. pn v qk and there is no i ∈ {1, . . . , n}

such that αi ∈ C and P [pi] v R}∪ v is a MIA-refinement relation.
To see that this suffices, choose p0 ∈ P0. By assumption with n = 0, we

have P [p0] v Q, i.e. ∃q0 ∈ Q0. p0 v q0. For q0 = {q0}, we have (p0, q0) in the
first subset of R. Hence, ∀p0 ∈ P0 ∃q0 ∈ (QBWCR)0. (p0, q0) ∈ R.

The correctness of v is obvious. So we take a pair (pn, q) due to p0 and
w = α1 · · ·αn from the first subset and check the items of Def. 4.4; assume
q 6= {uQ}.

(i) Since q 6= {uQ}, there is some qk ∈ q with qk 6= uQ. Now p v qk implies
p 6= uP with.

(ii) q
i−→ Q

′
is analogous to the next case.

(iii) Consider q
ω−→ Q

′
with q = {q1, . . . , ql, . . . , qm}, ql

ω−→ Q′l and, depend-

ing on whether ω ∈ B ∪ {τ} or not, we have 1. Q
′
= {{q′1, . . . , q′m, q0} |

q′l ∈ Q′l, q0 ∈ Q0,∀k ∈ {1, . . . ,m}\{l}. qk
ω̂

=⇒ q′k}∪{
∧
{q′1, . . . , q′m, r0} |

ω ∈ C, q′l ∈ Q′l, r0 ∈ R0,∀k ∈ {1, . . . ,m} \ {l}. qk
ω

=⇒ q′k} or

2. Q
′
= {
∧
{q′1, . . . , q′m} | q′l ∈ Q′l,∀k ∈ {1, . . . ,m} \ {l}. qk

ω̂
=⇒ q′k}.

Since ∀qk ∈ q. p v qk, we have p v ql and therefore there exists some

p
ω̂

=⇒ P ′ matching ql
ω−→ Q′l. Consider some p′ ∈ P ′ and q′l ∈ Q′l

with p′ v q′l. Because of syntactic consistency, we have p
ω̂

=⇒ p′.

159

Again by ∀qk ∈ q. p v qk and Prop. 4.5 we get ∀k ∈ {1, . . . ,m} \
{l} ∃q′k. qk

ω̂
=⇒ q′k ∧ p′ v q′k. Thus, in Case 2 we are done, since we

have a q′ =
∧
{q′1, . . . , q′m} ∈ Q

′
with ∀q′k ∈ q′. p′ v q′k and thus p′ v q′.

For Case 1, we also have p0
α1···αn=⇒ pn

β1
99K pn+1

β2
99K · · ·

βl
99K pn+l = p′

with ̂β1β2 · · · βl = ω̂ ∈ B ∪ {ε}. Now, by the initial assumption, there
are two possibilities: The first is the existence of some pn+i and βi ∈ C
with 1 ≤ i ≤ l and P [pn+i] v R. In this case, ∃r0 ∈ R0. pn+i v r0 and
by Prop. 4.5 and initial τ -closure of R, we get ∃r′0 ∈ R0. p

′ v r′0. Thus,

we have q′ =
∧
{q′1, . . . , q′m, r′0} ∈ Q

′
with ∀q′ ∈ q′. p′ v q′ (possibly

q′ = r′0) implying p′ v q′. Otherwise, P [p′] v Q, in which case we

have a q′0 ∈ Q0 with p′ v q′0; thus, q′ = {q′1, . . . , q′m, q′0} ∈ Q
′

and
∀q′k ∈ q. p′ v q′k implying (p′, q′) ∈ R.

(iv) Consider pn
α
99K p′. From ∀qk ∈ q. pn v qk we get ∀qk ∈ q ∃q′k. qk

α̂
=⇒

q′k with p′ v q′k. If ∀k. qk = q′k, we are done. Otherwise, by construction

of QBWCR, we get q
α
99K by (May), (MayK) or (MayW).

If α ∈ B∪{τ}, then q
α
99K {q′1, . . . , q′m, q0} for each q0 ∈ Q0 by (May) or,

if in addition α ∈ C, then also q
α
99K

∧
{q′1, . . . , q′m, r0} for each r0 ∈ R0,

by (MayW). We already established p′ v q′k for all q′k ∈ {q′1, . . . , q′m}.
We now have p0

α1
99K p1 · · · pn−1

αn
99K pn

α
99K p′ with α1, . . . , αn, α ∈ B.

By assumption, 1. α ∈ C and P [p′] v R or, otherwise, we have 2.
P [p′] v Q. In the second case P [p′] v Q implies ∃q0 ∈ Q0. p

′ v q0.
Thus, p′ v q for all q ∈ q′ = {q′1, . . . , q′m, q0} implying (p′, q′) ∈ R. In
the first case, P [p′] v R implies p′ v q for all q ∈ q′ =

∧
{q1, . . . , qm, r0}

for some r0 ∈ R0. and thus p′ v q′.

If α /∈ B ∪ {τ}, then q
α
99K q′ =

∧
{q′1, . . . , q′m} by (MayK). As we

established p′ v q′k for all q′k ∈ q′ and we get p′ v q′.

Now the desired and central result is just a direct corollary. Then, tran-
sitivity of v shows that refinement preserves satisfaction.

Corollary 4.52 (Compatibility). 1. P |= ϕ if and only if P v ϕ.

2. P v Q and Q |= ϕ imply P |= ϕ.

With our main result achieved, we can further discuss some aspects of our
logic, particularly the lack of negation and the non-standard way disjunction
is defined.

In a setting where refinement preserves satisfaction, classic negation can-
not be expressed in the logics. Given P v Q and not Q |= ϕ, we would have

160

Q |= ¬ϕ, P |= ¬ϕ and not P |= ϕ. Thus, all such P and Q would satisfy the
same formulae, which hardly makes sense. This is already remarked in [10].
In fact, since all non-universal MIA satisfy and, hence, refine tt, all these
MIAs would satisfy the same formulae, and the logics would be useless.

We can now formally show that defining disjunction as P |= ϕ ∨′ ψ if
P |= ϕ or P |= ψ would prevent us from achieving our main result. Consider
the formulae ϕo = 〈o〉tt and ϕo′ = 〈o′〉tt. For our main result there have to
be MIA representations Ro and Ro′ with P |= ϕo if and only if P v Ro for
any MIA P (analogously for o′). Now consider again MIAs P and Q from
Fig. 4.4. Since P |= ϕo and Q |= ϕo′ , we must have P v Ro and Q v Ro′

if our main result holds. Disjunction on MIAs must satisfy Thm. 4.31 and
Cor. 4.32, so we get P ∨ Q v Ro ∨ Ro′ . However, according to the above
definition, P ∨Q 6|= ϕo ∨′ ϕo′ , since ϕo fails due to q0 and ϕo′ due to p0.

With the characterization result, we can also easily prove that our oper-
ators are precongruences:

Theorem 4.53 (Precongruences). The temporal operators are precongru-
ences: For all non-universal MIAs P ,Q and R, P v Q implies 〈a〉P v 〈a〉Q,
[a]P v [a]Q, PBWCR v QBWCR and RBWCP v RBWCQ.

Proof. We prove this for [a]. The other cases are analogous.
We first show: for some MIA R, R v [a]P and P v Q implies R v [a]Q.

R v [a]P implies ∀r0 ∈ R0 ∀r′. (r0
a
99K r′ implies R[r′] v P) by Thm. 4.51.

Since P v Q and transitivity, we get ∀r0 ∈ R0 ∀r′. (r0
a
99K r′ implies R[r′] v

Q). Again by Thm. 4.51 we get R v [a]Q.
Now we choose R = [a]P and are done.

4.5.2 ACTL Example

To show how our heterogeneous specifications can be used, we present a small
example inspired by the one in [50]. For ease of understanding and better
readability, we omit ν-transitions, since they are irrelevant for this example.

