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Abstract

Due to the complex and intricate nature associated with their production, the acoustic-prosodic prop-
erties of a speech signal are modulated with a range of health related effects. There is an active and
growing area of machine learning research in this speech and health domain, focusing on developing
paradigms to objectively extract and measure such effects. Concurrently, deep learning is transforming
intelligent signal analysis, such that machines are now reaching near human capabilities in a range of
recognition and analysis tasks. Herein, we review current state-of-the-art approaches with speech-based
health detection, placing a particular focus on the impact of deep learning within this domain. Based
on this overview, it is evident while that deep learning based solutions be become more present in
the literature, it has not had the same overall dominating effect seen in other related fields. In this
regard, we suggest some possible research directions aimed at fully leveraging the advantages that deep
learning can offer speech-based health detection.
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1. Introduction

Any given speech signal contains a rich array of
information about the speaker. This information
includes the linguistic content pertaining to the
message the speaker wishes to communicate, as
well as paralinguistic states and traits such as
their current emotional states or their age and
gender. Their are substantial and ongoing re-
search efforts exploring the use of intelligent sig-
nal analysis and machine learning techniques to
disengage these different facets with the aim of
robustly and accurately recognising them, e. g.,
[1, 2, 3, 4]. One particular aspect of speech pro-
cessing research which is currently gaining in pop-
ularity, is the use of computational paralinguistic
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analysis to assess a multitude of different health
conditions. Given the complexity of speech pro-
duction and the importances of the physiological
and cognitive systems involved to our (human)
health and wellness – such as the respiratory sys-
tem and the brain – slight changes in a speaker’s
physical and mental state can affect their ability
to control their vocal apparatus, often at a sub-
conscious level. Such changes can then alter the
acoustic properties of the resulting speech in a
manner that is measurable Moreover, as speech
can be easily collected, transmitted and stored [2,
5], speech-based analysis paradigms have the po-
tential to herald a new form of active and passive
remote sensing technology suitable for a broad
range of health conditions.

Furthermore, speech-based health analysis is
well placed at the intersection of arguably two of
the most significant recent advances in comput-
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ing and information systems; namely deep learn-
ing and ubiquitous computing. However, due in
part to the small size of collected datasets, it is
debatable if the full advantages of this position-
ing have even begun to be realised. The grow-
ing prevalence of deep learning can be exempli-
fied by observing the shift in system topologies
over the course of the popular Computational Par-
alinguistics Challenge (ComParE) series [6, 7, 8,
9, 10, 11] and Audio/Visual Emotion Challenge
(AVEC) workshops [12, 13, 14, 15]. In the first
health based ComParE challenge held in 2011,
the recognition of speech affected by either intox-
ication or fatigue, not surprisingly as it was held
before deep learning was considered state-of-the-
art in speech processing, none of the contestants
used deep learning system. On the other hand, by
2017 almost two-thirds of entrants in that year’s
ComParE challenge integrated some aspect of
deep learning – for instance feature representa-
tion learning, classification or both – into their
system.

Concurrent to the deep learning revolution,
the advent of the Internet-of-Things (IoT) means
there is currently a vast array of microphone en-
abled smart-devices and wearable technologies on
the market, e. g., the Apple Watch™ series, Sam-
sung Gear™ technology, or the Sony SmartWatch™ se-
ries. It has been predicted that the IoT will con-
nect has many as 28 Billion devices by 2020 [16].
Voice-based applications for the remote monitor
of speaker states and traits including health are
becoming more conspicuous in the relevant litera-
ture [17, 18, 19]. Smart monitoring technologies,
based on deep learning and big data can poten-
tially play a key role in helping the early and re-
mote diagnosis of various health conditions.

Primarily, this review has been undertaken to
compare the growing influence of deep learning
approaches in speech analysis for health with cur-
rent state-of-the-art (non-deep) machine learning
approaches. It first overviews how different health
states affect the various muscular and cognitive
processes involved in speech production (Section 2),
we then discuss the major breakthroughs that kick-
started the current deep learning revolution (Sec-
tion 3). The main contribution of this article

is a review of the deep learning approaches con-
ducted on the publicly available datasets associ-
ated with the ComParE and AVEC health re-
lated sub-challenges. Finally, the opportunities
and challenges associated with advancing remote
deep learning speech-based sensing technologies
are then discussed (Section 5), and a brief conclu-
sion is offered (Section 6).

2. Speech Production and Health

Human vocal anatomy is a unique and intricate
anatomical structure (cf. Figure 1.) which affords
us the ability to vocalise a large variety of acous-
tic signals in a coordinated and meaningful man-
ner [20]. It is the complexity of speech production
that make it a suitable marker for a range of dif-
ferent health conditions; speech motor control, as
well as requiring the coordination of the articu-
lators; the mandible, lip, tongue, velum, jaw and
pharyngeal constrictors, the respiratory muscles;
including the diaphragm and the intercostal mus-
cle, as well as the larynx [21, 22], it is also the
fastest discrete human motor activity [22]. There
is also considerable cognitive aspect involved in
speech production including message formation
(what does the speaker wish to say) and storage
in working memory [23], as well as the planning
and implementation of the required articulatory
movements to produce the required acoustic out-
put [24].

The mechanisms of underlying vocalisation are
commonly modelled as an independent (from each
other) source-filter operation. The sound source
in this model can either be periodic, in which air
flow from the lungs produced during exhalation
is modulated by the oscillating action of the vo-
cal folds; or aperiodic, in which the vocal folds
are lax and turbulent air exhaled from the lungs
surges through the open glottis. The sound source
then excites the vocal tract filter. The positing
of the articulators, including the mandible, lip,
tongue, velum, jaw and pharyngeal constrictors,
alters the shape of the vocal tract determining its
frequency response; the resonance frequencies of
the vocal tract filter are known as the formant fre-
quencies. Speech is considered a quasi-stationary
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Figure 1: An illustrative overview of the key muscle groups
and anatomical structures used in speech production. The
fine control required to coordinate these muscles and struc-
tures produce speech facilitate it’s usefulness as a marker
for a range of different health conditions. Figure adapted
from [25].

process, i. e., while speech constantly changes the
vocal tract properties is assumed to be station-
ary for small periods of time, roughly 25-40 ms,
in order to permit short-time analysis.

In general, it can by hypothesised that cogni-
tive related disorders can potentially disrupt mes-
sage planning, and pre-articulatory functions in-
cluding neurological processes relating to the im-
plementation of the desired vocal tract movements.
The fine motor control needed to produce speech
also enhances its suitability as a health marker.
Neuromuscular, muscular and movement disor-
ders can effect the muscle and control systems
needed to produce speech, affecting the quality
of phonation, formant distribution, articulatory
coordination, and diadochokinesis, to name but a
few associated effects.

From here on in, we review the current state-
of-the-art for detecting a range of different health
conditions from the speech signal. Specifically,
the health conditions reviewed include: Intoxica-
tion and Fatigue [6]; Chemo-radiation therapy [7],
Autistic Spectrum Conditions [8]; Physical and
Cognitive Load [9]; Parkinson’s Disease and Eat-
ing Condition [10]; Upper Respiratory Tract Infec-
tion and Snoring [11]; as well as Depression [12,
13, 14, 15]. We focus on these conditions as the
corresponding datasets have been utilised in Com-

ParE and AVEC challenges. Therefore, the datasets
are publicly available, have commonly defined train,
development and test partitions, and have a trans-
parent baseline system and associated accuracy
scores. Furthermore the nature of the challenges
is such that they encourage participants to test
the efficacy of newer approaches and compare per-
formance not just with an established baseline,
but with other state-of-the-art approaches. These
properties allow for a straight comparison between
different approaches and, as a core aim of the re-
view process, effectively and systematically assess
the impact of deep learning in this field of re-
search.

3. Deep Learning: The breakthroughs and
current state-of-the-art

As a key objective of this review is to assess the
impact of deep learning over the ComParE and
AVEC challenges to date, the aim of this sec-
tion is to briefly introduce deep learning from the
prospective of the major breakthroughs related
to the advent of the deep learning is the current
state-of-the-art machine learning technique in a
range of machine intelligence tasks. It should be
noted that this section is intended to be an in-
troductory, higher level overview to deep learn-
ing; for more in-depth information the interested
reader is referred to the contained references, as
well as to [26].

Deep learning is distinguished by artificial neu-
ral networks that, in general, have two or more
layers. The core component of a Deep Neural Net-
work (DNN) is the artificial neuron unit. Essen-
tially, the role of these units is to either attenuate
or amplify signals imputed from other neighbour-
ing units. This is achieved by passing a weighted
sum of inputs through a, typically non-linear, ac-
tivation function thus creating the transformed
output signal (cf. Figure 2). The output equation
of such as neuron is given by

y = ϕ(ωTx+ b). (1)

The concatenation of these neurons in a side-by-
side manner forms a single layer network. How-
ever, the advantages of deep learning are realised
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Figure 2: Illustrative example of an artificial neuron unit.
The neuron attenuates or amplifies signal a weighted sum
of input signals by passing them through a (non-linear)
activation function.

by the stacking of single layer networks to create
a multi-layered pipeline of non-linear transforma-
tions capable of learning feature representations,
suitable for a given task, at various levels of ab-
straction.

Despite computational neural network research
beginning in the 1960’s and major advances in
the subsequent years [27], the breakthrough that,
arguably, kick-started the current deep learning
revolution was the development of the structured
layer-by-layer training paradigm of Deep Belief
Networks (DBN) [28] and Stacked Autoencoders
(SAE) [29]. These topologies are formed by stack-
ing multiple layers of Restricted Boltzmann Ma-
chines (RBMs) or feedforward autoencoders, re-
spectively. The deep nature of these topologies
was realised by the unsupervised pre-training of
the individual layers, followed by backpropagation
to fine tuning of the entire network [30].

Other breakthroughs which have, arguably, also
played a considerable role in the deep learning
revolution are the use of dropout, the use of Rec-
tified linear units (ReLU) as activation functions,
and improved Graphics Processing Units (GPU).
Dropout is an exceptionally simple yet powerful
regularisation technique to alleviate overfitting when
training deep networks. Overfitting is the effect
observed when a model is said to have high vari-
ance in relation to the training data; essentially
the network accounts for a maximal amount of
variation in the training data. This effect results
in a model that does not generalise too additional,
held-out, testing data. Dropout is the random re-
moval of units from a network during training to

help improve generalisation [31]. The advent of
using ReLUs [32] was of particular importance for
task such as speech-based health analysis which
often have a limited amount of training data [33].
The output of the ReLU is given as:

y = max(0, ωTx+ b), (2)

which allows the unit to have a constant gradi-
ent when the summation of the inputs is posi-
tive, while the desired non-linearity is achieved
by having a zero output when the summation of
the inputs non-positive. The nature of this out-
put results in a network which consists of ReLU’s,
being easier to train as it does not suffer from the
‘vanishing gradient’ issues associated with other
activation functions [33]. Finally, the ongoing im-
provements in GPU technology has enabled re-
searchers to train networks at speeds considerably
faster than those realistically achievable using a
standard computer processing units [34, 35].

Although DBNs and SAEs marked a major
breakthrough in deep learning, it is disputable if
they are still considered state-of-the-art. More
recent deep learning advances in speech process-
ing and computational paralinguistics have been
focused around the development of End-to-End
(E2E) learning paradigms [36]. Such systems gen-
erally consist of aConvolutional Neural Network
(CNN) to learn robust feature representations di-
rectly from a raw waveform, followed by a Recur-
rent Neural Network (RNN) to leverage the tem-
poral dynamics associated with time series data
such as speech.

CNNs originated in image processing applica-
tions [37] and are considered a biological inspired
variant of the Multilayer Perceptron (MLP) [27].
They generally consist of a combination of three
main building blocks; conventional filters, pool-
ing operations and ReLU activations. The Con-
volutional layers perform a of set filtering (kernel)
operations; each neuron of the filter is connected
with a local receptive field of previous layers and
extracts a local feature map. The role of the pool-
ing or sub-sampling operations is then to reduce
the dimensionality of each feature map while re-
taining the most important information. Finally,
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non-linearities are introduced to the feature ex-
traction processes the use of the ReLu activations.
Most contemporary CNNs involve several combi-
nations these blocks concatenated in a deep struc-
ture. When used in isolation, i. e., not in con-
junction with a RNN, this structure is followed
by fully connected layers to achieved the required
prediction output.

A drawback of the DBN, SAE and CNN topolo-
gies is that connections are only available between
two adjacent layers; this means they typically op-
erate on inputs of fixed dimensionality and do
not take into account any temporal dependen-
cies that may exist between processing blocks.
RNN’s on the other hand allow for cyclical con-
nections endowing them with the capability of
accessing previously processed inputs. To cope
with the vanishing or exploding gradient prob-
lems caused by the backpropagated error when
training either blows up or decays over time [38],
recurrent neurons contain a gating mechanism,
such as Long-Short-Term-Memory (LSTM) [39]
or Gated Recurrent Units (GRU) [40], to explic-
itly model long-term dependencies. The role of
a gating mechanism is to control the flow of in-
formation inside each neuron, essentially allowing
the network to learn how much past information is
retained or forgotten. As well as being a core com-
ponent in E2E networks, RNNs are widely used
as a stand-alone classifier in a range of computa-
tional paralinguistic tasks, e. g., [17, 41, 42, 43].

4. Speech-health Challenges

The aim of this section is to highlight the cur-
rent state-of-the-art approaches associated with
the publicly available datasets released through
the aforementioned ComParE and AVEC speech-
health challenges. An overview of the core char-
acteristics of these datasets is given in Table 1.
To better understand the increasing impact of
deep learning in this research field, this review
is conducted in chronological order – from the
first challenge to include a speech health condi-
tions in 2011, speech affected by sleepiness or in-
toxication,through to the cold and flu and snore
sound challenges held in 2017. However, before

beginning these reviews, the set-up and evalua-
tion metrics used to set the baseline scores in these
challenges are first introduced.

4.1. Baseline Systems

As already mentioned, a particular reason for fo-
cusing this review on the ComParE and AVEC chal-
lenges is the presence of a transparent baseline
system and associated scoring metrics. This prop-
erty enables the use of straightforward compar-
isons to assess improvements, if any, offered through
new approaches. However, aside from outper-
forming the baseline, it is worth noting that there
is currently no strict rule as to what constitutes
a ’good’ system performance. Furthermore, it is
worth noting here that larger scale studies, po-
tentially undertaken as part of a clinical trail,
are required to establish what constitutes system
performances suitable to deploy speech-based sys-
tems into clinical practices.

The baseline system for the majority of these
works is set using a brute-forced feature extrac-
tion paradigm to create a single, yet high dimen-
sional, acoustic representation of an utterance.
First, various frame-level features, commonly ref-
ereed to as Low Level Descriptors (LLDs), are
extracted from a speech utterance typically at
frame rates of 25-40ms, as at a frame rate of
10ms. Exemplar speech LLDs’s include pitch,
energy and spectral descriptors. Next, numer-
ous functionals, such as moments, extremes, per-
centiles and regression parameters, are applied to
each LLD to produce a set of utterance levels sum-
maries. These statistical summaries are then con-
catenated together to form the single, but often
high dimensional, feature representation of an ut-
terance. In all the ComParE and AVEC chal-
lenges the baseline sets are extracted using the
openSMILE toolkit [44]. openSMILE provides
software solutions to enable users to extract large
audio feature spaces in (near) real-time. Further-
more to ensure reproducibility a standard set of
scripts is provided with openSMILE to enable
users to replicate the feature representation used
in the challenges.

Classification is, mainly, achieved in the base-
line systems using linear kernel Support Vector
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Machines (SVM) / Support Vector Regression (SVR).
These techniques are used as they are considered
to be robust against overfitting, which is a com-
mon issue when utilising small and unbalanced
datasets. Again, to ensure reproducibility, these
systems are implemented in the open-source ma-
chine learning toolkit Weka [45].