We first develop a specification C for a channel that receives messages
via the input in and forwards them via the output out ; A = {in, out}. The
channel should behave like the lossy channel P in Fig. 4.14 but also satisfy
the formula ψ = �[in][in](en(out) ∧ dis(in)). This formula ensures that no
two messages are lost in a row. The MIA-representation of ψ and the MIA
that ψ is constructed from are shown in Fig. 4.14; some reductions are applied
here: the various copies of tt0 added according to Fig. 4.13 are merged as well
as tt0 ∧ tt0 and tt0. The resulting MIA ψ turns out to be rather intuitive: In
the state ψ0 = {s0}, no in or out has been performed yet. In ψ1 = {s1, s0},

161

p0

P

p1
in

τ

out
[in][in](en(out) ∧ dis(in))

s0 s1 s2

tt0 u

in in

out
out

out

out
in

ψ0

ψ

ψ1 ψ2

ψ3

in in

out

out
out

in

out

00

C = ψ ∧ PC = ψ ∧ P

10 21

11 30

in

in

in

in

out

τ in
out

en(A):

vi

tt0

vo

u

τ

τ

in

out

in

out

in

out

in

ϕ = �(en(A)):

ϕi ϕo

out , τ

out

in, τ

in
in

out

Figure 4.14: MIAs and some construction steps for the example. ν-transitions
are omitted

162

the last action was an in and the one before was not, i.e. another in can
be performed, but out is also enabled. ψ2 = {s2, s1, s0} means that the last
two actions were in, thus the next one must be out . Finally, ψ3 = {tt0, x0}
is similar to ψ0 in that no in has been performed since the last out . For
specification C = P ∧ ψ, note that the state 20 is inconsistent and thus has
been removed.

We finally demonstrate how to verify that C is deadlock-free, i.e. it
can always perform out or receive in. This property can be formalized as
ϕ = �(en(A)), the MIA-representation of which is depicted in Fig. 4.13
as well. To show that C |= ϕ, it suffices to check C v ϕ. By R =
{(00, ϕi), (10, ϕi), (21, ϕo), (11, ϕo), (30, ϕi)} the property holds. This also
proves that any implementation of C, e.g. some channel C ′ v C, also sat-
isfies the property ϕ, i.e. C ′ |= ϕ. Furthermore, we also know that if some
complex system S has C as its component, e.g. S = (C ‖ T)/{out}, and that
S satisfies some ϕ′, then its refinement S ′ = (C ′ ‖ T)/{out} also satisfies ϕ′.

To show that possible implementations of C include some MIA D, rather
than proving D v C directly, one could also establish D v P and D |= ψ
(or equivalently D v ψ).

4.5.3 Laws and Expressivity

Our setting and our logical operators satisfy several desirable, and often
expected, laws. The following laws of propositional logic, except for distribu-
tivity, hold in all lattices where ff and tt are bottom and top elements, i.e.
they follow from Thm. 4.31 and Thm. 4.37.

Proposition 4.54 (Laws of propositional logic). The following laws hold for
MIAs P w6 vUw6 vQ:

Idempotence: P ∧ P wv P and P ∨ P wv P
Absorption: P ∧ (P ∨Q) wv P and P ∨ (P ∧Q) wv P
Neutral Elements: P ∨ ff wv P and P ∧ tt wv P
Null Elements: P ∧ ff wv ff and P ∨ tt wv tt
False/True: ff v P and P v tt
And/Or: P ∧Q v P and P v P ∨Q
Lower/Upper Bound: P ∧Q wv P ⇔ P ∨Q wv Q ⇔ P v Q

Furthermore,
Distributivity I: P ∧ (Q ∨R) wv (P ∧Q) ∨ (P ∧R)
Distributivity II: P ∨ (Q ∧R) wv (P ∨Q) ∧ (P ∨R)

Proof. We show Distributivity I explicitly, by showing that S v P ∧ (Q∨R)
if and only if S v (P ∧Q)∨(P ∧R). Distributivity II can be shown similarly.

163

Assume S v P ∧ (Q ∨ R). By Thm. 4.37.3, S v P and S v Q ∨ R.
Then, by definition of refinement and disjunction, there is for each s0 ∈ S0 a
p0 ∈ P0 with s0 v p0 and some q0 ∈ Q0 ∪R0 (say ∈ Q0) with s0 v q0. Then,
by Thm. 4.37.1 and 2, the state p0∧ q0 is consistent, an initial state of P ∧Q
and thus of (P ∧ Q) ∨ (P ∧ R), and it is refined by s0. Similarly, assuming
S v (P ∧Q) ∨ (P ∧ R), each s0 refines some p0 and some q0 or r0 and thus
S v P and S v Q ∨R.

More interestingly, we also have several laws for the temporal operators.

Proposition 4.55 (Laws of temporal logic). The following laws hold for
B,C ⊆ A, Bε, Cε ⊆ A ∪ {ε}, and MIAs P w6 vUw6 vQ:

(1) [B](P ∧Q) wv [B]P ∧ [B]Q
(2) �B(P ∧Q) wv �BP ∧�BQ
(3) �BP wv P ∧ [B]�BP
(4) en(B) ∧ dis(B) wv ff
(5) dis(B) ∧ [C]P wv dis(B) if C ⊆ B
(6) [B]P ∧ [C]P wv [B ∪ C]P
(7) 〈Bε〉P ∨ 〈Cε〉P v 〈Bε ∪ Cε〉P the reverse is not true in general

Proof. We prove these equivalences by showing that both sides have the same
refinements. Since these refinements include both sides themselves, we are
done. We will make heavy use of the characterization given by Thm. 4.51. To
be closer to this theorem, we use P as variable for the refinements showing
e.g. P v [B](Q ∧ R)⇔ P v [B]Q ∧ [B]R for (1). For reasons of readability
we omit sets where these are clear from the representatives, e.g. writing ∀p0

instead of ∀p0 ∈ P0.

(1): P v [B](Q ∧ R) is equivalent to ∀p0∀a ∈ B∀p′. p0
a
99K p′ implies

(P [p′] v Q and P [p′] v R) by Thm. 4.51.3 and 5. By logical transformations

we get (∀p0∀a ∈ B∀p′. p0
a
99K p′ implies P [p′] v Q) and (∀p0∀a ∈ B∀p′. p0

a
99K

p′ implies P [p′] v R), which again by Thm. 4.51.3 and 5 is equivalent to
P v [B]Q ∧ [B]R.

(2) Can be proven similarly to (1) using Thm. 4.51.7 instead of 3.
(3): Applying Thm. 4.51.7 to the left hand side, and Thm. 4.51.5 and 3

(and the definition of refinement) to the right hand side, it remains to show
the following equivalence:

∀p0 ∀p1, . . . , pn ∀α1, . . . , αn∈B∪{τ}. (p0
α1
99K p1

α2
99K · · · pn implies P [pn] v Q)

is equivalent to

∀p0. P [p0] v Q and ∀p0∀a ∈ B∀p′. p0
a
99K p′ implies P [p′] v �BQ.

The case ̂α1 · · ·αn = ε (including n = 0) in the upper statement cor-
responds to the first conjunct in the lower statement. For all other cases

164

note that, for k the lowest index where αk 6= τ , we have pk−1 ∈ P0 by ini-
tial τ -closure. Therefore this is covered by the second conjunct of the lower
statement.

(4): Applying Thm. 4.51.5, 1-4 to the left hand side yields

∀p0 ∃a ∈ B such that either a ∈ I and p0
a−→ ε

=⇒ P ′ or a ∈ O and p0
a

=⇒ P ′

and

∀p0∀a ∈ B.p0 6a99K.
Recalling initial τ -closure for the output-case, we see that any p0 would

violate syntactic consistency. Thus P0 = ∅, which means P0 wv ff.

(5): Applying Thm. 4.51.5, 3, 2 to the left hand side yields ∀p0∀a ∈
B. p0 6a99K and ∀p0∀a ∈ C∀p′. (p0

a
99K p′ implies P [p′] v Q). Since C ⊆ B,

the final implication holds by ex falso quodlibet. Thus only the first part
remains which is equivalent to P v dis(B).

(6): Obvious from the definition.

(7): For readability and brevity, we write that p does α if ∃P ′. P [P ′] v Q
and either α ∈ I and p

α−→ ε
=⇒ P ′ or α ∈ O ∪ {ε} and p

α
=⇒ P ′.

Applying Thm. 4.51.6 and 4 to P v 〈Bε〉Q ∨ 〈Cε〉Q, we get ∀p0.
(
(∀p′0.

p0
ε

=⇒ p′0 implies ∃α ∈ Bε. p
′
0 does α) or (∀p′0. p0

ε
=⇒ p′0 implies ∃α ∈ Cε. p′0

does α)
)
. This implies, but is not equivalent to (∀p0∃α ∈ Bε ∪ Cε. p0 does

α). By Thm. 4.51.4, we get P v 〈Bε ∪ Cε〉Q.

p0

p′0

p1

a

b

ττ

Figure 4.15: MIA P used in the proof of Prop. 4.57.

To see that the reverse of (7) does not hold, consider the MIA P from
Fig. 4.15 with P |= 〈a, b〉tt. However, P 6|= 〈a〉tt ∨ 〈b〉tt, since otherwise all
states in the τ -closure (e.g. of p0) would have to have an a-must-transition
or all would have to have a b-must-transition.