4.2. Evaluation Metrics

Within Machine Learning there are many met-
rics in which accuracy and efficiency can be mea-
sured against. Within this review we mainly refer
to Unweighted Average Recall (UAR) for class-
based classification challenges and the Root Mean
Square Error (RMSE) for the regression tasks.
UAR is commonly used as the vast majority of
datasets have a (highly) imbalanced class ratio.
Therefore, as this metric gives equal weight to all
classes it is better suited than a weighted met-
ric e. g., accuracy, which could give an artificially
high reading caused by constantly picking the ma-
jority class. UAR is given by:

UAR =
TP

(TP + FN)
(3)

where TP denotes the number of true positives
and, FN the number of false negatives as classified
by a model, UAR is expressed as a percentage
value between 0 and 100. RMSE is a error metric
that measures the spread of the predicted values
around a regression line. RMSE is calculated as

RMSE =

√√√√ 1

N

N∑
n=1

(ŷn − yn) (4)

where ŷ denotes the predicted value, yn, the ac-
tual score and N the total number of test in-
stances. RMSE has the same units as the response
variable, with lower values of RMSE indicating
better system performances.

The remainder of section 4 reviews the state-
of-art in the speech-based health challenges; namely:
Sleepiness (Section 4.3); Intoxication (Section 4.4);
Pathologic Speech (Section 4.5); Autistic Spectrum
Conditions (Section 4.6); Depression, specifically
work carried out for AVEC-2013 and -2014 (Sec-
tion 4.7); Cognitive and Physical Load (Section 4.8);

Table 2: Partitioning of the Sleepy Language Corpus
(SLC) into the Train, (Devel)opment and Test partitions
used for the ComParE-2011 2-class – Non Sleepy Lan-
guage (NSL) and Sleepy Language (SL) – classification
task. Displayed are the number of utterances (#) per class,
per partition. Table reproduced from [6].

SLC # Train Devel. Test Σ
NSL 2125 1836 1957 5918
SL 1241 1079 851 3171
Σ 3366 2915 2808 9089

Parkinson’s Disease (Section 4.9); Eating Condi-
tion (Section 4.10); Depression, specifically work
carried out for AVEC-2016 and -2017 (Section 4.11);
Cold and Flu (Section 4.12); and, Snoring (Sec-
tion 4.13). Each challenge is presented as a stand-
alone subsection and also offers a comparisons be-
tween state-of-the-art and deep learning approaches
undertaken on the various corpora.

4.3. Sleepiness (2011)

The third edition of the ComParE challenge se-
ries, held in 2011, was the first to feature sub-
challenges on speech affected by a health condi-
tion, namely sleepiness and intoxication [6]. To-
gether with the physical and cognitive load chal-
lenges in 2014 (cf. Section 4.8), sleepiness can be
grouped under the umbrella terminology ‘speech
affected by fatigue’. Whilst fatigue has no strict
medical condition definition, it can generally be
regarded as a state of which the core symptoms in-
clude a reduction in efficiency and motivation. Fa-
tigue degrades an individual’s performances and
can lead to errors and, potentially fatal, accidents
in many settings, such as on the road [55, 56], or in
the workplace [57]. The early and remote diagno-
sis of fatigue is therefore potentially lifesaving on
the roads and in related transport industries such
as aeronautical and freight [58]. Fatigue contains
both cognitive and physical aspects, which are ex-
pected to have notable effects on speech. Indeed,
speech affected by sleepiness has been associated
with effects relating to impaired speech planning
such as flattened prosody; effects include reduced
intelligibility and tense and breathy qualities as-
sociated with irregular vocal fold actions [59].
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The challenge dataset was the Sleepy Language
Corpus (cf. Table 2). The official feature set was
a 4 368 dimensional acoustic feature representa-
tion, and was used in conjunction with Synthetic
Minority Over-sampling Technique (SMOTE) re-
sampling [60], to account for class imbalances and
a SVM to set a 2-class, ‘not-sleepy’ and ‘sleepy’,
development set UAR of 67.3 % and test set UAR
of 70.3 % [6]. As the challenge was set in 2011 and,
deep learning technologies arguably did not begin
to replace Gaussian Mixture Models (GMMs) and
Hidden Markov Models (HMMs) as state-of-the-
art classification techniques in speech processing
tasks until 2012 [61] none of the challenge en-
trants were based on deep, or for that matter
shallow, neural networks. Indeed, the winner of
the sleepiness sub challenge used a Mel Frequency
Cepstral Coefficent (MFCC) based on a GMM-
Universal Background Model–Maximum a Poste-
riori (UBM-MAP) supervector approach utilised
in a 3-state left-to-right HMMs, with the result-
ing supervectors being classified using a SVM [62].
For information on supervector formation, the in-
terested reader is referred to [63, 64]. This ap-
proach achieved a UAR of 71.7 %, representing
a 3.1 % percentage point improvement over the
baseline system. For an in-depth review of other
approaches in the sleepiness challenge the inter-
ested reader is referred to [59]. Somewhat sur-
prisingly, the authors were unable to identify any
works that had revisited this corpus and attempted
to improve on the challenge wining score using
deep learning.

4.4. Intoxication (2011)

The second health challenge held in 2011, was
the detection of speech affected by alcohol. The
dataset was the Alcohol and Language Corpus (cf. Ta-
ble 3) in which speech affected by alcohol was de-
termined by a Blood Alcohol Concentration (BAC)
reading between 0.5 and 1.75 per mill, and speech
not affected by alcohol, a BAC in the interval 0.0
to 0.5 [46]. Excessive alcohol consumption is a
major public health concern. A World Health Or-
ganisation (WHO) report released in 2014, esti-
mated that there are at least 200 disease associ-
ated with harmful levels of alcohol use and that

Table 3: Partitioning of the Alcohol Language Corpus
(ALC) into the Train, (Devel)opment and Test partitions
used for the ComParE-2011 2-class – Non Alcoholized
Language (NAL) and Alchoholized Language (AL) – clas-
sification task. Displayed are the number of utterances
(#) per class, per partition. Table reproduced from [6].

# Train Devel. Test Σ
NAL 3750 2790 1620 8160
AL 1650 1170 1380 4200
Σ 5400 3960 3000 12360

in 2012, with approximately 3.3 million deaths
worldwide (5.9 % of the worldwide total number
of deaths) which are attributable to alcohol con-
sumption [65]. It is widely accepted that alco-
hol affects speech, indeed slurred speech is a hall-
mark effect associated with intoxication [66, 67].
Corroborating evidence for alcohol induced alter-
ations on the phonetic structure of speech can
been seen in studies showing the difficulties of
performing accurate Automatic Speech Recogni-
tion (ASR) on speech affected by alcohol [68].

The Challenge baseline, set using the same set-
up as the sleepiness challenge (cf. Section 4.3),
was a development set UAR of 65.3 % and test
set UAR of 65.9 % [6]. Again, no entrants to this
challenge used deep learning, furthermore only
one entrant [69], utilised a ANN, in the form of a
Multilayer Perceptron (MLP). Reflecting the then
state-of-the-art, GMM and HMM based system
were also popular within this sub-challenge; 5 out
of 7 entrants utilised such a technique. The win-
ning system leveraged a GMM-UBM supervector
system, the challenge feature set and an iterative
speaker normalisation technique to achieve a test
set UAR of 70.5 % [70]. Bone et al. [71], refined
different aspects of this approach outside of the
challenge and were able to achieve a small im-
provement to the test set UAR of 71.4 %.

To the best of the authors knowledge, only
one deep learning approach has been tested on
the ACL corpus, namely [72]. In this work, 40
dimensional mel filter bank features were fed into
a two layer bi-directional RNN utilising GRU’s
and dropout. This set-up was able to achieve best
development set UAR of 69.2 % and test set UAR
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of 71.0 %. This score almost matches state-of-the-
art for this dataset and notably, this was achieved
without compensation for data class imbalances,
or performing speaker normalisation.

4.5. Pathologic Speech (2012)

The first pathological speech challenge, held in
2012, was based on assessing the level of intel-
ligibility of speech samples taken from individu-
als pre and post Concomitant Chemo-Radiation
Treatment (CCRT) for inoperable tumours of the
head and neck [7]. All patients in the Netherlands
Cancer Institute Concomitant ChemoRadioTher-
apy Speech Corpus (NKI CCRT) (cf. Table 4) had
a primary tumour located on a physical structure
associated with artiuclation i. e., the oral cavity,
oropharynx, hypopharynx, larynx and nasophar-
ynx [73].

For the challenge baseline, the feature space
was expanded on from the 2011 challenge and
consisted of a 6 125 dimensional feature represen-
tation [7]. The challenge organisers tested both
SVM and Random Forest classifiers to set the
baseline and observed a slight, but not significant,
advantage in using Random forest which yielded a
development set UAR of 64.8 % and test set UAR
of 68.9 %.

As in the sleepiness and alcohol challenges,
none of the entrants to the Pathology Sub-Challenge
utilised a neural network based classifier. The
winners of the sub-challenge developed a knowl-
edge based approach that combined multiple sub-
systems covering different characteristics of patho-
logical speech; namely, phoneme probability, prosodic
and intonational features, Voice quality and pro-
nunciation features; fused using a Naive Bayes
framework [74]. Combining this approach with
speaker clustering the winning test set UAR was
76.8 %

It is worth noting that a DNN approach was
proposed and explored in the 2-class speaker like-
ability challenge [75]. The presented results in-
dicated that while a DNN could improve upon
the baseline, the authors where unable to for-
mulate a network structure that could improve
upon a more standard MLP approach. More-
over, DNN topologies have been used in other re-

Table 4: Partitioning of the Netherlands Cancer Institute
Concomitant ChemoRadioTherapy Speech Corpus (NKI
CCRT) into the Train, (Devel)opment and Test partitions
used for the ComParE-2012 2-class – Intelligible (I) and
Non-Intelligible (NL) – classification task. Displayed are
the number of utterances (#) per class, per partition. Ta-
ble reproduced from [7].

# Train Devel. Test Σ
I 384 341 475 1200
NI 517 405 264 1186
Σ 901 746 739 2386

Table 5: Partitioning of the Child Pathological Speech
Database (CPSD) into the Train, (Devel)opment and Test
partitions used for Autism ComParE-2013 sub-challenge.
This challenge consisted of a 2-class task Typically De-
veloping, and Atypically Developing classification task, as
well as a 4-class task, Typically developing (TYP), Per-
vasive Developmental Disorders (PDD), pervasive devel-
opmental disorders Non-Otherwise Specified (NOS), and
specific language impairment such as Dysphasia (DYS)
classification task. The number of utterance (#) per par-
titioning is shown. Table reproduced from [8].

# Train Devel Test Σ
TYP 566 543 542 1651
PDD 104 104 99 307
NOW 104 68 75 247
DYS 129 104 104 337
Σ 903 819 820 2542

lated speech intelligibility tasks such as improving
ASR accuracy for individuals with dysarthria [76,
77]. Recently, on a database containing 323 Chi-
nese participants speaking Cantonese with nor-
mal or pathological voices [78]. The authors pro-
posed the use of acoustic posterior probabilities
of phones computed using a DNN-HMM ASR for
distinguishing between mild, moderate and severe
categories of voice disorder severity.

4.6. Autism Spectrum Conditions (2013)

Autism is a spectrum of conditions which can be
defined by limitations and irregularities in sociali-
sation and communication [79]. The early diagno-
sis of an Autism Spectrum Condition (ASC) is im-
portant for increased positive outcomes from ther-
apy, as well as for reducing parental stress [80, 81].
Linguistic peculiarities, associated with ASCs, in-
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clude echolalia, out of context phrasing, as well
as pronoun and role reversal [82, 83]. However,
language skills vary considerably across subtypes
within the spectrum [84, 85] reducing the reliable
of linguistics cues to aid the diagnosis of ASC.
Paralinguistics, on the other hand, appear bet-
ter suited as an ASC diagnostic aid; acoustic fea-
tures relating to articulation, loudness, pitch, and
rhythm have consistently shown promising results
in this regard [71, 86, 87].

Participants the 2013 Autism Sub-Challenge
had to classify the type of pathology of a child [8].
The Child Pathological Speech Database (CPSD)
(cf. Table 5) was used to provided speech record-
ing of children who are either: (i) Typically Devel-
oping ; (ii) diagnosed as having a Pervasive Devel-
opmental Disorders (PDD) such as Autism; (iii)
diagnosed as having a Pervasive Developmental
Disorders Non-Otherwise Specified (NOS); or, (iv)
diagnosed as having a specific language impair-
ment such as Dysphasia (DYS). Two evaluation
tasks were defined: a binary ‘typical’ vs. ‘atyp-
ical’ classification task and a four-class ‘diagno-
sis’ task. The challenge baseline was set using a
new feature set containing 6 373 statistical func-
tions derived from a set of 65 low level descrip-
tors [8]. Challenge baseline development parti-
tions 2- and 4-class UAR’s were 92.8 % and 52.4 %
respectively, with the corresponding test set UAR’s
being 90.7 % and 67.1 %.

For the first time in a health challenge, we see
a participant utilising a DNN [88]. The system
consisted of two hidden layers of stacked RBMs.
As the system was used as part of an ensemble of
classifiers, the authors only reported development
set UARs for the DNN, 94.4 % and 57.5 % for the
2- and 4- class tasks, which were both above base-
line. It is worth noting that the proposed ensem-
ble method was able to beat the baseline score for
the 2-class task, UAR of 92.2 %, but not for the
four class problem in which it achieved a UAR
of 64.8 %. The challenge was won by a knowl-
edge driven system which leveraged a harmonic
model of the voiced speech to extracted features
including Fundamental Frequency (f0), Harmonic
to-Noise Ratio (HNR), shimmer, and jitter [89].
Combined with a SVM classifier this approach

achieved 2- and 4-class test set UARs of 93.6 %
and 69.4 %.

Outside of the challenge Huang and Hori [90]
compared a range of different DNN structures.
Their system also utilised feature normalisation
and dimensionality reduction approaches includ-
ing Principal Component Analysis (PCA) and Lin-
ear Discriminant Analysis (LDA). The authors
state test set UARs of 92.9 % and 66.0 % for the
2- and 4-class classification tasks, speculating that
these results could have been improved through a
consideration of the class imbalances.

4.7. Depression (2013 & 2014)

Major Depressive Disorders (MDD) are a grow-
ing global health concern. It has been estimated
that there are approximately 322 million individu-
als worldwide living with depression [91] and that
the total number of individuals estimated to be
living with depression has increased by 18.4 % be-
tween 2005 and 2015 [92]. Speech, as well as other
behavioural and physiological signals, has the po-
tential to provide a set of objective markers to aid
depression detection [3, 93].

Both the 2013 and 2014 Audio-Visual Emo-
tion Challenges (AVEC) required participants to
predict the level of self-reported depression, as
scored by the Beck Depression Index II (BDI-
II) [94], from a given audiovisual clip [12, 13].
Both challenges corpora are based on a subset 150
files taken from the Audio-Visual Depressive Lan-
guage Corpus (AViD-Corpus)1. The audio base-
line feature set for both challenges consisted of 2
268 features and the classifier was a SVR. The
metric for both challenges was the RMSE over
all sequences. The audio RMSE development and
test baselines for AVEC-2013 were 10.75 and 14.12;
the corresponding scores for AVEC-2014 were 11.52
and 12.57.

None of the participants, in either of the chal-
lenges, utilised a deep learning approach, this in-
cludes both audio-only, visual-only and audiovi-
sual systems. Both challenges were won by teams

1The AVEC-2014 corpora is a reduced file length
(time) version of the AVEC-2013 corpora. Further, 5 files
were replaced from the AVEC-2013 corpora when for the
2014 challenge due to unsuitability.
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from Lincoln Laboratory, Massachusetts Institute
of Technology [95, 96]. These systems were highly
knowledge driven, exploiting a specifically designed
feature space which captured coordination across
articulators and a purpose built Gaussian stair-
case regressor. Their lowest AVEC-2013 RMSE
was 8.50, and the lowest test set RSME of their
AVEC-2014, which also included visual informa-
tion, was 8.12. For a more in depth review of both
challenges the interested reader is referred to [3].