Items (1), (4) and (5) can also be proven very nicely by considering the
constructions. For (1) the resulting MIAs are isomorphic. For (4) all ini-
tial states of the conjunctive product of en(B) and dis(B) are immediately
inconsistent and thus removed. For (5) the already conjunctive product of
dis(B) and [C]P is isomorphic to dis(B).

165

Let us now consider the expressiveness of [B] and 〈Bε〉 compared to [α]
and 〈α〉. It is easy to see that [B] does not add expressiveness compared to [α]
if B is finite, because of Prop. 4.55(6). With 〈Bε〉, however, we have increased
expressiveness already in the finite case. We show this for a fragment of our
logic, where the Unless-Operator is excluded and 〈Bε〉 is restricted to a single
action or ε. We take this opportunity to also introduce another fragment
which will be used in the next section.

Definition 4.56. An ACTL-formula is called Unless-free, if the Unless-
Operator does not appear in it. The Unless-free-fragment Wf of ACTL
consists of all Unless-free formulae. We define LWf(P) =df {ϕ | P |=
ϕ, ϕ is Unless-free}.

Further, we define the HML-fragment H of ACTL as the fragment of
ACTL which contains only Unless-free formulae and where the [B] and 〈Bε〉
operators only occur with |B| = 1 and |Bε| = 1 respectively. We define
LH(P) =df {ϕ | P |= ϕ, ϕ is in H}.

Note that the Always-Operator does also not appear in formulae of either
fragment, since it is a shorthand using Unless.

Proposition 4.57 (Expressivity: 〈Bε〉 vs. 〈α〉). No formula in Wf with
|Bε| = 1 for every occurrence of 〈Bε〉 is equivalent to 〈a, b〉tt.

Proof. Consider the MIA P from Fig. 4.15 and a ‘deadlock’-MIA D which
has a single non-universal initial state d0 and no transitions. It is easy to see
that P |= 〈a, b〉tt and D 6|= 〈a, b〉tt. We show by structural induction that for
any formula ϕ ∈ Wf (with |Bε| = 1 for every occurrence of 〈Bε〉) we have
P 6|= ϕ or D |= ϕ, so that the desired equivalence for ϕ is violated by P or
by D.

For ϕ = tt we have D |= ϕ and for ϕ = ff we have P 6|= ϕ. For any
action c and any formula ψ, we have P 6|= 〈c〉ψ; in particular, P 6|= 〈a〉ψ,

since p′0 6a−→. Similarly, D |= [B]ψ, since d0 6c99K for all c ∈ B for any
B ⊆ A. Now, consider ϕ = 〈ε〉ψ. Since none of the initial states under
consideration has any outgoing τ -must-transition (and by Lem. 4.42.1), we
have P |= ϕ⇔ P |= ψ and D |= ϕ⇔ D |= ψ. Thus, by induction, P 6|= ϕ or
D |= ϕ.

Now we only have to consider disjunctions and conjunctions of formulae
we already considered. By applying the distributivity laws of Prop. 4.54, any
combination can be written as a disjunction ϕ of conjunctions. Since each
initial state of P is in the τ -closure of the other, P |= ϕ if and only if P |= ψ
for some disjunct ψ of ϕ. By definition, P |= ψ if and only if P |= θ for all
conjuncts θ of ψ. Assume P |= ϕ and apply the induction hypothesis to each

166

θ; this gives D |= θ for all conjuncts θ of ψ. Thus, D |= ψ and since it has
only one initial state, we get D |= ϕ and are done.

4.5.4 HML-Characerization

In this section we examine in how far a HML-style characterization can be
applied to our setting. As we will show, refinement for MIAs is not char-
acterized by inclusion of ACTL-formulae. There are, however, interesting
variants that are worth examining.

For this, we return to the whole setting by lifting the requirement for
initial τ -closure. The characterization requires image-finiteness, as usual.

Definition 4.58 (Image Finiteness and τ -Freedom). A MIA P is image
finite if P0 is finite and for all α ∈ Aτ and all states p ∈ P the set {p′ |
p

α
=⇒ p′} is finite. P is called τ -free if it has no τ -transitions, i.e. p

α
99K p′

implies α 6= τ .

We present a state-based HML-style-logic and characterise MIA-refine-
ment with it. In a τ -free setting, this logic is a subset of ACTL, but otherwise
they are incomparable. We do not have a translation to MIAs and indeed
cannot have one. However, satisfaction is still retained under refinement (cf.
Cor. 4.52.2).

For the HML-operators we use different notation to highlight the differ-
ence to ACTL. We still exclude U and u from satisfying any formulae, but we
will include them in our considerations for characterising MIA-refinement.

Definition 4.59 (Hennessy-Milner-Logic). Let α ∈ A ∪ {ε}, P be a MIA
and p 6= u one of its states. (Classic) HML-formulae ϕ are given by:

ϕ ::= tt | ff | [[α]]ϕ | 〈〈α〉〉ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ.

The semantics of classic HML-formulae is defined inductively as follows:

p |= tt always
p |= ff never
p |= [[α]]ϕ if ∀p′ ∈ P the following hold:

p
α

=⇒ p′ implies p′ |= ϕ
p |= 〈〈α〉〉ϕ if ∃P ′ ⊆ P. (∀p′ ∈ P ′. p′ |= ϕ) and

either α ∈ I and p0
α−→ ε

=⇒ P ′

or α ∈ O ∪ {ε} and p0
α

=⇒ P ′

p |= ϕ ∧ ψ if p |= ϕ and p |= ψ
p |= ϕ ∨ ψ if p |= ϕ or p |= ψ

167

We lift these definitions to MIAs by defining P |= ϕ if ∀p0 ∈ P0. p0 |= ϕ.
We define LHML(p) =df {ϕ | p |= ϕ, ϕ is a HML-formula} as the set of
HML-formulae that p satisfies and LHML(P) analogously.

Observe that the HML-semantics above indeed coincides with the one for
H on τ -free MIAs, i.e. 〈〈α〉〉 corresponds to 〈α〉 and [[α]] to [α]. As mentioned,
the different notation is in order to highlight the difference in meaning, since
in general the semantics do not coincide.

Proposition 4.60 (HML-characterization). Let P and Q be image finite
MIAs. Then

P v Q ⇐⇒ LHML(Q) ⊆ LHML(P).

Proof. ‘=⇒’: First we prove the claim for states p and q and then generalise
it to MIAs.

Assume p v q and q |= ϕ for some HML-formula ϕ. Note that this implies
q 6= uQ and thus p 6= uP . Using structural induction, we show p |= ϕ for each
possible form of ϕ.

• ϕ = tt or ϕ = ff: It is obvious that p |= tt holds and that assuming
q |= ff immediately leads to a contradiction.

• ϕ = [[α]]ψ: We assume α ∈ O∪{ε}; the case α ∈ I is similar. Consider
some p

α
=⇒ p′. Since p v q, there must be some q

α
=⇒ q′ with p′ v q′.

By q |= [[α]]ψ, we get q′ |= ψ. By assumption, p′ |= ψ and thus
p |= [[α]]ψ.

• ϕ = 〈〈α〉〉ψ: Since q |= 〈〈α〉〉ψ, there is some q
α

=⇒ Q′ (if α ∈ O ∪ {ε},
otherwise q

α−→ ε
=⇒ Q′) with ∀q′ ∈ Q′. q′ |= ψ. Since p v q, we get

p
α

=⇒ P ′ with ∀p′ ∈ P ′∃q′ ∈ Q′. p′ v q′, by applying Prop. 4.5.(iii)
or (ii). By assumption, we have ∀p′ ∈ P ′. p′ |= ψ and thus p |= 〈〈α〉〉ψ.

• ϕ = ψ1 ∧ ψ2: By definition, q |= ϕ implies q |= ψ1 and q |= ψ2. By
assumption, we get p |= ψ1 and p |= ψ2 and again by definition p |= ϕ.

• ϕ = ψ1 ∨ ψ2: Similar.

Now that we have p v q =⇒ LHML(q) ⊆ LHML(p), assume P v Q and
Q |= ϕ. Then ∀q0 ∈ Q0. q0 |= ϕ and ∀p0 ∈ P0∃q0 ∈ Q0. p0 v q0. Thus
∀p0 ∈ P0. p0 |= ϕ and we are done.

‘⇐=’: As a first step, we show that ∀ϕ.Q |= ϕ =⇒ P |= ϕ implies
∀p0 ∈ P0∃q0 ∈ Q0∀ψ. q0 |= ψ =⇒ p0 |= ψ by contraposition: Assume the
existence of a p0 ∈ P0 such that for each q0i ∈ Q0 = {q01, q02, . . . , q0n} (which

168

is finite by our assumption of image finiteness) there is a formula ψi with
q0i |= ψi but p0 6|= ψi. Then ϕ = ψ1 ∨ ψ2 ∨ · · · ∨ ψn is such that Q |= ϕ by
definition of disjunction but P 6|= ϕ, due to p0.

As a second step, we show that ∀p0 ∈ P0∃q0 ∈ Q0∀ψ. q0 |= ψ =⇒ p0 |= ψ
implies ∀p0 ∈ P0∃q0 ∈ Q0. p0 v q0 by showing that

R = {(p, q) | LHML(q) ⊆ LHML(p)}

is a MIA-refinement relation. For this, consider a pair (p, q) ∈ R and assume
towards a contradiction that one of the items of Def. 4.4 is violated; note
that this implies q 6= uQ. We check each item and show a contradiction:

We consider items (ii) and (iii) together and write the input case in brack-
ets.

(i) p = uP implies p 6|= tt, which implies q 6|= tt by LHML(q) ⊆
LHML(p). Thus q = uQ which contradicts q 6= uQ.

(ii), (iii) Assume q
α−→ Q′ and ∀P ′. p α

=⇒ P ′ (∀P ′. p α−→ ε
=⇒ P ′ if α ∈ I)

implies
∃p′∈P ′ ∀q′∈Q′. (p′, q′) /∈ R. Let P ′ = {P ′1, . . . , P ′n} = {P ′ | p α

=⇒
P ′} ({P ′ | p α−→ ε

=⇒ P ′} if α ∈ I); note that this set is finite by
our assumption of image finiteness.

Fix a P ′k ∈ P ′. There exists p′k ∈ P ′k such that for all q′l ∈ Q′ =
{q′1, . . . , q′m} there exists a HML-formula ψk,l such that p′k 6|= ψk,l
and q′l |= ψk,l, since (p′k, q

′
l) /∈ R. Therefore, by definition of

disjunction, p′k 6|= ψk,1 ∨ · · · ∨ ψk,m, but for all q′l ∈ Q′, q′l |=
ψk,1 ∨ · · · ∨ ψk,m.

Thus, for ϕ = 〈〈a〉〉
(
(ψ1,1 ∨ · · · ∨ ψ1,m) ∧ · · · ∧ (ψn,1 ∨ · · · ∨ ψn,m)

)
we have q |= ϕ and p 6|= ϕ.

(iv) Assume p
α
99K p′ and ∀q′. q α

=⇒ q′ implies (p′, q′) /∈ R. Let
Q = {q′1, . . . , q′m} = {q′ | q α

=⇒ q′}; note that this set is finite by
our assumption of image finiteness.

There exists for each q′k ∈ Q a HML-formula ψk such that q′k |= ψk
but p′ 6|= ψk, since (p′, q′k) /∈ R. Thus, for ϕ = [[a]](ψ1 ∨ · · · ∨ψm)
we have q |= ϕ and p 6|= ϕ.

This characterization for MIAs is also applicable to subsets such as the
MIAs with initial τ -closure or single initial states (cf. [12]). Furthermore,
dMTSs and MTSs can also be seen as subsets if we consider all visible actions
to be outputs; recall that dMTS and MTS only have single initial states and

169

p0

PP

p
a

q0

QQ

q

q

q′
a

τ

a

Figure 4.16: ACTL-formulae give no HML-characterization for MIA-
refinement in general.

must-transitions only have single target states in MTSs. For the latter, a
HML-style characterization has already been presented in [45] with a different
proof.

We now return to examining MIAs. The implication of Prop. 4.60 holds
for all ACTL. Furthermore, the reverse implication holds for τ -free MIAs,
since then HML- and H-formulae coincide, as mentioned above. For MIAs
with τ , however, even requiring inclusion of all Unless-free-formulae is insuf-
ficient, as we show in the following.

Proposition 4.61 (HML-characterization). For image-finite MIAs P and
Q we have:

1. P v Q implies LA(Q) ⊆ LA(P), hence LH(Q) ⊆ LH(P),

2. if P and Q are τ -free, LH(Q) ⊆ LH(P) implies P v Q,

3. LWf(Q) ⊆ LWf(P) does not imply P v Q in general.

Proof. 1. Take ϕ with Q |= ϕ. Applying Cor. 4.52 we get Q v ϕ. By
transitivity and the same corollary, we have P |= ϕ.

2. Since on τ -free MIAs HML-formulae are essentially a subset of ACTL-
formulae, the claim is a corollary of Prop. 4.60.

3. Consider MIAs P and Q from Fig. 4.16; clearly, P 6v Q. We will argue,
that there is no Unless-free formula ϕ distinguishing P and Q in the sense
that Q |= ϕ and P 6|= ϕ. Similarly to the proof of Prop. 4.57, we will show
by structural induction, that for all ϕ ∈Wf we have Q 6|= ϕ or P |= ϕ .
Note that p v q and thus P [p] v Q[q] implying (∗) : ∀ϕ.Q[q] |= ϕ =⇒
P [p] |= ϕ.

For ϕ = tt we have P |= ϕ and for ϕ = ff we have Q 6|= ϕ.

We have P |= [B]ψ if a /∈ B, since then p0 6c99K for all c ∈ B. If a ∈ B,
assume Q |= ϕ (otherwise, we are done). Then Q[q] |= ψ and, by (∗), we get
P [p] |= ψ. Thus P |= ϕ by definition of [B], and we are done.

Similarly, Q |= 〈Bε〉ψ can only hold because of ε ∈ Bε or a ∈ Bε, since q0

has only one outgoing must-transition, which is labelled with a. In the first

170

case, Q |= ψ by q0
ε

=⇒ q0 and Q = Q[q0]. Then P |= ψ by induction and
P |= 〈Bε〉ψ because of ε ∈ Bε. In the second case, Q |= 〈Bε〉ψ holds because
of Q[q] |= ψ, which implies P [p] |= ψ by (∗). Now, P |= ϕ due to a ∈ Bε and
we are done.

Finally, it remains to consider disjunctions and conjunctions of formulae
we already considered. By applying the distributivity laws of Prop. 4.54, any
combination can be written as a disjunction ϕ of conjunctions. We can again
assume Q |= ϕ and, by the definition of ∨, there is a disjunct ψ of ϕ with
Q[q0] |= ψ. Since Q = Q[q0], we have Q |= ψ. By definition of ∧, this implies
that Q |= θ for all conjuncts θ of ψ. Applying the induction hypothesis to
each θ, we get that P |= θ for all conjuncts θ of ψ. Thus P |= ϕ and also
P |= ψ, since it has only one initial state.

4.6 Aspect-Oriented Specification – Alpha-

bet Extension

We now extend the definition of refinement to allow for alphabet extension by
using an alphabet extension operator. We also present a direct, simulation-
based characterization, which can be seen as an alternative definition. While
the definition based on alphabet extension is more useful for proofs, the direct
version can be more efficient and is more space-saving when implemented.
This is particularly true for large differences in alphabets of P and Q.

Definition 4.62 (ν-Alphabet Extension Operator and ν-Refinement). Given
a MIA (P, I, O,−→, 99K, P0, u) and disjoint action sets I ′ and O′ satisfying
I ′ ∩ A = ∅ = O′ ∩ A, the alphabet extension of P by I ′ and O′ is given by
[P]I′, O′ =df (P, I∪I ′, O∪O′,−→, 99K′, P0, u) with 99K′=df 99K ∪{(p, i, p′) | i ∈
I ′, p

νI
99K p′} ∪ {(p, o, p′) | o ∈ O′, p

νO
99K p′}. We often write [p]I′, O′ for p as

state of [P]I′, O′, and conveniently use [p] in case I ′, O′ are understood from
the context. We also abbreviate [p]IQ\IP , OQ\OP

by [p]Q; the same notation is
used for P in place of p.

Given MIAs P and Q with IP ⊇ IQ and OP ⊇ OQ, we write p vν q and
say that p ν-refines q (or that p matches q) if p v [q]P ; We let p wvν q stand
for p vν q and q vν p and call it ν-equivalence. The same notations are
used for MIAs instead of states.

It is quite obvious that vν extends v. It is also easy to see that it behaves
according to out intuition: foreign actions are allowed exactly where specified
by νI and νO transitions.

171

Definition 4.63 (Simulation based ν-Refinement). Let P,Q be MIAs with
IP ⊇ IQ and OP ⊇ OQ. A relation R ⊆ P ×Q is a ν-refinement relation if,
for all (p, q)∈R with q 6= uQ, the conditions (i)-(iii) of Def. 4.4 hold and:

(iv) p
α
99K p′ and α ∈ AQ ∪ {τ, νI , νO} implies

∃q′. q α̂
=⇒ q′ and (p′, q′) ∈ R.