To the best of the authors knowledge there has
been no speech and deep learning approaches on
either corpora. However, there has been recent
research interest in predicting depression scores
using deep learning vision systems. Zhu et al.
[97], proposed a dual CNN structure to exploit
both facial appearance and dynamic information.
The authors report a lowest AVEC-2014 test set
RMSE of 9.55. Similarly, Kang et al. [98], used
the AVEC-2014 data to re-tune the VIPLFaceNet
network, a 10-layer CNN with 7 convolutional
layers and 3 fully-connected layers, for the task
of depression detection. This approach yielded a
RMSE of 9.43.

4.8. Cognitive and Physical Load (2014)

The 2014 iteration of the ComParE challenge fo-
cused on the recognition of speakers cognitive and
physical load in speech [9]. The datasets utilised
for these sub-challenges were the Cognitive Load
with Speech and EGG (CLSE) database (cf. Ta-
ble 6) and the Munich Bio-voice Corpus (MBC)
(cf. Table 7). High cognitive load and mental fa-
tigue is strongly associated increasing demands
on working memory and impaired mental perfor-
mances [56, 99]. Effects such as increased artic-
ulation rate, an increase in the number of filled
pauses, and a reduction in formant vowel space
area are commonly reported for speech produced
at high cognitive load [99]. Physical fatigue on
the other hand, is a reduction in muscle power
and movement with a key symptom being im-
paired co-ordination [56]. Further there are strong
links between changes in heart-rate and changes
in prosodic and voice quality (glottal) features [100,
49].

Table 6: Partitioning of the Cognitive Load with Speech
and EGG (CLSE) database into the Train, (Devel)opment
and Test partitions used for the ComParE-2014 3-class
– (L)oad level from 1-3 – classification task. Displayed
are the number of utterances (#) per class, per partition.
Table reproduced from [9].

# Train Devel Test Σ
L1 297 189 216 702
L2 297 189 216 702
L3 429 273 312 1014
Σ 1023 651 744 2418

Table 7: Partitioning of the Munich Bio-voice Corpus
(MBC) into the Train, (Devel)opment and Test partitions
used for the ComParE-2014 2-class – low or level of phys-
ical load – classification task. Displayed are the number of
utterances (#) per class, per partition. Table reproduced
from [9].

# Train Devel Test Σ
Low 199 199 154 552
High 186 185 165 532
Σ 385 384 319 1088

The baseline was again set with the 6 373 di-
mensional ComParE-2013 feature set. The of-
ficial baseline scores for the cognitive load sub-
challenge were 63.2 % for the development parti-
tion and 61.6 % for the test set. While for the
physical load challenge development and test set
UAR’s were 67.2 % and 71.9 % respectively [9].
Both challenges had two entrants using DNN based
approaches [101, 102], as well as a DNN based rep-
resentation learning paradigm [103].

Gosztolya et al. [101, 102] proposed and devel-
oped a Deep Rectifier Network (DRN) approach
which utilised rectified linear units (ReLU) The
reported test set UAR of the proposed DRN is
63.05 %, representing a slight improvement on the
baseline. However, this accuracy was well below
the challenge winning UAR of 73.9 %, achieved by
fusing four i-vector based systems which utilise
different low-level feature representations [104].
For details of the i-vector paradigm the interested
reader is referred to [105, 106]. It can be specu-
lated that the gulf in system performance between
the DNN system presented in [101] and the chal-
lenge winner could be due in part to the small
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amount of data in the cognitive load corpora.
The DRN was also used in physical load sub-

challenge achieving a test set UAR of 73.03 % [101].
Again, this is represented only a slight improve-
ment on the baseline approach, 71.9 % UAR, and
was only slightly below the winning physical load
UAR of 75.4 %, achieved using a multi-view Canon-
ical Correlation Analysis feature selection paradigm [107].

Development partition results are also reported
for a DNN-based approach for both the cognitive
and physical load sub-challenges in [102]. Specif-
ically the authors tested both Conditional Re-
stricted Boltzmann Machines (CRBM) and a DNN
topology, again built with ReLU (ReLUNet). The
CRBM achieved a development set UAR of 58.6 %
and 69.2 % for the cognitive and physical load
challenges respectively, while the ReLUNet achieved
scores of 61.9 % and 67.7 %. While these approaches
are above the development set baseline perfor-
mances, such as result was not replicated on the
test sets. By the authors own admission their ap-
proaches overfitted to the development set.

Finally, Nwe et al. [103], used, as part of a
wider fusion system, a DNN bottleneck paradigm
to extract a higher level feature representation
from the baseline features for cognitive load clas-
sification. Presented result indicated that these
features could outperform a GMM supervector
approach as well as the baseline features on the
development partition, and that they could aid
GMM supervectors in a late fusion system.

4.9. Parkinson’s (2015)

Parkinson’s disease (PD) is a neurodegenerative
disease characterised by motor deficits including
bradykinesia, e. g., slow movement, rigidity and
tremors [108]. PD is estimated to be the second
most common degenerative disorder, after Alzheimers,
and effects approximately 12 individuals per 1000
of the population [108], with an increased preva-
lence in persons aged over 65 [109]. The links
between PD and the effects on speech motor con-
trol such as decreases in speech rate; monotonic
pitch; increases in articulatory and phonetic er-
rors; and, breathy and tense voice qualities, are
well established in the relevant literature [110,
111, 112, 113]. Moreover, the associated effects

are capable of differentiating between speech ei-
ther affected by or speech not affected by PD,
e. g., [114].

In the Parkinson’s Condition Sub-Challenge of
ComParE-2015 [10], the participants had to es-
timate a patients Parkinson’s state according to
the Unified Parkinsons Disease Rating Scale, mo-
tor subscale (UPDRS-III) [115]. Unlike the previ-
ous ComParE health related sub-challenges this
was a regression task, with the performance met-
ric being the Spearmans Correlation Coefficient
(ρ). Three scores were offered for the baseline
which was set using the ComParE-2013 feature
set and a SVR. First a cross-fold validation of the
training set ρ=.434; second a standalone develop-
ment set score of ρ=.492; and finally the official
test set baseline ρ=.390. For full details on the
baseline set-up, the interested reader is referred
to [10].

In the challenge, Hahm and Wang [116], utilised
two DNN systems in their approach. Firstly, to
extract quasi-articulatory features, the authors utilised
a DNN-based transfer learning approach to esti-
mate an inverse mapping between acoustic fea-
tures and articulatory features. This mapping
was learnt on the Multi-Channel Articulatory (MOCHA)-
TIMIT corpora, a data set consisting of simulta-
neous recordings of speech and articulatory data
– as determined by Electromagnetic Articulograph
(EMA) sensors – from 2 British English speak-
ers [117]. This information was then fused with
baseline features and processed using a 3-layer
DNN regressor, yielding a test set score of ρ=.485.

For the first time, a health challenge was won
by a system utilised a DNN based approach. Grósz
et al. [118] used a 5 layer DRN trained on a subset
of baseline features, as selected by a Pearsons cor-
relation coefficient feature selection methodology,
to achieve a test set score of ρ=.306. It is worth
noting here that the test set contained multiple
instances from a smaller number of speakers [10].
Thereby, as with other challenge participants e. g.,
[119], the Grósz et al. approach gained substan-
tial improves in system performance by apply a
post-processing speaker clustering method. The
final system – utilising both a DNN and speaker
clustering – yielded a test set score of ρ=.649.
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4.10. Eating (2015)

A second health related sub-challenge was also
held in the ComParE-2015 challenge, namely the
Eating condition sub-challenge in which partici-
pants had to classify the type of food, or not, a
speaker was eating [10]. For this sub-challenge the
iHEARu-EAT dataset was utilised (cf. Table 8).
Such a system represents an acoustic means of ob-
jectively monitoring of ingestive behaviour (MIB)
as well as the prevention of obesity and eating dis-
orders [52]. The WHO has estimated that obe-
sity levels have triple globally since 1975 [120];
furthermore, this increase has had a considerable
economic burden on individuals and societies. There-
fore research into techniques to automatically mon-
itor food intake is increasing e. g., , [52, 121, 122].
Speech is a potential information channel for au-
tomatically monitoring food intake; results pre-
sented by Hantke et al. [52], indicated that eat-
ing whilst speaking has a statistically significant
effect on the accuracy of an ASR system. Fur-
thermore, such errors differ across different food-
types.