(v) p
α
99K p′ and α /∈ AQ ∪ {τ, νI , νO} implies

∃q′. (p′, q′) ∈ R and either α ∈ IP and q
νI=⇒ q′ or α ∈ OP and

q
νO=⇒ q′.

We write p v′ν q if there exists a ν-refinement relation R such that (p, q) ∈ R.
Furthermore, we define P v′ν Q if ∀p0 ∈ P0∃q0 ∈ Q0. p0 v′ν q0.

Theorem 4.64 (Characterization of ν-Refinement). For MIAs P and Q with
IP ⊇ IQ and OP ⊇ OQ we have P vν Q if and only if P v′ν Q.

Proof. We show that MIA-refinement relations for P and [Q]P and ν-refinement
relations for P and Q coincide. Since conditions (i) – (iii) for these relations
coincide and alphabet extension only concerns may-transitions, we only have
to compare the remaining conditions. Since alphabet extension only concerns
foreign actions, Cond. (iv) in Def. 4.63 corresponds to the subcase of (iv) in
Def. 4.4 for α ∈ AQ ∪ {τ, νI , νO}. To see that Cond. (v) corresponds to the

remaining subcase, observe that q′′
α
99K q′′′ with e.g. α ∈ IP \ AQ exists in

[Q]P if and only if q′′
νI
99K q′′′ does in Q.

4.6.1 Extending Logical Operators

Disjunction works for ν-refinement with the same definition, results and
proofs as presented previously in Sect. 4.4. We proceed to lift our conjunction
operator to conjuncts with dissimilar alphabets.

Definition 4.65 (Lifting Conjunction by alphabet extension). Let P , Q
be MIAs, p ∈ P and q ∈ Q such that IP ∩ OQ = ∅ = IQ ∩ OP . Then,
p ∧ν q =df [p]Q ∧ [q]P and similarly for P ∧ν Q.

It is obvious that this definition coincides with the previous definition of
∧ on MIAs with common alphabets. Therefore we will write & for &ν and
∧ for ∧ν .

To be able to lift our main result, Thm. 4.37, it is sufficient to establish
that the alphabet extension operation is a homomorphism for conjunction.
The proof of Thm. 4.67 follows exactly the line of argument in [53].

172

Lemma 4.66. Let P with p ∈ P and Q with q ∈ Q be MIAs with common
alphabets. Consider the alphabet extensions by some I ′ and O′. Then:

(a) p and q are consistent iff [p] and [q] are.

(b) Given consistency, [P ∧Q] wv [P]∧[Q] and thus [P ∧Q] wvν [P]∧[Q].

Proof. For proving (a), consider the mapping β : (p, q) 7→ ([p], [q]), which
is a bijection between P&Q and [P]&[Q]. We have (p, q) ∈ FP&Q due to
a ∈ A and (F1) or (F2) iff ([p], [q]) ∈ F[P]&[Q] due to a ∈ A and (F1) or (F2).
Observe that (F1) and (F2) never apply to ([p], [q]) and a ∈ I ′ ∪ O′, since
there are no must-transitions labelled a. For the same reason, Rules (Must1),
(UMust1) and their symmetric counterparts are never applicable for a and,
thus, β is an isomorphism regarding must-transitions; hence, (F3) is appli-
cable exactly in the corresponding cases according to β. Therefore, β is also
a bijection between FP&Q and F[P]&[Q].

For (b), we can regard β also as a bijection between [P ∧Q] and [P]∧ [Q].
We show that β and β−1 are ν-refinement relations. For this, note that β
relates initial states exactly to initial states. We consider a pair ([p ∧ q], [p]∧
[q]) ∈ β and check the conditions of Def. 4.63: Cond. (i) is trivial. Conds. (ii)
and (iii) are clear, because β is still an isomorphism on must-transitions. The
same holds for β−1, and we only have to check (iv).

For the following observe that (νMay)-rules are not applicable in the
construction of either conjunction. We let ν stand for νI in case α ∈ I ′ and
for νO in case α ∈ O′.

• “v”: Regarding Cond. (iv), we only have to consider α ∈ I ′ ∪ O′

and [p ∧ q] α
99K [p′ ∧ q′], since the other transitions are not modified by

alphabet extension. This transition exists because of p ∧ q ν
99K p′ ∧ q′,

which exists due to Rule (May1) or (UMay1) w.l.o.g. In the first case,
we have p

ν
=⇒ p′ and q

ν
=⇒ q′. This implies [p]

α
=⇒ [p′] and [q]

α
=⇒

[q′]. In the second case, p
ν

=⇒ p′ and q = uQ = q′; the former statement

implying [p]
α

=⇒ [p′]. Either way, we get [p] ∧ [q]
α
99K [p′] ∧ [q′] by

Rule (May1) or (UMay1) respectively. This matches [p ∧ q] α
99K [p′ ∧ q′]

as we needed to show.

• “w”: To establish Cond. (iv) consider [p] ∧ [q]
α
99K [p′] ∧ [q′] with

α ∈ I ′ ∪ O′. If this transition exists due to (May1), we have p
ν

=⇒ p′

and q
ν

=⇒ q′. We get p∧q ν
99K p′∧q′ due to (May1) implying [p ∧ q] α

99K
[p′ ∧ q′]. If the transition is due to (UMay1), we have q = uQ = q′

and [p]
α

=⇒ [p′]. Following the same line of argumentation as above,

173

we get p
ν

=⇒ p′, then p ∧ q ν
99K p′ ∧ q′ (by (UMay1)), and finally

[p ∧ q] α
99K [p′ ∧ q′].

Having proven the lemma in out new setting, the characteristic property
of conjunction follows as in [13]. We present the proof for completeness.

Theorem 4.67 (∧ is And). Let P , Q and R be MIAs such that IP ∩ OQ =
∅ = IQ ∩OP , IR ⊇ IP ∪ IQ and OR ⊇ OP ∪OQ. Then, R vν P and R vν Q
iff R vν P ∧Q.

Proof. Recall that we denote by [·]P an extension with the additional actions
of P , and similarly for Q and R. Also note that, in the context of this theo-
rem, [[P]Q]R = [P]R and [[Q]P]R = [Q]R. Furthermore, note that Thm. 4.37
is applicable to MIAs with common alphabets.

We reason as follows:
R vν P and R vν Q

iff R vν [P]R and R vν [Q]R (by Thm. 4.64)
iff R vν [P]R ∧ [Q]R (by Thm. 4.37)
iff R vν [[P]Q ∧ [Q]P]R (by Lem. 4.66 and note above)
iff R vν P ∧Q (by Defs. 4.62 and 4.65)

Alternatively, the conjunction can be constructed directly, instead of first
constructing the alphabet extensions of the conjuncts.

Definition 4.68 (Conjunction for ν-refinement). Given MIAs (P, IP , OP ,−→P

, 99KP , P0, uP) and (Q, IQ, OQ,−→Q, 99KQ, Q0, uQ). The ν-conjunctive prod-
uct is defined as P&νQ =df (P×Q, IP∪IQ, OP∪OQ,−→, 99K, P0×Q0), (uP , uQ))
with the following operational transition rules and their symmetric counter-
parts:

(Must1) (p, q)
α−→ {(p′, q′) | p′ ∈ P ′, q α̂

=⇒Q q
′} if p

α−→P P
′, q

α̂
=⇒Q

for α ∈ (AP ∩ AQ) ∪ {τ, νI , νO}

(νMust1) (p, q)
α−→ {(p′, q′) | p′ ∈ P ′, q α

=⇒Q q
′}

if p
α−→P P

′ and q
νI=⇒Q q

′ for α ∈ IP \ IQ
or if p

α−→P P
′ and q

νO=⇒Q q
′ for α ∈ OP \OQ

(UMust1) (p, uQ)
α−→ P ′ × {uQ} if p

α−→P P
′

(May1) (p, q)
α
99K (p′, q′) if p

α
=⇒P p

′ and q
α̂

=⇒Q q
′

for α ∈ (AP ∩ AQ) ∪ {τ, νI , νO}

(νMay1) (p, q)
α
99K (p′, q′) if p

α
=⇒P p

′ and q
νI=⇒Q q

′ for α ∈ IP \ IQ
or if p

α
=⇒P p

′ and q
νO=⇒Q q

′ for α ∈ OP \OQ

(UMay1) (p, uQ)
α
99K (p′, uQ) if p

α
99KP p′

174

From this conjunctive product P&νQ we get the conjunction P ∧ν Q by
identifying and deleting inconsistent states as described in Def. 4.34.