Participants in the Eating condition sub-challenge
had to classify classes speech which were either
‘not affected’ by food or were affected by an Ap-
ple, a Nectarine, a Bannana, Crisps, Biscuits or
Gummi bears [10]. The baseline was set again us-
ing the ComParE-2013 feature set and a SVM,
the baseline training partition UAR, set using leave-
one-out speaker cross fold validation, was 61.3 %
and the test set UAR 65.9 %. In the challenge a
shallow neural network approach was proposed in
[123]. More specifically, Pellegrini tested a vari-
ety of shallow and deep DNN based approaches,
however results indicated, that a shallow network
with a single hidden layer with ReLu activations,
and trained with the momentum update rule, per-
formed the strongest for the task, achieving a
UAR of 68.4 %.

A CNN based representation learning approach,
designed to leverage information from out-of-domain
data, was proposed for the Eating sub-challenge
in [124]. This system trained a CNN comprised of
three convolutional and maxpool layers, followed
by two fully connected layers. When training the
network, the authors utilised dropout, data aug-

Table 8: Partitioning of the iHEARu-EAT dataset into the
Train and Test partitions used for the ComParE-2015 7-
class eating condition classification task. Displayed are the
number of utterances (#) per class, per partition. Table
reproduced from [10].

# Train Test Σ
No Food 140 70 210
Apple 140 56 196
Nectarine 133 63 196
Banana 140 70 210
Crisp 140 70 210
Biscuit 133 70 203
Gummi bear 119 70 189
Σ 945 469 1414

mentation via pitch shifting, and a transfer learn-
ing approach in which they trained their CNN on
data from the Voxforge2 In their final approach,
the authors trained a logistic regression classifiers
on the CNN features and obtained a test set UAR
of 75.9 %. However, this score was still below the
challenge winning UAR of 83.1 % [125]. Kaya
et al. [125] approach, used a novel framework
based on Fisher vector encoding of extracted fea-
tures and cascaded normalisation to account for
variability due to differing speakers characteristics
and spoken content.

Recently, DRN approaches were shown to pro-
duce equivalent performance as conventional lin-
ear SVM and AdaBoost systems for the eating
task [126]. However, this comparison was not
the main aim of the authors. Instead, this pa-
per focused on the advantages gained by perform-
ing speaker clustering with different classifier ap-
proaches. In this regard, the choice of classifier
prior to speaker clustering had little effect i. e.,
all system accuracies after clustering were highly
similar regardless of their underlying classification
paradigm. Such a result is due to multiple in-
stances from the same speaker being used in the
test partition, and highlights the need for larger
and more diverse datasets.

2http://www.voxforge.org/home corpus. The aim of
this network was to extract a high level feature representa-
tion from a 40 dimensional Mel-filter bank representation.
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4.11. Depression (2016 & 2017)

The Audio-Visual Emotion recognition Challenge
(AVEC) series revisited the task of depression de-
tection (cf. Section 4.7), in 2016 and 2017 [14,
15]. Both challenges utilised the Distress Anal-
ysis Interview Corpus - Wizard of Oz (DAIC-
WOZ) database of 193 clinical interviews designed
to support the diagnosis of psychological distress
conditions such as depression. For AVEC-2016 [14],
the challenge was a 2-class multimodal level of
severity (high/low) task, based on the patients
Patient Health Questionnaire (PHQ)-8 depression
index score [127], see Figure 3 for score distri-
bution of the DAIC-WOZ data. The challenge
organisers provided extracted video features (for
ethical reasons the raw video could not be shared),
audio files and transcription of the interviews. The
audio baseline feature representation was realised
using a set of prosodic, voice quality and spec-
tral LLDs extracted from the Collaborative Voice
Analysis REPository (COVAREP) Matlab tool-
box [128]. The COVAREP LLDs were combined
with a SVM classification, with majority voting
used to produce one single depression label per
file, with the official metric being the F1 score for
the ‘depressed’ class. Using this method, the de-
velopment score was .46 (.68, for ‘not-depressed’)
and the test set score was .41 (.58, for ‘not-depressed’).

Deep learning based approaches were not promi-
nent in the 2016 challenge, with the only deep
learning approach being the DepAudioNet E2E
system proposed in [129]. This system feed Mel
Spectrum features into an E2E network compris-
ing a feature extraction topology of; a one-dimensional
convolution layer, a batch normalization layer, a
ReLu layer, a one-dimensional max-pooling layer
and a dropout layer; this is then followed by a
LSTM layer and two fully connected layers. To
help overcome issues pertaining to imbalance in
training data (4:1 ‘not-depressed’ to ‘depressed’),
the authors performed a random down sampling
of the non depression class when creating their
mini-batch samples for network training. The
DepAudioNet system outperformed the base-
line approach on development set 0.52 (0.70, for
‘not-depressed’); however, no test set score was
given in the paper [129]. The winning entrant
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Figure 3: Frequency Distribution of Development + Train-
ing partitions used for the AVEC-2016 and AVEC-2017,
Depression sub-challenges. Figure reproduced from [14,
15]

utilised a gender-dependant multi-modal decision
tree approach, gaining a test set score of .57 (.88,
for ‘not-depressed’) [130].

The AVEC-2017 depression sub-challenge re-
quired participants to predict – again from mul-
timodal audio, visual, and text data – the PHQ-
8 score of each patient in the DAIC-WOZ cor-
pus [15]. The baseline audio system was again
based on COVAREP features, however this was in
conjunction with a Random Forest regressor. As
in AVEC-2013 and AVEC-2014 (cf. Section 4.7),
the metric is the RMSE, with the audio develop-
ment set and test set RMSE’s being 6.74 and 7.78
respectively.

In the challenge, two papers, both lead by
Le Yang of Northwestern Polytechnical Univer-
sity, explored the suitability of CNNs for the task.
The first [131] system fed ComParE-2013 fea-
tures into a CCN trained to predict PHQ8 score.
After training the CNN, the weights were frozen
and the last layer removed. The output of the re-
maining fully connected layer was then fed into a
new DNN which was trained using the CNN fea-
tures. The authors ultimately trained 4 systems;
a combination of gender specific models for ‘de-
pressed’ and ‘not-depressed’ classes. The outputs
of these four systems were then fused (also with
outputs of similar systems from the video and text
modalities) via multivariate linear regression. To
alleviate issues relating to training data imbal-
ance, the authors also proposed a data expan-
sion technique in which the ‘depressed’ class by
cutting longer segments into multiple chunks to
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artificially create more depression data instance,
albeit with the same labels. Their audio system
achieved development set RMSE of 6.62, which
was below the provided baseline; only audio-visual
fusion RMSE were given for test set, with the low-
est reported value being 5.40.

In the second paper [132], the same CNN-
DNN set up was used. However the authors utilised
the downsampling methodology during training
presented in [129] for the ‘not-depressed’ class.
Further, only gender dependent models (not class
specific as well) were trained. No audio only scores
directly comparable with the baseline are given in
the paper. The audio-visual approach achieved
a RMSE of 5.97. For the interested reader, a
unification of both CNN approaches is presented
in [133].