It is easy to see that this definition coincides with the previous one using
alphabet extension, since (νMay1) treats actions foreign to P as (May) does
after applying alphabet extension. The same is true for (νMust) and (Must).
Again the direct construction requires less space when implemented and is
thus more efficient.

4.6.2 Extending Structural Operators

It is easy to show that compositionality of parallel composition as in Thm. 4.15
also holds for the extended refinement relation as long as alphabet extension
does not yield new communications. As has already been demonstrated
in [13], these might result in an error and, therefore, must be disallowed.
Technically, if a ∈ (A1 \AQ)∩A2, then P1 ‖ P2 might have a new error if P1

performs a ∈ O1 or cannot perform a ∈ I1.

Theorem 4.69 (Compositionality of Parallel Composition). Let P1, P2, Q
be MIAs such that Q and P2 are composable and P1 vν Q. Assume further
that, for I ′ =df I1 \ IQ and O′ =df O1 \OQ, we have (I ′∪O′)∩A2 = ∅. Then:

1. P1 and P2 are composable.

2. P1 ‖ P2 vν Q ‖ P2. Thus P1 and P2 are compatible if Q and P2 are.

Proof. It is easy to see that the MIAs [Q]I′,O′ and P2 are composable due to
(I ′ ∪ O′) ∩ A2 = ∅. Furthermore, [Q]I′, O′ ⊗ P2 is isomorphic to [Q⊗ P2]I′, O′
via mapping [q]⊗p2 7→ [q ⊗ p2]. This is because of (PMay1) in the definition
of ⊗, since we only add “fresh” may-transitions to each q ∈ Q. The mapping
also respects errors: new may-transitions with label o ∈ O′ cannot create
new errors since o /∈ I2, and no new i ∈ I ′ has to have a must-transition
since i /∈ O2. Thus, for each q0 ∈ Q0 and p02 ∈ P02 that are compatible,
[q0] and p02 are compatible as well; moreover, p01 vν [q0]. Now, the result
follows from Thm. 4.15. The last statement follows since a universal state
only refines a universal state.

It is also easy to see that the generalized vν is a precongruence for hiding
and restriction as well. Similarly to parallel composition, where no new com-
munications may arise, we have to require that L does not hide actions that
are added during refinement. Otherwise, new τ -transitions appear parallel
to νO-transitions which may be impossible to match by Q.

Proposition 4.70. Let P and Q be MIAs such that P vν Q and L ⊆ Σ.

175

1. If Q/L is defined and L ∩ (IP \ IQ) = ∅, then P/L is defined. If in
addition L ∩ (OP \OQ) = ∅, then P/L vν Q/L.

2. If Q//L is defined and L ∩ (IP \ IQ) = ∅, then P//L is defined. If in
addition L ∩ (OP \OQ) = ∅, then P//L is defined and P//L vν Q//L.

3. If Q \ L is defined and L ∩ (OP \ OQ) = ∅, then P \ L is defined and
P \ L vν Q \ L.

Proof. 1. Q/L being defined implies L∩ IQ = ∅. With L∩ (IP \ IQ) we have
L ∩ IP = ∅, thus P/L is defined.

We have P v [Q]P and, due to Prop. 4.24, P/L v [Q]P/L. The latter,
[Q]P/L, is identical to [Q/L]P/L, since hiding does not affect transitions added
by the alphabet extension operator due to L∩(OP \OQ) = ∅ and since OP/L∩
L = ∅ by construction, which ensures that labels in L are not reintroduced.

2. Can be shown analogously. Additionally, observe: if a foreign input
i ∈ IP in [Q]P is cut during //L, then the parallel νI-transition is cut as well.
The latter is also cut when computing Q//L, so a parallel i-transition to u is
introduced for [Q//L]P//L.

3. That P \ L is defined can be shown analogously to the above.
We have P v [Q]P and, due to Prop. 4.24, P \ L v [Q]P \ L. The

latter, [Q]P \L, is identical to [Q \ L]P\L: input transitions added by [·]P and
removed by \L in the first MIA are not added by [·]P\L in the second.

4.6.3 Extending Temporal Operators

Finally, we extend the temporal side of our framework to also support al-
phabet extension. Recall that similarly to MIAs, formulae are considered to
have alphabets, even though this did not play a role in Sect. 4.5 and was
largely omitted. We require a quite intuitive consistency of notation: Labels
appearing in parameters of ϕ should be contained in its alphabets; each pa-
rameter B has to be partitioned into inputs and outputs, i.e. B = BI/BO;
no label appears as input and as output in any parameter or MIA that is
an argument of the formula. Syntactically, the formula remain the same.
The extension of the operators is quite straightforward and intuitive. The
constructions remain the same, only the proofs have to deal with the ν-cases.
Therefore, we will only show the extension for the universal next-operator
and conjunction. The other operators are extended analogously.

Definition 4.71 (Extended ACTL). Let alphabets B and Bε be partitioned
into inputs and outputs BI/BO – Bε may additionally contain ε. Let C
be partitioned analogously into CI/CO. The syntax of ACTL-formulae is

176

the same as in Def. 4.41, but with the following additional requirements for
alphabets: If ϕ has alphabets I/O and ϕ has alphabets I ′/O′ then

• [B]ψ and 〈Bε〉ψ have alphabets (I ∪BI)/(O ∪BO).

• ϕ ∧ ψ and ϕ ∨ ψ have alphabets (I ∪ I ′)/(O ∪O′).

• ϕBWCψ has alphabets (I ∪ I ′ ∪BI ∪ CI)/(O ∪O′ ∪BO ∪ CO).

The semantics of ACTL-formulae remains the same as in Def. 4.41.

The constructions presented in Sect. 4.5 remain unchanged, as they al-
ready deal with νI and νO in the desired manner. Intuitively, the construc-
tions for temporal operators deal with actions contained in their parameter
B and C in a certain way and with all other actions in some ‘default’way.
Since new actions cannot be part of the parameters, treating νI and νO in
the default manner yields the desired result.

It should be noted that this definition does not allow νI and νO in the
parameters of the temporal operators. This could be extended such that νI
and νO would again be treated like may transitions. They could be allowed
in the parameter B of [B], �B and BWC and even in the parameter C of
the latter. The constructions would have to be adjusted slightly to allow for
this. However, it is unreasonable to allow these labels in 〈Bε〉. Technically,
the construction would no longer work, as ν-labels are not allowed on must-
transitions which would be part of the construction. More intuitively, it
would be strange and counter-intuitive for a specification to require a system
to perform an action that is not included in the specification itself.

With these extended operators the analog of Thm. 4.51 hold for refine-
ment with alphabet extension. Again, we formulate the claim and show the
proofs only for [B]P and P ∧ Q. The other cases are analogous. The com-
patibility and precongruence results of Cor. 4.52 and Thm. 4.53 follow, as
before.

Theorem 4.72 (Extended Temporal MIA operators vs. formulae). For non-
universal MIAs P and Q and for sets B ⊆ A and Bε ⊆ A ∪ {ε}, we have

3) P vν [B]Q iff ∀p0 ∈ P0 ∀a ∈ B ∀p′. (p0
a
99K p′ implies P [p′] vν Q)

5) P vν Q ∧R iff P vν Q and P vν R

The other operators are extended analogously from Thm. 4.51.

Proof. The case ∧ has been proven in Thm. 4.67.
Case [B]Q:

‘⇒’: as in the proof of Thm. 4.51.

177

‘⇐’: Again, we only have to argue for the first subset. Since x0 has no
must-transitions, we only have to consider the may-transitions of some p0 ∈
P0. Each o- and i-transition (with o /∈ B and i /∈ B respectively including

i, o /∈ A[B]Q) of p0 is matched by x0
o
99K tt0 or x0

i
99K u respectively. The

resulting pairs are in Rtt. The remainder can again be shown, as in the proof
of Thm. 4.51.

4.6.4 Examples

In this section, we will present a meaningful example that illustrates the
flexibility of our approach. But first, we will have a quick look at the design
patterns persistent, knockout and forbidding alphabet extension introduced
in Sect. 4.2.2, adding a technical, but important detail for the knockout case.

The implementation of persistent alphabet extension is straightforward:
each state that should behave persistently is equipped with νI and νO may-
transition-loops. For this the alphabet extension operator produces the same
results as the one in [13], which added may loops for all foreign actions to all
states. Forbidding alphabet extension is similarly easy; such a states has no
outgoing νI or νO transitions. It is easy to see that these two constructions
produce the desired results.