The winning approach [134] exploited the pro-
vided patient interview transcripts to identify salient
topics and segments. They performed random
forest regression on the baseline audio and visual
features corresponding to these segments. This
method was augmented with semantic features,
which were manually extracted using the Linguis-
tic Inquiry and Word Count (LIWC) text analysis
program [135]. The combined approach utilising
acoustic, visual and semantic features produced
the winning RMSE of 4.99.

4.12. Cold and Flu (2017)

Upper Respiratory Tract Infections (URTIs) such
as the Common Cold and Influenza (flu) are an-
other serious public health concern, which cause
approximately 3 to 5 million cases of severe ill-
ness, and about 250 000 to 500 000 thousand
deaths per year [136]. One of the best method
for slowing the spread of these illnesses through a
population is early diagnosis and social isolation.
In this regard, the Cold sub-challenge in Com-
ParE-2017 [11], required participants to classify
speech as affected by cold and flu or speech under
‘normal’ health conditions.

Utilising the Upper Respiratory Tract Infec-
tion Dataset (cf. Table 9), four separate systems
were presented as a baseline: (i) the ComParE-
2013 feature set together with a SVM which achieved
development and test UAR’s of 64.0 % and 70.2 %

Table 9: Partitioning of the Upper Respiratory Tract In-
fection Dataset (URTID) into the Train, (Devel)opment
and Test partitions used for the ComParE-2017 2-class
– cold (c) and not cold (NC) – classification task. Dis-
played are the number of utterances (#) per class, per
partition. Table reproduced from [11]. Note, at time of
publishing the number of utterance in the cold and non-
cold URTID test partition had not been publicly released
by the challenge organisers, overall the test set contains
9551 utterances.

# Train Devel Σ
C 970 1011 1 981
NC 8535 8585 17 120
Σ 9 505 9 596 19 101

respectively; (ii) a Bag-of-Audio-Words (BoAW)
approach, for details see [137], which quantised
the ComParE-2013 LLD’s into a sparse histogram-
of-occurrences representation, 64.2 % development
and 67.3 % for test; (iii) an E2E topology of two
convolutional layers and one LSTM layer, oper-
ating directly on the raw audio waveform 59.1 %
development and 60.0 %; and (iv), a majority vote
fusion of these approaches which returned the of-
ficial baseline test set score of 71.0 %. The chal-
lenge organisers speculate that the weaker per-
formance of the E2E model was due to the im-
balance in the training data towards the healthy
condition, approximately 8:1 [11]. E2E models
rely purely on the statistics of the available data
to learn optimal features, therefore it is possible
that the available data, due to the imbalance, did
not contain a sufficient variation for the cold class.

An E2E approach was also presented by one of
challenge participants [138]. In this system, Con-
stant Q Transform (CQT) spectrum and Gam-
matone spectrum features were feed into 5 CNN
layers followed by a single gated recurrent unit
layer. The paper does not give a test set result
for the E2E system; however, their it outperforms
the challenge baseline E2E system on the devel-
opment set 68.4 % to 58.6 %. For the test set
submission, the E2E system was fused with other
more conventional approaches and a best UAR of
71.4 % was reported.

A more conventional DNN classifier approach
was proposed in [139]. The authors explored the
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suitability of different feature representations with
either a SVM or a range of different DNN topolo-
gies. The authors best development performance,
UAR 80.0 %, was found using a DNN classifier,
trained with a z-score normalised Spectral Modu-
lation features using sigmoid nodes in a 3 layer
topology. However, the strong development set
results did not translate to strong test, UAR 62.1 %,
with the authors speculating that overfitting was
the reason.

This sub-challenge was won by a DNN-based
feature extraction system [140]. The approach ex-
tracted frame-level posterior probabilities as given
by a Deep Neural Network with 3 hidden layers,
each containing 256 ReLU neurons and a softmax
function in the output layer. These probabilities
were combined into an utterance level representa-
tion then classified with a SVM. This approach
did not outperform any of the baseline scores,
but when fused with ComParE–2013 features
achieved the winning test set UAR of 72.0 %.

4.13. Snore (2017)

A second health task was run in ComParE-2017,
although not strictly a speech task. Snoring, can
be a marker of Obstructive Sleep Apnea (OSA)
a highly prevalent sleep disorders, affecting ap-
proximately 37 % of middle-aged men and 25 % of
middle-aged women in the general population [141,
142, 143]. An integral part of successful treat-
ment of OSA is the location of the site of ob-
struction and vibration for targeted surgical in-
tervention [144]. In this regard, participants in
the snoring sub-challenge had to classify four dif-
ferent snore types [11]. The four classes related to
the site of obstruction and vibration in the corre-
sponding snore sound include, the the velum (V),
the oropharyngeal area including the palatine ton-
sils (O), the tongue base (T) and the epiglottis
(E).

The same four baseline approaches as per the
cold sub-challenge (cf. Section 4.12), however, this
time using the Munich-Passau Snore Sound Cor-
pus(cf. Table 10): (i) ComParE-2013 feature set
and SVM, 40.6 % development and 58.5 % test
(this UAR was the official baseline; (ii) BoAW
a, 44.2 % development and 51.2 % for test; (iii)

Table 10: Partitioning of the Munich-Passau Snore Sound
Corpus (MPSSC) into the Train, (Devel)opment and Test
partitions used for the ComParE-2017 4-class – snore
originating from the (V)elum, (O)ropharyngeal lateral
walls, (T)ongue base or (E)piglottis – classification task.
Displayed are the number of utterances (#) per class, per
partition. Table reproduced from [11]. Note, at time of
publishing the number of utterance per snore type in the
MPSSC test partition had not been publicly released by
the challenge organisers, overall the test set contains 263
snoring instances.

# Train Devel Σ
V 168 161 329
O 76 75 151
T 8 15 23
E 30 32 62
Σ 282 283 565

E2E system, however with 3 convolutional layers,
40.3 % development and 40.3 %; and (iv), a major-
ity vote fusion of these approaches 43.4 % develop-
ment and 55.6 % test. Again, the challenge data
was not balanced, approximately half the training
and development samples were from the V classes.
As already mentioned (cf. Section 4.12), this im-
balance could have reduced the effectiveness of
the E2E approach.

The DNN-based posterior probabilities that
won the cold sub-challenge was also tested on the
snore data [140]. Again, the DNN features did
not outperform the conventional baseline on de-
velopment set and produced a test UAR of 64.0%̇
when fused with the baseline features. The sub-
challenge winners [145] utilised a shallow network
in their approach. Using the same fisher vector
based features space introduced in [125] in com-
bination with weighted kernel Extreme Learning
Machines (ELM) to achieve a test set UAR of
64.2 %. ELMs are a single hidden layer feedfor-
ward networks, in which the parameters of the
hidden nodes are randomly assigned and the out-
put weights of hidden nodes are learned in a sin-
gle pass [146]. They can be implemented to in-
clude the kernel trick to handle non-linearities in
the feature space, while the weighting function
used [145] can help account for class imbalances
in the training data.

Outside of the official sub-challenge, however
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still on the challenge data, Amiriparian et al. [147],
proposed and explored a novel deep spectrum fea-
tures approach. These features are derived by
forwarding spectrograms through very deep task-
independent pre-trained image classification CNNs
such as AlexNet [35] and VGG19 [148] and the ac-
tivations of a fully connected layer is then used as
a feature. In [147], the authors demonstrated that
the activations of a second fully connected layer of
AlexNet using a viridis colour map are well suited
to the task. When combined with a SVM classi-
fier, these deep spectrum features achieved a test
set UAR of 67.0 %. This approach was extended
in [149], by using performing evolutionary feature
selection based on competitive swarm optimisa-
tion on the extracted features. This approach
yielded strong development set performances, but
results indicate it was potentially susceptible to
overfitting. The highest test set UAR achieved
by the ‘End-to-Evolution’ system was 66.5 %.