The knockout pattern is more subtle. After performing a foreign action, a
refinement should be allowed to behave arbitrarily. However, a state equipped
with may-loops for all actions in A∪ {νI , νO} as in Fig. 4.6 is not sufficient,
since it cannot be refined by u. We also cannot use the universal state instead,
since outputs must not lead to u. The solution is to have a νI transition to
u and a νO transition to a state tt as shown in Fig. 4.17: it is equipped with
a may loop for each output, foreign or not, and with a may-transition to u
for each input. This generalises the construction of true in [20] by adding νI
and νO transitions.

k0K :

tt u

νO
νI

νO, O
νI , I

Figure 4.17: KO alphabet extension explicitly translated.

Now we come to the announced meaningful example, which does not fit
into the above design patterns. In this example separately specified subrou-

178

t0

TT

t1 t2

td

ts
tea?

sugar?

lemon?

ok?

work !

pourT !done!

νI?

νI , νO,AT \ {done!}

done!

c0

CC

c1 c2

c3cd

cs
coffee?

sugar?

ok?

work !

work !

pourC !done!

νI?

νI , νO,AC \ {done!}

done!

a0

C ∧ TC ∧ T

t1t2

td

c1 c2

c3cd

ts

tea?

sugar?

lemon?

work !

pourT ! done!

coffee?

sugar?

ok?

work !

work !

pourC !done!νI?

νI , νO, (AT ∪ AC) \ {done!}done!

Figure 4.18: Drink dispenser.

tines are combined in a repeating choice. Concretely, we give two aspect
specifications of a machine that dispenses several beverages, tea and coffee
for now; others can easily be added. T and C in Fig. 4.18 specify how to
handle the requests for these two beverages.

T specifies that a request for tea has to be accepted. Afterwards, sugar
and possibly lemon has to be offered, and the offer can be refused by ok etc.
After pouring the tea, the machine has to return to its initial state with done.
C describes that, similarly, one can possibly request coffee and specifies the
subsequent behaviour. Note that the procedures use common actions like
sugar, and separate actions like lemon. Each of these specifications, say
T , can initially be suspended by foreign inputs. Intuitively, T makes no
requirements then, while the behaviour in progress is specified elsewhere.
When the latter finishes with done, T again requires that a request for tea
has to be accepted. The conjunction of T and C also presented in Fig. 4.18
shows that the combination of the aspect specifications works as intended.
An essential point is that the tea-aspect can be devized without knowing
which other beverages will be considered now or in the future, and it is no

179

problem to combine any number of such aspect specifications.
This cannot be achieved by designing states as persistent, knockout and

forbidding. Designating the initial state t0 as persistent would lead to tea
necessarily being enabled after coffee in the conjunction – something not
possible for usual drink dispensers. If t0 were specified as knockout, coffee
would cancel T completely: after the first choice of coffee, all further choices
would automatically be the same. With t0 being forbidding, coffee would be
disallowed when tea is on offer.

4.7 Conclusion

We have presented the interface theory of Modal Interface Automata, a
framework that allows for heterogeneous specification of parallel processes.
We defined structural, logical and temporal operators in a coherent way so
that they can be combined freely.

We resolved the conflict between unspecified inputs being allowed in inter-
face theories derived from de Alfaro and Henzinger’s Interface Automata [27]
but forbidden in Modal Transition Systems [45] by introducing a special uni-
versal state. This also allowed us to achieve compositionality and associativ-
ity for our parallel composition operator.

We presented a variant of ACTL for MIA and have shown how to apply
the logical operators to MIA in a suitable way. We illustrated the utility of
these temporal operators with an example and showed that sets of actions
increase expressiveness of our logic in a meaningful way. Furthermore, we
presented a list of desirable, and often expected, laws involving both propo-
sitional and temporal operators. For our interpretation of ACTL on MIAs,
we proved that the Unless-free fragment is not suitable to characterise refine-
ment. We also had a look at a mainly state-based interpretation of HML,
which is standard except for the difference between inputs and outputs. This
setting allows to characterise refinement by inclusion of satisfied formulae –
also for dMTS – but it is not suitable to support heterogeneous specification,
as we have shown.

We improved on the previous version of MIA [13] by relaxing the re-
finement relation and introduced a new, transition-based alphabet exten-
sion, which provides a high degree of flexibility while still allowing for aspect
based specification. In particular the concepts of persistent, knockout and
forbidding alphabet extension can easily be modelled, but the framework
also allows for custom built patterns. It also allows for alphabet extension of
ACTL-formulae. We demonstrated the utility of a custom pattern with an
example of a repeated choice between separately specified subroutines.

180

Future work may include a more fundamental examination of MIA and
its possible refinement relations as done for dMTS and EIO in the previous
chapters. Furthermore, there are plans on implementing tool support for
MIA.

181

182

Bibliography

[1] Luis M. Alonso and Ricardo Peña. Acceptance automata: A framework
for specifying and verifying TCSP parallel systems. In PARLE 1991,
volume 506 of LNCS, pages 75–91. Springer 506, 1991.

[2] Rajeev Alur, Thomas A. Henzinger, Orna Kupferman, and Moshe Y.
Vardi. Alternating refinement relations. In CONCUR 1998, LNCS 1466,
pages 163–178. Springer, 1998.

[3] Sebastian S. Bauer, Alexandre David, Rolf Hennicker, Kim Guldstrand
Larsen, Axel Legay, Ulrik Nyman, and Andrzej Wasowski. Moving from
specifications to contracts in component-based design. In FASE 2012,
LNCS 7212, pages 43–58. Springer, 2012.

[4] Sebastian S. Bauer, Philip Mayer, Andreas Schroeder, and Rolf Hen-
nicker. On weak modal compatibility, refinement, and the MIO work-
bench. In TACAS 2010, LNCS 6015, pages 175–189. Springer, 2010.

[5] Bernd Baumgarten. On internal and external characterizations of PT-
net building block behaviors. In Advances in Petri Nets 1988, LNCS
340, pages 44–61. Springer, 1987.

[6] Nikola Benes, Benôıt Delahaye, Uli Fahrenberg, Jan Kret́ınský, and Axel
Legay. Hennessy-Milner logic with greatest fixed points as a complete
behavioural specification theory. In CONCUR 2013, LNCS 8052, pages
76–90. Springer, 2013.

[7] Nikola Beneš, Ivana Černá, and Jan Křet́ınský. Modal transition sys-
tems: Composition and LTL model checking. In ATVA 2011, LNCS
6996, pages 228–242. Springer, 2011.

[8] Jan A. Bergstra, Jan W. Klop, and Ernst-Rüdiger Olderog. Failures
without chaos: a new process semantics for fair abstraction. In Formal
Description of Programming Concepts III, pages 77–103. North-Holland,
1987.

183

[9] Dirk Beyer, Arindam Chakrabarti, Thomas A. Henzinger, and Sanjit A.
Seshia. An application of web-service interfaces. In ICWS 2007, pages
831–838. IEEE Computer Society, 2007.

[10] Gérard Boudol and Kim Guldstrand Larsen. Graphical versus logical
specifications. Theor. Comput. Sci., 106(1):3–20, 1992.

[11] Stephen D. Brookes, C. A. R. Hoare, and Andrew W. Roscoe. A theory
of communicating sequential processes. J. ACM, 31(3):560–599, 1984.

[12] Ferenc Bujtor, Sascha Fendrich, Gerald Lüttgen, and Walter Vogler.
Nondeterministic modal interfaces. In SOFSEM 2015, LNCS 8939,
pages 152–163. Springer, 2015.

[13] Ferenc Bujtor, Sascha Fendrich, Gerald Lüttgen, and Walter Vogler.
Nondeterministic modal interfaces. Theor. Comput. Sci., 642:24–53,
2016.

[14] Ferenc Bujtor, Lev Sorokin, and Walter Vogler. Testing preorders for
dMTS: Deadlock- and the new deadlock/divergence-testing. In ACSD
2015, pages 60–69, 2015.

[15] Ferenc Bujtor, Lev Sorokin, and Walter Vogler. Testing preorders
for dMTS: Deadlock- and the new deadlock/divergence-testing. ACM
Trans. Embed. Comput. Syst., 16(2):41:1–41:28, December 2016.

[16] Ferenc Bujtor and Walter Vogler. Error-pruning in interface automata.
In SOFSEM 2014, LNCS 8327, pages 162–173. Springer, 2014.

[17] Ferenc Bujtor and Walter Vogler. Failure semantics for modal transition
systems. In ACSD 2014, pages 42–51. IEEE, 2014.

[18] Ferenc Bujtor and Walter Vogler. Error-pruning in interface automata.
Theor. Comput. Sci., 597:18–39, 2015.

[19] Ferenc Bujtor and Walter Vogler. Failure semantics for modal transition
systems. ACM Trans. Embedded Comput. Syst., 14(4):67:1–67:30, 2015.

[20] Ferenc Bujtor and Walter Vogler. ACTL for modal interface automata.
In ACSD 2016, pages 1–10, 2016.

[21] Ferenc Bujtor and Walter Vogler. ACTL for modal interface automata.
Theor. Comput. Sci., 693:13–34, 2017.

184

[22] Taolue Chen, Chris Chilton, Bengt Jonsson, and Marta Z. Kwiatkowska.
A compositional specification theory for component behaviours. In
ESOP 2012, LNCS 7211, pages 148–168. Springer, 2012.

[23] Chris Chilton, Bengt Jonsson, and Marta Kwiatkowska. An algebraic
theory of interface automata. Technical Report RR-13-02, DCS, 2013.

[24] Chris J. Chilton. An Algebraic Theory of Componentised Interaction.
PhD thesis, Department of Computer Science, University of Oxford,
UK, 2013.

[25] Luca de Alfaro and Thomas A. Henzinger. Interface automata. In FSE
2001, pages 109–120. ACM, 2001.

[26] Luca de Alfaro and Thomas A. Henzinger. Interface theories for
component-based design. In EMSOFT 2001, LNCS 2211, pages 148–
165. Springer, 2001.

[27] Luca de Alfaro and Thomas A. Henzinger. Interface-based design. In
Engineering Theories of Software-Intensive Systems, NATO Science Se-
ries, pages 83–104. Springer 195, 2005.

[28] Rocco De Nicola. Extensional equivalences for transition systems. Acta
Inf., 24(2):211–237, 1987.

[29] Rocco De Nicola, Alessandro Fantechi, Stefania Gnesi, and Gioia Ris-
tori. An action-based framework for verifying logical and behavioural
properties of concurrent systems. Computer Networks and ISDN Sys-
tems, 25(7):761–778, 1993.

[30] Rocco De Nicola and Matthew Hennessy. Testing equivalences for pro-
cesses. Theor. Comput. Sci., 34:83–133, 1984.

[31] Rocco De Nicola and Roberto Segala. A process algebraic view of in-
put/output automata. Theor. Comput. Sci., 138(2):391–423, 1995.

[32] David L. Dill. Trace theory for automatic hierarchical verification of
speed-independent circuits. ACM distinguished dissertations. MIT Press,
1989.

[33] Harald Fecher and Heiko Schmidt. Comparing disjunctive modal tran-
sition systems with an one-selecting variant. J. Log. Algebr. Program.,
77(1-2):20–39, 2008.

185

[34] Dario Fischbein, Vı́ctor A. Braberman, and Sebastián Uchitel. A sound
observational semantics for modal transition systems. In ICTAC 2009,
LNCS 5684, pages 215–230. Springer, 2009.

[35] Dario Fischbein and Sebastián Uchitel. On correct and complete strong
merging of partial behaviour models. In SIGSOFT FSE, pages 297–307,
2008.

[36] Mihaela Gheorghiu, Dimitra Giannakopoulou, and Corina S. Pasareanu.
Refining interface alphabets for compositional verification. In TACAS
2007, LNCS 4424, pages 292–307. Springer, 2007.

[37] Matthew Hennessy. Algebraic theory of processes. MIT Press, 1988.

[38] Matthew Hennessy and Robin Milner. Algebraic laws for nondetermin-
ism and concurrency. J. ACM, 32(1):137–161, 1985.

[39] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall,
1985.

[40] Hans Hüttel and Kim Guldstrand Larsen. The use of static constructs
in a modal process logic. In Logic at Botik, LNCS 363, pages 163–180.
Springer, 1989.

[41] C. Kühbacher. Implizite und verbotene Eingaben bei modalen Interface-
Automaten. Bachelor’s thesis, Univ. Augsburg, Germany, 2015.

[42] Kim G. Larsen, Ulrik Nyman, and Andrzej Wa̧sowski. Modal I/O au-
tomata for interface and product line theories. In ESOP 2007, LNCS
4421, pages 64–79. Springer, 2007.

[43] Kim G. Larsen, Ulrik Nyman, and Andrzej Wa̧sowski. On modal refine-
ment and consistency. In CONCUR 2007, LNCS 4703, pages 105–119.
Springer, 2007.

[44] Kim G. Larsen and Liu Xinxin. Equation solving using modal transition
systems. In LICS 1990, pages 108–117. IEEE Computer Society, 1990.

[45] Kim Guldstrand Larsen. Modal specifications. In Automatic Verification
Methods for Finite State Systems, LNCS 407, pages 232–246. Springer,
1989.

[46] Kim Guldstrand Larsen. Proof systems for satisfiability in hennessy-
milner logic with recursion. Theor. Comput. Sci., 72(2&3):265–288,
1990.

186

[47] Lars Luthmann, Stephan Mennicke, and Malte Lochau. Towards an I/O
conformance testing theory for software product LLine based on modal
interface automata. In FMSPLE 2015, pages 1–13, 2015.

[48] Lars Luthmann, Stephan Mennicke, and Malte Lochau. Composition-
ality, decompositionality and refinement in input/output conformance
testing. In FACS 2016, pages 54–72, 2016.

[49] Gerald Lüttgen and Walter Vogler. Conjunction on processes: Full ab-
straction via ready-tree semantics. Theor. Comput. Sci., 373(1-2):19–40,
2007.

[50] Gerald Lüttgen and Walter Vogler. Safe reasoning with logic LTS.
Theor. Comput. Sci., 412(28):3337–3357, 2011.

[51] Gerald Lüttgen and Walter Vogler. Modal interface automata. Logical
Methods in Computer Science, 9(3), 2013.

[52] Gerald Lüttgen and Walter Vogler. Richer interface automata with op-
timistic and pessimistic compatibility. ECEASST, 66, 2013.

[53] Gerald Lüttgen, Walter Vogler, and Sascha Fendrich. Richer interface
automata with optimistic and pessimistic compatibility. Acta Inf., 52(4-
5):305–336, 2015.

[54] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[55] Michael G. Main. Trace, failure and testing equivalences for com-
municating processes. International Journal of Parallel Programming,
16(5):383–400, 1987.

[56] Zohar Manna and Amir Pnueli. The anchored version of the temporal
framework. In Linear Time, Branching Time and Partial Order in Log-
ics and Models for Concurrency, School/Workshop, Noordwijkerhout,
The Netherlands, May 30 - June 3, 1988, Proceedings, LNCS 354, pages
201–284. Springer, 1988.

[57] Robin Milner. Communication and concurrency. Prentice Hall, 1989.

[58] Jean-Baptiste Raclet. Residual for component specifications. Electr.
Notes Theor. Comput. Sci., 215:93–110, 2008.

[59] Jean-Baptiste Raclet, Eric Badouel, Albert Benveniste, Benôıt Cail-
laud, Axel Legay, and Roberto Passerone. A modal interface theory for
component-based design. Fundamenta Informaticae, 108(1-2):119–149,
2011.

187

[60] Arend Rensink and Walter Vogler. Fair testing. Inf. Comput.,
205(2):125–198, 2007.

[61] Christoph Franz Schlosser. Eio-automaten mit parallelkomposition ohne
internalisierung. B.Sc. thesis, Universität Augsburg, 2012.

[62] Lev Sorokin. F -semantik für disjunktive modale transitionssysteme.
B.Sc. thesis, Universität Augsburg, April 2014.

[63] Christian Stahl, Peter Massuthe, and Jan Bretschneider. Deciding sub-
stitutability of services with operating guidelines. In ToPNoC II, LNCS
5460, pages 172–191. Springer, 2009.

[64] Jan Tretmans. Conformance testing with labelled transition systems:
Implementation relations and test generation. Computer Networks and
ISDN Systems, 29(1):49–79, 1996.

[65] Antti Valmari. Failure-based equivalences are faster than many believe.
In Structures in Concurrency Theory, Workshops in Computing, pages
326–340. Springer, 1995.

[66] Antti Valmari. The weakest deadlock-preserving congruence. IPL,
53(6):341–346, 1995.

[67] Machiel van der Bijl, Arend Rensink, and Jan Tretmans. Compositional
testing with ioco. In Formal Approaches to Software Testing (FATES),
volume 2931 of LNCS, pages 86–100. Springer, 2004.

[68] Rob J. van Glabbeek. The linear time - branching time spectrum II. In
CONCUR 1993, LNCS 715, pages 66–81. Springer, 1993.

[69] Walter Vogler. Failures semantics and deadlocking of modular Petri
nets. Acta Inf., 26(4):333–348, 1989.

[70] Walter Vogler. Modular Construction and Partial Order Semantics of
Petri Nets. (LNCS 625). LNCS 625. Springer, 1992.

188