5. Opportunities for leveraging deep learn-
ing

A common reoccurring theme, not only limited
to deep learning paradigms, that has continually
come up throughout this review has been that
of model overfitting. This effect is most likely
due to the small and imbalanced datasets often
use in the challenges (cf. Table 1). The following
paragraphs highlight some potential deep learning
based research avenues to help alleviate the issues
associated with such operating conditions.
Inclusion of intelligent labelling paradigms:
Techniques such as semi-supervised learning, ac-
tive learning and cooperative learning have been
shown to enhance recognition models in a range
of speech tasks [150]. These approaches lever-
age a smaller set of labelled data to annotate a
larger dataset with minimal human involvement.
Such approaches have been shown to aid a range
of speech based classification tasks including emo-
tion recognition; see [150] for a recent review. Re-
cent image classification research shows that the
combination of semi-supervised learning in combi-
nation with few-shot networks can efficiently solve
new learning tasks using only a small number of

training samples [151, 152]. To the best of the
authors knowledge, such approaches have yet to
be tested in the speech-health domain.
Data augmentation: Deep learning techniques
such as Generative Adversarial Networks (GANS) [153,
154] can be used to generate new training data
samples [155, 156]. This is a particularly promis-
ing development due to the high costs associated
with obtaining high quality clinical data, from
vulnerable populations. GANS consist of a gen-
erative model (generator) which is set to com-
pete against a discriminative model (discrimina-
tor) in an adversarial setting. The discrimina-
tor is trained to accurately distinguish whether
a given sample has been produced by the gener-
ator or drawn from a training data distribution.
The concurrent objective of the generator is to
fool the discriminator into misclassifying the gen-
erated samples [153, 154]. The overall objective
of a GAN network is to compel both models to
continuously improve their methods until the gen-
erator is able to perfectly synthesise the training
data, and the discriminator is unable to find a
difference between the samples synthesised by the
generator and real samples from the dataset.

Promising results presented in [157] highlight
the need for continued research in this direction.
The authors demonstrated that GAN based meth-
ods can be used to synthesis new training instances
to aid classification. This was particular impor-
tant as it was demonstrated for a pathology clas-
sification task similar to the 2013 Autism sub-
challenge (cf. Section 4.6), for which there was
a relatively small amount of associated training
data. Furthermore, their GAN system produced
competitive performances when compared with
more conventional classification paradigms [157].
Data representation learning: Conventional
hand crafted features may not adequately capture
the required variability to differentiate between
acoustic spaces associated with different health
conditions. Deep representation and E2E learn-
ing have the potential to determine highly ab-
stract, thus more robust, representations specific
for the task at hand. Non-deep approaches, such
as BoAW [137], highlight the potential of repre-
sentation learning; BoAW has achieved the state-

17



of-the-art for emotion prediction in particular [158]
and is now a ComParEbaseline system [11, 159].
This assertion is also further supported by the
state-of-the-art performance gained using the deep
spectrum features for snore sounds [147]. The
upcoming ComParE-2018 challenge, which in-
cludes ‘state-of-mind’ and ‘abnormal heart sound’
sub-challenges, features deep representation learn-
ing as a baseline system [159]. This will be set us-
ing the auDeep toolkit [160] which utilises recur-
rent sequence to sequence autoencoders to learn
representations which take into account the tem-
poral dynamics of time series data such as speech.
More multitask and transfer learning: Many
of the different health conditions discussed in this
review have either a direct, i. e., they are co-morbid,
or have an indirect relationship to each other. For
instance increased fatigue is a core symptom of
depressive disorders [94]. Mutlitask learning and
transfer learning approaches have the potential
to help exploit commonalities to create a more
robust system [150]. Interrelationships between
the sleepiness (cf. Section 4.3) and intoxication
(cf. Section 4.4) datasets were explored in [161].
The authors show that an effective, SVM based,
classifier can be obtained by aggregating the train-
ing data from both corpora. Similarly results pre-
sented in [162], indicate that the combined learn-
ing of depression and affects in a multitask LSTM-
RNN paradigm aids depression prediction. More-
over, it has also been shown that the inclusion OF
depression information aids the accuracy of deep
regressors performing affect detection on AVEC-
2014 data [163, 164]. Autoencoder and RNN based
transfer learning system have been shown to aid
speech-based emotion recognition [165, 166]. How-
ever, to the best of the authors knowledge such
approaches are yet to be tested in the speech-
health domain. Within image processing tech-
niques GANs are also being explored for domain
adaptation solutions, e. g., [167]. The core idea
being, the use if an adversarial network to learn
an effective mapping between two domains.

6. Conclusion

Deep learning has unquestionably improved on
more conventional machine learning paradigms in
terms of system accuracy and robustness in many
speech-based applications. With this in mind, we
reviewed the impact of deep learning paradigms in
the speech and health domain. By reviewing the
health based Computational Paralinguistics Chal-
lenge (ComParE) series and Audio/Visual Emo-
tion Challenge (AVEC) workshops we observed
a steady increase in the percentage of deep learn-
ing based entries from none in 2011 through to
two-thirds in ComParE-2017 However, it is clear
from this review that deep learning systems are
still not yet a dominant force in speech and health.
While two challenges have been won using a deep
learning based approach: 2015’s Parkinson’s con-
dition sub-challenge [118] and 2017’s cold and flu
sub-challenge [140], it is debatable given the re-
sults in [126] if the winning approach in 2015 was
due to the deep learning approach or the post-
processing speaker clustering method employed [118].
Furthermore, the majority of challenge partici-
pants still use very conventional feature extrac-
tion and classification paradigms.

A major reason for this is most likely the database,
compared to other speech-tasks such as speaker
and speech recognition the databases used for speech-
health tasks are often small, containing multiple
samples from a single speaker, and can be un-
balanced in terms of samples per class. To fur-
ther facilitate deep learning in such conditions, we
identified future research topics in intelligent la-
belling, data augmentation, representation learn-
ing as well as multitask and transfer learning.
However to fully overcome these aforementioned
issues, considerable investment is needed in col-
lecting truly large datasets. The need for this
data is twofold, firstly to facilitate the true impact
that deep learning solutions could possibly make,
and secondly to enable large scale clinical stud-
ies. Furthermore, this second aspect would enable
investigations into a major outstanding research
question; which recognition accuracies correspond
to positive impacts in real-world healthcare situ-
ations.
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Looking into the future, ongoing developments
and advancements in ubiquitous computing de-
vices for example, have the potential to provide
truly big data for researchers in the speech-health
domain [168]. The combination of such data with
current and next generation deep learning paradigms
can foster a new generation of patient-driven health-
care devices. Such devices could offer a range of
benefits such as the improvement of diagnostics,
triggering of earlier interventions and discovery of
more effective treatments [169, 170].
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ciarelli, F. Burkhardt, R. van Son, F. Weninger,
F. Eyben, T. Bocklet, G. Mohammadi, B. Weiss,
The INTERSPEECH 2012 Speaker Trait Challenge,
in: Proceedings INTERSPEECH 2012, 13th Annual
Conference of the International Speech Communi-
cation Association, ISCA, Portland, OR, 2012, pp.
254–257.

[8] B. Schuller, S. Steidl, A. Batliner, A. Vinciarelli,
K. Scherer, F. Ringeval, M. Chetouani, F. Weninger,
F. Eyben, E. Mar.i, M. Mortillaro, H. Salamin,
A. Polychroniou, F. Valente, S. Kim, The INTER-
SPEECH 2013 Computational Paralinguistics Chal-
lenge: Social Signals, Conflict, Emotion, Autism,
in: Proceedings INTERSPEECH 2013, 14th Annual
Conference of the International Speech Communi-
cation Association, ISCA, Lyon, France, 2013, pp.
148–152.

[9] B. Schuller, S. Steidl, A. Batliner, J. Epps, F. Ey-
ben, F. Ringeval, E. Mar.i, Y. Zhang, The INTER-
SPEECH 2014 Computational Paralinguistics Chal-
lenge: Cognitive & Physical Load, in: Proceedings
INTERSPEECH 2014, 15th Annual Conference of
the International Speech Communication Associa-
tion, ISCA, Singapore, Singapore, 2014, pp. 427–
431.

[10] B. Schuller, S. Steidl, A. Batliner, S. Hantke,
F. Hönig, J. R. Orozco-Arroyave, E. Nöth, Y. Zhang,
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